THE MEAN VALUES OF CUBIC L-FUNCTIONS OVER FUNCTION
FIELDS
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ABSTRACT. We obtain an asymptotic formula for the mean value of L—functions associated
to cubic characters over F,[T]. We solve this problem in the non-Kummer setting when
q = 2 (mod 3) and in the Kummer case when ¢ = 1 (mod 3). The proofs rely on obtaining
precise asymptotics for averages of cubic Gauss sums over function fields, which can be
studied using the theory of metaplectic Eisenstein series. In the non-Kummer setting we
display some explicit cancellation between the main term and the dual term coming from
the approximate functional equation of the L—functions.
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1. INTRODUCTION

The problem we consider in this paper is that of computing the mean value of Dirichlet
L-functions L,(s, x) evaluated at the critical point s = 1/2 as x varies over the primitive
cubic Dirichlet characters of F,[T]. We will solve this problem in two different settings: when
the base field F, contains the cubic roots of unity (or equivalently when ¢ = 1 (mod 3); we
call this the Kummer setting) and when [, does not contain the cubic roots of unity (when
q¢ = 2 (mod 3); we call this the non-Kummer setting.)

There are few papers in literature about moments of cubic Dirichlet twists over number
fields, especially compared to the abundance of papers on quadratic twists. For the case
of quadratic characters over Q, the first moment was computed by Jutila [Jut81], and the
second and third moments by Soundararajan [Sou00]. For the case of quadratic characters
over IF [T, the first 4 moments were computed by the second author of this paper [Flo17a,
Flo17b, Flol17c]. In particular, the improvement of the error term for the first moment in
[Flo17a] showed the existence of a secondary term (of size approximately the cube root of
the main term) which was not predicted by any heuristic. A secondary term of size X3/
was explicitly computed by Diaconu and Whitehead in the number field setting [DW] for the
cubic moment of quadratic L—functions and by Diaconu in the function field setting [Dia].

For the case of cubic characters, Baier and Young [BY10] considered the cubic Dirichlet
characters over Q and obtained for the smoothed first moment that

1) 3 L(1/2, )w (%) — cib(0)Q + O (P

(g,3)=1 x primitive mod ¢
x*=xo

with an explicit constant ¢. Using an upper bound for higher moments of L—functions, Baier
and Young also show that the number of primitive Dirichlet characters x of order 3 with
conductor less than or equal to @ for which L(1/2,y) # 0 is bounded below by Q7.

Another result related to [BY10] is that of Cho and Park [CP], where the authors consider
the 1-level density of zeros in the same family as that of Baier and Young. They compute the
1-level density when the support of the Fourier transform of the test function is in (=1, 1)
and show agreement with the prediction coming from the Ratios Conjecture.

The first moment of the cubic Dirichlet twists over Q(&3) was considered by Luo in [Luo04],
and his main term has the same size as the first moment over Q, because the author considers
only a thin subsets of the cubic characters, namely those given by the cubic residue symbols
Xe Where ¢ € Z[&3] is square-free. This does not count the conjugate characters x? = y.2,
and in particular, the first moment of [Luo04] is not real.

The problem of computing the mean value of cubic L—functions over function fields was
considered by Rosen in [Ros95], where he averages over all monic polynomials of a given
degree. This problem is different than the one we consider, since the counting is not done
by genus and obtaining an asymptotic formula relies on using a combinatorial identity.

Before stating our results, we first introduce some notation. Let ¢ be an odd prime power,
and let F,[T] be the set of polynomials over the finite field F,. A Dirichlet character y
of modulus m € F,[T] is a multiplicative function from (F,[T]/(m))* to C*, extended to
F,[T] by periodicity if (a,m) = 1, and defined by x(a) = 0 if (a,m) # 1. A cubic Dirichlet
character is such that y* equals the principal character xo, and it takes values in us, the
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cubic roots of 1 in C*. The smallest period of x is called the conductor of the character. We
say that x is a primitive character of modulus m when m is the smallest period.

We denote by L,(s, x) the L-function attached to the character x of F,[T]. We keep the
index ¢ in the notation to avoid confusion, as we will also work over the quadratic extension

F2 of IF,.
The set of cubic characters differs when F, contains the third roots of unity or not. If
¢ = 1(mod3), F, contains the third roots of unity, and the number of primitive cubic

Dirichlet characters with conductor of degree d is asymptotic to BKqud + BK’qu for some
explicit constants Bk i, Bk (see Lemma 2.8). If ¢ = 2(mod3), F, does not contain the
third roots of unity, and the number of primitive cubic Dirichlet characters with conductor
of degree d is asymptotic to B,kxq? for some explicit constant Bk (see Lemma 2.10).

We will count primitive cubic characters ordering them by the degree of their conductor,
or equivalently by the genus g of the cyclic cubic field extension of IF,[T’] associated to such
a character (see formula (8)).

We compute the first moment of cubic L—functions for the two settings. In the non-
Kummer case, we have the following.

Theorem 1.1. Let g be an odd prime power such that ¢ = 2 (mod 3). Then

Z Ly(1/2,x) = C‘IC(%)Q)AHK <ql2’ q3_1/2> A O(q%+sg)7

X primitive cubic
genus(x)=g

with Ay (g2, ¢73/%) given in Lemma 4.1.
In the Kummer case, we have the following.

Theorem 1.2. Let g be an odd prime power such that ¢ = 1 (mod 3), and let x3 be the cubic
character on IF; given by (3). Then,

Z LQ<1/27 X) = CK,lgqg+1 + CK,quJrl + O (qg 1+4ﬁ+69) )

X primitive cubic
genus(x)=g
Xlrz=x3

where Cx 1 and Ck o are given by equations (85) and (86) respectively.

The hypothesis that x restricts to the character x3 on F, is not important, but simplifies
the computations by ensuring that the L—functions have the same functional equation. It is
analogous to the restriction in the case of quadratic characters to those with conductor of
degree either 2¢g or 2¢g + 1.

Since L-functions satisfy the Lindel6f hypothesis over function fields (see Lemma 2.6), one
can easily bound the second moment, and we get the following corollary.

Corollary 1.3. Let g be an odd prime power. Then,
# {x cubic, primitive of genus g : L,(1/2,x) # 0} > q(lfs)g.

Translating from the function field to the number field setting, we associate ¢¢ with Q.
Note that Theorem 1.1 is the function field analog of (1), and the proof of our Theorem 1.1
has many similarities with the work of [BY10]. The better quality of our error term can be

explained in part by the fact that we can use the Riemann Hypothesis to bound the error
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term. In the number field case, the same quality of error term can be obtained without the
Riemann Hypothesis for some families using the appropriate version of the large sieve (for
example in the case of the family of quadratic characters, with the quadratic large sieve due
to Heath-Brown [HB95]). However the cubic large sieve, also due to Heath-Brown [HB00],
provides a weaker upper bound. There is also an asymmetry between the sum over the cubic
characters, which is naturally a sum over Q(&3), and the truncated Dirichlet series of the
L-function, which is a sum over Z. The asymmetry of the sums also exists in the function
field setting.

Another difference from the work of Baier and Young is that we explicitly exhibit cancella-
tion between the main term and the dual term coming from using the approximate functional
equation for the L—functions. In their work Baier and Young [BY10] prove an upper bound
for the dual term without obtaining an asymptotic formula for it, which is what we do in
the function field case.

The first steps of our proofs are the usual ones, using the approximate functional equation
to write the special value

@) L(1/2.0) )

1/27
fe/\/lq |f|q/

as a sum of two terms (the principal sum and the dual sum), where for a polynomial f € F,[T]
the norm is defined by |f|, = ¢°¢¥). Inspired by the work of Florea [Flo17c] to improve
the quality of the error term, we evaluate exactly the dual sum and the secondary term of
the main sum (corresponding to taking f cube in the approximate functional equation) in
order to obtain cancellation of those terms. This is similar to the work of Florea for the first
moment of quadratic Dirichlet characters over functions fields, replacing quadratic Gauss
sums by cubic Gauss sums. Of course, this is not a trivial difference, as the behavior of
quadratic Gauss sums is very regular since they are multiplicative functions. However cubic
Gauss sums are different as they are no longer multiplicative. Handling the cubic Gauss
sums is significantly more difficult than working with quadratic Gauss sums. This is one of
the main focuses of our paper.

The distribution of Gauss sums over number fields was adressed by Heath-Brown and
Patterson [HBP79], using the deep work of Kubota for automorphic forms associated to the
metaplectic group. This was generalised by Hoffstein [Hof92] and Patterson [Pat07] for the
function field case, and we review their work in Section 3. The main goal of Section 3 is to
obtain an exact formula for the residues of the generating series

qu](fv u) = Z G!I(f? F)udeg(F)7

FeM,

(F.f)=1
where G(f, F') is the generalized shifted Gauss sum over F, as defined by (21). With those
residues in hand, we can evaluate precisely the main term of the dual sum, and indeed
we can show that it (magically!) cancels with the secondary term of the principal sum.
Unfortunately obtaining the cancellation is not enough to improve the error term, as we
do not have good bounds for \Ifq(f7 u) beyond the pole at u® = 1/¢*. We prove that the
convexity bound in Lemma 3.11 holds, and any improvement of the convexity bound would
allow an improvement of the error term of Theorem 1.1 coming from the cancellation that

we exhibit.
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Proving Theorem 1.2 is more difficult than obtaining the asymptotic formula in the non-
Kummer case, and our error term is not as good as that in Theorem 1.1. To our knowledge,
Theorem 1.2 is the first result when one considers all the primitive cubic characters (with
the technical restriction that x|r: = x3, which does not change the size of the family). This
explains the (maybe surprising) asymptotic for the first moment in Theorem 1.2, which is of
the shape gq?P(1/g) where P is a polynomial of degree 1.

Because of the size of the family of cubic twists in the Kummer case, we are not able to
obtain cancellation between the dual term and the error term from the main term. Certain
cross-terms seem to contribute to the cancellation, but we cannot obtain an asymptotic
formula for these cross terms. Instead we bound them using the convexity bound for \i/q( fiu),
which explains the bigger error term from Theorem 1.2.

We remark that the results of Theorems 1.1 and 1.2 both correspond to a family with
unitary symmetry, as expected. Note that for our results, we fix the size ¢ of the finite field
and let the genus g go to infinity. If instead one fixes the genus and lets ¢ go to infinity, it
should be possible to obtain asymptotic formulas for moments using equidistribution results
as in the work of Katz and Sarnak [KS99] and then a random matrix theory computation
as in the work of Keating and Snaith [KS00].

As mentioned before, a lower order term of size the cube root of the main term was
computed in [Flo17¢| in the case of the mean value of quadratic L-functions. We remark
that in the case of the mean value of cubic L-functions, we can explicitly compute a term
of size ¢°9/% in the non-Kummer case and a term of size g¢°?/® in the Kummer setting (see
remarks 4.5 and 5.6 respectively). Due to the size of the error terms, these terms do not
appear in the asymptotic formulas in Theorems 1.1 and 1.2. However, we suspect these
terms do persist in the asymptotic formulas. Improving the convexity bound on \i/q( fiu)
would allow us to improve the error terms, and maybe to detect the lower order terms. We
remark that a similar sized term was conjectured by Heath-Brown and Patterson [HBP79]
for the average of the arguments of cubic Gauss sums in the number field setting. We believe
the matching size of these terms is not a coincidence, as the source of our ¢°9/% comes from
averaging cubic Gauss sums over function fields.

Acknowledgements. The authors would like to thank Roger Heath-Brown, Maksym
Radziwilt, Kannan Soundararajan, and Matthew Young for helpful discussions. The research
of the first and third authors is supported by the National Science and Engineering Research
Council of Canada (NSERC) and the Fonds de recherche du Québec — Nature et technologies
(FRQNT). The second author of the paper was supported by a National Science Foundation
(NSF) Postdoctoral Fellowship during part of the research which led to this paper.

2. NOTATION AND SETTING

Let ¢ be an odd prime power such that ¢ = 1 (mod 3). We denote by M, the set of monic
polynomials of F [T, by M, 4 the set of monic polynomials of degree exactly d, by M, <4
the set of monic polynomials of degree smaller than or equal to d, by H, the set of monic
square-free polynomials of F,[T] and analogously for H, 4 and H, <4. Note that | M, 4| = ¢*
and for d > 2, we have that |H, 4| = ¢*(1 — %)

In general, unless stated otherwise, all polynomials are monic. As for the L—functions in
the introduction, we keep the index ¢ in the notation to avoid confusion, as we will have to

consider polynomials over the quadratic extension Fgp of F, when ¢ = 2 (mod 3).
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We define the norm of a polynomial f(7") € F,[T] over F,[T] by

1fla = qieslh),

Then, if f(T) € F,[T], we have |f|,» = q"98) for any positive integer n.

For ¢ = 1 (mod 3) we fix once and for all an isomorphism € between pg, the cubic roots
of 1in C*, and the cubic roots of 1 in F;. We also fix a cubic character x3 on [F} by
(3) va(a) =07 (a’7).
For any character x on F,[T], we say that y is even if it is trivial on F}, and odd otherwise.
Then, when ¢ is an odd prime power such that ¢ = 1 (mod 3), any cubic character on F,[7]
falls in three natural classes depending on its restriction to F; which is either xs, X3 or the
trivial character (in the first 2 cases, the character is odd, and in the last case, the character
is even).!

For any odd character x on F,[T], we denote by 7(x) the Gauss sum of the restriction of
x to F, (which is either x3 or x3), i.e.

(4) () = D (@) @,
ackFy
Then, |7(x)| = ¢*/?, and we denote the sign of the Gauss sum by
(5) e(x) = *1(x).
When Yy is even, we set ¢(x) = 1.

We will often use the fact that when ¢ = 1(mod6), the cubic reciprocity law is very
simple.

Lemma 2.1 (Cubic Reciprocity). Let a,b € F,[T] be relatively prime monic polynomials,
and let x, and xp be the cubic residue symbols defined above. If ¢ =1 (mod6), then

Xa(b) = xp(a).

Proof. This is Theorem 3.5 in [Ros02] in the case where a and b are monic and ¢ = 1 (mod 6).
U

Finally, we recall Perron’s formula over [F,[T] which we will use many times throughout
the paper.

Lemma 2.2 (Perron’s Formula). If the generating series A(u) = 3 pc v, a( f)udeed) is ab-
solutely convergent in |u| < r < 1, then

Za(f)_i Md_“

- 2mi uj=r U U
feEMgn
and 1 Alw) d
u U
2 =559 wi—w

fqu,Sn
where, in the usual notation, we take ¢ to signify the integral over the circle oriented coun-
terclockwise.

'We will see in Section 2.2 that when ¢ = 2 (mod 3), any cubic character on F,[T] is even.
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2.1. Zeta functions and the approximate functional equation. The affine zeta func-
tion over [F [T is defined by
_ Z ydes(f)

JeMqy
for |u| < 1/q. By grouping the polynomials according to the degree, it follows that

[e.9]

1
:Zu”q": .

n=0

and this provides a meromorphic continuation of Z,(u) to the entire complex plane. We
remark that Z,(u) has a simple pole at u = 1/¢ with residue —%. We also define

Co(s) = Z4(q7°).
Note that Z,(u) can be expressed in terms of an Euler product as follows
Zy(u) = [J(1 = u=™)~,
P

where the product is over monic irreducible polynomials in F,[T7].
Let C be a curve over F (T") whose function field is a cyclic cubic extension of F, (7).
From the Weil conjectures, the zeta function of the curve C' can be written as

Pc(u)
(1 —u)(l—qu)’

ZC’ (U) =

where
g g
_ H (1 _ \/auezm'ej) H (1 _ \/aue—zm'ej)
j=1 Jj=1

for some eigenangles 6;, 7 =1,...,¢.

We can write Po(u) in terms of the L-functions of the two cubic Dirichlet characters y
and ' of the function field of C. Let h be the conductor of the non-principal character y.
Define

(6) Lo(u,x) ==Y x(wu®s) = 3~ ut Y~y

feMy d<deg(h) feEMy.a

where the second equality follows from the orthogonality relations.
We remark that setting u = ¢~*, we have L, (s, x) = L4(u, x). From now on we will mainly
use the notation £,(u, x). The L-function has the following Euler product

Ly(u,x) = [ J(1 = x(Put=™)~,

Pth

where the product is again over monic irreducible polynomials P in F,[7]. From now on,
the Euler products we consider are over monic, irreducible polynomials and if there is an

ambiguity as to whether the polynomials belong to Fy[T] or F,2[T] we will indicate so.
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Considering the prime at infinity, we write
L,(u,x) if x is odd,

(7) Lelw.x) =9 , (1)

if x is even.
1—u

Then we have
PC’(U’) = Ec(U, X)EC(UJ Y)
Furthermore, using the Riemann—Hurwitz formula, we have that
0 if x is even,

8 deg(h) = g +2 —
(8) eg(h) =g+ {1 if % is odd.

Lemma 2.3. Let x be a primitive cubic character to the modulus h.
If x is odd, then L,(u,x) satisfies the functional equation

_ I _
) £y(0) = w00V L, ()
where the sign of the functional equation is
fEMq,deg(h)—l

If x is even, then L,(u,x) satisfies the functional equation

1—u 1
Ly(u, x) = w(x)(vau)* W > — L, (q—uW) )

1
qu
where the sign of the functional equation is
(11) w(x) = —q WEOT2 N ().
JEMaeg(n)—1

Proof. From (7) and (8), if x is odd, then g = deg(h) — 1, L,(u,x) = Lc(u, x), and the
functional equation follows from the Weil conjectures, since we have

deg(h) 1
Loluy) = (uyg)est Va) = e
7j=1
deg(h)—1 } deg(h)—1 o—2mib;
= (@i T e I (1=
j=1 Jj=1 u\/a
deg(h)—1 1
19 _ deg(h)—1 deg(h) 1 27ri9j/; —. Y |.
(12) (uv/q) (=1) jHle “\qu™
Since
deg(h)—1 deg(h)—1 )
3 = I 0 uyaem),
n=0 fEMgon J=1



comparing the coefficients of ud°™=1 it follows that

deg(h)—1
ST X() = (—1)yeEtgCesti-nz TT (it
fEMq,deg(h)fl Jj=1

which gives that
w(x) =q @EOTDR Ny (f).
fEMq deg(h) 1
From (7) and (8), if x is even, then g = deg(h) — 2, L,(u, x) = (1 —u) L (u), and we have

g(h)—2

Lou,x) = (1—u)(uy/q) deg(h H 627rz‘6',7-)

deg(h)—2 deg(h)—2

) 67271'1'9]'
_ (1 . U) (u\/a)deg(h)—2(_1)deg(h)—2 e2m¢9j <1 . )
e g
1-uw deg(h)—2 . 1
(13 - (1 ) (a2 T e, (L)),
qu j=1 q
Since
deg(h)—1 deg(h)—2
u” Z (1 —u) H (1 — uy/qe?™ %),
n=0 fqu n ]:1

comparing the coefficients of ud°&™~1 it follows that

deg(h)—2
S () = (—pylesn g2z TT i,
fqu,dcg(h)—l 7j=1

which gives that
w(x) = —q “@EDIR N ().

fqu,deg(h)—l
O

It is more natural to rewrite the sign of the functional equation in terms of Gauss sums
over F [T]. In particular, it is not obvious from (10) and (11) that |w(x)| = 1.

As in [Flo17c], we will use the exponential function which was introduced by D. Hayes
[Hay66]. For any a € F,((1/T)), we define

2w trFq/]Fp(al)

(14) eqla) =,
with a; the coefficient of 1/T" in the Laurent expansion of a. We then have that e,(a + b) =
eq(a)e,(b), and e,(a) =1 for a € Fy[T]. Also, if a,b, h € F,[T] are such that a = b (mod h),
then e,(a/h) = e4(b/h).

For x a primitive character of modulus h on F,[T7], let

Gix)= Y xla)e, (%)

a (mod h)
9



be the Gauss sum of the primitive Dirichlet character x over F,[T]. The following corollary
expresses the root number in terms of Gauss sums.

Corollary 2.4. Let x be a primitive character of modulus h on Fy[T]. Then

1 (deg(h)-1)/2 :
W) = | 7 G(x) if xodd,
L ~(dee(h)=1/2G () if x even.

Proof. We prove the following relation

G(x) = ) ZfEMqueg(h)—l x(h) if xodd,
—q ZfGMq,deg(h)_l X(h> if x even,

which clearly implies the corollary. Writing

deg(h)—1
Lwx) = Y aws  a= Y x(0),
7=0 ZEM%]‘
we have
deg(h
Z X( ( ) — Z aj Z + adeg h) 1 Z 2Tl'itrﬂ;q/]Fp (a)/p‘
£ (mod h) acFs =
{ e if y odd,
— A h)—2 !
(q N 1) Zjigo( ) A5 — Adeg(h)—1 if X even.
When x is even, 1 is a root of £,(u, x) and therefore Zdeg 4, — 0. The result follows. [

The following result allows us to replace the sum (6) by two shorter sums of lengths A and
g— A —1, where A is a parameter that can be chosen later, where the relationship between
g and deg(h) is given by (8).

Proposition 2.5 (Approximate Functional Equation). Let x be a primitive cubic character
of modulus h. If x is odd, then

1 x(f) X(f)
L, (— X) = > st D Sy
’ eg(f)/2 deg(f)/2’
Vi feMg<a ? JeMg<g—a1 1

where g = deg(h) — 1 by (8).
If x is even, then

1 (f) X(f)
L, <%7 X> = f@\%q qd)tfg(f)ﬂ +wx) fEMq,Z<;—A—1 qdfgw
1 Z X(f) w(X) Z Y(f)

— dea(f)/2 — W’
L=Va i, 1 L=V, s 1

where g = deg(h) — 2 by (8).

10



Proof. For x odd, we use Lemma 2.3 for x and then we have that

L
() =00, (o).
Using equation (6) and the functional equation above, it follows that

(15) Yo ox(H=whd"r D X

feEMqgn feEMy g—n
Writing
A g
Lo(u,x) =Y u" > x(H+ D u" > x(f),
n=0 feEMyn n=A+1 feEMyn

and using (15) for the second sum, it follows that
_ deg(f Y(f)
Low)= Y x(Hu'D +wl)/au)?’ Y Tqu)d==
feMq<a feMg<g-a

Plugging in u = 1/,/q finishes the proof.
For x even we have

g+1
‘Cq(ua X) = Z anun> Ap = Z X(f)
n=0 feEMqgn

We write

L7 (u) = H (1 — uy/ge*™) = anun.

j=1 n=0
By the functional equation (13),
9 g
Z bou™ =w(x)(Vaqu)! » bng "u"
n=0 n=0
g 9
=w(x) Z bng®* s = w(x) Z by—mq™ 9 U™,
n=0 m=0

from where

Thus, we can write

A
Lou) =3 by + w(x)(y/u)’

Now since L,(u, x) = (1 —u)LE(u), we get that
ap = by — bpy
forn=0,...,9 and a4y = —b,. Hence

(16) b, =ag+...+a,
11



forn=0,...,9. Now plugging in v = 1/,/q, we get that
g—A-1

= (%’0 - zA:ql’);2 (1_ %) DY qi—j? (1_ %)

Now using equation (16) for b, and b, 1, substracting the two equations and using the
functional equation for b,, we get that

T L o o e S )
0 g—n—l_q_1n+l X)4q q_la

and hence
1 (g—n

Tw(X)g® " +
q—1 n+1W{X )4 q—l'

Now we use the equations above forn = g—1— A and n = A and after some manipulations,

we get that
1 x(f) x(f)
Ly (ﬁ’x) - Z gdes(N)/2 +wx) Z qdes()/2

feEMg<a feMg<g—n—1

a0+...+ag_n_1:

A A+1 Qg—A
- _’_W( ) 1 g—A»>

to —am T —
(1—=vaq> (1-vaa=
and the result follows.

O
The following lemmas provide upper and lower bounds for L—functions.

Lemma 2.6. Let x be a primitive cubic character of conductor h defined over F,[T]. Then,
for Re(s) > 1/2 and for all e > 0,

|Lg(s,x)] < g7

Proof. This is the Lindel6f hypothesis in function fields. It is Theorem 5.1 in [BCD*18]. For
the quadratic case see also the proof of Corollary 8.2 in [Flo17a] and Theorem 3.3 in [AT14].
U

Lemma 2.7. Let x be a primitive cubic character of conductor h defined over F,[T]. Then,
for Re(s) > 1 and for all € > 0,

[Lq(s,x)| > g™

Proof. First assume that x is an odd character. Recall that g = deg(h) — 1. Then
g

Ly(s,0) =] (1 - q%’sew’j) :

j=1
and .
1 L 1
— (s, x)=—g+ Yy —F—.
lqu Lq( ) ; 1 — q%—8627r7,€j
From the above it follows that if Re(s) > 1 then
/
7 £h(60)] < deg(n
! 12




Now for Re(s) = o > 1 we have

logL S, X) Z |f| deg

where A(f) is the von Mangoldt function, equal to deg(P) when f = P™ for P prime, and
zero otherwise.

Hence )
A(f
log L,(s,x)| < — — —log(,(0c) = —log (1 — ¢ 7).
oa Lo I < 2 T7irgog(p) ~ o8Gle) = ~loe (1 =)
Ifo>1+ @ then it follows that
(18) |10gL (s, X)| < log(deg(h)).

Now if s =1+t and sy = 1 + 4 g(h) + 1t, we have that

!/

5L
log L,(s, x) —log Ly(s1,x) = / L—q(z) dz < |s; — s|deg(h) < 1,

S1 q

where the first inequality follows from (17). Combining the above and (18) it follows that
when Re(s) = 1 we have

| log Ly(s, x)| < log(deg(h)).
Now

log

1
TGl x)!‘ = |Relog L,(s, x)| < |log Ly(s, x)| < log(deg(h)),
q\°>

and then
| Ly(s, %) > deg(h)™! > g dee®)

When y is an even character, the L-function has an extra factor of 1 — ¢~ which does not
affect the bound.
O

Note that using ideas as in the work of Carneiro and Chandee [CC11] one could prove
that

1
a5 001> {0 ea )

when Re(s) = 1. For our purposes the lower bound of deg(h)~
have to follow the method in [CC11].

lis enough and we do not

2.2. Primitive cubic characters over F,[T]. Let ¢ be an odd power of a prime. In this
section we describe the cubic characters over F,[T] when ¢ = 1 (mod 3) (the Kummer case)
and ¢ = 2 (mod 3) (the non-Kummer case).

We first suppose that ¢ is odd and ¢ = 1 (mod 3).

We define the cubic residue symbol yp, for P an irreducible monic polynomial in F[77].
Let a € F,[T]. If P | a, then xp(a) = 0, and otherwise yp(a) = «, where « is the unique
root of unity in C such that

qdeg(P)_l
a3 =Q(a)(modP).
13



We extend the definition by multiplicativity to any monic polynomial F' € F,[T] by defining
for F' = P{'... P, with distinct primes P;,
XF=Xp, - Xb.-

Then, xr is a cubic character modulo P; ... P;. It is primitive if and only if all the e; are 1
or 2. Then it follows that the conductors of the primitive cubic characters are the square-free
monic polynomials ' € F,[T7], and for each such conductor, there are 2(F ) characters, where
w(F') is the number of primes dividing F'. More precisely, for any conductor F' = F} F, with
(F1, F») = 1 we have the primitive character of modulus F' given by

XF1F22 = XF1X%'2 = XF1X_F2

Lemma 2.8. Suppose ¢ = 1 (mod 3), and let Nx(d) be the number of primitive cubic char-
acters with conductor of degree d. Then,

N(d) = Bi1dg® + Biag® + O (¢V/29)9) |
where Bk 1 = Fk(1/q), Bx2 = (]:K(l/Q) - %fﬁ(l/q)), and Fx 1is given by (19).

Proof. Let a(F') be the number of cubic primitive characters of conductor F. By the above
discussion, the generating series for a(F) is given by

Gr(w) = Y a(F)utes™ =TT (1 + 2u®),
FeM, P

which is analytic for |u| < 1/¢ with a double pole at u = 1/q. We write

(19) Fi(u) = Gr(u)(1 — qu)? = H (1 _ 3y 2des(P) 4 2u3deg(P)) ‘
P
Then, using Perron’s formula (Lemma 2.2), and moving the integral from |u| = ¢~2 to
lu| = ¢~1/274) while picking the residue of the (double) pole at u = ¢~*, we have
1 Fx(u) du
Ng(d) = — A S/
<D= o ]{qu ut(1—qu)* u

— FK(l/Q)dqd + (fK(l/q) — é]—"ﬁ(l/@) qd +0 (q(1/2+5)d) .

For each primitive cubic character x g F2, We have that for o € F,
X p2(a) = Q71 <aq3;1(deg(F1)+2deg(Fg))) 7
1459

and X g, 2 is even if and only if deg(F1)+2 deg(F2) = 0 (mod 3). If xp, sz is odd, the restriction
to Ty is x3 when deg(Fy) 4 2deg(F2) = 1(mod3), and x3 when deg(Fy) + 2deg(F,) =
2 (mod 3), where x3 is defined by (3).

Then, since the conductor of xp gz is F' = F1 Fy, we have from (8) that

g+2 deg(Fy)+ 2deg(Fs)

g+1 deg(F1)+ 2deg(Fy) #
14

deg(Fy) + deg(Fy) = { 8 (mod 3),

(mod 3).



For convenience, recall that we restrict to the odd cubic primitive characters such that the
restriction to Fy is x3.
We have then showed the following.

Lemma 2.9. Suppose q is odd and ¢ = 1 (mod 3). Then,

ST L1200 = > > oL, (%7XF1XF2> :

X primitive cubic di+d2=g+1 Fietya,
genus(x)=g d1+2d2=1 (mod 3) Fa€Hq,dy
Xlrz=x3 (F1,Fp)=1

and the sign of the functional equation of L,(s, Xr,Xrm) is equal to

w(xnXr) = €(xs) ¢ TG (xR,
where x3 is the cubic residue symbol on F; defined by (3) and €(x3) is defined by (5).

We now suppose that ¢ = 2(mod 3). Then there are no cubic characters modulo P for
primes of odd degree since 3 { qe(®) — 1. For each prime P of even degree and a € F,[T],
we have the cubic residue symbol yp(a) = «, where « is the unique cubic root of unity in C
such that

gdeg(P) _;
a3 =Qa)(modP),
where ) takes values in the cubic roots of unity in Fe.
We extend the definition by multiplicativity to any monic polynomial F' € F,[T] supported
on primes of even degree by defining for F' = Py'... P with distinct primes P; of even
degree,

XF = Xp, - XP.-
Then, xr is a cubic character modulo P, ... P,, and it is primitive if and only if all the e; are
1 or 2. It follows that the conductors of the primitive cubic characters are the square-free
polynomials F' € F,[T| supported on primes of even degree, and for each such conductor,
there are 2¥(F) characters, where w(F) is the number of primes dividing F.

Lemma 2.10. Suppose ¢ = 2(mod3), and let Nyk(d) be the number of primitive cubic
characters with conductor of degree d. Then,

B, d (1/2+4€)d 21d

0 otherwise,
where By = Fuk(1/q) and Fuk(u) is defined by (20).

Proof. Let a(F) be number of cubic primitive characters of conductor F. By the above
discussion, the generating series for a(F) is given by

gnK(U) = Z a(F)udeg(F) — H (1 + 2udeg(P)) :
FeM, 2|deg(P)

which is analytic for |u| < 1/¢ with simple poles at u = 1/q and u = —1/q. This follows
from the fact that the primes of even degree in F,[T] are exactly the primes splitting in the
quadratic extension F,2(T)/F,(T). Recall that

ZqQ (u2) — H (1 o udeg(P))—Z H (1 . u?deg(P))_l ’

2|deg(P) 2fdeg(P)
15



where u = ¢~* and the product is over primes P of F [T]. The analytic properties of G,k (u)
then follow from the analytic properties of Z,(u?), which is analytic everywhere except for
simple poles when u? = ¢ 2.

We write

Fu(v) = Gux(u)(1 = qu)(1 + qu)
— H (1+ 2utsP) (1 — udeg(P>)2 H (1 — u®sP)) (1 4 yes®))

2|deg(P) 2tdeg(P)
(20) _ H (1 _ 3y 2des(P) + 2u3deg(P)) H (1 . u2deg(P)) ’
2|deg(P) 2tdeg(P)

which is analytic for |u| < ¢~'/2. Then, using Perron’s formula (Lemma 2.2), and moving
the integral from |u| = ¢~2 to |u| = ¢~(*/?*%) while picking the poles at u = ¢~ , we have
1 Fux (u) du

Nuk(d) = 2mi =gz u(1 — qu)(1 4+ qu) u
(]:nK(l/Q) 4 (_1)d]:nK<_1/Q)) qd +0 (q(1/2+e)d) '

2 2

Notice that Fox(1/q) = Fuk(—1/q), so the main term is zero when d is odd. In this case,
we already knew that there are no primitive cubic characters with conductor of odd degree
as every prime which divides the conductor has even degree. For d even, this proves the
result. O

It is more natural to describe these characters as characters over F2[T] restricting to
characters over IF,[T] as in the work of Bary-Soroker and Meisner [BSM] (generalizing the
work of Baier and Young [BY10] from number fields to function fields) by counting characters
of F2[T] whose restrictions to [Fy[T] are cubic characters over Fy[T']. In what follows, for f
in the quadratic extension F.[T"] over F,[T], we will denote by f the Galois conjugate of f.

Notice that ¢ = 1 (mod 3), and we have then described the primitive cubic characters of
F,2[T] in the paragraph before Lemma 2.10. Supose that 7 is a prime in Fp2[T] lying over a
prime P € F,[T] such that P splits as 77. Notice that P splits in F2[T] if and only if the
degree of P is even. It is easy to see that the restriction of x, to F [T is the character yxp,
and the restriction of xz to IF,[T] is the character Xp (possibly exchanging 7 and 7). Then
by running over all the characters yp where F' € F2[T7] is square-free and not divisible by a
prime P of F,[T], we are counting exactly the characters over F2[T"| whose restrictions are
cubic characters over F,[T], and each character over F,[T] is counted exactly once. For more
details, we refer the reader to [BSM].

We also remark that any cubic character over F [T is even when ¢ = 2 (mod 3). Indeed,
by the classification above, such a character comes from yr with F' € F2[T], and for o €
F, C Fgp, we have

xp(a) =7 <aq231 deg(F)) :

Since ¢ is odd and ¢ = 2 (mod 3), we have that (¢ — 1) | (¢* —1)/3.
By (8), it F € F,[T] is the conductor of a cubic primitive character x over FF,[T], it
follows that deg(F') = g + 2. By the classification above, it follows that F' = P;... P, for

distinct primes of even degree, and the character (mod F') is the restriction of a character
16



of conductor 7y ... 7w, over Fp[T], where 7; is one of the primes lying above P,. Then the
degree of the conductor of this character over F2[T] is equal to g/2 + 1.
We have then proved the following result.

Lemma 2.11. Suppose ¢ = 2 (mod 3). Then,

Yo L(/2x)= ) Lf(1/2.xk).

X primitive cubic FeH 2 o011
genus(x)=g P|F=PgF,[T)

2.3. Generalized cubic Gauss sums and the Poisson summation formula. Let x;
be the cubic residue symbol defined before for f € F,[T]. This is a character of modulus f,
but not necessarily primitive. We define the generalized cubic Gauss sum by

uV
(21) Gq(v7 )= X (u)eq —- |
u(me) ! (f)

with the exponential function defined in (14). We remark that if x; has conductor f’ with

deg(f') < deg(f), then G(xy) 7# Gq(L, f)-
If (a, f) = 1, we have

(22) Ge(aV, [) =X7(a)Ge(V, f).
The following lemma shows that the shifted Gauss sum is almost multiplicative as a
function of f, and we can determine it on powers of primes. We have the following.

Lemma 2.12. Suppose that ¢ = 1 (mod6).
(i) If (f1, f2) =1, then
Go(V. fif2) = xp(f2)’Go(V. [1)Gy(V. f2)
= GV o, 1)Go(V. f2).
(ii) If V. = Vi P* where Pt Vy, then

0 if i < a and i # 0(mod3),
(P if i <« and i =0 (mod3),

G,(V,P)y={ —IPI" ifi=a+1 andi=0(mod3),
e(xpi)w(xpi)xpi (Vi )|P|q if i=a+1 andi# 0(mod3),
0 ifi > a+2,

where ¢ is the Euler ¢-function for polynomials. We recall that e(x) = 1 when x is even.
For the case of xpi, this happens if 3 | deg(P").

Proof. The proof of (i) is the same as in [Flo17c]. We write u (mod fi f2) as u = uy fi + us fo
for u; (mod f3) and ug (mod f;). Then,

Go(V, fif2) =xp(f)xn (L) D > xnlw)xp(me (u}z/> (uJi_lv)

u1 (mod f)2 ug (mod f)1
=X7 (f2)Go(V, [1)Go(V, f2)

by cubic reciprocity. The second line of (i) follows from (22).

Now we focus on the proof of (ii).
17



Assume that ¢ < a. Then
Gy(V.P)= Y xpilu)e (Vi P
u (mod P?)
The exponential above is equal to 1 since uVy3 P>~ € F,[T], and if i« = 0(mod3), then
xpi(u) =1 when (u, P) = 1. The conclusion easily follows in this case. If i £ 0 (mod 3), the
conclusion also follows easily from orthogonality of characters.

Now assume that i = a + 1. Write u (mod P?) as u = PA + C, with A (mod P*"!) and
C (mod P). Then

G = X 5 a0 (G =P e Y e (5).

A (mod Pi—1) C (mod P) C (mod P)

If i = 0 (mod 3), then xp:(V; ') =1 and

> xwﬂckq(%)== > eq(%)==—L

C (mod P) C (gli%P)

and the conclusion follows. So assume that ¢ # 0 (mod 3). Then

; g — 4 ZfEMq,deg(P)_l XP’(f) 3 | deg<P)7
C(%P) xpi(C)eq (P) N { E(Xpi>\/azf€Mq,dcg(P)—1 xpi(f) 31deg(P),

and using Lemma 2.3, we can rewrite this as

(e C\ _ [ w(xpi)gie?)/? 3 | deg(P),
Z XPZ(C) q (P) - { E(Xpi)W(Xpi)qdeg(P)/2 3Tdeg(P)

C (mod P)
Thus, we get
[ wledxm (WPl 3| deg(P).
Gq(V, P =
elep)wOer)xp (VIDIPly 3¢ deg(P).
If i > a+ 2, then again the proof goes through exactly as in [Flo17c]. O

Now we state the Poisson summation formula for cubic characters. Recall that for any
non-principal character on F}, 7(x) is the standard Gauss sum defined over IF, by equation
(4). Also recall that for x odd, [7(x)| = /¢, and 7(x) = €(x)/q. For x even, e(x) = 1.

Proposition 2.13. Let f be a monic polynomial in F, x| with deg(f) = n, and let m be a
positive integer. If deg(f) = 0(mod 3), then

m

Y o=t 1600+ a-) Y G- Y G
heMgm [fla VEMy <n-m—2 VEMgn—m—1

If deg(f) # 0 (mod 3), then

Tiias:

Z xs(h) = ]f—|6(Xf) Z Gy(V, f).
heMqg,m E VeEMgn—m-1
18




Proof. As in [Flo17c], we have

> il = A GV e (-5 ).

o |

Using (22), we have

q—1
S ou =t n s Ywe Y G
heMgm |f| a=1 VeMg <n—m—2
q—1
4 Zx—f(a)efzmtryq/wp(a)/p Z G, (V, f)}
a=1 VeMgn—m-1

Now if deg(f) = 0 (mod 3) then x is an even character, and

q_l q—l
Zx_f(a,) ) q J— 17 Zx_f(a)e_Qﬂ'Ztr]Fq/]Fp(a)/p _ _1'
a=1 a=1

If deg(f) # 0 (mod 3) then x is an odd character, and

q—1 q—1
S Xi@) =0, > Xgla)e s O < 7).
a=1 a=1

Also, if deg(f) # 0 (mod 3), then f is not a cube, and the character xs is non-trivial, which
implies that G,(0, f) = 0 by the orthogonality relations. 0

3. AVERAGES OF CUBIC GAUSS SUMS

In this section we prove several results concerning averages of cubic Gauss sums which
will be needed later. Assume throughout that ¢ = 1 (mod6). For a,n € Z and n positive,
we denote by [a], the residue of @ modulo n such that 0 < [a], <n — 1.

We will prove the following.

Proposition 3.1. Let f = fif2f3 with fi and fy square-free and coprime. We have

q%*é[dﬂieg(h)] 1 -1
> Gylf F) =052 Go(1, f)p(1, [d + deg(f)ls) ] L+

2/3
FEMq,a CG(2)]1lg P

(Ff)=1
+0 |4 1q3+6d L f{ Yol du
2 .
| fale 27 Jyyjmg—r utw

with 2/3 < o < 4/3 and where W, (f,u) is given by (23) and p(1,[d + deg(f1)]s) is given by
(28).
Moreover, we have

1 \:[Iq(f’u)d O’d 2(2
LT
[ul=g~ u u

271
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To prove Proposition 3.1 we first need to understand the generating series of the Gauss

sums. Let
u) =Y Gy(f, Fyu's®

FeMq

and

(23) Uy(fiu) = Y Gy(f, Fyu'estr,
FeM,

The function ¥, (f, u) was studied by Hoffstein [Hof92], and we will cite here the relevant
results that we need, following the notation of Patterson [Pat07]. We postpone the proof of
Proposition 3.1 to the next sections.

3.1. The work of Hoffstein and Patterson. We first study the general Gauss sums
associated to the n' residue symbols as done in [Hof92, Pat07], and we specialize to n = 3
later. We always assume that ¢ = 1 (modn). Let n € (]F‘q((l/T))X and define

w(f77]7 ) 1_uq E G fF deg(F
FeMq
Fr~n

where the equivalence relation is given by

Fone Ffne (Fy((1/T))%)"

There is difference between our definition of ¢ (f,n,u) above, and the definition of ¥ (r,n, u)
in [Pat07, p. 245]: we are summing over monic polynomials in IF,[7], and not all polynomials
in IF,[T], as in [Hof92]. This explains the extra factors of the type (¢ —1)/n which appear in
[Pat07]. Because our polynomials are monic it is enough to consider the equivalence classes
that separate degrees, namely n = 7, where 7, is the uniformizer of the prime at infinity,
i.e. T71 in the completion F ((1/T))

A little bit of basic algebra in F,((1/7")) shows that for any i € Z,

U(frdiu) = (1 —umg")™ Y Gy(f FutE.
FeMqy
deg(F)=i (modn)

Then ¥(f, u) depends only on the value of ¢ modulo n.

We remark that since we have fixed the map between the n'" roots of unity in [, and
tn € C* at the beginning of this paper, we do not make this dependence explicit in our
notation, as it is done in [Pat07].

Then we can write the generating series W, (f,u) as

—_

n—

(24) Uo(fou) = (1—u"q") ) o(f 7 u).

i

Il
o

The main result of Hoffstein is a functional equation for o (f, 7", u) [Hof92, Proposition 2.1],
which we write below using the notation of Patterson.
20



Proposition 3.2. [Hof92, Proposition 2.1] For 0 <i <n and f € M,, we have

is —i ,—s n(s— —s)i —i _s— 1— q_l
Y(f, 7l a7 =" (o )
(I—q )
n(2—s)(B— n—de i— —s e —i i—1—de s— 1 - qn—ns
T 1q ) (B2 g2n—des(f 4220 Q=) Ltdex()=il y ri=1=de(f) g Q)W’

where B = [(1 + deg(f) —i)/n], E =1~ [(deg(f) + 1 — 2i)/n], and Wy, = (x5 'X7) with
X3 gwen by equation (3).

Remark 3.3. Note that we can rewrite the functional equation in the following form (for
n=23)

)
(= gyt = 1 fentugs (5ot 1) st (gt 2]
where

a1 (u) = —(g*u)(qu) B2 (1 — g7 a(u) = —Wyi(qu) (1 = ¢*u?),
with Wy, as above.
By setting u = ¢~° and letting u — oo in the functional equation, Hoffstein showed that

u'P(f,1,u™)

(26) (f e u) = A= gigny’

where P(f,i,x) is a polynomial of degree at most [(1 + deg(f) —i)/n] in . We remark that

while ¥ (f, 7%, u) depends only on the value of i modulo n, this is not the case for P(f,,u™).

Remark 3.4. Note that, from (26), the left-hand side of equation (25) above has no pole
at u® = 1/¢%, so neither does the right-hand side.

We let
C(f.i)= Y Gy(f. F).

FeMgy;

By setting © = u™ = ¢~™*, we can write for 0 < <n —1,

If 7 > [(1+deg(f) —i)/n] with 0 < i <n — 1, then we have the recurrence relation

C(f,i+n(j+1)) =¢""'C(f,i+nj).
21



Using that, we can rewrite, for any B > [(1 4+ deg(f) —7)/n],

P(f,i,x) = =gz ( Z C’(f,z'—l—nj)xj+ZC’(f,z'+nB)(q”“)jBa:j)

1—qx : ,

1 — n+1
= L(Z C(f,i+nj)a? +C(f,i+nB) BZ ety ZC])

1—qx
0<j<B 7>0
C(f,i+nB) g
(27) = 1_q 5N Ofii+ng)al + ey
0<j<B
Let
(28) plfi) = lim (1—q"")q"(f,md,q7") = P(f,i,q" 7).

Using the formula above for P(f,i,x), it follows that
. C(f,
p(f.i) = L)

(1—g g™ =
where i =i (modn), and i’ > deg(f).
To prove Proposition 3.1 we need to obtain an explicit formula for the residue in equation
(28) which we do in the next subsection.

3.2. Explicit formula for the residue p(f,i). From now on, we will specialize to n = 3.
For 7 prime, following Patterson’s notation, let

¢W( ,ﬂ;oi,u) _ (1 _ u3q3)—1 Z (f F) deg(F)
FeMy
deg(F)=i (mod 3)
(Fym)=1
We will need the following result.

Lemma 3.5. Let w be a prime such that w1 f. We have the following relations

(29)  Ue(fimd a7 = (i a7) = Golf )l e (fr, w70,

(B0)  Wa(fmrla) = O(fmal.q ) = Go(f mlaly o ue(f, m 2™ g7,

(31)  Wa(fr*,ml q™) = (L=|xlg) W(fr 7 a7).

Proof. These equations appear in page 249 of [Pat07] as part of the “Hecke theory” equations.

For completeness we give here the details of the proof of (30). The proofs of the other two
identities proceed in a similar fashion. Consider

~ Gy(f7, F)
N = 078 —=(1 — 3(1—s)\—1 q )
¢<fﬂ-77rooaq ) ( q ) Z |F|S
FeM, q
deg(F)=i (mod 3)
(Fym)=1

=u(frm ) = (L= g0 ) > Golfm mhi)

P
deg(F)=i—deg(m) (mod 3)
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Note that in the second sum above, we need 7||F}, otherwise the Gauss sum will vanish
by Lemma 2.12. We write F} = 7F} With 7 {1 Fy. Part (i) of Lemma 2.12 implies that
Go(fm, mFy) = Gy(fm°, F5)Go(fm,m°) = Gy(f, F2)Gy(fm, 7). Moreover, part (ii) of Lemma
2.12 implies that G, (fm, 72) = |7|,G4(f, 7), where we have used that y,(—1) = 1 since it is
a cubic character. Putting all of this together yields (30). O

Lemma 3.6. Let w be a prime such that w1 f. We have the following relation
(32) O m g7 = w7 (frd w0 = (L= |72 ) (frd 7l a0).
Proof. We have

(33)
| T |
G,(fr?, F G,(fr?, F G (fn?, ' F
3 a(f : ) _ 3 a(f : )+Zw;m 3 o(f S )
- 11 - 11 = - 11
deg(F)=i (mod 3) deg(F)=i (mod 3) =1 deg(F)=i (mod 3)
(Fym)=1 (Fym)=1
+1
+ || 0D 3 Gy(fm?, mHF)
13K

)

)
Now when (F,7) = 1, by (22), it follows that G,(fn*, F) = G,(fr*s, F). We also have
using Lemma 2.12 and (22),

G (frd, mF) =G, (fr7™38 F)G (fr?, 73 = G, (fr?, F)o(m),
G, (fr, 7T F) =G, (fr¥ T, F) Jfrd ity = Gq(f7r2[j]3+17 F)Gq(fﬂ-[ﬂ?,’ﬂ-[j]SJrl)‘ﬂ-’g*[ﬂs
-G (fﬂ[ﬂ]s 3+1F)‘7T|J lls

Using the relations above in (33) and rearranging, we get that

Gy(f7, F) ¢(m Gy(f?, F)
Z ’F| Z ’355 Z ‘F's
deg(F)=i (mod 3) q deg(F)=i (mod 3) q
(Fym)=

o G [ﬂ37F
t |rfg-ta= 3 o fT72, F)

s
deg(F)=i (mod 3) | ’q
w|F

We now do the same with j 4+ 3 and take the difference. Then we have

Gq(fwj+3>F)_ |33 G,y(fm!, F) — (1|23 Go(fr, F)

deg(F)=i (mod 3) q deg(F)=i (mod 3) q deg(F)=i (mod 3) q
(Fymr)=1

Dividing by (1 — ¢*(1~%)), we obtain the result. O

We will also use the following periodicity result, which is stated in [Pat07] and in [KP84,
p. 135].

Lemma 3.7 (The Periodicity Theorem). Let m be a prime such that w1 f. Then
p(fr7*2,4) = p(fn’.d).
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We also need the following.

Lemma 3.8. Let m be a prime such that wt f. Then

jz')
li 1— 4 3s 7 p(fﬂ-
siﬂ%q *( Y (frd 7l q7%) = Tt

Proof. We multiply relation (32) by ¢**(1 — ¢*=*)/(1 — ¢*'~)) and take the limit as s — 1.
This yields

p(fr?*2,0) — |ml p(fn i) = (1 —|xlg?) hg;gq (=" ) n(fr!, ml a 7).

Using Lemma 3.7 we obtain the result. 0
We now explicitly compute the residue p(f,17).

Lemma 3.9. Let f = fif2f3 with fi, f> square-free and coprime. For n = 3, we have that
p(f,1) =0 if fo # 1 and

(34) pUf.0) = GolL, Pl fal ¥ 3128 Dhap (1, [i — 2des(f)]y)
when fo = 1. Here

p(1,0) =1, p(L1) =7(xs)e,  p(1,2)=0.
Proof. We start by computing p(1, [i]3). Recall by definition that

Gy(1.F) = > xrl)e, (3)

v (mod F')
v
- Y wwr Y e (5)
deg(v)<deg(F)—2 deg(v)=deg(F)—1
=2, 2 @)+, 3 xe(Oxe()Em O
CEFZ 'UGMq,gdeg(F)—Q cEF; 'UGMq,deg(F)—l
=Y xrle) D xr@) 7)Y, xr():
celFg VEMg, <deg(F)—2 VEMg,deg(F)-1

First suppose that [i]; = 0, i.e., deg(F) = 0(mod 3). Then, xr is even and
0 F+£0

Y owor ¥ ww-{dn plg

VEMy <deg(F)—2 VEM g deg(F)-1 -1

Then we write

Gy(1,F) = ¢(F)ds(F) + | T(xr) = D xrl(c) > xe(v),

CEFz ”qu,deg(F)—l

where the term dg(F) = 1is 1 if F' = and 0 otherwise.
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Since [i]3 =0, 7(xr) = —1 and ZCQF; xr(c) = q—1, and we have

(1,70, u) =(1 —ulg®) ™ Z G, (1, F)udes®)

FeMg
3|deg(F)
Sa—dt?) Y P g =) Y Y (),
FeM, FeMy veMg deg(ry—1
deg(F)=8 3|deg(F')

Notice that

B S Y = XY ) = e My o =8},

FeMgrveEMy p_1 vEMy 1 FEMy

and this gives zero when k # 1 (mod 3).
This gives

¢(1,7Tgo,u) =(1 —u3q3)_1 Z ¢(F3)u3deg(F)

FGMq

1_uq Z Z (b |F‘2 3deg(F)
k= OFEqu

1—Uq ZQQku3k Z

FGqu
=(1 —u®¢®) Zq‘““ F1—qh),

where we have used Proposition 2.7 in [Ros02]. Finally, we get

1—q_1

- (1= d¢)(1 - uPgt)

and taking the residue,
p(1,0) = 1.
When [i]5 # 0, ZCQF; xr(c) =0 and we obtain,
DL mdu) =1 =aP)™ Y G(1, F)ute)

FeM,
deg(F)=i (mod 3)

_ T(Xé) deg(F)
Twe > xr(uEn,

FeMq UEMq,deg(F)—l
deg(F)=i (mod 3)

When [i]3 = 2, from equation (35), we immediately get that the sum above is zero and

p(1,2) = 0.
25



On the other hand, if [i]3 = 1 we have, by cubic reciprocity,

V(17 u) _1—u3 32 v Z Z Xo(F

vEMy 35 FGMq 1+35

_ Z 3j+1 Z 3]+1
1—u3 | 3\

weEMy,
TG6) N4 1y 3
:<1 — u3q3) Zu3]+1qj<1 —q 1>q33+1
j=0

_rbale=Dus a0, rhalle =D
(1

w2 —uig?)(1 — uiq?)’
where we have used again Proposition 2.7 in [Ros02]. Taking the residue, we get

T(x3)(g — 1)
1,1)= lim —4———= = .
p( ) 5473 (1 —U3q3) T(X?))q
To obtain equation (34), we start by multiplying equation (30) by ¢%(1—¢*~3%)

the limit as s — 4/3. By Lemma 3.8 for 7 1 f we get that

and taking

; 1 _ 3 3 de w)p(f I — 2d€g(71'))
Um0 |1 = | = Gl Al i AL 20
which simplifies to
(36) p(f7.1) = Go(f. Il * 43 45 p( £, — 2deg(m)).

4—35)

Multiplying equation (31) by ¢**(1 — ¢ , taking the limit as s — 4/3, and applying

Lemma 3.8 we get that
L= |z|s?
277/- = 272 1 Y
PR = p(7°50) | s

which implies that

(37) p(fr?,i) =

Notice that by the Periodicity Theorem (Lemma 3.7), p(f,7) depends on the cubic-free
part of f. From this and equation (37) we can suppose that f = f; with f; square-free.
Write f = m - - m,. By (36), we have

p(f1) =Go(f /7, ) |Thlg ® 5 45 p( f i — 2 deg(my)
ZGq(f/Wk>7Tk)|7Tk|;§q3 slim2des(mils (/. [i — 2 deg(my)]3)

k 7j—1
:HGq (HTF(,WJ) |f|q —q%,é[z 2554, deg(m;)] sp | 1, [ — QZdeg T ]
j=1 =

26
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In the equation above, note that

k
HGq <H7T€>7TJ> = 1f)
j=1
which follows by induction on the number of prime divisors of f and part (i) of Lemma 2.12.
This finishes the proof of Lemma 3.9. 0

3.3. Upper bounds for U,(f,u) and U,(f u). We will first prove the following result
which provides an upper bound for U, (f,u).

Theorem 3.10. For 1/2 < o <3/2 and |u® — ¢~*| > 6 where § > 0, we have that

o)+e

W, (fou) <5 | fIEGY

* as usual, and o = Re(s).

where u = q~

Proof. The bound for W,(f,q*) for 1/2 < Re(s) < 3/2 and |u® — ¢~*| > § follows from the
functional equation and the Phragmén—Lindelof principle. It suffices to show that the bound
holds for ¥(f, 7% ¢~%) for i = 0,1,2 by (24).

First, it follows from (26) and (27) that for B = [(1 + deg(f) — 7)/3] we have

—1 _UiP(f,i7u3)
w(faﬂ-oouu) - 1_q4u3
) C(f i+3B)ui+33
C(f,i+3j)u* + : :
3%2; (1= ¢")(1 - )

We now bound |C(f, k)|. Write F' = FyF; with (Fi, f) =1 and Fy | f (by this we mean
that the primes of I, divide f.) We use repeatedly that |G, (f, F1F2)| = |Gy (f, F1)||G4(f, F2)].
By Lemma 2.12 we have for F, | f* that |G,(f, F»)| = 0 unless Fy | f2. We write

k
STUGE P =Y > G Y (Gl Bl

FeMgu j=0 F1eMgy,; FreMy i
(F1,f)=1 Fo|f?
k
< Z E qj/2 E qk*J
j=0 F1eMgy ; FreMy ik
(F1,f)=1 | f?
k
35/2 k—j €
<Y P 1
Jj=0

<<q3k/2’f’;
Thus
C(f, B < £
We get that for o < 3/2
3842

o a ) € D M < A
k=0
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with an absolute constant in that region. In particular,

(38) O(fimd,q°) < |fl;

when Re(s) = 3/2.
From the functional equation of Remark 3.3, we have for 1/2 < Re(s) < 3/2 and |u?® —
g1 > ¢ that

(39) w( 77ro_oi7 q_s) = a’1<5) |f|(11_sw( 77Tool= q ) + CLQ(S) |f|;_s¢< 77;1_deg(f)7 qs_2>7
where a;(s) and as(s) are absolutely bounded above and below in the region considered
(independently of f).
Using the bound (38) and the functional equation gives that
O(fomd a0 < | fIyP

when Re(s) = 1/2.
We consider the function ®(f, 7%, s) = (1 — ¢*=3*)(1 — ¢ 2)(f, 7, qfs)@b(f, T " 2).

Then ®(f, 7, s) is holomorphic in the region 1/2 < Re(s) < 3/2, and ®(f, 7, s) < | f|s/>"*
for Re(s) = 3/2 and Re(s) = 1/2.

Using the Phragmén-Lindel6f principle, it follows that for 1/2 < Re(s) < 3/2, we have
that

O(f,mss) = (1= ") (1 = ¢ )(f, med, a ) (f, e, 72) < |F12H.

Using the functional equation (39), this gives
(40)

(1=¢"*) (1=¢"7) [ax (), 7, 4" + ax(8)0(fomd, ) (fo i =D )] < | flg 27
in the region 1/2 < Re(s) < 3/2 and |u® — ¢~*| > 6.
If deg(f) + 1 = 2i (mod 3), then the formula above implies that
—1i z 1 deg(f) ,s—2 %(U_%—i_a)
(41) U(f 7 a7 + U, ) < fla :

Now assume that deg(f) + 1 # 2i (mod3). Similarly we consider the function ®(s) =

(1—¢*3) (1 — 32 (f, md, ) (f, moo 48 S0 ¢*~%). Then, using the same arguments as
above we get that

(1= ¢">)(1 = ¢*2) [ () (f, 7, o (fomig 99D ¢°7%) - ag(s)y(f, mig =480, ¢772)7]
(42) <l
Combining the two equations (40) and (42), it would follow that
(1= g ) (1= ¢ 2) [W(f, 7, ¢ 72) + o (f, mig 798 g*=2)]
(43) x [ar(s)0(f, 7, 0°7%) + az(s)y( ,ngfdeg(f%qﬂ)} < |l

Switching i with deg(f) + 1 — ¢ (since deg(f) + 1 # 2i(mod3)), we get that there exist
absolutely bounded constants by(s) and bs(s) such that

D(f, w70 = bu(s) |l 0 (f, w7 7R) b () flg 0 (f s 0.
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If (a1, a2) and (be,by) are not linearly independent, then from the equation above and (39)
it follows that

D(fomt B g7 = M)l f, il a7),
for some A(s). Combining this with equation (43), we get that

l+5)

O(for ) < ),

and the conclusion again follows by replacing 2 — s by s.
If (a1,a2) and (b, by) are linearly independent, then

(1 - q4_38)<1 _q3$_2) [¢( 77'('2 1—deg(f) ’q5—2) +77/)( ,W;oi,qs_Q)}
¢ [a (S R0, g72) (st )] < |15

From the equation above and (43), by the linear independence condition, we get that

—i ,Ss— i—1—de s— —i Ss— o—3+
[O(f, mod a2 + o (f, mig D 2 (frd ) < | flg 2
and
—i g5 i—1—de 5— i—1—de s— o—3+
[W(f, 7, a %)+ (f i OB ) p(fom ) ¢o7?) < U flg 2T

By summing the two equations above, we recover equation (41) without any restrictions on
i,

77Z)( ,7To_oi,q )‘f’@b(f i— 1 deg(f)7qs—2) < |f|§<a—%+s>‘

Summing over ¢ = 0, 1,2 and replacing 2 — s by s finishes the proof.

O

In order to obtain an upper bound for W,(f,u) (recall its definition (23)) we first need to
relate it to W, (f, u) which we do in the next lemma.

Lemma 3.11. Let f = f, 2 f3 with f1, f> square-free and co-prime, and let f; be the product
of the primes dividing f3 but not dividing f1fs. Then,

\ifq(f, u) = H (1 (u 3 2 deg Z,u flfg deg(a)H u? 2 deg P))

Plfif2 alfx Pla
(44) x> (0 () E G (1, ) xelafi 510V (afi f3 /).
f|af1

If1/2 <0 <3/2 and |u® — ¢ 4|, |u® — ¢ 72| > 6, then

U)+€

T, (f.u) < 115"

Proof. We first show that the last assertion follows from the expression (44) for W, (f, u).
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Suppose that 1/2 < ¢ < 3/2 and |u® — ¢7*|, |[u® — ¢2| > 6. Then, for Re(s) =

3 2(3(3-0)+
by(fu) < Y laly Y —“f;f2

alf3 Laf1 q
+
< Yl Y )
a|f3 Lla f1
560 | 1(3_g)+
< Sl | pupp )
alf3

%—0’)-‘1—6

< max {Ifle Al ARG <

We now prove (44). We first remark that by definition of fi, fo, fi, we have that (f, F)) =
1 = (fife,F) = 1 and (ff,F) = 1 with (fifs, f5) = 1. If (fifofs, ') = 1, then
Gq(f1f22f3= )— ( ) (f1f27 )_Gq(flfQQJF)a and

qu](»ﬁu) = Z <f1f27 )deg )
(F.fif2f3)=1
SOOI RV
alf (F.f1f2)=

If (a, F') # 1, then there is a prime P such that P? | aF and Pt f1f3, and then G,(f1f3,aF) =
0. We can then suppose that (a,F) = 1, and then by Lemma 2.12 (i), we have that

GQ(flfgvaF) = GQ(f1f22>a)Gq(aflf227F)v and

(45) = > ula)Gy(fif5, a)ute@ G(aflfz, Futest™)

alfy (F,af1f2)=

Notice that af; fs is square-free and that a, f; and f, are two-by-two co-prime.
Let P be a prime dividing f5, and we write fo = Pf}, and F = P'F’ with (F'f}, P) = 1.
Then, by Lemma 2.12,

Gq(af1 é2p2, F/) 1= O,
Golafify P?, P'F') = Gy(afify P?, P)Gy(afi f£ PP, F') = S —|P2Gy(afi [ P2 F) =3,
0 otherwise.
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We remark that we have used that G,(af, f22P5, F') = G (af, f3*P?, F') for the second line,
since (P, F') = 1. This gives

Y Gylafifz FyuteE

(FvaflfQ):l

= Y Gyafifi, Pyt — Y Gylafi f PP F)utst)
(Fiaf1f})=1 (Faf1f3)=1

P|F

— Z Gy(afLf?, Fute®) 4+ Z Gy (afi f2 P2, F'yydestF")+3des(P) g2 deg(P)
(Fafifz)=1 (F',af1f2)=1

= Z (le1f2, ) deg(F) + (u3q2)deg(P) Z Gq(af1f22, F/)udeg(F')7
(Fafi1f3)=1 (F' af1f2)=1

or equivalently
(- @) S G = 3 Gyafifi F)
(Foafif2)=1 (Fafif})=1

By induction on the prime divisors of f,, we get

D Colafift, PO = [T (0= ()™ O) 30 Gylahifh, Pt

(Faf1f2)=1 Plf2 (Flafi)=
and plugging in (45), we have
(46)
Uy(fou) = [T (1= @)™ ™) 7 3" pl@)Gy(fif, a)u™ @ 3" Gylafif3, Fut®),

P|f2 alfy (Fafi)=1

We now do the same thing for Z(Fﬂfl):l G(afif2, F)udee®) dealing with the primes
dividing f; := af; one by one.
Let f{ = Pf], and we write

Z Jfifa, Futesd) = Z Gy (frf2, Fyudesf) — Z G (fIPf2, P )ydes P +ides(P)

(vaik) 1 (F,f{):l (va{)zl
F=P'F'i>1

Using Lemma 2.12, we compute that

Gy(fiPf3, P'F') = Gy(fiPf3, P)Gy(fiP™ f3, F)

Go(fiPf3, F) i=0,
/ K ! 2 .
= G (fiPP 12, Fe(xp2)w(xpm)xpr(fL)|P* i =2,
0 otherwise,

where we recall that e(xp2) =1 when 3 | deg(P).
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Then,
S Gy f3, Futes®

(P f)=1
Z G fl fg, deg Z Gq(f{fg, F/>udeg(F')+2 deg(P)q3deg(P)/2€(XP2)W(XP2)XP(f{f22)
(F.f1)=1 (F.f1)=1
(47)
e e frf2 —_
- Z o713 F)uts®) — (ug*2) e 0e(x p2)w(xp2 ) xp(f113) Z G, (—1]32,F’ udestF),
(F f1)=1 (F",fr)=1

Now we focus on

Z <f1f27 deg Z G f1f2, deg(F Z G f1f27 deg

(FfiP)=1 (F,f)=1 (F.fl)=
P\F

As before, write F' = P'F’. By Lemma 2.12 as always,

Gqo(f113, F") i =0,
= G (fif2P, Felxp)w(xp)xe=(fLfDIPl? i=1,
0 i>2,
and we get
Z Go(f1 12, F)utes”
Ff1
= Z q(flfQ,F)Udeg(F) _ Z (f1f27F P) deg(F')+deg(P)
(F f1)=1 (F',Pf)=1
= D G113, F)ut™) — (ug' ) = Pe(xp)w(xp)xp (F113) Y Go(f1f3 P, Fyu=")
(F.f1)=1 (F",Pf})=1
= > G (fif2 Futs®) — (ug?) = Pe(xp)w(xp)xpe(fif3) > Golfi f3, Fu®=d).
()=t (Ff)=1

Now we incorporate the equation above into equation (47).

S Go(fi f3, Futd

(Ff7)=1
= 37 G P — (g ey o) xp (15D S Gl fif3 Fyules)
(Ff)=1 (F',f1)=1
= D Gfif5 F)ut® — (") s De(xp)w(xp)xp(f1f5) Y Galfif5, Fut®
(FA)=1 (F.F=1
+ (W) N Gy(fr f3, Futes).

(Ffi)=1
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Rearranging, we write
(1= (@) =D) Y Go(fi f3, F)u's™
(F.f)=1
= Y Gyfi 13, Fyu's®) — (Pq? ) 5P p (1 f5)e(xpe)wlxpz) Y Gylfifs, F)us?
(F.ff)=1 (F.f)=1
or

S G 13 F)utE®) = (1 — (ug?)dee®) Z G, (1 f2, F)utes®)

(Ff5)=1 (Fif1)=

= (1= ()= ) @) O (f1£7)e (XP2)W(XP2) Y Glfif3, Fyut=®.

(F.f)=1

By applying this idea to each of the primes in the factorization of the square-free polyno-
mial f;', we obtain

> Go(fif3, Pyute!) =TT (1 = (u’g?) =)~

(Ff1)=1 PIfy
2 3/2 deg(¢ g fff22
x Y (0 NIxe (5) |xe (7% ) [ TTeterm)wtnr)
L fF P|¢ P|¢

0, (ff€f§’u> |

Putting everything together in (46), we get

Uy(fou) = [T (1= (@) 757 u(@)Gy(f1 £3. ayutest Z Gylafiff, Fyu'e®)

P|fa alf3 (Fiafi)=
_ H 3 2 deg(P ZM flfg deg(a) H 3 2 deg(P))
P|f2 a|f3 Plafi
afif2 afif2
X Z p(€)(u 2 3/2 deg(t HXP ( ) Xe ( fzfz) HE(XP2)W(XP2) v, ( fz_fg ,u)
tlaf Ple Pt
=TI (01— @)% S w(@)Gy(fifz, a)utes@ (1 — (ug?)dee®) !
Plfif2 alfy Pla
af f? afi f2
X Z (il u’ 3/2 deg(é HXP ( ) X < f2f2> HE(XP2>W<XP2) v, (_f2f2 ,U) .
tlaf Ple Pt
Now note that
l G,(1,0)
T (v () cburhtum ) = 252,
Pl < P s
which finishes the proof of the lemma. U
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3.4. Proof of Proposition 3.1. We are now ready to prove Proposition 3.1.

Proof. By applying Perron’s formula (Lemma 2.2) for a small circle C' around the origin and
using expression (44), we have

) d
> CGulf.F) 2mj€ (uj‘;u 52m]€H () =0) 7 S Giuff )

FeM,.q Plfifs al 3
(F,f):1
e ————_ (aff]
<TI0 =) Y ol Gt (“4)
Pla Lafi
v, <afzf22 ’ u) ydes(a)+2 deg(0) i
(48) X ud 7

Now we write

%(af;f;,u):(l—u?’q?’) {w (afzfg,o,u)w(“flf?, T )+w(af1f2,7r;2,u)]

Each ¢ has three poles, at ¢~%/3¢5 k = 0,1,2, where & = €2™/3. We compute the residues
of the poles in the integral above. We recall that formula (26) gives

W P(f,j,u®)
(1 —q'u?)
ul P(f,j,u®) -

where “ e is a power series whose nonzero coefficients correspond to monomials with

U(f,md u) =

deg = j (mod 3), and then the only ¢ which gives a non-zero integral in equation (48) comes
from (afyf3/¢, 77, u) with j such that j + deg(a) + 2deg(¢) = d(mod3). Note that if
j+deg(a) 4+ 2deg(¢) > d+ 1, the integral in (48) is zero because the integrand has no poles
inside C'. Hence we assume that j + deg(a) + 2deg(¢) < d.

In (48) we shift the contour of integration to |u| = ¢~7, where 2/3 < ¢ < 4/3 and
we encounter the poles when u® = ¢~*. With j as before, we compute the residue of the
integrand at u® = ¢~* and this gives

1 - 2
Resu:£§q74/3 77b (af1f2 —J U) udeg(a)—l—Qdeg(Z)—d—l — _<q%§3—k)d—deg(a)—2deg(l)—jp (aflfQ 7]) '

g T 3 l
We get that
4(d-j) 2 -
qs wa)Gy(f1f3,a) 1
> Gylf.F)= > ] (15
FEMg.q G2 |alg Plafy P13
(F.f)=1 deg(a)<d—j
0OG, (1,0 af f? afif? . 1 U, (f,u) du
% Z (£) qé( )Xg(fzﬁ)p(fzﬁ,j)—l—fj{ q(J:l )_
g’s Yy lu|=q—° u u
lafr ‘ q

2deg() <d—j—deg(a)

Using Lemma 3.9 and since af;// is square-free and co-prime to f, it follows that

) (aflfgjj) e (1761_}[1) 2/3 ng_g[ﬁdeg(”lfl)]gp( {j —i—deg( fl)} > '
14 14 ‘ )],

afi



Note that j + deg (%) = d + deg(f1) (mod 3), and

Gy alGalL. e (1) 64 (1) = Gl )Gl afi) = lal Gl 7

where we used Lemma 2.12. Combining the three equations above it follows that

3(d=[d+deg(F)s) Y (1. f,)
q , a
GQ(fa F) _5f2—1 gq( fl)p(lv[d+deg(fl)]3) Z /“|Lc<l| )
FEMgq Co(2)|f1l4 al f3 1
(F,f)=1 deg(a)<d—j
1\ p(0) od) ¢ 3(G=0)+e
(49) < 1] (1- =5 > +0(¢”| 13 ),
1P| 4],
Plafi q Lla f1

2deg(¢)<d—j—deg(a)

where we have used Lemma 3.11 to bound the integral.
Now using Perron’s formula (Lemma 2.2) for the sum over ¢ we have

deg(P)
s, <1 - x\P—\(I) dx
T

(1- x)x[dfjfgegm)]

14 1
0) I .

Lafi
2deg(¢)<d—j—deg(a)

Y

where we are integrating along a small circle around the origin. Let a(a) = 0 if deg(a) =

d—j (mod2) and a(a) = 1 otherwise. Introducing the sum over a and using Perron’s formula,
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it follows that

-1 deg(P)

p(a) desta)taa ( 1 ) < xdes )

) sl ] [ R -
1Pl |1Plq

a"f3* |a|q P|a
deg(a)<d—j
1 -1
14 22 p(a)  desca) ( 1 > ( xdeg(P)>
= —txr 2 1— — 1—
> 2w, U 7,
deg(a)<d—j
1 -1
s 1 — X2 ILL(CL) deg(a) ]_ IdEg(P)
—1)d-7 T2 (—1)des(a) 1— 1 —
N el DR v A VGl P 7,
alf3 Pla q
deg(a)<d—j
(x%w)deg(P) (17 xd‘e]f‘(qP) )
1 ey (1 .
_ldaz 1 ]{ #ie(1-7g) dw
2 27 (1 —w)wi=J w

1 e odeg(P)

I | by (1_ st )

R Plfs P (e

ajl—w2 1 A dw
2 2mi (1 —w)wti w

1 e Ldeg(P)
i (1 e )
PIf3 p
1 w

1 (-7 :
(51) —% (1 — w2)wd_j (1 -+ ZL‘2U}) U,

+(=1)

where again we are integrating along a small circle around the origin and we did the change
of variables w — —w to the second integral to reach the last line. Let R(z,w) denote the
Euler product above. Using equations (50) and (51) it follows that

(a) 1\ (4)
Z Ilra|q H (1—@) Z Mg

‘€|afl | |q

alf3 Plafi
deg(a)<d—j 2 deg(£) <d—j—deg(a)

1 1\ deg(P) R da d
A ) () e
(27i) P P2 Pl ) (1—2)(1 —w?)(zzw)d T ow
We first shift the contour in the integral over z to |x| = ¢~ and we encounter a pole at

2 = 1. We then shift the contour over w to |w| = ¢z~ and encounter a pole at w = 1. Then

SR 5 I () o

alf3 Plafy tafs [l P|fif3
deg(a)<d—j 2 deg(¢)<d—j—deg(a)

Using the formula above in (49) and the fact that |G,(1, fi)| = |f1]¢ finishes the proof of the
first statement of Proposition 3.1.

U
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4. THE NON-KUMMER SETTING

We now assume that ¢ is odd with ¢ = 2 (mod 3). We will prove Theorem 1.1.

4.1. Setup and sieving. Using Proposition 2.5 and Lemma 2.11, we have to compute

Z Lq<1/2, X) - Sl,principal =+ Sl,duah

X primitive cubic

genus(x)=g
where
(52)
1 1 1
S principal = Z W Z xr(f) + -3 Z W Z xr(f)
fEMy<a FEM 2 /oty feEMg, 441 FeH 2 o041
P|F=PgF,[T] P|F=PgF,[T]
and
(53)
1 o 1 1 .
S1,dual = Z qdegW Z W(XF)XF(f)+1 — /i Z m Z w(xr)XF(f).
JeEMy <g-a1 F€H¢127g/2+1 JeEMgg—a FEHqQ,g/2+1
P|F=PgF,[T] P|F=P¢F,[T)

We will choose A = 0(mod3). For the principal term, we will compute the contribution
from cube polynomials f and bound the contribution from non-cubes. We write

Sl,principal = Sl:@ + Sl’;é@’

where S| g corresponds to the sum with f a cube in equation (52) and S| 67 corresponds
to the sum with f not a cube, namely,

1
(54) Sl,@ - Z W Z 1,

JeMg <a FeH 2 /211
/=0 (F,f)=1
P|F=PgF,[T)
and
S = 1 1 :
D= D (/2 2. )+ 2 glesth)/? 2 el

feEMg<a FquQ’%H feEMg at1 Fquz,%H
#8 P|F=PgF,[T) P|F=PgFy[T)

Since A = 0 (mod 3), note that the second term in (52) does not contribute to the expression
(54) for S| .

The main results used to prove Theorem 1.1 are summarized in the following lemmas
whose proofs we postpone to the next sections.

Lemma 4.1. The main term Sl,@ 1s given by the following asymptotic formula

_¢(3/2) L1\ ¢78¢,(1/2) 11
8= 6 A (o) + 7 A () + Ol

3



with Ayk(z,u) given by equation (59). In particular,

1 1 1 1 2
Ak (—wﬂ): 11 (1—2—) 11 <1_ 2 T 1 )
) s R+ pim (Bl + 1% |RiZ(RI, +1)2

deg(R) odd deg(R) even
and
11 1 3
Anl(a) = I (=) IL (=g s)
q2 q REIF]Iq[T] ’R|2 +1 REllF_[q[T} (‘R’q + 1)2
deg(R) odd deg(R) even

In combination with the dual term S; gua1 this gives the following result.

Lemma 4.2.

o2, (3/2 1 1 AL 50, 8o
517@—1-51,@&1:%/%1{ ?’W +O<q9 2789 g5 T 4 (2 )A>‘

We also have the following upper bound for 5, 6

Lemma 4.3. We have that
S 5% +eg
1467 < q .

4.2. The main term. Here we will prove Lemma 4.1. In equation (54), write f = k3.
Recall that A = 0 (mod 3). Then S, 5 can be rewritten as

1
Ssg= Y, PRy > L

ReM, <4 FeM 2 g/241
(Fk)=1
P|F= PgF,[T)

We first look at the generating series of the sum over F'. We use the fact that

1 if F has no prime divisor in F [T,
(55) S w(D) = { 7]

0 otherwise,
DEF,[T)

D|F

where we have taken p over F,[T]. Then

(56) Z pdesg(F) — Z des(F) Z #(D): Z M(D)xdeg(D) Z deg(F)

FeHt 2 FeH 2 DeFy[T) DeFy[T) Fet 2
(Fk)=1 (Fk)=1 D|F (D.k)=1 (F,Dk)=1
P|F=PgF,(T]

We evaluate the sum over F' in the equation above and we have that

Z xdeg(F) _ H (1 + mdeg(P)) _ Zq2 (17)

deg(P)y’
FeH o PEF [T Zp(2?) H (14 ol ))
(FkD)=1 PIDk PEF 5[T]
P|Dk
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so from equation (56) and the above it follows that

deg(D
Z pdes(F) _ Zp(z) Z p(D)zeD)

Fers Z2(22) H (1+ xdeg(P)) DeFLT] H (1+ xdeg(P)>
(Fk)=1 PEF [T (D:k)=1 PeF 5 [T]
P|F=P¢Fq[T] Plk P|D

Now we write down an Euler product for the sum over D and we have that

(57)
D deg(D) deg(R) deg(R)
> PR ] () T ().
DEF, [T H 1+ ) Rréw,m REF,[T] (I+z27)
(Dk)=1 PE€F »[T] (R,k)=1 (R.k)=1
P|ID deg(R) odd deg(R) even

where the product over R is over monic, irreducible polynomials. Let Ag(x) denote the first
Euler factor above and Bg(z) the second. Then we rewrite the sum over D as

I Ax@ [ Bk

REIE‘q 1] REIFq 1]
(57) _ deg(R) odd deg(R) even
H Ag(z) H Br(z)
REF,[T] REF,[T]
R|k Rlk
deg(R) odd deg(R) even

and putting everything together, it follows that

) [ Arx) ][ Bal)

REF,[T] REF,[T]
deg(R) odd deg(R) even
(58) > kel = ,
FeH Zp(a?) H (1 + ate) H Ag(x) H Bpg(x)
(Fk)=1 PEF 2T REeF,[T] ReF, [T
P|F=P¢Fq[T] Plk Rlk R|k
deg(R) odd deg(R) even

We now introduce the sum over k£ and we have

kez/\;q [T a+a2%®) ] Az ][] Brl)

udes(k)

PEF 2[T] ReF, (T ReF,[T]
Pl Rk Rk
deg(R) odd deg(R) even
udeg(R) deg(R)
= 1l [1 T 0 29 ) A () (1 = udegm))] I, o)
REF[T] R REF[T] (I+z )2Br(x)(1 — udesH))
deg(R) odd deg(R) even
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where R denotes a monic irreducible polynomial in F,[7]. Combining the equation above
and (58) we get that the generating series for the double sum over F' and k is equal to

Zy2 (&3) 1
deg(k) deg(F) _ Za"\"/)
Z u Z t _Zqz (22) H (1 4 2des(R)) (1 — ydes(R))

keM, FeH 2 REF,[T)

(F,k)=1 deg(R) odd
P|F=P¢F4(T]
1 deg(R) udes(®)
X H T dea(®) L (1 +2x 2 + T(R)
rer,m) (L1+a 2 )2 1 —ufee
deg(R) even
Z 2(1’)
_Z () =22\ g
Q(u) Zq2 ([EQ)A K(xa u)7
where
1 1 deg(R)
59) Ax@uw)= [] —mx I —=a— <1 42 51— udeg(m)) .
’ eg(R) deg(R)
REF[T] Lt rew,r) (L+z 2 )2
deg(R) odd deg(R) even

Using Perron’s formula (Lemma 2.2) twice in (54) and the expression of the generating series
above, we get that

f ]g A (2, 1) (1 = *2?) dr du
50" @i P 0 g - )1 — et @

where we are integrating along circles of radii |u| < # and |x| < q%. First note that

Auk (2, 1) is analytic for |z| < 1/q, |zu| < 1/q, |zu?| < 1/¢% We initially pick |u| = 1/¢2*
and |z| = 1/¢**¢. We shift the contour over x to |z| = 1/¢'™ and we encounter a pole at
x = 1/¢*. Note that the new double integral will be bounded by O(¢?*%9). Then

S\e= s }'{ Audz B O(ghhen),
OB 2 S (1 qu)(1 - ¢ Pu) ()

Now we shift the contour of integration to |u| = ¢~¢ and we encounter two simple poles: one

at u=1/q2 and one at u = 1/q. We evaluate the residues and then

_G0B/2) (i 1) ¢*PG,(1/2) (1 1) s~4+e
5.8~ Go(3) Auc\ @ gr) Co(3) Ay ) 1O '

which finishes the proof of Lemma 4.1.

4.3. The contribution from non-cubes. Recall that 5, 6 is the term with f not a cube
in 51 principal Of (52). Since A = 0 (mod 3), the term we want to bound is equal to

1 1 1
So= 2 mmmr 2 wWDti—z Y mmmn 2. well)

feEMg <a FquQ’%+1 feEMyg at1 FquQ’%+1
[#8 P|F=PgF,[T) P|F=PgF, [T



Let Si; be the first term above and Sis the second. Note that it is enough to bound S,
since bounding S, will follow in a similar way. We use equation (55) again for the sum over
F and we have

(60) Su= Y X MDY )

feEMy<a DEM!LS%-H Fquz,%-q—l—deg(D)
79 (D,f)=1 (F,D)=1
Note that we used the fact that xp(f) = 1since D, f € F,[T]. Now we look at the generating
series for the sum over F. We have the following.

> weBu = [T (e n(pure) - 220 T L

2 _ 2deg(P) *
FeH 2 PEF 2[T] LqQ (U aXf) PEF 5[T] 1 XP(f)u €g

(F,D)=1 PtDf Pif
P|D

Using Perron’s formula (Lemma 2.2) and the generating series above, we have

Z % (u, Xx7y) H 1 — xp(f)us?) du
xr( 2 x7)udti-desd) I — 2deg(P) ,,
Fera g dcg(D) = omi L (u Juz g PF ol 1 —xp(f)u U
(FD) IISI%

where we are integrating along a circle of radius |u| = E around the origin. Now we use the
Lindelof bound for the L—function in the numerator and a lower bound for the L—function
in the denominator. We have, by Lemmas 2.6 and 2.7,

Loz (u, xp)| < gD, | Lo (w?,X7)] > g7 480,

Then
Z xr(f) < q%*deg(D)q48 deg(f)+2e deg(D)

FeH 2 11— deg(D)
(FD)

Trivially bounding the sums over D and f in (60) gives a total upper bound of
S K ¢q %ﬁga
and similarly for Si. This finishes the proof of Lemma 4.3.
4.4. The dual term. Here we will evaluate S gua and prove Lemma 4.2. Recall the ex-
pression (53) for Sy gua. We further write Sy qual = S11.dual + S12.dual-
For I as in the expression (53), we have that xr is an even primitive character over

F,[T] of modulus F F (recall that F is the Galois conjugate of F). The modulus has degree
2deg(F) = g + 2 and by Corollary 2.4 the sign of the functional equation is

_9_
wixr)=q 2 1G(XF)>
where the Gauss sum 1is

G(xr) = Z xr(a) e, <%) ,

a€F,[T)/(FF)
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By the Chinese Remainder Theorem, since F" and F are co-prime, if 3 runs over the classes
in F2[T]/(F) then SF + BF runs over the classes in Fy[T]/(FF). Then

G(xr) = Z xr(BF) €q <M>

BeF 2 IT)/(F) FF

= Z Xr(B) e (g)
BEF o T1/(F)
=Gp(1, F),

where we have used that xz(F') = 1 due to cubic reciprocity.
Using the fact that G2(1, F)Xr(f) = G (f, F) when (f, F') = 1 and X7 (f) = 0 otherwise,
we get

1
—9__
(61) Stawt =¢ Y =Y Y. GelfF),
feMg <g-a FEHqQ,%+1
(F,f)=1
P|F=P¢F,[T)
and
g ! 1
(62) S12,dual = 1- /g Z qdes(1/2 Z G (f, F).
feMyg—a FG?'lqz’%H
(F.f)=1
P|F=PgF,[T)

We first prove the following important feature of G2(1, f).
Lemma 4.4. Let f € F,[T] be square-free. Then
Gpe(l,f) = qdeg(f).
Proof. As usual, we denote by & the Galois conjugate of . We have

GeLN= > il (—7&>: S @ (‘70‘)

a€F 2[T]/(f) a€F 2 [T1/(f)

—a a
= Y xsla)eg (7> =xs(=1) > xs(@)ep (?)
a€F 2 [T)/(f) a€F 2 [T)/(f)
=Gp2(1, f).
In the first line we used the fact that e2(—a/f) = ep2(—a/ f) which follows because tr(o) =

-1

tr(&). In the second line we used that y;(—1) = Q71((=1)"5 de)) = 1.
Notice that for f,g € F,[T], (f,9) =1, xs(g9) = 1 because
X7(9) = x7(9) = xs(9),

which implies that xf(g) € R, hence it has to be equal to 1.
Then by Lemma 2.12, we have that

qu(l, fg) = qu(l, f)Gq2<1> g)'
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Now if P € F,[T], then

Ge(1, P)* = E(XP)2W(XP)2|P|q2 = E(XP)W(XP)|P|;£2|P|1/2 = queg(m

o=
and from this we conclude that

Gp(L1,P) = g,
By multiplicativity, since f is square-free,

Ge(L, f) = ¢*=).

Now we go back to (61) and (62). Using the sieve (55), we get that

>, GelF) = Y uD Y. Galf,DF)

FeH 2 g4 DeFy[T) FeM 2 g/511-deg(D)
(F,f)=1 deg(D)<g/2+1 (F,f)=1
P|F=PgFy[T] (D,f)=1

= Y uD)Gea(f.D) > X#(D)Ge(f, F)

DeFy[T] FEMQ2»9/2+17dcg(D>
deg(D)<g/2+1 (F,Df)=1
(D,f)=1
(63) = ) uD)Ge(f,D) > Gp(fD, F),
DeFy[T] FGMQ2»9/2+17deg(D>
deg(D)<g/2+1 (F,Df)=1
(D,f)=1

where we have used that G2(f, DF) =0if (D, F) # 1, since (f, DF) = 1.
Using Proposition 3.1 (recall that we are working in F2[T]) we get that

20484 deg(D)—4 deg(f1)—5[g/2+1+deg(f1)]3

q 3
> G ([ D, F) = b= 0 Gp(1, f1D)
FEMq2,g/2+lfdeg(D> ?
(F,fD)=1
1 —1
xp(1,[g/2+1+deg(f1)ls) [ (1+
|P|q2
PeEF 2T
P|fD
Q+6g7deg(D)(1+25)77deg(f>1) RS Ve (fD,u) du

with dp,—y = 1 if fo =1 and 67,1 = 0 otherwise. Combining equations (61), (63), (64) and
Lemma 4.4, we write

(65) S11,dual = M1 + Ex,
43



where M; corresponds to the main term in (64) and E; corresponds to the two error terms
in (64). We have

59/6+5/3 5 —2[g/2+1+deg(f1)]3
_ 4 fo=1q 3 —4deg(D) 2
=t Y e e Y MD)W PIG(1D)
a fEMg <g_n1 DEF,[T)
deg(D)<g/2+1
(D.f)=1
1 -1
<ol fof2+ 1+ deg(l) T (1+ )
| Plg2
PEF [T q
P|fD
59/6+5/3 5 —3Sl9/2+1+deg(f1)]3
_q f2=1q 3
 Ge(2) 2 qdes(D/2+des(11)/3 p(L[g/2+ 1+ deg(fi)ls)

feMg<g—a—1

< 1 }<1+|P1|q2)1 > u(D)geER) ] <1+|P1|q2>1‘

PE€F 2T DeF,[T] PE€F 2[T]
P|f deg(D)<g/2+1 P|D
(D,f)=1
We first treat the sum over D. We consider the generating series of the sum over D. We
have that
~1
u(D) 1 deg(D)
> i I (1ep)
DEF[T] PEF 2[T] g
(D,f)=1 P|D
deg(R) deg(R)
- H 1- 2deg(R§U1 1 H 1- 2deg(R’;U1 1 2|7
Re]Fq[T} q ( _'_ q2deg(R)) REFq[T] q ( + qdeg(R))
deg(R) odd deg(R) even
Rif Rtf

where we have counted the primes in F2[T] by counting the primes of F,[T] lying under
them. Recall from Section 2.2 that P € F [T splits in F2[7T7] if and only if deg(P) is even.
Let Aguair(w) denote the first factor above and Bgya r(w) the second. Define

Jux(w) = H Aguar,r(w) H Biual,r(w),

ReF [T ReF[T]
deg(R) odd deg(R) even

which is absolutely convergent for |w| < g.
Then by Perron’s formula (Lemma 2.2) we have

1 \" 1 Tk (w)
—2deg(D) - nK
2, M Hm(lﬂqu) 2w ) w1 - w)

DeF [T PeF
deg(D)<g/2+1 P|D
(D,f):l
dw
X A -1 e
H dual,R(w) H Bdual,R(w) w
ReFR,[T] ReF,[T]
deg(R) odd deg(R) even
RIf R|f
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Now we introduce the sum over f. Using the expression for the sum over D above, we get
that

59/6+5/3 dp=1p(1,[g/2 + 1 + deg(f1)ls) b B
M=t o ( )
1 Z HT] b q

8lg/2+14de e e 2deg(R)
(2(2) Mo g5/ 2+ 1 deg ()]s gdes(f)/2+deg(f1)/3 dRe(;F%%[ ] cg
eg(R) o
R|f
1\ 1 Tk (w 1 _y dw
X H (1 + deg( )> % W H AdualR( ) H Bdual,R<w) E
ReF, [T ReF4[T) ReF,[T]
deg(R) even deg(R) odd deg(R) even
R|f R|f R|f
Let
6f2:1 -1 1 deg( )
Mol ) =D qes(D)/2+des(f1)/3 I Crlw) I  Drlw)” ’
! REF,[T) REF,[T)
deg(R) odd deg(R) even
R|f RIf

where
1 wdeg(R) 1 2 deg(R)
CR(’LU) == 1 + q2 deg(R) - q2deg(R) ) DR(’UJ) = (1 + qdeg(R)> - q2 deg(R) ’

Then we can write down an Euler product for H,k(u, w) and we have that

1 o u(3j+1)deg(R) > e deg(R)
—1
Huxc(u, w) = H 1+ Cr(w) <qdeg R)/3 £ ¢(3j+1) deg(R)/2 + Z ¢ des(R)/2
ReF, [T j=1
deg(R) odd
1 > u(3j+1)deg(R) OO udl deg(R)
-1
X H 1+ DR(w) <qdeg( R)/3 Z q(3j+1) deg(R)/2 + Z q3j deg(R)/2
ReF [T j=1
deg(R) even

After simplifying, we have

” ( ) H o ( ) ) deg(R) u3deg(R)
nK (U, W) = 1+ Cr(w)” 5/6 3 deg(R) + 3/2
REF,(T] BRI (1= 20557) Rl — uddest®)
deg(R) odd 4
deg(R) u3deg(R)
X H 1+ Dp(w)™! 5/6 a0y T 32
R i1 RIS = 22557) (RS — ubdee®
deg(R) even
u
(66) =Z W BHK(U, 'LU),

with Byk(u,w) analytic in a wider region (for example, B,k (u,w) is absolutely convergent
for |u| < ¢ and |uw| < g% ).
We will use Perron’s formula (Lemma 2.2) for the sum over f. Note that if g/2 + 1 +

deg(f1) = 0(mod 3), then deg(f;) = g — 1 (mod 3). In this case by Lemma 3.9, p(1,0) = 1.
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If g/2 + 1+ deg(f1) = 1(mod3), then deg(f;) = g (mod3), and by Lemma 3.9 again we

have p(1,1) = 7(x3)¢%. Note that 7(y3) = ge(xs) and e(x3) = (=1)"5" = 1. Since ¢ is odd,
we have p(1,1) = ¢*. Recall that A = 0 (mod 3). Using Perron’s formula (Lemma 2.2) twice
depending on whether deg(f) = ¢ — 1 (mod 3) or deg(f) = g (mod 3), we have

s j{j{ Honk (u, w) Tk (w) 1 q'/3 dw du

w1 (1 —w) |w A 11—  wA31—-u?)] w u’

where we mtegrate along small circles around the origin. We first shift the contour over w
to |w| = ¢*~¢ (since Jux(w) is absolutely convergent for |w| < ¢) and encounter the pole at
w = 1. Note that H,k(u, 1) has a pole at u = ¢~ /. Let

Then
5g9/6+45/3 K ( ) du
_4q nK (U 1/3,,2
Ml - qu (2) f (1 - Uq1/6)< . Ug)ugiAil (1 + q ) U
. q59/6+5/3 7{ 7{ anK(u’ w)jnK(w) 1 . q1/3 d_w d_u
(2(2) Jumg-rro-c Jjpjmgr—e w91 —w)  [uw A1 —w?)  wmAB3(1—wd)| wow
5g9/6+45/3 K ( ) du AL
9 nK\U 1/3,,2 g4,y
e T 0 (),

Note that K,k (u) is absolutely convergent for |u| < ¢s. We shift the contour of integration
to |u| = ¢~¢, we compute the residue at u = ¢~/% and we get that

_A ICnK(qil/6> g_4
M, =2¢95+2 L0 (Q2 6+€g>
C2(2) (Vg —1)
59/6+5/3 iC d
q nK\U U
+ \% 1/6 ) 5 o (1 + q1/3U2) R
Cq2(2) |ul=¢ (1 —uq )(1 —u )U u
(68) :2q97%+2 KHK(qil/(i) ( 5g+€g)
C(2)(va—1)
Now we consider the error term F; from equation (65). The first term coming from the
first error in equation (64) will be bounded by
g 1 deg(D) 2+ deg(D)(142¢)— deg(f)1 lig)g—24
S DR ID DI el A L L
feMg,<g—a deg(D)<g/2+1
Then we get that
1 1 Upo(fD,u) du
—g 921 - e 27
By =q o ]{ o Z ez (D72 Z p(D)Ge(f, D)ug/2+1—deg(D) "
lul=q feMg <g-a DeF,[T]
deg(D)<g/2+1
(Daf)zl

+0(q85+9),

where recall that 2/3 < o < 4/3.
46



Combining the expressions for M; and F; it follows that

—442 Kuk (g% +0 <q%+€9>

1 1 v 2(fD u) du
—-g/2-1_~ q ) au
T4 271 j{ g2 Z qdes(f)/2 Z p(D)Ge(f, D)ug/2+1fdeg(D) w
[UI=a727 feMy cgoas DEF,[T)
deg(D)<g/2+1
(D,f)=1

We treat Sigqua similarly and since deg(f) = g — A we have [g/1 + 1+ deg(f1)]s = 1. Then
as before p(1,1) = 7(x3) = ¢*, and we get that

59
S12,dual =¢ +0 (q 6 +€g>
G2 (2)(1 = Q)

—9_1 ~

q 2 1 j{ 1 Ve(fD,u) du
T R S e Y DG D) iR

_ eg(f)/2 q ’ /2+1—deg(D)

1 \/6277'7/ [u|=q—20 feMuy A qeee DeF.T] u9 g u
deg(D)<g/2+1
(D,f)=1

Combining the two equations above, we get that

(69)
A
¢ o Pk (g7%) ¢ (1/2) 59
S1,dual = — +0 <q 6 +89>
Gg2 (2)
g1 1 1 Uo(fD,u) du
g/2—1_~ q , au
T4 271 f —g—20 Z qdeg(f)/2 Z M(D)Gq2<f7 D) w9/2+1—deg(D) 4,
lul=q feEMg <g—a—1 DER,(T)
deg(D)<g/2+1
(D,f):l
—9_1 ~
q 2 1 ]{ 1 Ve (fD,u) du
+ — Y =mm Y MD)Ge(f, D) —
— eg(f)/2 q /2+1—deg(D)
1 \/627'('2 lu|=q—20 feMuya qees DeRT] u9 g U
deg(D)<g/2+1
(D,f):l
We have

= T[] T[]

ReF,| ReF [T
deg(R) odd deg(R) even
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and using the definition (66) for Buk (u, w)

BnK(q_I/ﬁa 1) = | | 1+ 1 12/ p3/2 _ [1 - }
REF,[T] |R[(1 - \R|g) |R|q / (|Rly / ! L) |R|,
deg(R) odd q

X H 1+ L L L {1—L}
1+ 7 \R!q(l—u%@) IRI(R)Y? — ) R

ReR (7] i, o
deg(R) even
_ H 14 1 [1 1 ]
RER[T] 1+ m) (1Rl — 1) Bl
deg(R) even

By (67),

Gt = T () I (- gra)

ReF,[T) ReF4[T]
deg(R) odd deg(R) even

and we have that Kok (¢7/%) = Aux(1/¢% 1/q). Since (,(3) = ¢;2(2), by using equation (69)
and Lemma 4.1 we note that the corresponding terms of size qg’% in the expressions for
S1 & and S gua1 cancel out. Hence

07726 (3/2) 11 a4 59
S Stdual =7 An 51 279 O(¢g9 27 6 1&g
15 T OLdual &3 K\ g2 gn + O(q +4q )
a1 1 Up2(fD,u) du
_9_1_ q s au
+q 2 ot M Z qdeg(f)/2 Z /‘L(D)Gtﬂ(f) D>ug/2+1—deg(D) u
feMg <g-a1 DeF,[T]
deg(D)<g/2+1
(D,f)=1
—~9_7 ~
q 2 1 1 Upe(fD,u) du
T 1— \/627-” % oo Z qdeg(f)/Q Z 'LL(D)GQQ (f’ D)ug/2+1—deg(D) ;
|u|:q fEMq,ng DEFq[T]
deg(D)<g/2+1
(D,f):l

Now we consider the integral terms above. Note that it is enough to bound the first one.
Using Lemma 3.11, the term in the second line above is bounded by

—-Z 1 deg(D) og—30 deg(D)+3 deg(D)+deg(f)(§—a)
AIDY e/ > ’ ’

feMg,<g—a—1 deg(D)<g/2+1
<<gq%gf(270)A
as long as ¢ > 7/6. Then
9+2¢(3/2 1 1
(7O> Sl,@ + Sl,dual - %é)/)AHK (q_27 W) + O < 972 +89 + q 6 +8g + q (2 O')A+5g> )
q

which finishes the proof of Lemma 4.2.
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Remark 4.5. Note that the error term of size q%g can be computed explicitly from equation
(68) by evaluating the residue when u® = 1. The other error terms will eventually dominate

the term of size q%g, so we do not carry out the computation. However, we believe this term
will persist in the asymptotic formula.

4.5. The proof of Theorem 1.1. Using Lemmas 4.2 and 4.3, we get that

1 472¢,(3/2) 11
E L, (= =21 T =, — O( 2 teg {+eg —(2- 0)A+ag>
Q<2’XF) Cq(g) AK qz’q3/2 + q 2 +q6 +q2 Y

FEHq27%+1
P|F=P¢F4[T]

where 7/6 < o < 4/3. Picking 0 = 7/6 and A = 3[g/4] finishes the proof of Theorem 1.1.

5. THE KUMMER SETTING

We now assume that ¢ is odd with ¢ = 1 (mod 3). We will prove Theorem 1.2.

5.1. Setup and sieving. By Lemma 2.9, we want to compute

(71> Z Z ( XFlFQ) = SQ,principal + S2,dual7

di+da=g+1 ety
d1+2d2=1 (mod 3) FheH,, dy
(F1,F2)=1

where we have from Proposition 2.5 and Lemma 2.1 (cubic reciprocity)

(72) S2,principal = Z Z Z A Fl Xf F2>7

£l
di+de=g+1  Fi€Hga, fEMg<a
d1+42d2=1 (mod 3) FaeHg,dy
(F1,F2)=1
(73) 2,dual = wXP XF) 12
di+da=g+1 F€Hqa, feEMy<g—a-1 |f|
d14+2d2=1 (mod 3) Fa€Hqa,
(F1,F2)=1

We will choose A = 0(mod3). For the principal term, we will compute the contribution
from cube polynomials f and bound the contribution from non-cubes. We write

SQ,principal = 527@ + 82’?5@’

where
_ Xf Fl Xf Fz)
(74) S, = > > > Tz
di+d2= g+1 Flqu dq fqu <A |f‘
d1+2d2=1(mod 3) e, 4 f=8
(F1,Fy)=1
and
- Xf (F1)x7 (F2)
(75) Sz,;é@ - Z Z Z 2
di+da=g+1  F1€Hga, fFEMg<a |f|
di1+2do= 1(m0d3) FQGHq d2 f#@
(F1,F2)=
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The main results used to prove Theorem 1.2 are summarized in the following lemmas whose
proofs we postpone to the next sections.

Lemma 5.1. The main term S, g is given by the following asymptotic formula

52,@ = Ck19¢" " + C g™ + DK,lgngf% + DK,2C]9+17% + O <qg+sg + C]gf%ﬁg) ;
for some explicit constants Ck 1, Ck 2, Dk 1, Dka (see formula (87)).
We also have the following upper bounds for 52’ 6 and S gual-

Lemma 5.2. We have that

A
%—FEQ.

527¢@ < q

Lemma 5.3. The dual term is bounded by

4 g(Bgte)e-(5-8)4 | F-Ae-0)e

A
6

SQ,dual < q(lJrE)g
Jor 7/6 <o < 4/3.
We finish the section by sieving out the values of I} and F3.

Lemma 5.4. For f a monic polynomial in F,[T] the following holds.

S oxFE)XF(F) = > p(D)u(D2)xs(DiDy)
FieHqq, DieMy <ay /2
F2€Hq7d2 D2€ngd2/2
(F1,F2)=1
. > W)X (D1, HYX(Dy, H)

deg(H)<min{d; —deg(D1),d2—deg(D2)}
deg(H)—deg(D1,H)<d1—2deg(D1)
deg(H)—deg(D2,H)<dz—2deg(D2)
(H,f)=1

X > X s (L)xX7 (L)

L1€My 4y —2 deg(Dy)—deg(H)+deg(D1,H)
La€My 45— 2deg(Dy)—deg(H)+deg(Do, H)

Proof. We have that
S oxp(FPOXF(FR) = Y u(D)u(D2)xs(DiDy) > X s (F)X7(Fs)

FieHtq,q, DieMgy <ay /2 F1eMy a4, —2 deg(Dy)
FaeHq,a, DaeMg <ay/2 FieMy dy—2 deg(Dy)
(Fy,F»)=1 (D1 F!, Dy F)=1
_ 2
= p(D1)p(D2)x s (DiDy) > p(H)
DieMg <a, /2 HeMg <min{d) —deg(D}),dy—deg(Dy)}

DaeMg <ay/2

N T
x > X (F1)X ().
F{EMq;d1*2deg(D1)
FyeMy dy—2 deg(Do)
H|(D1F{,D2Fy)
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We remark that H | (D1 F], DoF}) is equivalent to H; = # | F| and Hy =
This gives

Z Xf(Fl)X_f(FQ) = Z M(Dl)#(DQ)Xf(D%Dﬂ
Fietg,a, DieM <ay /2
FactHg ., D2eMy <ay)2
(F1,F2)=1

X > p(H)x;(H H3) > X (FV )X (F3)-
deg(H)<min{d; —deg(D1),d2—deg(D2)} FY'€Mg ) —2 deg(Dy)—deg(Hy)

deg(H1)<d1—2deg(D1) FleM, 4 _ _
deg(Ha)<do—2deg(D2) 2 q,dp —2 deg(Dg)—deg(Hg)

D2H ’ F,

We rewrite Lemma 5.4 in the following form.

Corollary 5.5. For f a monic polynomial in F[T] the following holds.

Yo XAFXG(E) = > p(H) > p(R1)xs(Ra)

Fietq,a, HeMg <min{d;,dy} Ri1eMg,<d) —deg(i)
Fa€Hg,a, (H,f)=1 Ri|H
(Fy,Fp)=1

X Z 1(R2)x(Ry)? Z p(D1)xs(D1)?

Ra2eMg <dy—deg(H) DreM _d) —deg(H)—deg(r)
Ro|H (D1,H)=

X > 1(D2)x ¢ (D2) > X £ (L1)xX7(La).

D2€Mq,<AdQ—deg<H2)—deg<R2) LieMg ) 2 deg(Dy)—deg(H)—deg(R1)
(Dy,H)=1 L2€My,dy—2 deg(Dg) ~deg (H) —deg(Rz)

Proof. This follows by taking R; = (D;, H) in Lemma 5.4. O

5.2. The main term. Here we will obtain an asymptotic formula for the main term (74)
by proving Lemma 5.1. Recall that

(F1)x7(F:
se- Y Yy MOUEE

|f|1/2
di+d2= g+1 Py EHq dy fqu <A
d1+2d2=1 (mod 3) Faetq, =0

(F1,F2)=1

Let 29+ 1 = a(mod 3) and g = b(mod 3) with a,b € {0,1,2}. Notice that then 1+ 2a =
b (mod 3). Recall that A = 0(mod3). Since dy +dy = g+ 1 and d; + 2dy = 1 (mod 3), it
follows that d; = a (mod 3). In the equation above, write f = k°. Then the main term S, 5
can be rewritten as 7

1

(76) R DERD DRND D ik

dit+de=g+1 F1€Hqq, kEM g<A
di=a (mod3) FreH,, d2 (k, F1F25:3
(F1,F2)=
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We consider the generating series

gdea(F1) d (F)Udeg(k)
(77) Cx(r,y,u Z Z ol ydes(t |k:|3/2.
q

F,FoeHy  keMy
(F1,F2)=1 (k,Fy F3)=1

Note that
-1
udes(k) udes(P) U udes(P)
(78) Z L2 - H 1- P T 532 =2, <q3/2> H 1- p T2 |
keMgy | |q PYF1 F> | | P|F1 F> | ‘
(k,Fy Fy)=1

Let Cpk(u) denote the Euler factor above. Now we introduce the sum over F, and we
have that

(79> Z ydeg(F2) H CP,K(U) :H (1 + ydeg(P)CP,K<U)) H (1 + ydeg(P)CRK(u))—l.

FreH, P|F2 P P|F1
(F2,F1)=1

Let Bpk(y,u) be the P-factor when P | Fy. Finally, introducing the sum over F; and
combining equations (78) and (79), we have that

(80) Z deeg (F1) H CPK BPK(Z/; ) H (1 + xdEg(P)Cp,K(U)BP’K(y,U)) .

FieM, P|Fy P

Combining equations (77), (78), (79) and (80) and simplifying, we get that

u deg(P) deg(P) ues(”)
Cr(z,y,u) =2, Rz [I(t+@ +y~ =) 1—W
q

P
Uu
1) ~2, (3 ) 2020 Pt ),
where
(82) DK [L’ Y, U H 2deg(P y2deg(P) (a:y)deg( )+ (ilf y)deg( )_|_ (y2$)deg(P)
P
(ux)deg(P) (uy)deg(P) N ($2u)deg(P) N <y2u)deg(P) 2($yu)deg(P)
P Pl Py P Pl
(IQyu)deg(P) (y2xu)deg(P)
o |P|3/2 o |P|3/2

Note that Dk(z,y,u) has an analytic continuation when |z| < 1,]y| < 1, |2%y| < % |y x| <
o |zl < % yul < ¢2|2%u| < /g, |ly*ul < /g, |zyu| < /g. Using equation (81) and
Perron s formula (Lemma 2.2) three times in equation (76), we get that

S j{y{j{ Dx(z,y,u) du dy dx
200~ — _ _ A/3,dy pd1 o, o
d1+d =g+1 2mi)? J(1—qx)(1 —qy)(1 —uw)utBydezh v y x
di1=a (mod 3)
where we initially integrate along circles around the origin of radii |u| = is, x| =yl = #'
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We first shift the contour over u to |u| = ¢*/2, and encounter two poles: one at u = 1 and
another at u = ,/q. We compute the residues of the poles and then

]{Izl § Doy du — =(,(3/2)Dk(x,y, 1) + ¢~ 5, (1/2)D(, y, /)

—\%)(1 w)ut3
_‘_f DK(l‘,y,u) d_u
|'LL| q5/2 (1 '

— \/%)(1 —uw)ul/3 u

Plugging this into the expression for S, i and bounding the new triple integral by ¢“ — 5t

give
DK(Z’,y, 1) dy dx
d1+d2 g+1 |z|= 1+5 |y|— q qy)y Yy
di= a(modS
5 1 DK(x7y7 \/a) dy dz

(54) FRG(1/2) 5 ¢ 7{ dy da

' d1+d22=g+1 (2m)® lzl= = Jlyl= 1< (1 —qo)(1 —qy)y®ah y z

d1=a (mod 3)

+O(g0 ),

We first focus on the first term (83). Note that Dk(x,y, 1) has an analytic continuation for
2] < L]yl < 1, [a%y| < ¢, [y?z] < ;.

We remark that in (83) we can shift the contours of integration to the smaller circles
|z| = ¢~ and |y| = ¢~2 without changing the value of the integral as we are not crossing
any pole.

We write d; = 3k + a and compute the sum over dy. Note that k£ < [(g+1—a)/3] = [g/3].
Then

(83) = ,(3/2) —— ?{ % Dx(z,y,1) {yzmb g } @@
! 27” al=q=3 Jyyl=g—2 (1 = q2)(1 — qy)(y® — 23) [wotab yotl=a] y g

We write the integral above as a difference of two integrals. Note that the second double
integral vanishes, because the integrand for the integral over z has no poles inside the circle
|z = ¢

Hence

- 1 Dy (x,y,1)y*Te? dy dx
) GOz f ], T T g e

Note that for the integral over y, the only poles of the integrand inside the circle |y| = ¢
are at y® = 2%, so when y = &} for i € {0, 1,2} and & = €2™/3. Hence

1 Dy (z,y, )y*™* b dy 1 {DK(x,x, 1) N Dk (x, 3w, 1)E3T070

2mi Jiyimgz 29T (1 —qy)(yP —2%) y  Baetl | 1—qx 1 — g
2(24+a—b
($ 53 ) ) ( )
1 —q&x
To compute the integral over x, we shift the the contour of integration to |z| = g 1/3te,

I corresponding to each of the three functions above.
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Notice that the first integral has a double pole at s = 1/q. This gives

1 Dk (z,2,1)  Dk(w, &z, 1)E3T0
(83) =Go(3/2)5 5 27i j{vzq_s 3(1 — qr)zott [ l—qzx ' 1= adsw

| Dx(e. &, 1)53@*“)] dx

1 —q&z x

G(3/2) d
= 3 (g+2) g+1D (q qal) _qu_DK(xax71)|x:1/q

1 & 14+2a

+qg+1DK(a7 ;71> +qg+1D (q ') )53

1 =& 1-&

1 & qye2ta & 1 q)e2a

+q9+1DK(q’ q’l) +qg+1DK(q’q’1) 3 +O(q§+6g),
1-¢& 1 =&

where we have used the fact that 1 + 2a = b (mod 3).
Since Dk(x,y,1) = Dk(y, z, 1), we further simplify (83) to

g+1 1d

(83) Cq(3/2) (g+2)DK(%7%a1)_5%DK($ 2, 1)]a=1/q
2
DK(}] £q3’1) 2a+2 DK(%,%,U g+1 "
- - 2 +0(q3™)
1-&3 1—&35

ZCKJQC]%L1 + CK,qu+1 + O(q%+6g)a

where
(85)
11
K(_a ) )
CKJ _€Q(3/2) q3 1 )
(86)
Cra—cy32) | 2l Ld ) De(3 §. 06" D(S 5 106"
K,2 =Gq — — Y&, L) |e=1/q — - 5
3 3q dx 3(1—&3) 3(1—-&3)

and where we used the fact that 2g + 1 = a (mod 3). We remark that the constants above
are real, which reflects the fact that the sum is a real number.
We similarly compute the term (84) and we get that

_A 1 &3 2a+2
Co(1/2)go ! g 11 1d DK(E’?’\/a) 3
4) = 2Dk (=, = ———D —1/g —
34 =S (g4 9D 8, V) — D g — —
D & 1 a+l
_ K(ql’tI’\/E) 3 —I—O(q%_%ﬁg)
— &3
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Putting everything together, we get that

1 & g+1
¢! 1d Dy (L, %,1)ed
52’@ :Cq(3/2)T (9+2)Dk(=, T 1) — Q%DK($,ZE, D)o=1/q ql j :
2
DK<£A7l71) ?2’9+2 C(]./Q)qg—’—l_% 1 d
- qli§2 o (9 + 2Dk (5 5 V) = ——=Di(@, 2, V@) le=1/g
3 q
2
Dx(. &, g™ Dx(2,1 /)&

5.3. The contribution from non-cubes. Here we will prove Lemma 5.2. Recall the
definition (75) of S, 6D the term coming from the contribution of non-cube polynomials.

Using the sieve of Corollary 5.5, we rewrite S, ) as

S,o- Y Y S Y wR)y(R)

|£ld"?
di+do=g+1 feEMg<a 9 HeMg <min{d),do} Ry |H
d1+2d2=1(mod 3)  f#E (H,f)=1 deg(R1)<d;—deg(H)
2 2
X E p(R2)xr(R2) § pu(D1)xy(D1)
Ro|H D1eM _d) —deg(H)—deg(Ry)
deg(R2)<d2—deg(H) q,7(D1 Rl):%
X E p(D2)x s (Do) E Xy (L1)X7(L2).
DZGMqY<d2—deg(H)—deg(R2) L1€May 2 deg(Dy)—deg(H)—deg(R1)
(D, Ro)=1 L2€Mg,dy—2 deg(Dg) —deg(H)—deg(Ry)

: _ g0 (1) (2 : —
We write 5277&@ = 3277&@ + SQ#@ + 527#@, according to deg(f) (mod3). When deg(f) =
1,2 (mod 3), note that the condition that f is not a cube is automatically satisfied. We will
bound S;ljé@. Bounding the other two terms is similar (see the remark at the end of the

proof). We begin by using the Poisson summation formula (Proposition 2.13) for the sums
over L, and Ly above. Let deg(f) = n. Note that since |e(xs)| = 1, we have that

D gin w(H) p(Ry) (o)
Sy e =1 > > HE D TR, 2 Rl

di1+da=g+1 HEMq,gmin{dl,dg} Ri|H Ro|H

d1+2d2=1 (mod 3) deg(R1)<d1—deg(H) deg(R2)<d>—deg(H)
p(Dy) p(Ds)
X Z |D1 2 Z |D2|2
DieM  _ay—deg(rp—degny 1 D2EM | _ay—den(r)—daegeny Y
= 2 4,< 5
(Dlle)zl (DQ,RQ)Zl
A
X Z q—3n/2 Z Xf(D%RlDQR%)
n=0 Mg.n
n=1 (mod 3) {fe,H)Zl
G.(Vi, )G (Va,
(88)  x > 3 (V1 ]|C}| (V2. f)
q

VlGMq,n—dl-ﬂ deg(D1)+deg(Rq)+deg(H)—1 VQGMq,n—d2+2 deg(Dg)+deg(Rg)+deg(H)—1
55



Write f = E3B2C, where B,C are square-free polynomials with (B,C) = 1. Note that
BC? # 1 since f is not a cube. Then the sum over f becomes

Z Z Z XBQC(D%R1D2R%) Z

EEMq,Sn/S BEHq7<n73deg(E) Cqu,n73deg(E)72deg(B) VlEMq,n7d1+2deg(Dl)Jﬁdeg(Rl)#»deg(H)fl
(E,D]RlDQRQH):l BiH):% (C7BH)=1
(89)
Z G,(Vi, E3B*C)G,(Vy, E3B2C)

|flq

Va€M n—dy+2deg(Dy)+deg(Ry)+deg(H)—1

We remark that for fixed Vi and Va, G,(V1, f)G4(Va, f) is multiplicative as a function of f.
Indeed, for (f,h) = 1, we have by Lemma 2.12 and (22)

Go(Vi, fh)Go(Va, fh) =x s (h)*Go(Vi, F)Go(Vi, h)x s (h)* Gy (Va, £)Go(Va, )
=Gy(V1, [)Gq(Va, [)Gq(Vi, h)Go(Va, ).
Then,

G,(Vi, B*B*C)G,(Va, E3B2C) = HG Vi, PPrdrENG (Vy, P3ordr(B))

P|E

P{BC

> HG Vy, plordr(E )G (Va, P3ordp(E)+2)
P|B

> H Gy (W, P30rdP(E)+1)Gq(‘/2’ pBordp(E)+1)
P|C

We look at each of the three cases above.
(1) If P | E and P { BC, from Lemma 2.12 we need P347(E)=1 | V| in order for the

Gauss sum to be nonzero. In this case, we have

¢(P30rdP(E)) if P30rdp(E‘) | ‘/1’

3ordp (E
Gq(‘/l,P P )) = { _|P|20FdP(E)—1 if P30rdp(E')71||‘/1'

(2) If P | B (so P 1 C), again from Lemma 2.12, we need P3™*(E)+1||V/; and in this case

Gq(Vl, P3OrdP(E)+2) — E(XPQ) (XPQ)XP2(V1P 3ordp(E)— 1) |P|3Ordp E)+2

(3) If P | C (so P B), we need P*7(E)||V}. Then

1
Gq(‘/ly P3ordp(E)+1) — G(XP)W(XP)XP(‘/lpigordP ) |P‘30rdp +2.
Combining all of the above, it follows that in order to have G,(V;, E*B%C) # 0, then we

must have

Vi=E'BVs [] P,

P|E
P{BC
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with (V3, BC') = 1, and we can write

3 1 3 1 _1)?
Gy, 2250 =I5 TL 1P TT (1= o ) xane (v TT 77) vty
q

P|E P|E P|E
PtBC P|V3 PtBC
PtVs
(90) x [[xp(B/PY? [ etxpo)w(xre) [ ] exp)w(xer).
P|B P|B P|C

Similarly we can suppose that

Vo= E'BV; [] P,

P|E
P{BC

where we have (V}, BC') = 1. Using equation (90) and the analogous expression for G, (Vs, E*B2C),
it follows that

G,(Vi, E°B*C)Gy(Vao, E*B2C) =|Elg| BjICl, [T (=I1PIY [T (—1PIY)

PE PIE
Pchvg PIBCV;
1
X H ( ) H <1 )XB2C(V3)XB2C(V4)
1Pl |1Ply
P|(E,V5) P|(E,V4)

Then, the expression in equation (89) is

> eRIIee > 1Bl 1T 1P > IT 1P

EEMg,<ns3 P|E BEH _ n-3des() P|(E,B) CE€Hg,n—3deg(B)— 2 de(®) P|(E,C)
(E,D1Ry Dy Ry H)=1 (B.H)=1 (C.BH)=
(91)
x xpo(DIRID:RS) Y Xma(Ve) [ 1=1Pl) > xmo(Va) [] (1-1Ply).
VaeMg,eq P|(E,V3) VieMg,e, P|(E,V4)
where

e; = deg(B) + deg(C) — d; + 2deg(D;) + deg(R;) + deg(H) — 1 + deg ( H P)

P|E
P{BC

for 2 = 1,2. Now we look at the generating series for the sum over V3 and get that

S w s Wxmeva) [ a—1Pl) = T (1 —xee(P)u®=")™

VzeMy P|(E,V3) P{EBC
5o p)udeg(P)
X H <1+ |P| ) XBQC(P)Udeg(P)
P|E
PtBC
_ — o deg(P)
=L,(u,xm0) [] (1= |Plxza(P)us™).
P|E
PtBC
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Using Perron’s formula (Lemma 2.2) for the sums over V3 and Vj, we get that

> xweVs) [ 1—1Pl)

V3€Mq,el Pl(E7V3)

L,(w,x520) [1 pie (1 — | Pl,Xzec (P)ude®)
1 P{BC du

211 lu|=q—1/2 Ue1 U

and

> xwe(a) [ (—1Pl)

V46Mq,62 P|(E,V4)

LQ(UJ XB2C> H P|E (1 - ’P|qXBQC(P)U/deg(P))
1 PtBC du

21 1/2 U2 U

[ul=¢~

Since B, C' are square-free and coprime, and BC' # 1 (because f was not a cube), the L—
functions in the expressions above are primitive of modulus BC, and we can use the Lindelof
bound (Lemma 2.6) for each of them. We have

|1Lq(u, Xp20)| < [BCG, [Lq(u, xp20)| < |BCYG,

for |u| = ¢~/2. Then, the double sum over V3 and Vj in (91) is

< |BC|y*q~9?|D1DyH|g|RaRolZ [ IPL2.
P|E
Pro

Now we use the fact that

12 IT e 11 126 1T 1Pl =1,

P|E P|(E,C) P|(E,B) P|E
P{BC
and trivially bound the sums over C, B, E to get that the entire expression in (91) is bounded
by

¢"*t9792| D, Dy H || R Ry 2.
Finally, trivially bounding the sums over n, Dy, Dy, Ry, Re, H in equation (88) it follows that

27#

. @ . . . . (1) . (0)
We remark that bounding 527#@ is identical to bounding S#@. When bounding 527;&@,

we apply the Poisson summation formula for the sums over L; and Ly as before, and note
that G,(0, f) = 0 since f is not a cube. The Poisson summation formula applied to each of
the sums over Ly and Lo gives 2 terms in that case, and multiplying through, we will obtain
four terms, each of which can be bounded using the same method as before. In conclusion,

we get
A+g

52,7&@ K q 2
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5.4. The dual term. We now treat the dual term by proving Lemma 5.3. Recall from
equation (73) that

SZ,dual = Z Z XF1XF2 Z M

71"
di+do=g+1  F1€Hq,a, JeMg<g—a—1
d14+2d2=1 (mod 3) FaeHg,a,

(F1,F2)=1

Since dy + 2d; = 1(mod3), by Corollary 2.4 and formula (5), the sign of the functional
equation is

w(xmXm) =€(x3)q PG (X XE)
- (X3)q_(d1+d2)/2Gq(17 FI)Gq(17 FQ))

where x3 is defined by (3). We rewrite the dual sum as

(92)
_ 1 -
S2,dual :5<X3)q (g+1)/2 Z Z 1/2 Z GQ(f7 Fl)GQ(f7 F2>7
di+de=g+1 feMg<g—a-1 |f’ FreHg,a,
d1+2de=1 (m0d3) F2€Hq,d2

(F1,F2)=(F1 F3,f)=1

where we have used the fact that

XF1(f)Gq(17F1):Gq(f7F1) (f?Fl) :17
0 otherwise,

X_f(Fl)Gq<1a Fl) - {

and similarly for F,. We first notice that if F7 or F; are not square-free, then since (Fy Fy, f) =
1, we have by Lemma 2.12 that G,(f, F1) = 0 or G,(f, F>) = 0. Therefore, we can write

Y G R)G(fF) = Y Gf PG, F)
FieMtg,q, FieMy ay
FQG’Hq,d2 FQGMq,d2
(F1,F2)=(F1F2,f)=1 (F1,F2)=(F1F2,f)=1

= > uH)G(f F)G(f. Fa)

FlEMq dq Hl(Fl FQ)

FaeMg,ay
(F1F,f)=1
= Y. ) Y, Gf HR)G,(f HE).
deg(H)<min (d1,d2) Fy EMq,dl —deg(H)
F2€Mq,d2—deg(H)
(HF1 Fa,f)=1
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Again, if (H, Fl) §£ 1or (H, FQ) % 1, then Gq(f, HFl) =0or Gq(f, HFQ) =0. If (H, FlFQ) =
1, we can apply Lemma 2.12 and write

(93) > Go(f, F1)G,(f, F2) = > uH)H]|,

Fy EHq7d1 deg(H)<min (d1,d2)
FZEHq,dz (H’f):l
(F1,F2)=(F1F2, f)=1

x Y GUHR) Y G(fHE)

FireMg,d) —deg(m) FaeMq ay—deg(H)
(F1,f)=1 (F2,f)=1
(Fy,H)=1 (Fa,H)=1

where we have used the fact that G,(f, H)G,(f, H) = |H|,. Using equation (92) it follows
that

St =)y @2 S I S )|,

71"
di1+da=g+1 feEMg <g—a—1 deg(H)<min (d1,d2)

d142d2=1 (mod 3) (H,f)ZI
(94) x Y. GyfH,R) > G(fH F).
FreMy ) —deg(H) FreMy ay—deg()
(F1,fH)=1 (Fa,fH)=1

Using Proposition 3.1 we have that

q% (d1—deg(H))—5[d1+deg(f1)]3
Y GfH Fy) =05 Gy(1, fLH)p(1, [dy + deg(f1)]s)

2
Flqu,dl—deg(H) Cq(2)|f1H|§’
(F17fH):1
-1 4 _deglt) | o (d) —deg(H)) ,
X H (1 + ) + O (6f21q ’ + qo'ler(%*%O') deg(H)|f|§(%—0') ’
PIFH A8

and a similar formula holds for the sum over F5. Note that the second error term dominates
the first error term. Then we have

Yoo GUHFR) > G(fHF)

F1eMg,d) —deg(1) Fae Mg dy—deg()
(F1,fH)=1 (F2,fH)=1

q%—+1)—3 deg(H)— 2 ([d1+deg(f1)]3+[d2+deg(f1)]3)

:5f2:1 C‘ (2)2|f |% p(la [dl + deg(fl)]3)p(17 [dQ + deg(fl)]?))
q llq
2
X H (1 + —)
L e
(95)
4dy 3 Qeo(H 1 22 3 deg(H 1
e (q T (it ’\f|5(30)> e (q T (et 36
| f1lq | f1lg
(96)
+ 19) < sz—‘r(% % )deg(H)’f|§(%—0)q0d1+<%—%0) deg(H ’f’2(2 >
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Then the main term of S5 gya1 is equal to

q%(g+1) q—%([d1+deg(f1)J3+[dz+deg(f1)]3)

(,(2)? Z Z 0fp=1 172, 4 11/3
7 d1+d2:g+1 fEMq,Sg—A—l ‘fl ‘flyq
d1+2d2=1 (mod 3)

x p(1, [di + deg(f1)]3)p(1, [d2 + deg(f1)]3)

H 1\ 2
<y MU ()
: |H[? |Plg
deg(H)<min (d1,d2) P|fH
(H,f)=1

Notice that the product of the terms involving p is nonzero only when d; +deg(f;) = 1 (mod 3)
(and therefore dy + deg(f;) = 0(mod 3)). By Lemma 3.9,

q 1
Maw =2z D Y. Onmiinm
q ditda=g+1  fEMy <y a1 | fla" "1 f1lg
di1+2ds=1 (mod 3)

-2
p(H) 1
X 14+ —
2 |H2H<+|P|q |
deg(H)<min (d1,d2) 4 P|fH
(H,f)=1

where we have also used that 7(xs) = €(x3)/q-
We look at the generating series of the sum over H. We have

) T )

q P|H Ptf

Let Rp(w) denote the P—factor above and let Rk(w) = [[» Rp(w). By Perron’s formula,

we get that
3 pH) 1(1+ LN L%RK(w) [1py Re(w) ™" dw
|H |3 |P|q - 2mi (1 — w)wmin{drdz} ¢

deg(H)<min{dy,d2} 9 PIH
(H.f)=1

Recall from Section 5.2 that d; = a (mod3),2g + 1 = a(mod3),g = b(mod3) and A =
0 (mod 3). Then we need deg(f) = b (mod 3). Now we look at the sum over f. The generating
series 1s

So I >

1/2
| fla |f1 Pif
1 (37+1) deg( P) oo 3jdeg(P))]

1

u2deg(P)

_H L ] deg(P)(l—f- |P|§/3)
- Rp(w)(1 + pp)? \P\5/6(1—“|3;T§}§>)
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Let

udeg(P)(l + M)

1 \P2/3 u
SK(U,U)) = Rp(w) 1+ eq =2Z <_> MK(U7 w)
1;[ Rp(w)(1+ 50)? [Pl - uf}jg}f)) "\ g/

Write deg(f) = 3k + b. Since deg(f) <g—A—1and g— A—1=0b—1(mod3), we have
by Perron’s formula

Ric(w) Z 1/2 H ( ‘p‘q)_2 Rp(w)™

1/3
feEMg <g—a—1 |f1 |f| P|f
deg(f)=b(mod 3)

(g—A—3—-b)/3

(97) 271

:Lj{( Ek(u,w)  du

where we are integrating along a small circle around the origin.
Introducing the sum over d;, we have

QGQH ]{j{ Uy (u, w) — min{d d}dw du
Mua min{dy,d2} 27 77
dual = 2m 1 —ug'/%)(1 — u?)us=—4-3(1 — w) Z v wou

di+da=g+1
di1+2da=1 (mod 3)

Note that since d; = a (mod 3), we have that dy = a — 1 (mod 3). For simplicity of notation,
let a = [a — 1]3. We rewrite the sum over dy, ds as

[(9+1—2a)/6] [(9—1—2a)/6]

. 1 1
—min{di,d2} __
Z w - Z w3k+a T Z w3k+a”
d1+d2=g+1 k=0 k=0
d1+2do2=1 (mod 3)
Assume that g is odd. We have
g—1—2a g—3— 2«
(g+1-20)/6] = 220 [(g—1-20)/6) = L2222
Then using the above in (98) we get that
\ q69+1 j{j{ Uy (u, w) (1 + w) dw du
2m (1 —ug!®)(1 — ud)us—4=3(1 — w)(1 — whw'>" w u’

Note that we have a pole at u = ¢~/6.
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We compute the residue at u = ¢~'/% while moving the integral just before the poles at
u® = 1 and obtain

o-4116(1/2) U (q~"/", w)(d +w) dw
Mo = =057 6(2) 2mf{(1— w)(1 — wiyw's

q6g+1 jl{ 7{ Uk (u,w)(1 + w) dw du
1) Jiujmge Jiwima—= (1 — ug/0)(1 — ud)us-4-3(1 — w)(1 — w¥)w's w u
(99)

o eanG(1/2) 1 U7V w)(L+w) dw 591 e
- Co(2)? 2m’7{(1— )(1—w3) o ow +O( )

In the integral above we have a double pole at w = 1 and simple poles at w = &, w = &£3.
We have

~1/6 _ 1 _ wieslr) 1 o
o) =TT (1 g ) (1 TPT, 10 (P, + 1001 - L)) —r

" Pl

We compute the residue of the double pole at w = 1 and get that it is equal to

+ 2 2H: (1
I 20 4 P
Note that , )
(I1P[7 +2[Plg —2)(|Plg — 1)
C H g 7P|4 1 :DK(l/Q7 1/%\/5)7
q P q

where recall that Dk (x, y,u) is defined by (82).
Now we compute the residue of the pole at w = ;' which is equal to

Mk (€35)(1+ &5) ~ Hk(&3) Logro
(1-¢£5)°(1 - &) 31-¢&)7

The residue at w = &3 is equal to

(€)1 +&) g1 H(&) on1

(1- &)1 -&)” 3(1-&)”
Putting everything together, we have

oG/ (g2 M) HE) v M)
Mo =81 G50 (5000 + )

g—1
§s°

3 3(1—¢3)™° 3(1-¢&
s nG(1/2) Hw)(Lw) w0,
+q C(2)? 2m7|{w| a= (1—w)(l—wdHhw's w +O(q )
— 9—§+1Cq(1/2) (_g+2HK(1> + 2Hxk (1) HK(SS) 2942 Hi (&) g+1>

Go(2)? 3 3 31-8) 3(1— &)
+0 (q%g*eg> .

Remark 5.6. As in Remark 4.5, the error term of size q%g can be computed explicitly by

evaluating the residue when u® = 1 in (99). The other error terms will eventually dominate
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the term of size q%g, so we do not carry out the computation. However, we believe this term
will persist in the asymptotic formula.

Now assume that ¢ is even. Then
g—4—2a
[(9+1=2a)/6] = ———

6
Similarly as before, we get that

\ qﬁg+1 7{]{ UK( w)(1+ w?) dw du
dual 2m (1 — ug"/8)(1 — ud)us—4-3(1 — w)(1 — wd)ws w u

+1Cq<1/2 Uk (g% w)(1 + ) dw LI
Cq(2)? 27”]{ (1- )(1—w3)w2 w+0<q6 )

, g +1-2a)/6] =

Then the residues give

Mk (€)1 + &) o HK(E3) 2942
2=

(1-63)2(1—&) 3(1—¢3)
and

HK(£3>(1+€?%) gg %K(f?)) g+1

(1-&)P1-8)"  31-&)™ 7

M :qg_g+1éq(1/22) (_9+2HK(1> MELINON HK(é}?‘f; 2042 _ Hk(&s) g-i—l)
Go(2) 3 3 3(1-¢€3) 3(1- &)
+ 0 (q%+5g> :
We remark that assuming g even leads to the same asymptotic formula as before.

We now bound the mixed terms (95) and (96) in S5 gua. For the terms of the type (95)
we have

at Y gt Tl e
di+da=g+1 fEMy,<g—a-1 |f’q2 4|f1|¢§ deg(H)Sm)in (d1,d2)
(H7f :1

Setting o > 5/6, and bounding trivially the sum over H, it follows that these terms are

bounded by
< gt (B8Nt o ((F-5+<)o(15-5)4,

We now bound the error term coming from (96). This term will be bounded by

<t Y Y Y EET

di+de=g+1 feEMy <g—a—1 deg(H)<min (dy,d2)
(H,f)=1

<<q0'g 2+59+(9 A)(2—0) <<q3g —A(2—0)+eg

as long as 0 > 7/6.
Then the error from S 4ua1 Will be bounded by
13 o

Eaa < q(%’%Jr )o—(15-5)4 4 g E-AC-o)teg.

This finishes the proof of Lemma 5.3.
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5.5. The proof of Theorem 1.2. Combining Lemmas 5.1, 5.2 and 5.3, it follows that

1 _a _a
Z Z Lq (57 XF1F22> = Cka9q’" + Ck2¢?™ + Diagg”' ™% + Diog?™' 5
di+do=g+1  F1€Hq4,

di1+2d2=1 (mod 3) FheH

10 <q%+e9 4 e g gt e (9= o(B-5+e)e-(55-9)4 q%—m—awey)

q,dg
(F1,F2)=1

Y

where 7/6 < o < 4/3. Picking 0 = %ﬁ and A =3 [@} (so that A = 0 (mod 3)) gives

a total upper bound of size ¢ 1% +eg and finishes the proof of Theorem 1.2.
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