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The Frequency of Elliptic Curve Groups
over Prime Finite Fields

Vorrapan Chandee, Chantal David, Dimitris Koukoulopoulos,
and Ethan Smith

Abstract. Letting p vary over all primes and E vary over all elliptic curves over the ûnite ûeld Fp ,
we study the frequency to which a given group G arises as a group of points E(Fp). It is well known
that the only permissible groups are of the form Gm ,k ∶= Z/mZ × Z/mkZ. Given such a candidate
group, we let M(Gm ,k) be the frequency to which the group Gm ,k arises in this way. Previously,
C.David and E. Smith determined an asymptotic formula for M(Gm ,k) assuming a conjecture about
primes in short arithmetic progressions. In this paper, we prove several unconditional bounds for
M(Gm ,k), pointwise and on average. In particular, we show that M(Gm ,k) is bounded above by a
constant multiple of the expected quantity when m ≤ kA and that the conjectured asymptotic for
M(Gm ,k) holds for almost all groups Gm ,k when m ≤ k1/4−є . We also apply our methods to study
the frequency to which a given integer N arises as a group order #E(Fp).

1 Introduction

Given an elliptic curve E over the prime ûnite ûeld Fp , we let E(Fp) denote its set
of Fp points. It is well known that E(Fp) admits the structure of an abelian group,
and in fact, E(Fp) ≅ Gm ,k ∶= Z/mZ × Z/mkZ for some positive integers m and
k. It is natural to wonder which groups of the form Gm ,k arise in this way and how
o�en they occur as p varies over all primes and E varies over all elliptic curves over
Fp . _e former problem of characterizing which groups are realized in this way was
studied in [BPS12,CDKS],while the frequency of occurrencewas studied byC.David
and E. Smith [DS14b]. In the present work, we explore the frequency of occurrence
further.

Given a group G of the form Gm ,k = Z/mZ × Z/mkZ, we set N = ∣G∣ = m2k and
let Mp(G) denote theweighted number of isomorphism classes of elliptic curves over
Fp with group isomorphic to G, that is to say,

Mp(G) = ∑
E/Fp

E(Fp)≅G

1
∣Autp(E)∣

,

where the sum is taken over all isomorphism classes of elliptic curves over Fp and
∣Autp(E)∣ is the number of Fp-automorphisms of E. It is worth noting here that
∣Autp(E)∣ = 2 for all but a bounded number of isomorphism classes E over Fp , and
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hence

Mp(G) =
1
2
#{E/Fp ∶ E(Fp) ≅ G} + O(1),

In [DS14b, DS14c], the authors studied the weighted number of isomorphism
classes of elliptic curves over any prime ûnite ûeld with its group of points isomor-
phic to G, i.e., they studied M(G) ∶= ∑p Mp(G) . _e primes counted by M(G)

must lie in a very short interval near N = ∣G∣. _is is because the Hasse bound
implies that p + 1 − 2√p < N < p + 1 + 2√p, which is equivalent to saying that
N− ∶= N + 1−2

√
N < p < N + 1+2

√
N =∶ N+. Even the Riemann hypothesis does not

guarantee the existence of a prime in such a short interval. Hence themain theorem
of [DS14b] can only be proved under an appropriate conjecture concerning the distri-
bution of primes in short intervals. In the statement below, we refer to the conjecture
assumed in [DS14b] as the Barban-Davenport-Halberstam (BDH) estimate for short
intervals.
Before stating the main theorem of [DS14b], we ûx some more notation. Given a

group G = Gm ,k , we let Aut(G) denote its automorphism group (as a group). _is
should not be confused with Autp(E) as deûned above, which refers to the set of
Fp-automorphisms of the elliptic curve E. We also deûne the function

K(G) = ∏
ℓ∤N

( 1 −
( N−1

ℓ )
2 ℓ + 1

(ℓ − 1)2(ℓ + 1)
)∏

ℓ∣m
( 1 − 1

ℓ2
) ∏

ℓ∣k
ℓ∤m

( 1 − 1
ℓ(ℓ − 1)

) ,(1.1)

where the products are taken over all primes ℓ satisfying the stated conditions and ( ⋅ℓ )
denotes the usual Kronecker symbol. In [DS14b], the function K(G) was only com-
puted for odd order groups and its deûnition contained a mistake. It was corrected
to the form that we give here in [DS14c]. Note that the function K(G) is bounded
between two constants independently of the the parameters m and k. In paraphrased
form, themain theorem of [DS14b] is as follows.

_eorem 1.1 (David-Smith) Assume that the BDH estimate for short intervals holds.
Fix A, B > 0. _en for every nontrivial, odd order group G = Gm ,k , we have that

M(G) = (K(G) + OA,B(
1

(log ∣G∣)B
))

∣G∣2

∣Aut(G)∣ log ∣G∣
≍

mk2

ϕ(m)ϕ(k) log k
,

provided that m ≤ (log k)A.

For precise details concerning the conjecture assumed to prove _eorem 1.1, we
refer the reader to [DS14b]. We note that the result of_eorem 1.1 is restricted to the
range m ≤ (log k)A. However, we believe that it should hold in the range m ≤ kA.
Proving such a result at the present time would, however, require an even stronger
hypothesis than the one assumed in [DS14b]. Unconditionally, it is possible to obtain
upper bounds of the correct order ofmagnitude in this larger range. _is is the context
of our ûrst theorem.
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_eorem 1.2 FixA > 0 and consider integersm and k with 1 ≤ m ≤ kA. LetG = Gm ,k ,
N = ∣G∣ = m2k, and

δ = 1
N/(ϕ(m) log(2N))

∑
N−<p≤N+

p≡1 (modm)

√
(p − N−)(N+ − p),

and note that δ ≪ 1 by the Brun-Titchmarsch inequality. For any ûxed λ > 1,

δλ ⋅
∣G∣2

∣Aut(G)∣ log(2∣G∣)
≪ M(G) ≪ δ1/λ ⋅ ∣G∣2

∣Aut(G)∣ log(2∣G∣)
,

the implied constants depending at most on A and λ.

Employing the above result together with the Bombieri-Vinogradov theorem, we
also show that the lower bound implicit in_eorem 1.1 holds for a positive proportion
of groups G.

_eorem 1.3 Consider numbers x and y with 1 ≤ x ≤
√y. _en there are absolute

positive constants c1 and c2 such that

M(Gm ,k) ≥ c1 ⋅
∣Gm ,k ∣

2

∣Aut(Gm ,k)∣ log(2∣Gm ,k ∣)

for at least c2xy pairs (m, k) with m ≤ x and k ≤ y.

Remark 1.4 It isnot possible for such a lower bound to hold for all groupsG = Gm ,k .
As was noted in [BPS12], several groups of this form do not arise in this way at all.
For example, the group G11,1 never occurs as the group of points on any elliptic curve
over any ûnite ûeld.

Our ûnal result for M(Gm ,k) is that on average the full asymptotic of_eorem 1.1
holds unconditionally.

_eorem 1.5 Fix є > 0 and A ≥ 1. For 2 ≤ x ≤ y1/4−є we have that
1
xy ∑

m≤x , k≤y
mk>1

∣M(Gm ,k) −
K(Gm ,k)∣Gm ,k ∣

2

∣Aut(Gm ,k)∣ log ∣Gm ,k ∣
∣ ≪

y
(log y)A

,

the implied constant depending at most on A and є. Moreover, if the generalized Rie-
mann hypothesis is true, then the same result is true for x ≤ y1/2−є .

In [DS13, DS14a], David and Smith studied the related question of how many el-
liptic curves over Fp have a given number of points, that is to say, the asymptotic
behaviour of

M(N) ∶=∑
p
∑
E/Fp

#E(Fp)=N

1
∣Autp(E)∣

.

It was shown in [DS13,DS14a] that

M(N) ∼ K(N) ⋅
N2

ϕ(N) logN
(N →∞)
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under suitable assumptions on the distribution of primes in short arithmetic progres-
sions where

K(N) = ∏
ℓ∤N

( 1 −
( N−1

ℓ )
2 ℓ + 1

(ℓ − 1)2(ℓ + 1)
)∏

ℓ∣N
( 1 − 1

ℓνℓ(N)(ℓ − 1)
) .(1.2)

Here νℓ(N) denotes the usual ℓ-adic valuation of N . As onemight expect, themeth-
ods of this paper apply to the study of M(N) as well.

We start by recording the obvious identity M(N) = ∑m2k=N M(Gm ,k). _en it
is possible to show that, as expected, most of the contribution to M(N) comes from
groups Gm ,k with m small, that is to say, groups that are nearly cyclic.

_eorem 1.6 For N ≥ 1 and x ≥ 1, we have that

M(N) = ∑
m2k=N
m≤x

M(Gm ,k) + O(
N2

xϕ(N) log(2N)
) .

Finally, we conclude with two more results on M(N).

_eorem 1.7 Let N ≥ 1, set

η = 1
N/(log(2N))

∑
N−<p≤N+

p≡1 (modm)

√
(p − N−)(N+ − p),

and note that η≪ 1 by the Brun–Titchmarsch inequality. For any ûxed λ > 1,

ηλ ⋅
N2

ϕ(N) log(2N)
≪ M(N) ≪ η1/λ ⋅

N2

ϕ(N) log(2N)
,

the implied constants depending at most on λ.

_eorem 1.8 Fix A > 0. For x ≥ 1, we have that
1
x ∑1<N≤x

∣M(N) −
K(N)N2

ϕ(N) logN
∣ ≪A

x
(log x)A

.

_e present paper also includes an appendix (byG.Martin, C.David, andE. Smith)
giving a probabilistic interpretation to the Euler factors arising in the constants K(N)
and K(G) deûned by (1.1) and (1.2), respectively. _is interpretation is similar to the
heuristic leading to the conjectural constants in related conjectures on properties of
the reductions of a ûxed global elliptic curve E over the rationals e.g., the Lang-Trotter
conjectures [LT76] and the Koblitz [Kob88] conjecture, with the additional feature
that the Euler factors at the primes ℓ dividing N or ∣G∣ are related to certain matrix
counts over Z/ℓeZ for e large enough.

Notation Given a natural number n, we denote with P+(n) and P−(n) its largest
and smallest prime factor, respectively, with the convention that

P+(1) = 1 and P−(1) = ∞.
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Moreover, we let τr(n) denote the coeõcient of 1/ns in the Dirichlet series ζ(s)r . In
particular, τr(n) = rω(n) for square-free integers n, where ω(n) denotes the num-
ber of distinct prime factors of n. In the special case when r = 2, we simply write
τ(n) in place of τ2(n), which counts the number of divisors of n. We write f ∗ g
to denote the Dirichlet convolution of the arithmetic functions f and g, deûned by
( f ∗ g)(n) = ∑ab=n f (a)g(b). As usual, given a Dirichlet character χ, we write
L(s, χ) for its Dirichlet series. In addition, wemake use of the notation

E(x , h; q) ∶= max
(a ,q)=1

∣ ∑
x<p≤x+h

p≡a (mod q)

log p − h
ϕ(q)

∣ .

Finally, for d ∈ Z that is not a square and for z ≥ 1, we let

L(d) = L( 1, ( d
⋅
)) =∏

ℓ
( 1 −

( dℓ )

ℓ
)
−1

and L(d; z) =∏
ℓ≤z

( 1 −
( dℓ )

ℓ
)
−1

.

2 Outline of the Proofs

In this section, we outline the chief ideas that go into the proofs of our main results.
However, most of our remarks concern the proofs of _eorems 1.2 and 1.5. _is is
primarily because the remaining results are essentially corollaries of these theorems.
In particular, themain ingredient in the proof of_eorem 1.6 is _eorem 1.2, and the
main ingredients in the proof of_eorem 1.8 are_eorems 1.5 and 1.6 together with
a short computation. _eorem 1.7 is not truly a corollary, but its proof is essentially
the same as that of_eorem 1.2. _e proof of_eorem 1.3 is somewhat diòerent. _e
ideas involved in its proof are essentially the same as those used to show_eorem 1.6
of [CDKS] together with an application of_eorem 1.2. All of this will be expounded
further in Section 3 where we complete the proofs of all six results.
For the remainder of this section, we focus our attention on outlining the main

ingredients in the proofs of _eorems 1.2 and 1.5. _roughout, we ûx a group G =
Gm ,k = Z/mZ × Z/mkZ, and we set N = ∣G∣ = m2k. Moreover, given a prime p ≡
1 (modm), we set

(2.1) dm ,k(p) =
(p − 1 − N)2 − 4N

m2 = (
p − 1
m

−mk)
2
− 4k.

O�en,when the dependence onm and k is clear from the context,wewill simplywrite
d(p) in place of dm ,k(p). Our starting point is the following lemma, whose proof is
based on Deuring’s work [Deu41] and its generalization due to Schoof [Sch87]. We
shall give the details of its proof in Section 4.

Lemma 2.1 For any m, k ∈ N, we have that

M(Gm ,k) = ∑
N−<p<N+

p≡1 (modm)

∑
f 2 ∣d(p), ( f ,k)=1

d(p)/ f 2≡1,0 (mod 4)

√
∣d(p)∣L(d(p)/ f 2)

2π f
.
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For the proof of_eorem 1.2, we shall use the following simpliûed but weaker ver-
sion of Lemma 2.1.

Corollary 2.2 For any m, k ∈ N, we have that

∑
N−<p<N+

p≡1 (modm)

√
∣d(p)∣L(d(p)) ≪ M(Gm ,k) ≪ ∑

N−<p<N+

p≡1 (modm)

∣d(p)∣3/2

ϕ(∣d(p)∣)
L(d(p)) .

Proof For the lower bound, note that the term f = 1 in Lemma 2.1 always contributes
to M(Gm ,k), since d(p) ≡ 0, 1 (mod4) for all m, k and p ≡ 1 (modm). For the upper
bound, notice that

L(d(p)/ f 2) ≤ f
ϕ( f )

L(d(p)) .

Since∑ f ∣n
1

ϕ( f ) ≪
n

ϕ(n) , the claimed upper bound follows.

Evidently, Lemma 2.1 and Corollary 2.2 reduce the estimation ofM(Gm ,k) to esti-
mating an average of Dirichlet series evaluated at 1. In order to do so, we expand the
Dirichlet series as an inûnite sum and invert the order of summation by putting the
sum over primes p inside. For each ûxed n in the Dirichlet sum, understanding this
sum over primes involves understanding the distribution of the set

{
p − 1
m

∶ N− < p < N+ , p ≡ 1 (modm)}(2.2)

in arithmetic progressions a (mod b),where themodulus b = b(n) depends on n and
other parameters which are less essential. Already when b = m = 1, this problem is
very hard and unsolved, even if we assume the validity of the Riemann hypothesis.
In order to limit the size of the moduli b that are involved, we need to truncate the
Dirichlet series that appear before inverting the order of summation. We could do this
for each individual Dirichlet series using character sum estimates such as the Pólya-
Vinogradov inequality or Burgess’s bounds as in [DS13, DS14b], but this would still
leave us to dealwith rather largemoduli b. Instead,we use the following result,which
implies that for most characters χ, L(1, χ) can be approximated by a very short Euler
product, and then by a sum over integers n supported only on small primes.

Lemma 2.3 Let α ≥ 1 and Q ≥ 3. _ere is a set Eα(Q) ⊂ [1,Q] ∩ Z of at most
Q2/α integers such that if χ is a Dirichlet character modulo q ≤ exp{(logQ)2} whose
conductor does not belong to Eα(Q), then

L(1, χ) = ∏
ℓ≤(log Q)8α2

( 1 −
χ(ℓ)
ℓ

)
−1
( 1 + Oα(

1
(logQ)α

)) .

Proof By a classical result essentially due to Elliott (see [GS03, Proposition 2.2]),we
know that there is a set Eα(Q) of at most Q2/α integers from [1,Q] such that

L(1,ψ) = ∏
ℓ≤(log Q)8α2

( 1 − ψ(ℓ)
ℓ

)
−1
( 1 + O(

α
(logQ)α

))
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for all primitive characters ψ of conductor in [1,Q] ∖ Eα(Q). So if χ is a Dirich-
let character modulo q ≤ exp{(logQ)2} induced by ψ and the conductor of ψ is in
[1,Q] ∖ Eα(Q), then

L(1, χ) =∏
ℓ∣q

( 1 − ψ(ℓ)
ℓ

) ∏
ℓ≤(log Q)8α2

( 1 − ψ(ℓ)
ℓ

)
−1
( 1 + O(

α
(logQ)α

))

= ∏
ℓ∣q , ℓ>(log Q)8α2

( 1 − ψ(ℓ)
ℓ

) ∏
ℓ≤(log Q)8α2

( 1 −
χ(ℓ)
ℓ

)
−1
( 1 + O(

α
(logQ)α

)) .

Finally, note that

log( ∏
ℓ∣q ,ℓ>(log Q)8α2

( 1 − ψ(ℓ)
ℓ

)) ≪ ∑
ℓ∣q ,ℓ>(log Q)8α2

1
ℓ
≤

ω(q)
(logQ)8α2

≪
1

(logQ)8α2−2 ,

since ω(q) ≤ log q/ log 2 ≪ (logQ)2, which completes the proof of the lemma.

Expanding the short product in the above lemma leads to an approximation of
L(1, χ) by a sum over (logQ)A-smooth integers, and we know that very few of them
get > Qє .

Lemma 2.4 Let f ∶N → {z ∈ C ∶ ∣z∣ ≤ 1} be a completely multiplicative function. For
u ≥ 1 and x ≥ 10 we have that

∏
p≤x

( 1 − f (p)
p

)
−1
= ∑

P+(n)≤x
n≤xu

f (n)
n

+ O(
log x
eu

) .

Proof We have that

∣∏
p≤x

( 1 − f (p)
p

)
−1
− ∑

P+(n)≤x
n≤xu

f (n)
n

∣

= ∣ ∑
P+(n)≤x

n>xu

f (n)
n

∣ ≤
1
eu ∑

P+(n)≤x

1
n1−1/ log x ≪

1
eu
exp{∑

p≤x

1
p1−1/ log x } .

So using the formula p1/ log x = 1 + O(log p/ log x) and the prime number theorem,
we obtain the claimed result.

Combining Lemmas 2.3 and 2.4, we may replace L(1, χ) by a very short sum for
most characters χ, which means that we only need information for the distribution
of the set (2.2) for very small moduli. _is leads to the following fundamental result,
which is an improvement of_eorem 1.1. It will be proved in Section 7.

_eorem 2.5 Fix α ≥ 1 and є ≤ 1/3 and consider integers m and k with 1 ≤ m ≤

kα . Assume k is large enough so that k 1
2−є ≥ (log k)α+2. Set G = Gm ,k and consider
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h ∈ [mkє ,m
√

k/(log k)α+2]. _en

M(G) =
K(G)∣G∣2

∣Aut(G)∣ log ∣G∣

+ Oα ,є(
k

(log k)α
+

√
k

h ∑
q≤kє

τ3(q)∫
N+

N−
E(y, h; qm)dy) ,

where K(G) is deûned by (1.1).

Even thoughwe cannot estimate the error term for any given values ofm and k,we
can do so ifwe average over m and k using the following resultwhich is a consequence
of_eorem 1.1 in [Kou14].

Lemma 2.6 Fix є > 0 and A ≥ 1. For x ≥ h ≥ 2 and 1 ≤ Q2 ≤ h/x 1/6+є , we have that

∫
2x

x
∑
q≤Q

E(y, h; q)dy ≪ xh
(log x)A

.

If, in addition, the Riemann hypothesis for Dirichlet L-functions is true, then the above
estimate holds when 1 ≤ Q2 ≤ h/xє .

_eorem 2.5 and Lemma 2.6 lead to a proof of_eorem 1.5 in a fairly straightfor-
ward way as we will see in Section 3.

Next we turn to the proof of _eorem 1.2. Using Corollary 2.2 and Hölder’s in-
equality, we reduce the proof of this result to that of controlling sums of the form

∑
N−<p<N+

p≡1 (modm)

(
∣d(p)∣

ϕ(∣d(p)∣)
)

s
L(d(p)) r ,(2.3)

where we take r > 0 to prove the implicit upper bound and r < 0 for the lower bound.
Nevertheless, we only seek an upper bound for the sum in (2.3), even for the lower
bound in _eorem 1.2. _erefore, we can replace the sum over primes with a sum
over almost primes and use sievemethods to detect the latter kind of integers. More
precisely,wewill majorize the characteristic function of primes ≤ 2N by a convolution
λ ∗ 1, where λ is a certain truncation of theMöbius function. _is will be done using
the fundamental lemma of sieve methods, which we state below in the form found in
[FI78, Lemma 5]. We could have also used Selberg’s sieve, but the calculations are
actually simpler when using Lemma 2.7.

Lemma 2.7 Let y ≥ 2 and D = yu with u ≥ 2. _ere exist two arithmetic functions
λ± ∶ N→ [−1, 1], supported on {d ∈ N ∶ P+(d) ≤ y, d ≤ D}, for which

⎧⎪⎪
⎨
⎪⎪⎩

(λ− ∗ 1)(n) = (λ+ ∗ 1)(n) = 1 if P−(n) > y,
(λ− ∗ 1)(n) ≤ 0 ≤ (λ+ ∗ 1)(n) otherwise.
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Moreover, if g∶N→ R is amultiplicative function with 0 ≤ g(p) ≤ min{2, p− 1} for all
primes p ≤ y and λ ∈ {λ+ , λ−}, then

∑
d

λ(d)g(d)
d

= (1 + O(e−u))∏
p≤y

( 1 − g(p)
p

) .

Combining Lemmas 2.3 and 2.7, we are led to the following key result, which will
be proved in Section 6. As we will see in the same section, _eorem 1.2 is an easy
consequence of this intermediate result.

Proposition 2.8 Let m, k ∈ N and set N = m2k. For any r ∈ R and s ≥ 0, we have
that

∑
N−<p<N+

p≡1 (modm)

(
∣d(p)∣

ϕ(∣d(p)∣)
)

s
L(d(p))r ≪r ,s (

k
ϕ(k)

)
r

√
N

ϕ(m) log(2k)
.

3 Completion of the Proof of the Main Results

In this section we prove _eorems 1.2–1.8. We start by stating a preliminary result
which is Lemma 15 of [DS14b] in slightly altered form.

Lemma 3.1 For m, k ∈ N, we have that

∣Aut(Gm ,k)∣

∣Gm ,k ∣
= mϕ(m)

ϕ(k)
k ∏

ℓ∣m
ℓ∤k

( 1 − 1
ℓ2

) .

Proof of_eorem 1.2 _e claimed inequalities are a consequence of Corollary 2.2,
Proposition 2.8, andHölder’s inequality. Indeed, let µ = λ/(λ−1), so that 1/λ+1/µ = 1.
_en we have that

M(Gm ,k) ≪ ∑
N−<p<N+

p≡1 (modm)

√
∣d(p)∣ ∣d(p)∣

ϕ( ∣d(p)∣)
L(d(p))

≤ ( ∑
N−<p<N+

p≡1 (modm)

√
∣d(p)∣ )

1
λ ⎛

⎝
∑

N−<p<N+

p≡1 (modm)

√
∣d(p)∣( ∣d(p)∣

ϕ(∣d(p)∣)
)

µ
L(d(p)) µ⎞

⎠

1
µ

≪ ( ∑
N−<p<N+

p≡1 (modm)

√
(N+ − p)(p − N−)

m
)

1
λ

× ( ∑
N−<p<N+

p≡1 (modm)

√
k( ∣d(p)∣

ϕ(∣d(p)∣)
)

µ
L(d(p)) µ

)
1
µ ,
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since ∣d(p)∣ = (N+ − p)(p − N−)/m2 ≪ N/m2 = k. So the deûnition of δ and
Proposition 2.8 imply that

M(Gm ,k) ≪λ ,A δ1/λ
km

ϕ(m) log(2N)

k
ϕ(k)

.

Hence the upper bound in _eorem 1.2 follows by Lemma 3.1.
_e proof of the lower bound is similar, having as a starting point the inequality

∑
N−<p<N+

p≡1 (modm)

√
∣d(p)∣

≤ ( ∑
N−<p≤N+

p≡1 (modm)

√
∣d(p)∣L(d(p)))

1
λ
( ∑

N−<p≤N+

p≡1 (modm)

√
∣d(p)∣

L(d(p)) µ/λ )
1
µ .

Proof of_eorem 1.7 _e proof of_eorem1.7 is completely analogous to the proof
of _eorem 1.2. _e only diòerence is that instead of starting with Corollary 2.2, we
observe that

∑
N−<p<N+

√
∣DN(p)∣L(DN(p)) ≪ M(N) ≪ ∑

N−<p<N+

∣DN(p)∣3/2

ϕ(∣DN(p)∣)
L(DN(p)) ,

a consequence of relation (4.2) below with n = 1.

Proof of_eorem 1.3 Note thatwhenm = k = 1 andN = 1, then N+ = 4 andN− = 0
and thus the primes 2 and 3 belong to the set {N− < p ≤ N+ ∶ p ≡ 1 (modm)}. So
by _eorem 1.2, it suõces to show _eorem 1.3 when y is large enough. We further
assume that x ∈ N which wemay certainly do. Observe that (N+ − p)(p − N−) ≍ N
for p ∈ ((

√
N − 1/2)2 , (

√
N + 1/2)2) , and thus

1
N/(ϕ(m) log(2N))

∑
N−<p<N+

p≡1 (mod p)

√
(N+ − p)(p − N−)

≫
ϕ(m)
√

N
∑

(
√

N−1/2)2<p<(
√

N+1/2)2

p≡1 (modm)

log p.

So, if we set

C(m, k) = ∣Gm ,k ∣
2

∣Aut(Gm ,k)∣ log(2Gm ,k)
≍

mk2

ϕ(m)ϕ(k) log(mk)
,
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then _eorem 1.2 with λ = 2 implies that

∑
3x/4<m≤x
y/100<k≤y

¿
Á
ÁÀM(Gm ,k)

C(m, k)

≫ ∑
3x/4<m≤x
y/100<k≤y

ϕ(m)

x√y ∑
(m

√
k−1/2)2<p<(m

√
k+1/2)2

p≡1 (modm)

log p

≥ ∑
3x/4<m≤x

∑
x2 y/3<p≤4x2 y/9

p≡1 (modm)

ϕ(m) log p
x√y ∑

y/100<k≤y
(
√

p−1/2)2/m2
<k<(

√
p+1/2)2/m2

1,

provided that y is large enough. Note that

(
√p + 1/2)2 − (

√p − 1/2)2

m2 =
2√p
m2 ≥

2x
√
y/3

x2 > 1,

by our assumptions that x ≤
√y. Since we also have that (√p − 1/2)2/m2 > y/100

and that (√p + 1/2)2/m2 ≤ y for y large enough and m and p as above, we conclude
that

∑
3x/4<m≤x
y/100<k≤y

¿
Á
ÁÀM(Gm ,k)

C(m, k)
≫

1
x2 ∑

3x/4<m≤x
ϕ(m) ∑

x2 y/3<p≤4x2 y/9
p≡1 (modm)

log p.

_is last double sum equals

∑
3x/4<m≤x

ϕ(m) ⋅
x2 y

9ϕ(m)
+ OA(

x3 y
(log y)A

) ≫ x3 y,

by the Bombieri–Vinogradov theorem. _erefore we conclude that

∑
3x/4<m≤x
y/100<k≤y

¿
Á
ÁÀM(Gm ,k)

C(m, k)
≫ xy.

Since the summands are all≪ 1 in this range by_eorem 1.2 (recall that δ ≪ 1 there),
we obtain _eorem 1.3.

Proof of_eorem 1.5 Let θ be a parameter, which we take to be 1
2 or 1

4 , according
to whether we assume the generalized Riemann hypothesis or not. We then suppose
that 1 ≤ x ≤ yθ−є . Note that _eorem 1.2 and Lemma 3.1 imply that

∑
m≤x , k≤y/(log y)A

mk>1

∣M(Gm ,k) −
K(Gm ,k)∣Gm ,k ∣

2

∣Aut(Gm ,k)∣ log ∣Gm ,k ∣
∣ ≪

xy2

(log y)A
.

We break the remaining range of m and k into dyadic intervals, hence reducing _e-
orem 1.5 to showing that

E ∶= ∑
x/2<m≤x
y/2<k≤y

∣M(Gm ,k) −
K(Gm ,k)∣Gm ,k ∣

2

∣Aut(Gm ,k)∣ log ∣Gm ,k ∣
∣ ≪є ,A

xy2

(log y)A
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for x ≤ yθ−є . (Note that thesemight be diòerent values of x , y, and є than the oneswe
startedwith.) We apply_eorem 2.5with h = (x2 y)1/2/(log y)A+2 for allm ∈ [x/2, x]
and k ∈ [y/2, y], to deduce that

E ≪
√y
h ∑

x/2<m≤x
y/2<k≤y

∑
q≤kє

τ3(q)∫
(m2k)+

(m2k)−
E(t, h; qm)dt + xy2

(log y)A

=∶ E′ + xy2

(log y)A
,

say. Putting the sum over k inside, we ûnd that

E′ ≪
√y
h ∑

x/2<m≤x
∑
q≤yє

τ3(q)∫
2x2 y

x2 y/10
E(t, h; qm)( ∑

y/2<k≤y
t−/m2

<k<t+/m2

1) dt

≪
y
hx ∑m≤x

∑
q≤yє

τ3(q)∫
2x2 y

x2 y/10
E(t, h; qm)dt

≤
y
hx ∑m≤x

∑
q≤yє

τ4(q)∫
2x2 y

x2 y/10
E(t, h; q)dt.

We note that E(u, h; b) ≪
√

h/ϕ(b)
√
E(u, h; b) by the Brun-Titchmarsch inequal-

ity. So the Cauchy-Schwarz inequality and Lemma 2.6 imply that

E′ ≪ y
xh

( ∑
b≤x y3є

τ4(b)2
∫

2x2 y

x2 y/10

h
ϕ(b)

dt)
1
2
( ∑
b≤x y3є

∫
2x2 y

x2 y/10
E(t, h; b)dt)

1
2

≪
y
xh

(x2 yh(log y)16 ⋅
x2 yh

(log y)2A+16 )
1
2
=

xy2

(log y)A
,

which completes the proof of_eorem 1.5.

Proof of_eorem 1.6 _eorem 1.2 implies that

M(Gm ,k) ≪
k3/2

ϕ(k)

√
N

ϕ(m) log(2k)
=

mk2

ϕ(k)ϕ(m) log(2k)
≤

Nmk
ϕ(N)ϕ(m) log(2k)

.

_erefore,

∑
m2k=N
m>x

M(Gm ,k) ≪ ∑
m2

∣N
x<m≤

√
N

N2

mϕ(m)ϕ(N) log(2N/m2)
≪

N2

xϕ(N) log(2N)
,

which completes the proof of_eorem 1.6.

Proof of_eorem 1.8 In view of_eorem 1.6, it suõces to show that

∑
1<N≤x

∣ ∑
m2k=N

m≤(log x)A

M(Gm ,k) −
K(N)N2

ϕ(N) logN
∣ ≪A

x2

(log x)A
,
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where K(N) is deûned by (1.2). Note that

∑
1<N≤x

∣ ∑
m2k=N

m≤(log x)A

M(Gm ,k) − ∑
m2k=N

m≤(log x)A

K(Gm ,k)∣Gm ,k ∣
2

∣Aut(Gm ,k)∣ log ∣Gm ,k ∣
∣

≤ ∑
1<m2k≤x

m≤(log x)A

∣M(Gm ,k) −
K(Gm ,k)∣Gm ,k ∣

2

∣Aut(Gm ,k)∣ log ∣Gm ,k ∣
∣

≤ ∑
1≤2 j≤(log x)A

∑
k≤x/4 j

2 j
≤m<2 j+1

m2k>1

∣M(Gm ,k) −
K(Gm ,k)∣Gm ,k ∣

2

∣Aut(Gm ,k)∣ log ∣Gm ,k ∣
∣

≪A ∑
1≤2 j≤(log x)A

x2

8 j(log x)A
≪

x2

(log x)A

by _eorem 1.5. So it suõces to show that

∑
1<N≤x

N
logN

∣ ∑
m2k=N

m≤(log x)A

K(Gm ,k)∣Gm ,k ∣

∣Aut(Gm ,k)∣
−

K(N)N
ϕ(N)

∣ ≪A
x2

(log x)A
.(3.1)

In fact, Lemma 3.1 implies that

K(Gm ,k)∣Gm ,k ∣

∣Aut(Gm ,k)∣

=
k

mϕ(m)ϕ(k)∏ℓ∣m
ℓ∤k

( 1 − 1
ℓ2

)
−1

K(Gm ,k)

=
N

m2ϕ(N)
∏

ℓ∣(m ,k)
( 1 − 1

ℓ
)
−1
∏
ℓ∣m
ℓ∤k

( 1 − 1
ℓ2

)
−1

K(Gm ,k)

=
N

m2ϕ(N)
∏
ℓ∤N

( 1 −
( N−1

ℓ )
2 ℓ + 1

(ℓ − 1)2(ℓ + 1)
) ∏

ℓ∣(m ,k)
( 1 + 1

ℓ
) ∏

ℓ∣k
ℓ∤m

( 1 − 1
ℓ(ℓ − 1)

) .

_erefore,

∑
m2k=N

m≤(log x)A

K(Gm ,k)∣Gm ,k ∣

∣Aut(Gm ,k)∣

= ∑
m2k=N

K(Gm ,k)
∣Gm ,k ∣

∣Aut(Gm ,k)∣
+ O(

N
(log x)Aϕ(N)

)

=
N

ϕ(N)
∏
ℓ∤N

( 1 −
( N−1

ℓ )
2 ℓ + 1

(ℓ − 1)2(ℓ + 1)
) ⋅ S(N) + O(

N
(log x)Aϕ(N)

) ,



734 V. Chandee, C. David, D. Koukoulopoulos, and E. Smith

where
S(N) = ∑

m2k=N

1
m2 ∏

ℓ∣(m ,k)
( 1 + 1

ℓ
) ∏

ℓ∣k
ℓ∤m

( 1 − 1
ℓ(ℓ − 1)

) .

Note that

S(ℓv) = 1 − 1
ℓ(ℓ − 1)

+ ∑
1≤ j≤v/2

1
ℓ2 j ( 1 +

1 j<v/2
ℓ

)

= 1 − 1
ℓ(ℓ − 1)

+ ∑
1≤ j≤v/2

1
ℓ2 j + ∑

1≤ j≤v/2

1 j<v/2
ℓ2 j+1

= 1 − 1
ℓ(ℓ − 1)

+
v

∑
i=2

1
ℓ i

= 1 − 1
ℓv(ℓ − 1)

.

So we conclude that

∑
m2k=N

m≤(log x)A

K(Gm ,k)∣Gm ,k ∣

∣Aut(Gm ,k)∣
=

K(N)N
ϕ(N)

+ O(
N

(log x)Aϕ(N)
) ,

which yields relation (3.1), thus completing the proof of_eorem 1.8.

4 Reduction to an Average of Dirichlet Series

In this section, we prove Lemma 2.1 using the theory developed by Deuring [Deu41]
and somewhat generalized by Schoof [Sch87]. As before, we ûx a group G = Gm ,k =
Z/mZ × Z/mkZ, and we set N = ∣G∣ = m2k. Given a prime p and an integer n such
that n2∣N , we deûne

Mp(N ; n) = ∑
E/Fp

#E(Fp)=N
E(Fp)[n]≅Gn ,1

1
∣Autp(E)∣

,

the weighted number of isomorphism classes of elliptic curves over any prime ûnite
ûeld which have exactly N rational points and whose rational n-torsion subgroup is
isomorphic toGn ,1 = Z/nZ×Z/nZ. It is not hard to relateMp(G) to a sum involving
Mp(N ; n). _is is accomplished via an inclusion-exclusion argument, which gives
the relation

(4.1) Mp(G) = ∑
r2 ∣k

µ(r)Mp(N ; rm).

Schoof [Sch87] essentially gave a formula for Mp(N ; n) in terms of class numbers.
However, one needs to exercise care here as Schoof counts eachFp-isomorphism class
E with weight 1 instead of with weight 1/∣Autp(E)∣ as we do here. Given a negative
discriminant D, we let H(D) denote the Kronecker class number which is deûned as

H(D) = ∑
f 2 ∣D

D/ f 2≡0,1 (mod 4)

h(D/ f 2)
w(D/ f 2)

.
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Here, as usual, h(d) denotes the (ordinary) class number of the unique imaginary
quadratic order of discriminant d, andw(d) denotes the cardinality of its unit group.
_en letting DN(p) = (p + 1 − N)2 − 4p = (p − 1 − N)2 − 4N and reworking the
proofs of [Sch87, Lemma 4.8 and _eorem 4.9] to count each class E with weight
1/∣Autp(E)∣, we arrive at the formula

Mp(N ; n) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H(
DN(p)

n2 ) if p ∈ (N− ,N+) and p ≡ 1 (mod n),

0 otherwise.
(4.2)

Note here that DN(p)/n2 is a negative discriminant whenever p ∈ (N− ,N+),
p ≡ 1 (mod n), and n2 ∣ N .

Lemma 4.1 Let m, k ∈ N and recall that d(p) = dm ,k(p) is deûned by (2.1). If
p ∈ (N− ,N+) and p ≡ 1 (modm), then

Mp(Gm ,k) = ∑
f 2 ∣d(p), ( f ,k)=1
d(p)
f 2 ≡0,1 (mod 4)

h(d(p)/ f 2)
w(d(p)/ f 2)

.

Otherwise,Mp(Gm ,k) = 0.

Remark 4.2 _e above formula is amenable to computation. Indeed, given a prime
p and anym and k, very simplemodiûcations to the usual quadratic forms algorithm
for computing class numbers (see [BV07, pp. 99–100] for example) make it possible to
compute Mp(Gm ,k), using at most O(k) arithmetic operations which is reasonable
for small k. If we put

Hk(D) = ∑
f 2 ∣D , ( f ,k)=1
D
f 2 ≡0,1 (mod 4)

h(D/ f 2)
w(D/ f 2)

for each negative discriminant D and each positive integer k, then the only modi-
ûcations needed are as follows. When the algorithm produces the (not necessarily
primitive) form ax2 + bxy+ cy2, say with (a, b, c) = f ≥ 1, it is counted subject to the
following rules, provided that ( f , k) = 1.

(i) Forms proportional to x2 + y2 are counted with weight 1/4.
(ii) Forms proportional to x2 + xy + y2 are counted with weight 1/6.
(iii) All other forms are counted with weight 1/2.

Similarly, tables of M(Gm ,k) or Mp(Gm ,k) values can be computed for m and k of
modest size by simultaneously computing a table of values of Hk(D).

Proof It follows from (4.2) thatMp(G) = 0unless p ∈ (N− ,N+) and p ≡ 1 (modm).
_erefore, assume that p ∈ (N− ,N+) and p ≡ 1 (modm), and write k = s2 t with t
square-free. Combining relations (4.1) and (4.2) with the deûnition of the Kronecker
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class number, we ûnd that

Mp(G) = ∑
r∣s

p≡1 (mod rm)

µ(r)H(
DN(p)
(rm)2 )

= ∑
r∣s

p≡1 (mod rm)

µ(r)H(
d(p)
r2

)

= ∑
r∣s

p≡1 (mod rm)

µ(r) ∑
f 2 ∣ d(p)r2

d(p)
(r f )2 ≡0,1 (mod 4)

h(d(p)/(r f )2)

w(d(p)/(r f )2)

= ∑
r∣s

p≡1 (mod rm)

µ(r) ∑
f 2 ∣d(p), r∣ f

d(p)
f 2 ≡0,1 (mod 4)

h(d(p)/ f 2)
w(d(p)/ f 2)

.

Now interchanging the sum over r with the sum over f and recalling the identity

∑
r∣n

µ(n) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 1,
0 otherwise,

we arrive at the formula

Mp(G) = ∑
f 2 ∣d(p)

( f ,s ,(p−1)/m)=1
d(p)
f 2 ≡0,1 (mod 4)

h(d(p)/ f 2)
w(d(p)/ f 2)

.

In order to complete the proof it is suõcient to show that in the above sum the
condition ( f , s, (p − 1)/m) = 1 implies the simpler condition ( f , k) = 1, the con-
verse implication being immediate. To this end, we write p = 1 + jm and assume that
( f , s, (p − 1)/m) = ( f , s, j) = 1. _en d(p) = ( j − mk)2 − 4k, and the condition
d(p)/ f 2 ≡ 0, 1 (mod4) may be rewritten as

(4.3) ( j −mk)2 − 4k ≡ 0, f 2 (mod4 f 2).

Now let ℓ be any prime dividing ( f , k). _en the above congruence implies that ℓ∣ j,
but that implies that ℓ2∣( j −mk)2. Whence ℓ2∣4k. If ℓ is odd, then we have that ℓ2∣k,
and hence ℓ∣( f , s, j) = 1, which is a contradiction. If ℓ = 2, then we divide (4.3)
through by 4 to obtain

(
j
2
−mk

2
)

2
− k ≡ 0, f

2

4
(mod f 2).

Since ℓ = 2∣( f , k), we have that k is even and congruent to a diòerence of two squares
modulo 4. _is in turn implies that k ≡ 0 (mod4), i.e., 2∣s. _us, in this case we also
have the contradiction ℓ = 2∣( f , s, j) = 1. _erefore, we conclude that ( f , k) = 1, and
this completes the proof of the lemma.

Lemma 4.1 togetherwith the class number formula immediately yields Lemma 2.1.
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5 Local Computations

In this section we gather some local computations which we will need in the proofs
of_eorem 2.5 and Proposition 2.8. As before, we continue to assume that m, k, and
N are positive integers with N = ∣Gm ,k ∣ = m2k.

Lemma 5.1 Let ℓ be an odd prime. For e ≥ 1, (d , ℓ) = 1, and (a, b) = 1, we have that

#{ j ∈ Z/ℓeZ ∶ j2 ≡ d (mod ℓe)} = 1 + (
d
ℓ
)

and

#{ j ∈ Z/ℓeZ ∶ j2 ≡ d (mod ℓe), (a + b j, ℓ) = 1} = 1 + (
a2 − db2

ℓ
)

2
(
d
ℓ
) .

Proof _e ûrst formula is classical. For the second, we ûrst note that if ( dℓ ) = −1,
then ( a

2
−db2
ℓ )2 = 1 and the formula holds. Now assume that ( dℓ ) = 1, so that there

are exactly two solutions to the congruence j2 ≡ d (mod ℓe), say ± j0. If ℓ∣b, then
the condition (a + b j, ℓ) = 1 is satisûed trivially for all j ∈ Z and the claimed result
follows. Finally, if ℓ ∤ b, then we need to exclude exactly one of the solutions when
a ≡ ±b j0 (mod ℓ), that is to say when a2 ≡ b2d (mod ℓ). So the claimed formula
holds in this last case, too.

We set

T(n) = ∑
d (mod n)

(
d − 4k

n
)#{ j (mod n) ∶ j2 ≡ d (mod n), (N + 1 + jm, n) = 1}.

(5.1)

Proposition 5.2 Let ℓ be a prime not dividing 2k and w ≥ 1. _en

T(ℓw)
ℓw−1 = −(

m(N − 1)
ℓ

)
2
+

⎧⎪⎪
⎨
⎪⎪⎩

ℓ − 1 − ( k
ℓ ) if w is even,

−1 if w is odd.

Proof We write T(ℓw) = T1(ℓw)+ T2(ℓw), where T1(ℓw) is the same sum as T(ℓw)
with the additional restriction that ℓ∣d and T2(ℓw) is the remaining sum. First, we
calculate T1(ℓw). We have that

T1(ℓw) = ∑
d (mod ℓw)

ℓ∣d

(
d − 4k
ℓw

) ∑
j (mod ℓw)

j2≡d (mod ℓw)

(
N + 1 + jm

ℓ
)

2

= ∑
d (mod ℓw)

ℓ∣d

(
−4k
ℓ

)
w
(
N + 1
ℓ

)
2

∑
j (mod ℓw), ℓ∣ j
j2≡d (mod ℓw)

1

= (
−k
ℓ

)
w
(
N + 1
ℓ

)
2
∑

j (mod ℓw)
ℓ∣ j

1 = (
−k
ℓ

)
w
(
N + 1
ℓ

)
2
ℓw−1 .
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Finally, we compute T2(ℓw). Applying Lemma 5.1, we ûnd that

T2(ℓw) = ∑
d (mod ℓw)
(d ,ℓ)=1

(
d − 4k

ℓ
)
w
( 1 + (

(N + 1)2 − dm2

ℓ
)

2
(
d
ℓ
))

= ℓw−1
∑

d (mod ℓ)
(
d − 4k

ℓ
)
w
( 1 + (

(N + 1)2 − dm2

ℓ
)

2
(
d
ℓ
)) − ℓw−1(

−k
ℓ

)
w
.

If ℓ∣m, then ( (N+1)2−dm2

ℓ ) = 1 for all d (mod ℓ). On the other hand, if ℓ ∤ m, then
there is precisely one d (mod ℓ) such that (N + 1)2 − dm2 ≡ 0 (mod ℓ) for which we
have that

(
d − 4k

ℓ
)
w
= (

m2d − 4m2k
ℓ

)
w
= (

(N − 1)2

ℓ
)
w
= (

N − 1
ℓ

)
2

and

(
d
ℓ
) = (

N + 1
ℓ

)
2
.

_us, whether ℓ divides m or not, we have
T2(ℓw)
ℓw−1 = −(

−k
ℓ

)
w
− (

m(N − 1)(N + 1)
ℓ

)
2
+ ∑
d (mod ℓ)

(
d − 4k

ℓ
)
w
( 1 + (

d
ℓ
)) ,

which implies that
T(ℓw)
ℓw−1 = (

−k
ℓ

)
w
(
N + 1
ℓ

)
2
− (

−k
ℓ

)
w
− (

m(N − 1)(N + 1)
ℓ

)
2

+ ∑
d (mod ℓ)

(
d − 4k

ℓ
)
w
( 1 + (

d
ℓ
) .

Note that if ℓ∣N + 1, then (−k
ℓ ) = 1 and thus

(
−k
ℓ

)
w
(
N + 1
ℓ

)
2
− (

−k
ℓ

)
w
− (

m(N − 1)(N + 1)
ℓ

)
2
= −1 = −( m(N − 1)

ℓ
)

2
,

whereas if ℓ ∤ N + 1, then

(
−k
ℓ

)
w
(
N + 1
ℓ

)
2
− (

−k
ℓ

)
w
− (

m(N − 1)(N + 1)
ℓ

)
2
= −(

m(N − 1)
ℓ

)
2
.

So
T(ℓw)
ℓw−1 = −(

m(N − 1)
ℓ

)
2
+ ∑
d (mod ℓ)

(
d − 4k

ℓ
)
w
( 1 + (

d
ℓ
)) .

If now w is odd, then

∑
d (mod ℓ)

(
d − 4k

ℓ
)
w
( 1 + (

d
ℓ
))= ∑

d (mod ℓ)
(
d − 4k

ℓ
)(
d
ℓ
) = −1,

using for example [Ste94, Exercise 1.1.9] since (2k, ℓ) = 1. Finally, if w is even, then

∑
d (mod ℓ)

(
d − 4k

ℓ
)
w
( 1 + (

d
ℓ
)) = ℓ − 1 + ∑

d (mod ℓ)
d /≡4k (mod ℓ)

(
d
ℓ
) = ℓ − 1 − (

k
ℓ
) ,
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which completes the proof of the proposition.

Corollary 5.3 For a prime ℓ not dividing 2k, we have that

P(ℓ) ∶= 1 +∑
w≥1

T(ℓw)
ℓ2w−1(ℓ − (m

ℓ )
2)

=
ℓ3 − (m

ℓ )
2ℓ2 − (1 + (m

ℓ )
2 ( N−1

ℓ )
2
)ℓ − 1 − ( N−1

ℓ )2( k
ℓ )

(ℓ2 − 1)(ℓ − (m
ℓ )

2)
.

Proof Lemma 5.2 and a straightforward computation imply that

P(ℓ) =
ℓ3 − (m

ℓ )
2ℓ2 − (1 + (m

ℓ )
2( N−1

ℓ )2)ℓ + (m
ℓ )

2 − (m(N−1)
ℓ )2 − 1 − ( k

ℓ )

(ℓ2 − 1)(ℓ − (m
ℓ )

2)
.

Finally, note that

(
m(N − 1)

ℓ
)

2
+ (

k
ℓ
) − (

m
ℓ
)

2
= (

N − 1
ℓ

)
2
(
k
ℓ
) ,

since ( k
ℓ ) = (m

ℓ )
2 = 1 if ℓ∣N − 1.

6 Proof of Proposition 2.8

_is section is dedicated to the proof of Proposition 2.8, which gives an upper bound
of the conjectured order ofmagnitude for the average of special values

L(d(p)) = L( 1, ( d(p)
⋅

)) ,

summed over integers with no small prime factors. A key role will be played by the
fundamental lemma of sievemethods, i.e., Lemma 2.7.

Proof of Proposition 2.8 We shall employ the notation

ρ(n) ∶= ∣n∣
ϕ(∣n∣)

=∏
ℓ∣n

( 1 − 1
ℓ
)
−1

.

Wewill simplify the sumwe are estimatingwith an application of theCauchy-Schwarz
inequality but, ûrst, we massage the L-functions that appear in it. Note that if p =
1 + jm, then d(p) = ( j −mk)2 − 4k ≡ j2 (mod k). So

L(d(p))r =∏
ℓ∣k
ℓ∤ j

( 1 − 1
ℓ
)
−r
∏
ℓ∤k

( 1 −
(
d(p)
ℓ )

ℓ
)
−r
≪r ρ(k)rρ(( j, k))∣r∣L(k2d( p)) r ,

and consequently,

S ∶= ∑
N−<p<N+

p≡1 (modm)

ρ(d(p))sL(d(p))r

≪r ρ(k)r
∑

N−<p<N+
p=1+ jm , j∈N

ρ(( j, k))∣r∣ρ(d(p))sL(k2d(p))r .
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Hence the Cauchy-Schwarz inequality yields that

S
ρ(k)r ≪r ( ∑

N−<p<N+
p=1+ jm

ρ(( j, k))2∣r∣ρ(d(p))2s)
1
2
( ∑

N−<p<N+

p≡1 (modm)

L(k2d(p))2r)
1
2

=∶
√

S1S2 ,

(6.1)

say.
First, we estimate S1. Note that

ρ(n)v ≍v ∏
ℓ∣n

( 1 + v
ℓ
) =∑

a∣n

µ2(a)τv(a)
a

,

for any v ≥ 0. Since

∑
a∣n
a>x

µ2(a)τv(a)
a

≤
1
x ∑a∣n

µ2(a)vω(a) =
(v + 1)ω(n)

x
≪v ,є

nє

x
,

we ûnd that

S1 ≪r ∑
N−<p<N+
p=1+ jm

( ∑
a∣(k , j)
a≤k1/5

µ2(a)τ2∣r∣(a)
a

+ Or(k−1/6))( ∑
b∣d(p)
b≤k1/5

µ2(b)τ2s(b)
b

+ Os(k−1/6))

= ∑
a ,b≤k1/5
a∣k

µ2(a)µ2(b)τ2∣r∣(a)τ2s(b)
ab ∑

N−<p<N+
p=1+ jm
a∣ j, b∣d(p)

1 + Or ,s(k11/30),

(6.2)

using the trivial estimate #{N− < p < N+ ∶ p ≡ 1 (modm)} ≪
√

N/m =
√

k. _e
innermost sum in the second line of (6.2) equals

∑
h∈Z/[a ,b]Z
h≡0 (mod a)

(h−mk)2≡4k (mod b)

∑
N−<p<N+
p=1+ jm

j≡h (mod [a ,b])

1 ≪
√

N
ϕ(m[a, b]) log(2k) ∑

h∈Z/[a ,b]Z
h≡0 (mod a)

(h−mk)2≡4k (mod b)

1

≤

√
Nτ(b)

ϕ(m[a, b]) log(2k)
,

where the ûrst inequality follows from the Brun–Titchmarsch inequality and the sec-
ond from the fact that b is square-free. Since ϕ(m[a, b]) ≥ ϕ(m)ϕ([a, b]), relation
(6.2) becomes

S1 ≪r ,s

√
N

ϕ(m) log(2k) ∑
a ,b≤k1/5
a∣k

µ2(a)µ2(b)τ2∣r∣(a)τ2s(b)2

a ⋅ b ⋅ ϕ([a, b])
+ k11/30

≪r ,s

√
N

ϕ(m) log(2k)
.

(6.3)
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Next, we turn to the estimation of

S2 = ∑
N−<p<N+

p≡1 (modm)

L(k2d(p))2r .

Our ûrst task is to replace the L-values that appear in the above sum with truncated
Euler products. We set

S3 = ∑
N−<p<N+

p≡1 (modm)

L(k2d(p); z80000)2r

with z = log(4k) and estimate the error R ∶= S2 − S3 using Lemma 2.3. First note that
since d(p) is a discriminant and ∣d(p)∣ ≤ 4k for p ∈ (N− ,N+), it follows that

(
k2d(p)

⋅
)(6.4)

is periodicmodulo k∣d(p)∣ ≤ 4k2 and its conductor cannot exceed ∣d(p)∣ ≤ 4k. _us,
we may apply Lemma 2.3 with α = 100 and Q = 4k. Now let d1 = d1(p) be the
discriminant of the quadratic number ûeldQ(

√
d(p)) , so that the character in (6.4)

is induced by the primitive character ( d1
⋅
). If ∣d1∣ ∉ E100(4k), thenwe can approximate

L(k2d(p))2r very well byL(k2d(p); z80000)2r . Otherwise,wewrite d(p) = d1b2 and
note that

L(k2d(p))2r ≤ ρ(kb)2∣r∣L(d1)
2r ≪r ρ(kb)2∣r∣ ⋅

⎧⎪⎪
⎨
⎪⎪⎩

(log ∣d1∣)
2r if r ≥ 0,

∣d1∣
1/8 if r < 0,

the second estimate being a consequence of Siegel’s theorem. In any case,we ûnd that

L(k2d(p))2r ≪r (ρ(kb))2∣r∣∣d1∣
1/8 ≪r (kb∣d1∣)

1/8 ≤ (k∣d(p)∣)1/8 ≤ (2k)1/4 .

Combining the above, we arrive at the estimate

R ≪r ∑
N−<p<N+

p≡1 (modm)

(log log k)2∣r∣

log100(2k)
+ ∑

N−<p<N+

p≡1 (modm)

∣d1 ∣∈E100(4k)

k1/4 .

Note that if p = 1 + jm is such that ∣d1∣ ∈ E100(4k), then d(p) = d1b2 for some b ∈ N,
or equivalently, ( j−mk)2 −d1b2 = 4k. So for each ûxed d1 with ∣d1∣ ∈ E100(4k), there
are at most 4τ(4k) ≪ k1/100 admissible values of j (and hence of p). Consequently,

R ≪r ∑
N−<p<N+

p≡1 (modm)

(log log k)2∣r∣

log100(2k)
+ k1/4 ⋅ k1/100 ⋅ ∣E100(4k)∣ ≪r

√
N

log(2k)ϕ(m)
,(6.5)

by Lemma 2.3 and the Brun-Titchmarsch inequality.
Finally, we turn to the estimation of S3. First, note that

L(k2d(p); z80000)2r ≪r L(k2d(p);
√
z)2r ≪r ∏

ℓ∤2pk
2∣r∣+1<ℓ≤

√
z

( 1 + 2r ⋅
(
d(p)
ℓ )

ℓ
) ,
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by Mertens’ estimate, which immediately implies that

S3 ≪r ∑
N−<p<N+

p≡1 (modm)

∏
ℓ∤2pk

2∣r∣+1<ℓ≤
√
z

( 1 + 2r ⋅
(
d(p)
ℓ )

ℓ
) .

We cannot estimate this sum as it is because that would require information about
primes in arithmetic progressions that are currently not available. We refer the reader
to [DS14b] for a more detailed discussion about this issue. Instead, we extend the
summation from primes p to integers n with no prime factors ≤ k1/8 and we apply
Lemma 2.7 with D = k1/4 and y = k1/8. Hence

S3 ≪r ∑
N−<n<N+

n≡1 (modm)

(λ+ ∗ 1)(n) ∏
2∣r∣+1<ℓ≤

√
z

ℓ∤2nk

( 1 + 2r ⋅
( d(n)ℓ )

ℓ
) =∶ S4 ,(6.6)

by thepositivity of the above Eulerproduct. Expanding thisproduct to a sum, opening
the convolution (λ+ ∗ 1)(n), and interchanging the order of summation yields

S4 = ∑
ℓ∣a ⇒ 2∣r∣+1<ℓ≤

√
z

(a ,2k)=1

µ2(a)τ2r(a)
a ∑

N−<n<N+
(n ,a)=1

n≡1 (modm)

(λ+ ∗ 1)(n)( d(n)
a

)

= ∑
ℓ∣a ⇒ 2∣r∣+1<ℓ≤

√
z

(a ,2k)=1

µ2(a)τ2r(a)
a ∑

b≤k1/4
(b ,am)=1

λ+(b) ∑
N−<n<N+
(n ,a)=1, b∣n
n≡1 (modm)

(
d(n)
a

) .

Splitting the integers n ∈ (N− ,N+) according to the congruence classof d(n) (mod a),
we deduce that

S4 = ∑
ℓ∣a ⇒ 2∣r∣+1<ℓ≤

√
z

(a ,2k)=1

µ2(a)τ2r(a)
a ∑

b≤k1/4
(b ,am)=1

λ+(b) ∑
c∈Z/aZ

(
c
a
)S(a, b, c),(6.7)

where

S(a, b, c) ∶= #{N− < n < N+ ∶ n ≡ 1 (modm), (n, a) = 1,
n ≡ 0 (mod b), d(n) ≡ c (mod a)} .

We ûx a, b, and c as above and calculate S(a, b, c). Set n = 1 + jm, and deûne ∆( j) =
( j−mk)2 −4k, so that d(n) = ∆( j). Note that n is counted by S(a, b, c) if and only if
mk−2

√
k < j < mk+2

√
k, ∆( j) ≡ c (mod a), 1+ jm ≡ 0 (mod b), and (1+ jm, a) = 1.

_us we have that

(6.8) S(a, b, c) = (
4
√

k
ab

+ O(1)) J(a, b, c),

where
J(a, b, c) ∶= #{ j ∈ Z/abZ ∶ ∆( j) ≡ c (mod a), 1 + jm ≡ 0 (mod b), (1 + jm, a) = 1}.
By the Chinese remainder theorem, we ûnd that

J(a, b, c) = U(a, c) ∶= #{ j ∈ Z/aZ ∶ ∆( j) ≡ c (mod a), (1 + jm, a) = 1},
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since (b,m) = 1, and thus there is exactly one solution modulo b to the equation
1 + jm ≡ 0 (mod b). Note that U(a, c) ≤ τ(a) by Lemma 5.1 and that

∑
c∈Z/aZ

(
c
a
)U(a, c) = T(a),

where T(a) is deûned by relation (5.1). Together with relations (6.7) and (6.8) this
implies that

S4 = 4
√

k ∑
ℓ∣a ⇒ 2∣r∣+1<ℓ≤

√
z

(a ,2k)=1

µ2(a)τ2r(a)T(a)
a2 ∑

b≤k1/4
(b ,am)=1

λ+(b)
b

+ O( k1/4
∑

P+(a)≤
√
z
µ2(a)τ2∣r∣(a)τ(a)) .

_e error term in the above estimate is

≪ k1/4
∑

P+(a)≤
√
z
µ2(a)τ2∣r∣(a)τ(a) = k1/4

∏
ℓ≤

√
z
(1 + 4∣r∣) ≪r k1/3 .

Finally, note that ∣T(a)∣ ≤ τ(a) for square-free values of a by Proposition 5.2. So
applying Lemma 2.7 we conclude that

S4 ≪r
√

k ∑
P+(a)≤

√
z

(a ,2k)=1

µ2(a)τ(a)τ2∣r∣(a)
a2 ∏

ℓ≤k1/8
ℓ∤am

( 1 − 1
ℓ
) + k1/3

≪
√

k ∑
P+(a)≤

√
z

(a ,2k)=1

µ2(a)τ(a)τ2∣r∣(a)
a2

1
log(2k)

m
ϕ(m)

a
ϕ(a)

+ k1/3 .

Inserting this estimate in (6.6), we obtain the upper bound

S3 ≪r

√
k

log(2k)
m

ϕ(m)
∑

(a ,2k)=1

µ2(a)τ(a)τ2∣r∣(a)
aϕ(a)

≪r

√
k

log(2k)
m

ϕ(m)
.

Combining the above inequality with relations (6.1), (6.3), and (6.5) completes the
proof of the proposition.

7 Approximating M(G)
In this section, we prove_eorem 2.5. We start with a preliminary lemma.

Lemma 7.1 Let N = m2k > 1 and d(p) = dm ,k(p). If 1 ≤ q ≤ h ≤
√

N and (a, q) = 1,
then

∑
N−<p≤N+

p≡a (mod q)

√
∣d(p)∣ = 2πmk

ϕ(q) logN
+ O(

h
√

N
⋅
mk
q

+

√
k

h logN ∫
N+

N−
E(y, h; q)dy) .
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Proof We note the trivial bound #{ t < p ≤ t + h ∶ p ≡ a (mod q)} ≪ h/q which we
will use several times throughout the proof. We have that

∑
N−<p≤N+

p≡a (mod q)

√
∣d(p)∣ = ∑

N−<p≤N+

p≡a (mod q)

√
∣d(p)∣ log p
logN

+ O(

√
k

q
) .(7.1)

Note that if t = N + 1 + 2
√

Nu0 and u0 ∈ [−1 + 2η, 1 − η] with η ∶= h/
√

4N , then

√
∣d(t)∣ = 2

√
k ⋅

√
1 − u2

0 =
2
√

k
η ∫

u0

u0−η

√
1 − u2 du + O(

η
√

k
√

1 − u2
0

)

=
4mk
h ∫

u0

u0−η

√
1 − u2 du + O(

h
√

k
√

4N − (N + 1 − t)2
) .

_erefore,

∑
N−<p≤N+

p≡a (mod q)

√
∣d(p)∣ log p
logN

= ∑
10h+N−<p≤−10h+N+

p≡a (mod q)

√
∣d(p)∣ log p
logN

+ O(
h1/2N 1/4

m
⋅
h
q
)

=
4mk

h logN ∑
N−+10h<p≤N+−10h

p≡a (mod q)

(log p)∫
p−N−1
2
√

N

p−N−1−h
2
√

N

√
1 − u2 du

+ O( ∑
N−+10h<p≤N+−10h

p≡a (mod q)

h
√

k
√

(N+ − p)(p − N−)
+

h3/2N 1/4

mq
)

=
4mk

h logN ∫
1−10η

−1+9η

√
1 − u2 ∑

N+1+2u
√

N<p≤N+1+2u
√

N+h
N−+10h<p≤N+−10h

p≡a (mod q)

(log p)du

+ O( ∑
N−+10h<p≤N+−10h

p≡a (mod q)

h
√

k
√

(N+ − p)(p − N−)
+

h3/2N 1/4

mq
) .

First, we simplify the main term. If u ∈ [−1 + 10η, 1 − 11η], then the condition that
N− + 10h < p ≤ N+ − 10h can be discarded. On the other hand, if

u ∈ [−1, 1] ∖ [−1 + 10η, 1 − 11η],

then
√

1 − u2 ∑
N+1+2u

√
N<p≤N+1+2u

√
N+h

N−+10h<p≤N+−10h
p≡a (mod q)

(log p) ≤
√

1 − u2 ∑
N+1+2u

√
N<p≤N+1+2u

√
N+h

p≡a (mod q)

(log p)

≪
√η ⋅ h logN

q
.
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_erefore,

∫
1−10η

−1+9η

√
1 − u2 ∑

N+1+2u
√

N<p≤N+1+2u
√

N+h
N−+10h<p≤N+−10h

p≡a (mod q)

(log p)du

= ∫
1

−1

√
1 − u2 ∑

N+1+2u
√

N<p≤N+1+2u
√

N+h
p≡a (mod q)

(log p)du + O(
η3/2h logN

q
)

= ∫
1

−1

√
1 − u2 h

ϕ(q)
du + O(∫

1

−1
E(N + 1 + 2u

√
N , h; q)du + h5/2 logN

N3/4q
)

=
π
2
⋅

h
ϕ(q)

+ O(
1

√
N ∫

N+

N−
E(y, h; q)dy + h5/2 logN

N3/4q
) .

Consequently,

∑
N−<p≤N+

p≡a (mod q)

√
∣d(p)∣ = 2πmk

ϕ(q) logN
+ O( ∑

N−+10h<p≤N+−10h
p≡a (mod q)

h
√

k
√

(N+ − p)(p − N−)
)

+ O(

√
k

h logN ∫
N+

N−
E(y, h; q) dy +

√
k

q
+

h3/2N 1/4

mq
) ,

where the term
√

k/q inside the big-Oh comes from (7.1). It remains to bound

∑
N−+10h<p≤N+−10h

p≡a (mod q)

1
√

(N+ − p)(p − N−)
.

We break this sum into two pieces, according to whether p ≤ N + 1 or p > N + 1. Note
that

∑
N−+10h<p≤N+1

p≡a (mod q)

1
√

(N+ − p)(p − N−)
≪ N−1/4

∑
N−+10h<n≤N+1

n≡a (mod q)

1
√

n − N−
.

We cover the range of summation by intervals of length h to ûnd that

∑
N−+10h<p≤N+1

p≡a (mod q)

1
√

(N+ − p)(p − N−)
≪ N−1/4

∑
1≤ j≤2

√
N/h

1
√

jh
⋅ ∑
N−+ jh<n≤N−+ jh+h

n≡a (mod q)

1

≪

√
h

N 1/4q ∑
1≤ j≤2

√
N/h

1
√

j
≪

1
q
,

and

∑
N+1<p≤N+−10h

p≡a (mod q)

1
√

(N+ − p)(p − N−)
≪

1
q
,
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which implies that

∑
N−<p≤N+

p≡a (mod q)

√
∣d(p)∣ = 2πmk

ϕ(q) logN

+ O(

√
k

h logN ∫
N+

N−
E(y, h; q) dy + h

√
k

q
+

h3/2N 1/4

mq
) .

Since h3/2 = N3/4(h/
√

N)3/2 ≤ N3/4(h/
√

N), the lemma follows.

Using the above result and the results of Section 5, we will prove_eorem 2.5. But
ûrst we need to introduce some additional notation and state another intermediate
result. Set

Jr(v) = { 1 ≤ j ≤ 22v+3 ∶ ( j −mk)2 ≡ 4k + 4vr (mod 22v+3), jm ≡ 0 (mod 2)}(7.2)

and

J(v) = 1
2v0−1 ∑

r∈{0,1,4,5}

∣Jr(v)∣
2 − ( r

2)
, where v0 =

⎧⎪⎪
⎨
⎪⎪⎩

2 if 2 ∤ m,
3 if 2 ∣ m.

(7.3)

Finally, set

J = ∑
v≥0

(2v ,k)=1

J(v)
8v

.

_en we have the following formula.

Lemma 7.2

J =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2
3 if 2 ∤ mk,
3
2 if 2 ∣ (m, k),
1 if 2 ∣ mk, 2 ∤ (m, k).

We postpone the proof of this lemma until the last section.

Proof of_eorem 2.5 We will show the theorem with 8є ∈ (0, 1/3] in place of є and
when k is large enough in terms of є, which is clearly suõcient. Our starting point is
Lemma 2.1, which states that

M(G) = ∑
N−<p<N+

p≡1 (modm)

∑
f 2 ∣d(p), ( f ,k)=1

d(p)/ f 2≡1,0 (mod 4)

√
∣d(p)∣L(d(p)/ f 2)

2π f
,

where N = m2k and d(p) = dm ,k(p) = ((p−N−1)2−4N)/m2 as usual. If p = 1+ jm,
then d(p) = ( j−mk)2−4k. _erefore, if ℓ is an odd prime dividing k so that (ℓ, f ) = 1
for f as in the above sum, then

(
d(p)/ f 2

ℓ
) = (

d(p)
ℓ

) = (
j
ℓ
)

2
.

Next, we write f = 2v g with g odd and consider r ∈ {0, 1, 4, 5} such that d(p)/ f 2 ≡
r (mod8). _en we have that (

d(p)/ f 2

2 ) = ( r
2 ). Moreover, since g2 ≡ 1 (mod8),

we have that d(p)/ f 2 ≡ d(p)/22v (mod8), _erefore, the conditions f 2∣d(p) and
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d(p)/ f 2 ≡ r (mod8) are equivalent to having d(p) ≡ 4vr (mod 22v+3) and g2∣d(p).
Setting

ρ(g , d) =∏
ℓ∣g

( 1 −
( dℓ )

ℓ
)
−1
,

then gives us that

L(d(p)/ f 2) = L((2kg)2d(p)) ρ(g , d(p)/g2)

1 − ( r
2) /2

∏
ℓ∣k , ℓ∤2 j

( 1 − 1
ℓ
)
−1

.

Since

∏
ℓ∣k , ℓ∤2 j

( 1 − 1
ℓ
)
−1
= ∑

a∣k
(a ,2 j)=1

µ2(a)
ϕ(a)

,

we deduce that

M(G) = ∑
r∈{0,1,4,5}

1
2 − ( r

2 )
∑

N−<p<N+

p≡1 (modm)

∑
a∣k

(a ,2 j)=1

∑
v≥0, (2v ,k)=1

d(p)≡4v r (mod 22v+3)

∑
g2 ∣d(p)
(g ,2k)=1

µ2(a)
√

∣d(p)∣
π2vϕ(a)g

ρ(g , d(p)/g2)L((2kg)2d(p)).

We now use Lemma 2.3 to replace the L-valueL((2kg)2d(p)) by a suitably truncated
product. Arguing as in the proof of relation (6.5), we note that ( (2kg)2d(p)

⋅
) is a char-

acter modulo 2kg∣d(p)∣ ≤ 16k5/2 with conductor not exceeding ∣d(p)∣ ≤ 4k. _us,
wemay apply Lemma 2.3with Q = 4k and 5α in place of α to replaceL((2kg)2d(p))
by L((2kg)2d(p); z) where we take z = (log(4k))200α2 . _e result is that

M(G) = ∑
r∈{0,1,4,5}

1
2 − ( r

2)
∑

N−<p<N+
p=1+ jm , j≥1

∑
a∣k

(a ,2 j)=1

∑
(2v ,k)=1

d(p)≡4v r (mod 22v+3)

∑
g2 ∣d(p)
(g ,2k)=1

µ2(a)
√

∣d(p)∣
π2vϕ(a)g

ρ(g , d(p)/g2)L((2kg)2d(p); z) + Oα(
k

(log k)α
) .

Next, we notice that we can truncate the sums over a, g, and v at the cost of a small
error term. More precisely, using the crude bound

ρ(g , d(p)/g2)L((2kg)2d(p); z) ≪ g
ϕ(g)

log(2kg∣d(p)∣) ≪ (log k)2 ,

we ûnd that the contribution to M(G) by those summands with max{a, g , 2v} > kє
is

≪

√
k(log k)3

kє ∑
N−<p<N+

p≡1 (modm)

∑
a∣k

(2v g)2 ∣d(p)

1 ≪є k(1−є)/2 ∑
N−<n<N+

n≡1 (modm)

1 ≪ k1−є/2(7.4)
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by the bound τ(n) ≪δ nδ , with δ < є/4. Moreover,

L((2kg)2d(p); z) = ∑
P+(n)≤z
(n ,2kg)=1

(
d(p)

n )

n

= ∑
P+(n)≤z , n≤kє

(n ,2kg)=1

(
d(p)

n )

n
+ Oє ,α((log k)−α−10)

by Lemma 2.4. _erefore,

M(G) = ∑
r∈{0,1,4,5}

1
2 − ( r

2 )
∑

a∣k , a≤kє

(a ,2)=1

∑
2v≤kє

(2v ,k)=1

∑
g≤kє

(g ,2k)=1

∑
P+(n)≤z , n≤kє

(n ,2kg)=1

µ2(a)
π2vϕ(a)gn

× ∑
N−<p<N+
p=1+ jm , j≥1

(a , j)=1, g2 ∣d(p)
d(p)≡4v r (mod 22v+3)

ρ(g , d(p)/g2)(
d(p)
n

)
√

∣d(p)∣ + Oα ,є(
k

(log k)α
) .

We note that if d(p)/g2 ≡ b (mod g), then (
d(p)/g2

ℓ ) = ( bℓ ) for all ℓ∣g and conse-
quently, ρ(g , d(p)/g2) = ρ(g , b). So, summing over possible choices for

d(p)/g2 (mod g) and d(p) (mod n),

we deduce that

M(G) = ∑
r∈{0,1,4,5}

1
2 − ( r

2)
∑

a∣k , a≤kє

(a ,2)=1

∑
2v≤kє

(2v ,k)=1

∑
g≤kє

(g ,2k)=1

∑
P+(n)≤z , n≤kє

(n ,2kg)=1

µ2(a)
π2vϕ(a)gn

×
g

∑
b=1

ρ(g , b)
n

∑
c=1

(
c
n
) Sr(v , a, g , b, n, c) + Oα ,є(

k
(log k)α

) ,

where
Sr(v , a, g , b, n, c) ∶= ∑

N−<p≤N+

p=1+ jm , j≥1, ( j,a)=1
d(p)≡bg2 (mod g3)

d(p)≡4v r (mod 22v+3), d(p)≡c (mod n)

√
∣d(p)∣.

We write p = 1 + jm and note that (1 + jm, 2agn) = 1 if k is large enough since
2agn ≤ 2k3є ≤ 2k1/8 by assumption and p > N− = (m

√
k − 1)2. Moreover, with this

notation we have that d(p) = ∆( j) ∶= ( j −mk)2 − 4k. So if we set

Jr(v , a, g , b, n, c) = { j (mod 22v+3ag3n) ∶ ∆( j) ≡ 4vr (mod 22v+3),
∆( j) ≡ bg2 (mod g3),
∆( j) ≡ c (mod n), ( j, a) = 1,
(1 + jm, agn) = 1, jm ≡ 0 (mod 2) } ,
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then we ûnd that

Sr(v , a, g , b, n, c) = ∑
j∈Jr(v ,a ,g ,b ,n ,c)

∑
N−<p≤N+

p≡1+ jm (mod 22v+3ag3nm)

√
∣d(p)∣.

Applying Lemma 7.1 with h as in the statement of the theorem, we deduce that

Sr(v , a, g , b, n, c)
∣Jr(v , a, g , b, n, c)∣

=
2πmk

ϕ(22v+3ag3nm) logN

+ O(
k

4vag3n(log k)α+1 +

√
k

h log k ∫
N+

N−
E(y, h; 22v+3ag3nm)dy) ,

by our assumption that h ≤ m
√

k/(log k)α+1 and that m ≤
√

k. In order to compute
the contribution of the above error term to M(G), we note that

g

∑
b=1

ρ(b, g)
n

∑
c=1

∣ Jr(b, v , g , a, n, c)∣ ≤
g

∑
b=1

n

∑
c=1

∑
j (mod 22v+3ag3n)
∆( j)≡bg2 (mod g3)
∆( j)≡4v r (mod 22v+3)
2∣ jm , ∆( j)≡c (mod n)

g
ϕ(g)

= ∑
j (mod 22v+3ag3n)

g2 ∣∆( j), 2∣ jm
∆( j)≡4v r (mod 22v+3)

g
ϕ(g)

=
g

ϕ(g)
agn ∑

j (mod 22v+3 g2)
2∣ jm , g2 ∣∆( j)

∆( j)≡4v r (mod 22v+3)

1

≪
ag2n
ϕ(g)

⋅ τ(g) ⋅ ∣Jr(v)∣

by the Chinese remainder theorem and Lemma 5.1 where Jr(v) is deûned by (7.2).
Sincewe also have that ∣Jr(v)∣ ≪ J(v) ≪ 1 by Lemmas 8.2 and 8.3 below,we conclude
that

M(G) =
2mk
logN ∑

r∈{0,1,4,5}

1
2 − ( r

2 )
∑

a∣k , a≤kє

(a ,2)=1

∑
2v≤kє

(2v ,k)=1

∑
g≤kє

(g ,2k)=1

∑
P+(n)≤z , n≤kє

(n ,2kg)=1

µ2(a)
23v+v0ϕ(a)ϕ(g4an2m)

g

∑
b=1

ρ(g , b)
n

∑
c=1

(
c
n
) ∣Jr(b, v , g , a, n, c)∣

+ Oα ,є(
k

(log k)α
+ E) ,

where v0 is deûned by (7.3) and

E ∶=
√

k
h ∑

q≤8k7є
τ3(q)∫

N+

N−
E(y, h;mq)dy,
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since for any q ∈ N we have that

∑
q=22v+3ag3n

a∣k , (a ,2)=(gn ,2k)=1

τ(g) ≤∑
g∣q

τ(g) = τ3(q).

If we set I(g , b) = #{ 1 ≤ j ≤ g3 ∶ ∆( j) ≡ bg2 (mod g3), (1 + jm, g) = 1} and
F(a) = #{ 1 ≤ j ≤ a ∶ ( j, a) = 1, (1 + jm, a) = 1} = ∏ℓw∥a ℓw−1( ℓ − 1 − (m

ℓ )
2) , then

the Chinese remainder theorem implies that
n

∑
c=1

(
c
n
) ∣Jr(v , a, g , b, n, c)∣ = F(a) ⋅ ∣Jr(v)∣ ⋅ I(g , b)

n

∑
c=1

(
c
n
) ∑

j (mod n)
∆( j)≡c (mod n)
(1+ jm ,n)=1

1

= F(a) ⋅ ∣Jr(v)∣ ⋅ I(g , b) ⋅ T(n),

where T(n) is deûned by (5.1). _erefore,

M(G) =
mk

ϕ(m) logN
S1S2S3 + Oα ,є(

k
(log k)α

+ E) ,

where

S1 = ∑
r∈{0,1,4,5}

2
2 − ( r

2)
∑

2v≤kє
(2v ,k)=1

∣Jr(v)∣
23v+v0

= J + O(k−є),

by the trivial estimate ∣Jr(v)∣ ≪ 4v ,

S2 = ∑
a∣k , a≤kє

(a ,2)=1

µ2(a)F(a)
ϕ(a)a ∏

ℓ∣a , ℓ∤m

ℓ
ℓ − 1

=∏
ℓ∣k
ℓ≠2

( 1 +
ℓ − 1 − (m

ℓ )
2

(ℓ − 1)(ℓ − (m
ℓ )

2
)
) + O(k−є/2)

=∏
ℓ∣k
ℓ≠2

ℓ2 − (m
ℓ )

2 ℓ − 1
(ℓ − 1)(ℓ − (m

ℓ )
2)
+ O(k−є/2),

by arguing as in relation (7.4) and

S3 = ∑
g≤kє

(g ,2k)=1

g

∑
b=1

ρ(g , b)I(g , b)S4(g)
g4 ∏

ℓ∣g , ℓ∤m

ℓ
ℓ − 1

with

S4(g) = ∑
P+(n)≤z , n≤kє

(n ,2kg)=1

T(n)
n2 ∏

ℓ∣n , ℓ∤m

ℓ
ℓ − 1

.

In the above, to factor ϕ(g4an2m), we have used the identity

ϕ(g4an2m) = ϕ(m)g4an2
∏

ℓ∣g , ℓ∤m

ℓ − 1
ℓ ∏

ℓ∣a , ℓ∤m

ℓ − 1
ℓ ∏

ℓ∣n , ℓ∤m

ℓ − 1
ℓ
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which holds since a, n, and g are pairwise coprime. Note that

I(g , b) = ∏
ℓw∥g

#{ j (mod ℓ3w) ∶ ( j −mk)2 ≡ 4k + bg2 (mod ℓ3w), (1 + jm, ℓ) = 1}

=∏
ℓ∣g

( 1 + (
(N + 1)2 − (4k + bg2)m2

ℓ
)

2
(
4k + bg2

ℓ
))

= ( 1 + (
N − 1
ℓ

)
2
(
k
ℓ
))

ω(g)

by Lemma 5.1, which is applicable here because 4k + bg2 ≡ 4k /≡ 0 (mod ℓ) for all
primes ℓ∣g. So we see that I(g , b) is independent of b, which implies that

g

∑
b=1

ρ(g , b)I(g , b) = I(g , 0)∏
ℓw∥g

(
ℓw

∑
b=1

1
1 − ( bℓ )/ℓ

)

= I(g , 0)∏
ℓw∥g

( ℓw−1 + ℓw−1 ℓ − 1
2

1
1 − 1/ℓ

+ ℓw−1 ℓ − 1
2

1
1 + 1/ℓ

)

= gI(g , 0)∏
ℓ∣g

ℓ2 + ℓ + 1
ℓ(ℓ + 1)

.

_us we conclude that

S3 = ∑
g≤kє

(g ,2k)=1

S4(g)
g3 ∏

ℓ∣g

( 1 + ( N−1
ℓ )2( k

ℓ ))(ℓ
2 + ℓ + 1)

(ℓ − ( m
ℓ )

2)(ℓ + 1)
.

Moreover, if P(ℓ) is as in Corollary 5.3, then we have that

S4(g) =
P

∏ℓ∣g P(ℓ)
( 1 + O(

1
(log k)α+1 )) , where P ∶= ∏

ℓ∤2k
P(ℓ).

_erefore

S3( 1 + O(
1

(log k)α+1 )) = P ⋅ ∏
ℓ∤2k

( 1 +∑
w≥1

(1 + ( N−1
ℓ )2( k

ℓ ))(ℓ
2 + ℓ + 1)

ℓ3w(ℓ − (m
ℓ )

2)(ℓ + 1)P(ℓ)
)

= ∏
ℓ∤2k

(P(ℓ) +
1 + ( N−1

ℓ )2( k
ℓ )

(ℓ2 − 1)(ℓ − (m
ℓ )

2)
)

= ∏
ℓ∤2k

ℓ3 − (m
ℓ )

2 ℓ2 − ( 1 + (m(N−1)
ℓ )2) ℓ

(ℓ2 − 1)(ℓ − (m
ℓ )

2)

= ∏
ℓ∤2N

( 1 −
ℓ( N−1

ℓ )2 + 1
(ℓ2 − 1)(ℓ − 1)

) .
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Consequently,

M(G) =
Jmk

ϕ(m) logN ∏ℓ∤2N
( 1 −

ℓ( N−1
ℓ )2 + 1

(ℓ2 − 1)(ℓ − 1)
)∏

ℓ∣k
ℓ>2

( 1 +
ℓ − 1 − (m

ℓ )
2

(ℓ − 1)( ℓ − (m
ℓ )

2)
)

+ Oα ,є(
k

(log k)α
+ E) .

So the theorem follows by the above estimates together with Lemmas 3.1 and 7.2.

8 Powers of 2

_e goal of this section is to show Lemma 7.2 which gives the value of

J = ∑
v≥0

(2v ,k)=1

J(v)
8v

,

where

J(v) = 1
2v0−1 ∑

r∈{0,1,4,5}

∣Jr(v)∣
2 − ( r

2)
, v0 =

⎧⎪⎪
⎨
⎪⎪⎩

2 if 2 ∤ m,
3 if 2 ∣ m,

and
Jr(v) = { 1 ≤ j ≤ 22v+3 ∶ ( j −mk)2 ≡ 4k + 4vr (mod 22v+3), jm ≡ 0 (mod 2)} .

We start with the following standard lemma.

Lemma 8.1 We have that

#{ j ∈ Z/8Z ∶ j2 ≡ d (mod8)} =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 if d ≡ 0, 4 (mod8),
4 if d ≡ 1 (mod8),
0 otherwise.

Moreover, if d is odd and e ≥ 3, then

#{ j ∈ Z/2eZ ∶ j2 ≡ d (mod 2e)} =

⎧⎪⎪
⎨
⎪⎪⎩

4 if d ≡ 1 (mod8),
0 otherwise.

We shall use the above lemma to calculate ∣Jr(v)∣ and J(v)when (2v , k) = 1. First,
we note that if v ≥ 1, then k must be odd and

∣Jr(v)∣ =
⎧⎪⎪
⎨
⎪⎪⎩

2 ⋅ #{ j (mod 22v+1) ∶ j2 ≡ k + 4v−1r (mod 22v+1)} if 2 ∣ m,
0 if 2 ∤ m.

(8.1)

Indeed, when v ≥ 1, the relation ( j − mk)2 ≡ 4k + 4vr (mod 22v+3) implies that
2∣( j − mk). Since k is odd and we also have that jm ≡ 0 (mod 2), we deduce that
2 ∣ (m, j). Hence, ∣Jr(v)∣ = 0 when 2 ∤ m. Assuming that 2 ∣ m, wewrite j = mk+2 j′
and ûnd that

∣Jr(v)∣ = #{ j′ (mod 22v+2) ∶ j′2 ≡ k + 4v−1r (mod 22v+1)}

= 2 ⋅ #{ j (mod 22v+1) ∶ j2 ≡ k + 4v−1r (mod 22v+1)} ,
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as claimed.

Lemma 8.2 Let v ≥ 0 with (2v , k) = 1. If m is odd, then

J(v) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if v = 0 and 2∣k,
2
3 if v = 0 and 2 ∤ k,
0 if v ≥ 1 and 2 ∤ k.

Proof _e case v ≥ 1 follows by (8.1). Assume now that v = 0. Since m is odd, the
condition jm ≡ 0 (mod 2) implies that every j ∈ Jr(v) is even. Writing j = 2 j′, we
deduce that

∣Jr(0)∣ = #{ j′ (mod4) ∶ (2 j′ −mk)2 ≡ 4k + r (mod8)}

If k is odd, then wemust have that (2 j′ −mk)2 − 4k ≡ −3 (mod8) and thus r = 5, in
which case ∣Jr(0)∣ = 4, otherwise ∣Jr(0)∣ = 0. So

J(0) = 1
2
⋅

4
2 − (−1)

=
2
3
.

Finally, assume that k is even. Writing z = j′ −mk/2, our task reduces to counting
solutions to 4z2 ≡ r (mod8) with 1 ≤ z ≤ 4. If r ∈ {1, 5}. _en there are no such
solutions. Whereas if r ∈ {0, 4}, then there are precisely two such solutions. Conse-
quently, when m is odd and k is even,

J(0) = 1
2
(

2
2 − 0

+
2

2 − 0
) = 1,

and the lemma follows in this case, too.

Lemma 8.3 Let v ≥ 0 with (2v , k) = 1, and suppose that 2∣m. If 2∣k, then J(0) = 3
2 .

If k ≡ 1 (mod8), then J(v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

5
6 if v = 0,
1 if v = 1,
2 if v = 2,
14
3 if v ≥ 3.

If k ≡ 3, 7 (mod8), then J(v) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

5
6 if v = 0,
4
3 if v = 1,
0 if v ≥ 2.

If k ≡ 5 (mod8), then J(v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

5
6 if v = 0,
1 if v = 1,
8
3 if v = 2,
0 if v ≥ 3.
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Proof First, we calculate ∣Jr(0)∣. Note that the condition jm ≡ 0 (mod 2) is trivially
satisûed now since 2∣m. _erefore, a change of variable and Lemma 8.1 imply that

∣Jr(0)∣ = #{ j (mod8) ∶ j2 ≡ 4k + r (mod8)} =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 if 4k + r ≡ 0, 4 (mod8),
4 if 4k + r ≡ 1 (mod8),
0 if 4k + r ≡ 5 (mod8).

_us,

J(0) =
⎧⎪⎪
⎨
⎪⎪⎩

1
4 (

2
2−0 +

4
2−1 +

2
2−0 +

0
2−(−1)) =

3
2 if 2 ∣ k,

1
4 (

2
2−0 +

0
2−1 +

2
2−0 +

4
2−(−1)) =

5
6 if 2 ∤ k.

Next assume that v ≥ 1, and note that the condition (2v , k) = 1 means that we only
need consider this case when k is odd. By relation (8.1), we have that

∣Jr(v)∣ = 2 ⋅ #{ j (mod 22v+1) ∶ j2 ≡ k + 4v−1r (mod 22v+1)} .

Now if v ≥ 2, then Lemma 8.1 implies that ∣Jr(v)∣ = 2 ⋅ 4 = 8 or ∣Jr(v)∣ = 0 according
to whether k + 4v−1r ≡ 1 (mod8) or not. _erefore, when v ≥ 2,

J(v) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
4 (

8
2−0 +

8
2−0 ) = 2 if v = 2 and k ≡ 1 (mod8),

1
4 (

8
2−1 +

8
2−(−1)) =

8
3 if v = 2 and k ≡ 5 (mod8),

1
4 (

8
2−0 +

8
2−1 +

8
2−0 +

8
2−(−1)) =

14
3 if v ≥ 3 and k ≡ 1 (mod8),

0 otherwise.

Finally, we consider the case v = 1. Using Lemma 8.1 again, we have

∣Jr(1)∣ = 2 ⋅ #{ j (mod8) ∶ j2 ≡ k + r (mod8)} =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4 if k + r ≡ 0, 4 (mod8),
8 if k + r ≡ 1 (mod8),
0 otherwise.

_erefore,

J(1) =
⎧⎪⎪
⎨
⎪⎪⎩

1
4 ⋅

8
2−0 = 1 if k ≡ 1, 5 (mod8),

1
4 (

4
2−1 +

4
2−(−1)) =

4
3 if k ≡ 3, 7 (mod8),

which completes the proof of the lemma.

Lemma 7.2 now follows as a direct consequence of Lemmas 8.2 and 8.3.

Appendix A by Chantal David, Greg Martin and Ethan Smith

_e purpose of this appendix is to give a probabilistic interpretation to the Euler
factors arising in K(G) ∣G∣

∣Aut(G)∣
and K(N) N

ϕ(N)
where K(G) and K(N) are deûned

by (1.1) and (1.2), respectively. Given a prime ℓ, we let νℓ(⋅) denote the usual ℓ-adic
valuation. For each integer e ≥ 1, we also let GL2(Z/ℓeZ) denote the usual group of
invertible 2×2 matriceswith entries fromZ/ℓeZ. _e 2×2 identitymatrix we denote
by I. _emain results of this appendix are as follows.
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_eorem A.1 For each positive integer N ,
K(N) ⋅ N
ϕ(N)

=∏
ℓ
( lim
e→∞

ℓe ⋅ #{σ ∈ GL2(Z/ℓeZ) ∶ det(σ) + 1 − tr(σ) ≡ N (mod ℓe)}
#GL2(Z/ℓeZ)

) ,

where the product is taken over all primes ℓ. Furthermore, the sequences deûning the
Euler factors are constant for e > νℓ(N).

Remark A.2 If µ denotes the Haar measure on the space of 2 × 2 matrices over
the ℓ-adic integers Zℓ normalized so that µ (GL2(Zℓ)) = 1, then the Euler factor of
K(N) N

ϕ(N)
for the prime ℓ may be viewed as the density function for the probability

measure onZℓ deûned by the pushforward of µ via themap det+1−tr∶GL2(Zℓ)→ Zℓ .

_eorem A.3 For each pair of positive integers m and k, put
G = Gm ,k = Z/mZ ×Z/mkZ.

_en
K(G) ⋅ ∣G∣

∣Aut(G)∣
=∏

ℓ
( lim
e→∞

ℓe ⋅ (#CN ,m(ℓe) − #CN ,ℓm(ℓe)).
#GL2(Z/ℓeZ)

) ,

where CN ,n(ℓe) is deûned in equation (A.1), and the product is taken over all primes ℓ.
Furthermore, the sequences deûning the Euler factors are constant for e > νℓ(∣G∣).

For the remainder of this appendix, we assume that e , n,N , and ℓ are positive in-
tegers with ℓ prime and n2∣N . Later we will also assume that N = ∣G∣ = m2k. For
convenience, we let

(A.1) CN ,n(ℓe) = {σ ∈ GL2(Z/ℓeZ) ∶ det(σ) + 1 − tr(σ) ≡ N (mod ℓe),
σ ≡ I (mod ℓνℓ(n))} .

In the case that ℓ ∤ n, we note that the condition σ ≡ I (mod ℓνℓ(n)) is vacuous. As
usual, ( ⋅ℓ ) denotes the Kronecker symbol modulo ℓ.

Lemma A.4 If ℓ ∤ n, then #CN ,n(ℓ) = ℓ( ℓ2 − ( N
ℓ )

2ℓ − 1 − ( N−1
ℓ )

2
) .

Proof We ûrst note that #CN ,n(ℓ) is equal to the number of quadruples (a, b, c, d)
satisfying 0 ≤ a, b, c, d < ℓ and

ad − bc + 1 − (a + d) ≡ N (mod ℓ),(A.2)
ad − bc /≡ 0 (mod ℓ).(A.3)

_e lemma follows by ûrst counting the number of quadruples satisfying (A.2) and
then removing the number of quadruples satisfying (A.2) that do not satisfy (A.3).

Rearranging, we see that the condition (A.2) may be rewritten as
(a − 1)(d − 1) − bc ≡ N (mod ℓ).

It is clear that any choice of a, b, c with a ≠ 1 uniquely determines d. On the other
hand, if a = 1, then there are ℓ choices for d, and the pair (b, c) must satisfy
bc ≡ −N (mod ℓ). _erefore, there are ℓ3 + (1 − ( N

ℓ )
2)ℓ2 − ℓ solutions (a, b, c, d)

to (A.2) with 0 ≤ a, b, c, d < ℓ.
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We now count the number of quadruples (a, b, c, d) with 0 ≤ a, b, c, d < ℓ for
which (A.2) holds but (A.3) does not. _ese are the quadruples that satisfy the system

a + d ≡ 1 − N (mod ℓ),
ad ≡ bc (mod ℓ).

It is clear that any choice of a uniquely determines d. If a = 0 or a = 1−N , then there
are 2ℓ − 1 choices for the pair (b, c). On the other hand, if a ≠ 0, 1−N , there are only
ℓ− 1 choices for (b, c). _erefore, there are ℓ2 +( N−1

ℓ )2ℓ solutions (a, b, c, d) to (A.2)
with 0 ≤ a, b, c, d < ℓ for which (A.3) does not hold.

Proposition A.5 If ℓ ∤ N , then

#CN ,n(ℓe) = ℓ3(e−1)+1( ℓ2 − ℓ − 1 − (
N − 1
ℓ

)
2
)

for every e ≥ 1.

Proof _e case e = 1 is treated in Lemma A.4, and so we assume that e ≥ 2. Since
any σ ∈ CN ,n(ℓe) must reduce modulo ℓ to a matrix in CN ,n(ℓ), it suõces to count
the number ofmatrices in CN ,n(ℓe) that reduce to a given matrix in CN ,n(ℓ). To this
end, we assume that σ0 ∈ CN ,n(ℓ) and σ ∈ CN ,n(ℓe) is such that σ ≡ σ0 (mod ℓ).
_us, wemay write

σ0 = (
a0 b0
c0 d0

) and σ = (
a0 + aℓ b0 + bℓ
c0 + cℓ d0 + dℓ

)

with 0 ≤ a0 , b0 , c0 , d0 < ℓ and 0 ≤ a, b, c, d < ℓe−1. Note that the condition det σ /≡
0 (mod ℓ) is necessarily satisûed since det σ ≡ det σ0 (mod ℓ) and σ0 ∈ CN ,n(ℓ).
_erefore, σ ∈ CN ,n(ℓe) if and only if

(A.4) a0d0 − b0c0 + 1 − a0 − d0 + (a(d0 − 1)

+ d(a0 − 1) − b0c − bc0)ℓ + (ad − bc)ℓ2 ≡ N (mod ℓe).

Since σ0 ∈ CN ,n(ℓ), it follows that a0d0 − b0c0 + 1 − a0 − d0 = N + k0ℓ for some k0,
and hence condition (A.4) reduces to

k0 + ((d0 − 1)a − c0b − b0c + (a0 − 1)d) + (ad − bc)ℓ ≡ 0 (mod ℓe−1).

Since ℓ ∤ N , σ0 cannot be the identity matrix modulo ℓ, and the polynomial
(d0 − 1)a − c0b − b0c + (a0 − 1)d in the variables a, b, c, d has at least one nonzero
coeõcient. Say, for example, that d0−1 is not zero. _en for each triple (b, c, d), there
is a unique choice of a satisfying the above congruence. _erefore, there are exactly
ℓ3(e−1) solutions (a, b, c, d) with 0 ≤ a, b, c, d < ℓe−1.

Let M2(Z/ℓkZ) denote the ring of 2 × 2 matrices with entries from Z/ℓkZ. In
order to compute CN ,n(ℓe) when ℓ ∣ N we need to know the number of matrices in
M2(Z/ℓkZ) of every individual determinant.
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Proposition A.6 Let M be a positive integer, and let r = νℓ(M). _en for r, s ≥ 0, we
have

#{σ ∈ M2(Z/ℓr+sZ) ∶ det(σ) ≡ M (mod ℓr+s)}

= ℓ2(r−1) (ℓ3s(ℓ + 1)(ℓr+1 − 1) + δ(s)) ,

where δ(s) is deûned by

δ(s) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1 if s = 0,
0 otherwise.

For the proof of Proposition A.6, we ûrst make a simple reduction and ûx some
notation. Given any positive integer M, we write M = ℓrM′ with r = νℓ(M) and
(M′ , ℓ) = 1. Since the determinant maps GL2(Z/ℓr+sZ) onto (Z/ℓr+sZ)∗, it follows
that there is an α ∈ GL2(Z/ℓr+sZ) such that det(α) ≡ M′ (mod ℓr+s). Since themap
σ ↦ ασ is a group automorphism ofM2(Z/ℓr+sZ) and since det(σ) = M = ℓrM′ if
and only if det(α−1σ) = ℓr , it follows that

#{σ ∈ M2(Z/ℓr+sZ) ∶ det(σ) ≡ M (mod ℓr+s)} = #F(r, s),
where

F(r, s) ∶= {σ ∈ M2(Z/ℓr+sZ) ∶ det(σ) ≡ ℓr (mod ℓr+s)} .
_us, we see that #{σ ∈ M2(Z/ℓr+sZ) ∶ det(σ) ≡ M (mod ℓr+s)} depends on the
power of ℓ dividing M and not on the ℓ-free part of M. With this in mind, we deûne
f (r, s) ∶= #F(r, s) where we adopt the natural convention that f (0, 0) = 1. Proposi-
tion A.6 then follows easily by induction on r using the following lemma.

Lemma A.7 For every s ≥ 0, we have
f (0, s) = ℓ3s−2(ℓ2 − 1) + ℓ−2δ(s),
f (1, s) = ℓ3s(ℓ + 1)(ℓ2 − 1) + δ(s),

f (r, s) = ℓ3(r+s−1)(ℓ + 1)(ℓ2 − 1) + ℓ4 f (r − 2, s), r ≥ 2.

Proof By conventionwe have f (0, 0) = 1. For s ≥ 1,we have thewell-known formula

f (0, s) = # SL2(Z/ℓsZ) = ℓ3s−2(ℓ2 − 1).
_is proves the ûrst formula given in the statement of the lemma.

Now assume that r ≥ 1. If r = 1 and s = 0, then we have
f (1, 0) = #M2(Z/ℓZ) − #GL2(Z/ℓZ) = ℓ3 + ℓ2 − ℓ.

We observe that any σ ∈ F(r, s)must reducemodulo ℓ to some σ0 ∈ F(1, 0). _us, we
assume that σ0 ∈ F(1, 0), and we write

σ0 = (
a0 b0
c0 d0

) and σ = (
a0 + aℓ b0 + bℓ
c0 + cℓ d0 + dℓ

) ,

with 0 ≤ a0 , b0 , c0 , d0 < ℓ and 0 ≤ a, b, c, d < ℓr+s−1. By deûnition, we see that
σ ∈ F(r, s) if and only if

a0d0 − b0c0 + (d0a − c0b − b0c + a0d)ℓ + (ad − bc)ℓ2 ≡ ℓr (mod ℓr+s).
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If σ0 is not the zero matrix modulo ℓ, then there are exactly ℓ3(r+s−1) choices of
(a, b, c, d) satisfying the above congruence. On the other hand, if σ0 is the zero ma-
trix (which is always an element of F(1, 0)), the above congruence condition reduces
to

(A.5) (ad − bc)ℓ2 ≡ ℓr (mod ℓr+s).

If r = 1, then there can be no solutions to (A.5) with s ≥ 1. _erefore,

f (1, s) = ℓ3s( f (1, 0) − 1) = ℓ3s(ℓ3 + ℓ2 − ℓ − 1) = ℓ3s(ℓ + 1)(ℓ2 − 1)

when s ≥ 1, and this completes the proof of the second formula stated in the lemma.
On the other hand, if r ≥ 2, then condition (A.5) reduces to

(ad − bc) ≡ ℓr−2 (mod ℓr−2+s).

_ere are ℓ4 f (r − 2, s) solutions to this congruence with 0 ≤ a, b, c, d < ℓr+s−1.
Whence

f (r, s) = ℓ3(r+s−1)( f (1, 0) − 1) + ℓ4 f (r − 2, s)

= ℓ3(r+s−1)(ℓ + 1)(ℓ2 − 1) + ℓ4 f (r − 2, s)

for r ≥ 2, and this completes the proof of the lemma.

Proposition A.8 If v = νℓ(N) ≥ 1 and ℓ ∤ n, then

#CN ,n(ℓe) = ℓ3e−v−2(ℓ + 1) (ℓv+1 − ℓv − 1)

for every e > v.

Proof By Lemma A.4, we have #CN ,n(ℓ) = ℓ(ℓ2 − 2) = ℓ3 − 2ℓ, and so we may
assume that e ≥ 2. We proceed in a manner similar to the proof of Proposition A.5.
In particular, we assume that σ0 ∈ CN ,n(ℓ) and count the number of σ ∈ CN ,n(ℓe)
that reduce to CN ,n(ℓ). Writing

σ0 = (
a0 b0
c0 d0

) and σ = (
a0 + aℓ b0 + bℓ
c0 + cℓ d0 + dℓ

)

with 0 ≤ a0 , b0 , c0 , d0 < ℓ and 0 ≤ a, b, c, d < ℓe−1, we deduce that the quadruple
(a, b, c, d) must satisfy (A.4). As in the proof of Proposition A.5, if σ0 is not the
identity matrix, there are exactly ℓ3(e−1) choices for (a, b, c, d).

Now suppose that σ0 is the identitymatrix. (Note that the identitymatrix is always
an element of CN ,n(ℓ) when ℓ ∣ N .) _en writing N = ℓvN ′ with v = νℓ(N) ≥ 1 and
(N ′ , ℓ) = 1, we see that condition (A.4) reduces to

(A.6) (ad − bc)ℓ2 ≡ N ′ℓv (mod ℓe).

Clearly there are no solutions to this congruence unless v ≥ 2. _erefore, if v = 1 and
e ≥ 2, we have that #CN ,n(ℓe) = ℓ3(e−1)(ℓ3 − 2ℓ − 1) = ℓ3e−3(ℓ + 1)(ℓ2 − ℓ − 1). Now
suppose that v ≥ 2 and e ≥ 3. _en (A.6) reduces to (ad − bc) ≡ N ′ℓv−2 (mod ℓe−2).
_e number of solutions to this congruence with 0 ≤ a, b, c, d < ℓe−1 is equal to

ℓ4#{α ∈ M2(Z/ℓe−2Z) ∶ det(α) ≡ N ′ℓv−2 (mod ℓe−2)} .
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Since we are assuming that v < e, Proposition A.6 implies that the above count is
equal to ℓ4ℓ2(v−3)ℓ3(e−v)(ℓ+1)(ℓv−1−1) = ℓ3e−v−2(ℓ+1)(ℓv−1−1). Putting everything
together, we ûnd that

#CN ,n(ℓe) = ℓ3(e−1)(ℓ3 − 2ℓ − 1) + ℓ3e−v−2(ℓ + 1)(ℓv−1 − 1)

= ℓ3e−v−2(ℓ + 1)(ℓv+1 − ℓv − 1)

for v ≥ 2.

Recall our standing assumption that n2 ∣ N .

_eorem A.9 Let u = νℓ(n) and v = νℓ(N). _en for every e > v, we have

#CN ,n(ℓe) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ℓ3(e−1)+1( ℓ2 − ℓ − 1 − ( N−1
ℓ )2) if u = 0 and v = 0,

ℓ3e−v−2(ℓ + 1)(ℓv+1 − ℓv − 1) if u = 0 and v ≥ 1,
ℓ3e−v−2(ℓ + 1)(ℓv−2u+1 − 1) if 1 ≤ u ≤ v/2,
0 if 0 ≤ v/2 < u.

_erefore, for every e > v, we have

ℓe#CN ,n(ℓe)
#GL2(Z/ℓeZ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1 − ( N−1
ℓ )

2ℓ+1
(ℓ−1)2(ℓ+1)) if u = 0 and v = 0,

ℓ
ℓ−1( 1 −

1
ℓv(ℓ−1)) if u = 0 and v ≥ 1,

ℓ
ℓ2u(ℓ−1)(

ℓv+1
−ℓ2u

ℓv+1−ℓv−1)( 1 −
1

ℓv(ℓ−1)) if 1 ≤ u ≤ v/2,
0 if 0 ≤ v/2 < u.

Proof Note that the second assertion of the theorem follows from the ûrst together
with thewell known formula #GL2(Z/ℓeZ) = ℓ4(e−1)+1(ℓ+1)(ℓ−1)2, and so it suõces
to prove the ûrst assertion of_eorem A.9.

_e ûrst two caseshave alreadybeen addressed byPropositionsA.5 andA.8. _ere-
fore, wemay assume that u ≥ 1. Supposing that σ ∈ CN ,n(ℓe), wemay write

σ = (
1 + aℓu bℓu
cℓu 1 + dℓu)

with 0 ≤ a, b, c, d < ℓe−u chosen such that (ad − bc)ℓ2u ≡ N ′ℓv (mod ℓe). _is
congruence clearly has no solutions if e > v and 2u > v. _erefore, we may assume
that 2 ≤ 2u ≤ v < e. In this case the above congruence is equivalent to the condition
(ad − bc) ≡ N ′ℓv−2u (mod ℓe−2u) for 0 ≤ a, b, c, d < ℓe−u . Applying Proposition A.6
with r = v − 2u and s = e − v > 0, we ûnd that

#CN ,n(ℓe) = ℓ4uℓ2(v−2u−1)ℓ3(e−v)(ℓ + 1)(ℓv−2u+1 − 1)

= ℓ3e−v−2(ℓ + 1)(ℓv−2u+1 − 1).

We are now ready to give the proofs of_eorems A.1 and A.3.

Proof of_eorems A.1 and A.3 _eoremA.1 follows easily from (1.2) and the cases
of_eorem A.9 with νℓ(n) = u = 0. For the proof of_eorem A.3, we let N = m2k =
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∣G∣, and for each prime ℓ, we put

vℓ(N , n) ∶=
ℓe#CN ,n(ℓe)
#GL2(Z/ℓeZ)

with e = eℓ > νℓ(N). We then compute the absolutely convergent inûnite product

∏
ℓ
(vℓ(N ,m) − vℓ(N , ℓm))

in two diòerent ways. On the one hand, by deûnition of the vℓ(N , n) the above ex-
pression is equal to

∏
ℓ
(
ℓe ⋅ (#CN ,m(ℓe) − #CN ,ℓm(ℓe))

#GL2(Z/ℓeZ)
) ,

where CN ,n(ℓe) is deûned in equation (A.1). On the other hand, by comparing (1.1)
and Lemma 3.1 with _eorem A.9, we see that it is equal to K(G) ∣G∣

∣Aut(G)∣
.
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