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ABSTRACT. We obtain an asymptotic formula for the mean value of L—functions associated
to cubic characters over F,[T]. We solve this problem in the non-Kummer setting when
¢ = 2 (mod 3) and in the Kummer setting when ¢ = 1 (mod 3). In the Kummer setting, the
mean value over the complete family of cubic characters was never addressed in the literature
(over number fields or function fields). The proofs rely on obtaining precise asymptotics for
averages of cubic Gauss sums over function fields, which can be studied using the pioneer
work of Kubota. In the non-Kummer setting, we display some explicit (and unexpected)
cancellation between the main term and the dual term coming from the approximate func-
tional equation of the L—functions. Exhibiting the cancellation involves evaluating sums of
residues of a variant of the generating series of cubic Gauss sums.
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1. INTRODUCTION

The problem we consider in this paper is that of computing the mean value of Dirichlet
L-functions L,(s, x) evaluated at the critical point s = 1/2 as x varies over the primitive
cubic Dirichlet characters of F,[T]. We will solve this problem in two different settings: when
the base field F, contains the cubic roots of unity (or equivalently when ¢ = 1 (mod 3); we
call this the Kummer setting) and when [, does not contain the cubic roots of unity (when
q¢ = 2 (mod 3); we call this the non-Kummer setting.)

There are few papers in literature about moments of cubic Dirichlet twists over number
fields, especially compared to the abundance of papers on quadratic twists. For the case
of quadratic characters over Q, the first moment was computed by Jutila [Jut81], and the
second and third moments by Soundararajan [Sou00]. For the case of quadratic characters
over IF [T, the first 4 moments were computed by the second author of this paper [Flo17a,
Flo17b, Flol17c]. In particular, the improvement of the error term for the first moment in
[Flo17a] showed the existence of a secondary term (of size approximately the cube root of
the main term) which was not predicted by any heuristic. A secondary term of size X3/
was explicitly computed by Diaconu and Whitehead in the number field setting [DW] for the
cubic moment of quadratic L—functions and by Diaconu in the function field setting [Dial9].

For the case of cubic characters, Baier and Young [BY10] considered the cubic Dirichlet
characters over Q and obtained for the smoothed first moment that

1) DS L<1/2,x>w(%>:cw<o>c2+o(@37/38+6),

(¢,3)=1 x primitive mod ¢
x*=xo

with an explicit constant ¢. Using an upper bound for higher moments of L—functions, Baier
and Young also show that the number of primitive Dirichlet characters y of order 3 with
conductor less than or equal to @ for which L(1/2,y) # 0 is bounded below by Q7.

The first moment of the cubic Dirichlet twists over Q(&3) was considered by Luo in [Luo04]
and Friedberg, Hoffstein and Lieman in [FHLO03| for a thin subset of the cubic characters,
namely those given by the cubic residue symbols y. where ¢ € Z[£3] is square-free. This does
not count the conjugate characters x> = x.2, and in particular, the first moment of [Luo04]
is not real.

The problem of computing the mean value of cubic L—functions over function fields was
considered by Rosen in [Ros95], where he averages over all monic polynomials of a given
degree. This problem is different than the one we consider, since the counting is not done
by genus and obtaining an asymptotic formula relies on using a combinatorial identity.

Before stating our results, we first introduce some notation. Let ¢ be an odd prime power,
and let F,[T] be the set of polynomials over the finite field F,. A Dirichlet character x
of modulus m € F [T is a multiplicative function from (F,[T]/(m))* to C*, extended to
[F,[T] by periodicity if (a,m) = 1, and defined by x(a) = 0 if (a,m) # 1. A cubic Dirichlet
character is a y such that x® equals the principal character xo and x # xo, and it takes
values in pg3, the cubic roots of 1 in C*. The smallest period of x is called the conductor of
the character. We say that y is a primitive character of modulus m when m is the smallest

period.
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We denote by L,(s, x) the L—function attached to the character y of F,[T]. We keep the
index ¢ in the notation to avoid confusion, as we will also work over the quadratic extension
qu of Fq.

We can count primitive cubic characters ordering them by the degree of their conductor,
or equivalently by the genus g of the cyclic cubic field extension of IF,[T] associated to such
a character (see formula (8)).

The set of cubic characters differs when F, contains the third roots of unity or not. If
¢ = 1(mod 3), F, contains the third roots of unity. In this case we will be interested in odd
characters, namely those y that are nontrivial on F;. The number of odd primitive cubic
Dirichlet characters with conductor of genus ¢ is then asymptotic to Bk 19¢? + Bk 2q? for
some explicit constants Bk 1, Bk 2 (see Lemma 2.8). If ¢ = 2(mod 3), F, does not contain
the third roots of unity, and all characters are even, as they are trivial on Fy. In this case
the number of primitive cubic Dirichlet characters with conductor of genus ¢ is asymptotic
to Bukq? for some explicit constant Byk (see Lemma 2.10).

We compute the first moment of cubic L-functions for the two settings. In the non-
Kummer case, we have the following.

Theorem 1.1. Let q be an odd prime power such that ¢ = 2 (mod 3). Then, for e >0,

Z Lq(1/2,x) = szgiizé)m_AnK <ql2’ q3_1/2> AT O(q%g—l-eg)7

X primitive cubic
genus(x)=g

with Awk(q7%, ¢~%/?) given in Lemma 4.1, and the implicit constant in the error term depends
on both q and €.

In the Kummer case, we have the following.

Theorem 1.2. Let q be an odd prime power such that ¢ = 1 (mod 3), and let x3 be the cubic
character on I} given by (3). Then, for e >0,

N
Y Le(1/2.x) = Ckaga”™ + Ciag?' + 0 (qgltl 7+€g> :
X primitive cubic
genus(x)=g
X|u?j§:X3

where Cx1 and Cka are given by equations (86) and (87) respectively, and the implicit
constant in the error term depends on both q and €.

The hypothesis that x restricts to the character x3 on F, is not important, but simplifies
the computations by ensuring that the L—functions have the same functional equation. It is
analogous to the restriction in the case of quadratic characters to those with conductor of
degree either 2¢g or 2¢g + 1.

Since L-functions satisfy the Lindel6f hypothesis over function fields (see Lemma 2.5), one
can easily bound the second moment, and we get the following corollary.

Corollary 1.3. Let g be an odd prime power. Then, for e > 0,
# {x cubic, primitive of genus g : Ly(1/2,x) # 0} >. g9,

Translating from the function field to the number field setting, we associate ¢¢ with Q.

Note that Theorem 1.1 is the function field analog of (1), and the proof of our Theorem 1.1
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has many similarities with the work of [BY10]. The better quality of our error term can be
explained in part by the fact that we can use the Riemann Hypothesis to bound the error
term. In the number field case, the same quality of error term can be obtained without the
Riemann Hypothesis for some families using the appropriate version of the large sieve (for
example in the case of the family of quadratic characters, with the quadratic large sieve due
to Heath-Brown [HB95]). However the cubic large sieve, also due to Heath-Brown [HBO0O],
provides a weaker upper bound. There is also an asymmetry between the sum over the cubic
characters, which is naturally a sum over Q(&3), and the truncated Dirichlet series of the
L-function, which is a sum over Z. The asymmetry of the sums also exists in the function
field setting.

Another difference from the work of Baier and Young is that we explicitly exhibit cancella-
tion between the main term and the dual term coming from using the approximate functional
equation for the L—functions. In their work Baier and Young [BY10] prove an upper bound
for the dual term without obtaining an asymptotic formula for it, which is what we do in
the function field case.

The first steps of our proofs are the usual ones, using the approximate functional equation
to write the special value

@) L,(1/2,%) )

1/27
S 1l

as a sum of two terms (the principal sum and the dual sum), where for a polynomial f € F/[T]]
the norm is defined by |f|, = ¢¢/). Inspired by the work of Florea [Flo17c] to improve
the quality of the error term, we evaluate exactly the dual sum and the secondary term of
the main sum (corresponding to taking f cube in the approximate functional equation) in
order to obtain cancellation of those terms. This is similar to the work of Florea for the first
moment of quadratic Dirichlet characters over functions fields, replacing quadratic Gauss
sums by cubic Gauss sums. Of course, this is not a trivial difference, as the behavior of
quadratic Gauss sums is very regular since they are multiplicative functions. However cubic
Gauss sums are different as they are no longer multiplicative. Handling the cubic Gauss
sums is significantly more difficult than working with quadratic Gauss sums. This is one of
the main focuses of our paper.

The distribution of Gauss sums over number fields was adressed by Heath-Brown and
Patterson [HBP79], using the deep work of Kubota for automorphic forms associated to
the metaplectic group. This was generalised by Hoffstein [Hof92] and Patterson [Pat07] for
the function field case. In Section 3 we review their work and further develop the results
concerning the generating series for cubic Gauss sums using only its functional equation and
the periodicity condition on the residues. The main goal of Section 3 is to obtain an exact
formula for the residues of the generating series

i"](f? U) = Z Gq(ﬁ F)udeg(F)>
FeM,
(F.f)=1
where G(f, F') is the generalized shifted Gauss sum over F, as defined by (21). With those
residues in hand, we can evaluate precisely the main term of the dual sum, and indeed
we can show that it (magically!) cancels with the secondary term of the principal sum.

Unfortunately obtaining the cancellation is not enough to improve the error term, as we
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do not have good bounds for W,(f,u) beyond the pole at u*> = 1/¢*. We prove that the
convexity bound in Lemma 3.11 holds, and any improvement of the convexity bound would
allow an improvement of the error term of Theorem 1.1 coming from the cancellation that
we exhibit.

Proving Theorem 1.2 is more difficult than obtaining the asymptotic formula in the non-
Kummer case, and our error term is not as good as that in Theorem 1.1. To our knowledge,
Theorem 1.2 is the first result when one considers all the primitive cubic characters (with
the technical restriction that x|r: = x3, which does not change the size of the family). This
explains the (maybe surprising) asymptotic for the first moment in Theorem 1.2, which is of
the shape gq?P(1/g) where P is a polynomial of degree 1.

Because of the size of the family of cubic twists in the Kummer case, we are not able to
obtain cancellation between the dual term and the error term from the main term. Certain
cross-terms seem to contribute to the cancellation, but we cannot obtain an asymptotic
formula for these cross terms. Instead we bound them using the convexity bound for W, (f, u),
which explains the bigger error term from Theorem 1.2.

We remark that the results of Theorems 1.1 and 1.2 both correspond to a family with
unitary symmetry, as expected. Note that for our results, we fix the size ¢ of the finite field
and let the genus g go to infinity. If instead one fixes the genus and lets ¢ go to infinity, it
should be possible to obtain asymptotic formulas for moments using equidistribution results
as in the work of Katz and Sarnak [KS99] and then a random matrix theory computation
as in the work of Keating and Snaith [KS00].

As mentioned before, a lower order term of size the cube root of the main term was
computed in [Flo17c¢| in the case of the mean value of quadratic L—functions. We remark
that in the case of the mean value of cubic L—functions, we can explicitly compute a term
of size ¢°9/% in the non-Kummer case and a term of size g¢®?/® in the Kummer setting (see
remarks 4.5 and 5.6 respectively). Due to the size of the error terms, these terms do not
appear in the asymptotic formulas in Theorems 1.1 and 1.2. However, we suspect these
terms do persist in the asymptotic formulas. Improving the convexity bound on W, (f,u)
would allow us to improve the error terms, and maybe to detect the lower order terms.
However, since W, (f,u) is a function with no Euler product, we do not know if there is
a solid basis to hope to improve the convexity bound which follows from the functional
equation and the Phragmén—Lindel6f principle. We remark that a similar sized lower order
term term was conjectured by Heath-Brown and Patterson [HBP79] for the average of the
arguments of cubic Gauss sums in the number field setting. We believe the matching size
of these terms is not a coincidence, as the source of our ¢°9/% comes from averaging cubic
Gauss sums over function fields. A lower order term of size X°/¢ has also been identified
when counting cubic number fields with discriminant less than X, as in [BST13, TT13], and
the work of [FHLO03, Dia04] gives some evidence for such a secondary term in the first and
second moments of cubic L-functions.

Acknowledgements. The authors would like to thank Lior Bary-Soroker, Roger Heath-
Brown, Maksym Radziwilt, Kannan Soundararajan, and Matthew Young for helpful discus-
sions. The authors would also like to thank the anonymous referee for the many valuable
suggestions and comments which improved the clarity of the paper. The research of the first
and third authors is supported by the National Science and Engineering Research Coun-
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2. NOTATION AND SETTING

Let ¢ be an odd prime power such that ¢ = 1 (mod 3). We denote by M, the set of monic
polynomials of F [T, by M, 4 the set of monic polynomials of degree exactly d, by M, <4
the set of monic polynomials of degree smaller than or equal to d, by H, the set of monic
square-free polynomials of F,[T] and analogously for H, 4 and H, <4. Note that | M, 4| = ¢*
and for d > 2, we have that |H, 4| = ¢*(1 — %)

In general, unless stated otherwise, all polynomials are monic. As for the L—functions in
the introduction, we keep the index ¢ in the notation to avoid confusion, as we will have to
consider polynomials over the quadratic extension Fp of F, when ¢ = 2 (mod 3).

We define the norm of a polynomial f(T") € F,[T] over F,[T] by

|f|q — qdeg(f)'

Then, if f(T) € F,[T], we have |f|;» = ¢"9) for any positive integer n.
For ¢ = 1 (mod 3) we fix once and for all an isomorphism 2 between s, the cubic roots
of 1 in C*, and the cubic roots of 1 in ;. We also fix a cubic character x3 on F, by

(3) xa(a) = Q71 (oﬁ) .
For any character x on Fy[T], we say that y is even if it is trivial on I}, and odd otherwise.
Then, when ¢ is an odd prime power such that ¢ = 1 (mod 3), any cubic character on F,[7]
falls in three natural classes depending on its restriction to F; which is either xs, X5 or the
trivial character (in the first 2 cases, the character is odd, and in the last case, the character
is even).!

For any odd character x on F,[T], we denote by 7(x) the Gauss sum of the restriction of
x to F (which is either x3 or x3), i.c.

e (1) = D x(@)em O

ackFy
Then, |7(x)| = ¢*/?, and we denote the sign of the Gauss sum by

(5) e(x) = ¢ 7 (x).

When x is even, we set €(x) = 1.
Finally, we recall Perron’s formula over F,[T] which we will use many times throughout
the paper.

Lemma 2.1 (Perron’s Formula). If the generating series A(u) = 3 pc a(f)udeed) is ab-
solutely convergent in |u| < r < 1, then

1 A(u) du
Z a(f) = i _ . u
FeMgn |u|=r

'We will see in Section 2.2 that when ¢ = 2 (mod 3), any cubic character on F,[T] is even.
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and

1 A(u)  du
Z alf) = 210 Jiyer w1 —u) u’
fEMq,Sn | |

where, in the usual notation, we take § to signify the integral over the circle oriented coun-
terclockwise.

2.1. Zeta functions and the approximate functional equation. The affine zeta func-
tion over [Fy[T] is defined by
— Z ydes(f)

feMy
for |u| < 1/q. By grouping the polynomials according to the degree, it follows that

Zu l—qu

and this provides a meromorphic continuation of Z,(u) to the entire complex plane. We
remark that Z,(u) has a simple pole at u = 1/¢ with residue —%. We also define

C(s) = Z4(q7°).

Note that Z,(u) can be expressed in terms of an Euler product as follows

2,(u) = [J(1 - a7,

P

where the product is over monic irreducible polynomials in IF,[T7].
Let C be a curve over F (T) whose function field is a cyclic cubic extension of F, (7).
From the Weil conjectures, the zeta function of the curve C' can be written as

Pc(u)
Z =
R iR}
where
Po(u) = H (1 — /que™) H (1 — /que %)
j=1 j=1
for some eigenangles 0;, j =1,...,¢.

We can write Po(u) in terms of the L-functions of the two cubic Dirichlet characters y
and Y of the function field of C'. Let h be the conductor of the non-principal character x.
Define

(6) Ly(u, x) = Z x(u sl Z Z
feEMq d<deg(h) feEMya

where the second equality follows from the orthogonality relations.
We remark that setting u = ¢~*, we have L, (s, x) = L,(u, x). From now on we will mainly
use the notation £,(u, x). The L-function has the following Euler product

Ly(u,x) = [ (1 = x(P)ute)~,
Plh
7



where the product is again over monic irreducible polynomials P in F,[7]. From now on,

the Euler products we consider are over monic, irreducible polynomials and if there is an

ambiguity as to whether the polynomials belong to Fy[T"] or F2[T] we will indicate so.
Considering the prime at infinity, we write

L,(u,x) if x is odd,

(7) Le(w.x) =19 , (4. )

if y is even.
1—u

Then we have
PC(U) = EC(ua X)EC(ua Y)
Furthermore, using the Riemann—Hurwitz formula, we have that

0 if x is even,

8 deg(h) = g +2 —
(8) eg(h) =g+ {1 if y is odd.

Lemma 2.2. Let x be a primitive cubic character to the modulus h.
If x is odd, then L,(u,x) satisfies the functional equation

) £4(0) =00 (Vi =8, (%)
where the sign of the functional equation is
(10) w(x) = g @EMTIZ N ().
fqu,deg(h)fl
If x is even, then L,(u,x) satisfies the functional equation
co(h)—2 1 — U 1
£4(0) = w00V =L ().
qu
where the sign of the functional equation is
(11) W(X) — _q*(dEg(h)*Q)/Q Z X(f)
fqu,deg(h)—l

Proof. From (7) and (8), if x is odd, then g = deg(h) — 1, L£,(u,x) = Lc(u, x), and the
functional equation follows from the Weil conjectures, since we have

deg(h) 1
Loluy) = (uy/a) - YR
7j=1
deg(h)-1  deg(h)-1 o—2mib;
_ (u\/—)deg(h ( )deg(h) 1 H 627”9j H (1— )
j=1 Jj=1 u\/a
deg(h)—1 1
.  (uygeE Ly T it (—,—).
(12) (uv/g)* =™ (=1) jHl AT
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Since
deg(h)—1

deg(h)—1
APIRCEN | OV

n=0 feEMgn
comparing the coefficients of ud°€(™ =1 it follows that
deg(h)—1
Z X(f) _ (_1)deg(h)—1q(deg(h)—1)/2 H 62m9j,
FEMy deg(h)—1 Jj=1

which gives that
w(x) = q EMDE N ().
fqu,deg(h)—l

From (7) and (8), if x is even, then g = deg(h) — 2, L,(u, x) = (1 — u)Lc(u, x), and we
have

deg(h) 2
Ly(ux) = (L—u)(uyg) ™™ T ( — e?m)
7=1
deg(h)—2 deg(h)—2 _omifs
_ (1 i u)(u\/a)deg(h)—2(_1)deg(h)—2 H e27rz'0j H <1 _ e 2 6’])
, , u+\/q
7=1 =1
deg(h)—2
(13) . l—u (U )deg(h)72(_1>deg(h)72 H 627ri6’j£ i —
- 1 1 q q qu7X :
qu j=1
Since
deg(h)— deg(h)—2
5 5 -0 T 0w
n=0 feMgn j=1

comparing the coefficients of ud°™=1 it follows that

deg(h)—2
Z x(f) = (—1)deg(h)—1q(deg(h)—2)/2 H 2ty
fqu,deg(h)fl i

which gives that

w(x) = —¢ WEOTZ N ().

fqu,deg(h)—l
]

It is more natural to rewrite the sign of the functional equation in terms of Gauss sums
over F [T]. In particular, it is not obvious from (10) and (11) that |w(x)| = 1.

As in [Flo17c], we will use the exponential function which was introduced by D. Hayes
[Hay66]. For any a € F,((1/7")), we define

27 tr]Fq/]Fp (a1)
(14) I s
9



with a; the coefficient of 1/T" in the Laurent expansion of a. We then have that e,(a + b) =
eq(a)e,(b), and e,(a) =1 for a € Fy[T]. Also, if a,b, h € F,[T] are such that a = b (mod h),
then e,(a/h) = e4(b/h).

For x a primitive character of modulus h on F,[T7], let

be the Gauss sum of the primitive Dirichlet character y over F,[T]. The following corollary
expresses the root number in terms of Gauss sums.

Corollary 2.3. Let x be a primitive character of modulus h on Fy[T]. Then

1, (deg(h)—1)/2 ;
W(X) — Tl(X)q . gh G(X) ZfXOdda
%q’( cg(M=D/2Q(y) if x even.

Proof. We prove the following relation

G(X) = T(X) ZfE/V(‘Ivdeg(h)fl X(h) if y odd,
—q Zfqu,deg(h)fl X(h) lf X even,

which clearly implies the corollary. Writing

deg(h)—1
TR ST D)
=0 LeMy
we have
deg(h
Z X( ( ) = Z Q; Z —I— Qdeg(h)—1 Z X(a)627ritr]Fq/Fp(a)/p‘
£(mod h) by =
_ [ e if y odd,
(4=1) Zdego(h) : aj — Ggeg(ny—1  if x even.

When x is even, 1 is a root of L,(u, x) and therefore Z?igo(h)_l a; = 0. The result follows. [

The following result allows us to replace the sum (6) by two shorter sums of lengths A and
g— A —1, where A is a parameter that can be chosen later, where the relationship between
g and deg(h) is given by (8).

Proposition 2.4 (Approximate Functional Equation). Let x be a primitive cubic character
of modulus h. If x is odd, then

1 x(f) X(f)

where g = deg(h) — 1 by (8).
10



If x is even, then

1 x(f) X))

Eq <%7 X> - feMZq,SA W ! w(X) fGME—A—l qdeg(f)/2
1 x(f) w(x)

T -4 > gesne Tz Va 2

fqu,AJrl

where g = deg(h) — 2 by (8).

Proof. For x odd, we use Lemma 2.2 for y and then we have that

1 _
£a(u0) = w00V Ls (1)
Using equation (6) and the functional equation above, it follows that
(15) Y ox(H=whd"r D X
feEMyn feEMy g—n
Writing
A

Lolu,x) =Y u" > x(H+ D u" Y x(f)

n=0 feMgn n=A+1 feEMqgn
and using (15) for the second sum, it follows that
Lolux)= Y x(Hu' +ot)(Vaw) )
feMq,<a feMqg,<g—a-1

Plugging in u = 1/,/q finishes the proof.
For y even we have

g+1
‘CQ(uv X) - Z anunv Qp = Z X(f)
n=0 feEMqgn

We write

Q

from where

feEMyg—a

xX(f)

qles (D)2

x(f)
(qu)deg(f) )



Thus, we can write

A1 —
Z by,
nqn :

n=0 q

g

A
Lol x) =3 b +w(x)(vqu)’

Now since L,(u, x) = (1 —u)Lc(u, x), we get that

an = b, — b1
forn=0,...,g9 and a,41 = —b,. Hence
(16) by =ap+...+ap
forn=0,...,9. Now plugging in v = 1/,/q, we get that

() ) B E )

n=0

Now using equation (16) for b, and b,1, substracting the two equations and using the
functional equation for b,,, we get that

J— 1 9_n ag—n
g+ ...+ Gg_p1 = _1an+1w(x)q2 + Py
and hence
ap+ ...+ ag_p-1= 1 @n+1W(X)q%_"+M-
q—1 q—1

Now we use the equations above forn = g—1— A and n = A and after some manipulations,
we get that

1 (f) X(f)
L, (%,X) = Z m + w(x) Z qdfg(f)/Z

feMg,<a JeMg <g—a—1

and the result follows.

The following lemmas provide upper and lower bounds for L—functions.

Lemma 2.5. Let x be a primitive cubic character of conductor h defined over Fy[T]. Then,
for Re(s) > 1/2 and for all € > 0,

[Lq(s, X)| < g7 5.

Proof. This is the Lindel6f hypothesis in function fields. It is Theorem 5.1 in [BCD*18]. For
the quadratic case see also the proof of Corollary 8.2 in [Flo17a] and Theorem 3.3 in [AT14].
O

Lemma 2.6. Let x be a primitive cubic character of conductor h defined over F,[T]. Then,
for Re(s) > 1 and for all e > 0,

| Lg(s,x)| > g =M.
12



Proof. First assume that y is an odd character. Recall that g = deg(h) — 1. Then

g
Ly(s, ) =] (1 - q%‘sew’f) ,

j=1
and
1 L, d 1
T (5X) = —9+ T
lqu Lq( X) 9 ]z_; 1 — q%*se%rz@j

From the above it follows that if Re(s) > 1 then
/

)
(17) L—q(s, X)‘ < deg(h).

Now for Re(s) = o > 1 we have

where A(f) is the von Mangoldt function, equal to deg(P) when f = P™ for P prime, and
zero otherwise.

Hence AG)
HogLo(s.)1 < 3 ) _log ¢ (o) = —log (1 — ¢7).
501 2 Tiraea() ~ 86 (=)
Ifo>1+ @ then it follows that
(18) | log Ly (s, x)| < log(deg(h)).
Now if s =1+ it and s; = l—l—m—i—it, we have that

S L/
log L,(s,x) — log Ly(s1,x) = / L—q(z) dz < |s; — s|deg(h) < 1,
S1 q

where the first inequality follows from (17). Combining the above and (18) it follows that
when Re(s) = 1 we have

| log Ly (s, x)| < log(deg(h)).
Now

log

1
TG0l x)!‘ = [Relog Ly(s, x)| < |log Ly(s, x)| < log(deg(h)),
g\

and then
|Ly(s,x)| > deg(h) ™ > g =des®),
When y is an even character, the L-function has an extra factor of 1 — ¢~ which does not

affect the bound.
O

Note that using ideas as in the work of Carneiro and Chandee [CC11] one could prove
that

| Lg(s, x)| > log(deg(h))’
13



when Re(s) = 1. For our purposes the lower bound > deg(h)™*

have to follow the method in [CC11].

is enough and we do not

2.2. Primitive cubic characters over F,[T]. Let ¢ be an odd power of a prime. In this
section we describe the cubic characters over F,[T] when ¢ = 1 (mod 3) (the Kummer case)
and ¢ = 2 (mod 3) (the non-Kummer case).

We first suppose that ¢ is odd and ¢ = 1 (mod 3).

We define the cubic residue symbol yp, for P an irreducible monic polynomial in F,[77].
Let a € F,[T]. If P | a, then xp(a) = 0, and otherwise yp(a) = «, where « is the unique
root of unity in C such that

qug(P) -1

a3 =Q(«a)(modP).
We extend the definition by multiplicativity to any monic polynomial F' € F,[T] by defining
for F' = P{'... P, with distinct primes P;,

XF=Xp, - Xp.-
Then, xr is a cubic character modulo P; ... P,. It is primitive if and only if all the e; are 1 or
2. Then it follows that the conductors of the primitive cubic characters are the square-free
monic polynomials F' € F [T, and for each such conductor, there are 2@(F) characters, where
w(F') is the number of primes dividing F'. More precisely, for any conductor F' = F} F, with
(F1, F3) = 1 we have the primitive character of modulus F' given by
XFF2 = XB X7, = XBXE-

We will often use the fact that when ¢ = 1(mod6), the cubic reciprocity law is very

simple.

Lemma 2.7 (Cubic Reciprocity). Let a,b € F [T| be relatively prime monic polynomials,
and let xo and xp be the cubic residue symbols defined above. If ¢ =1 (mod6), then

Xa(b) = xs(a).

Proof. This is Theorem 3.5 in [Ros02] in the case where a and b are monic and ¢ = 1 (mod 6).

0

Lemma 2.8. Suppose q is odd and ¢ = 1(mod3), and let Nx(g) be the number of odd
primitive cubic characters with conductor of genus g. Then, for all ¢ > 0,

Nk(g) = Bx19¢® + Bag® + O (¢V/*9)9) |

where Bk 1 = qFx(1/q), Bx2 = (2¢Fx(1/q) — Fi(1/q)), and Fx is given by (19), and the
implicit constant in the error term depends on both q and €.

Proof. Let a(F) be the number of cubic primitive characters of conductor F. By the above
discussion, the generating series for a(F) is given by

gK(U) = Z G,(F)Ude‘g(F) = H (1 + 2udeg(P)) s
FeM, P
which is analytic for |u| < 1/¢ with a double pole at u = 1/q. We write

(19) Fi(u) = Gr(u)(1 — qu)? = H (1 — Bu2dea(P) 4 g 3dee(P))

P
14



We seek a formula for the coefficient of u9*! in Gk (u), since odd characters have conductor
of degree g + 1. Then, using Perron’s formula (Lemma 2.1), and moving the integral from

lu| = ¢72 to |u| = ¢~/2%%) while picking the residue of the (double) pole at u = ¢~*', we
have
1 Fx(u du
Nelg) = o ¢ TRl du
70 Jjumg—2 w9 (1 — qu)* u

= Fx(1/9)9¢" + (2qFx(1/q) — Fi(1/q)) ¢* + O (¢V/*+99) .

For each primitive cubic character x g £y We have that for o € Fy,
Xrrz(a) = 01 (a%l(deg(Fl)Hdeg(Fg))) 7

and x g,z is even if and only if deg(F1)+2 deg(F2) = 0 (mod 3). If xp, gz is odd, the restriction
to F; is xs when deg(Fy) 4+ 2deg(Fy) = 1(mod3), and x3 when deg(Fy) + 2deg(F;) =
2 (mod 3), where 3 is defined by (3).

Then, since the conductor of xp, gz is F' = F1 Fy, we have from (8) that

) g+2 deg(Fi)+ 2deg(F;) =0 (mod3),
deg(F1) + deg(F2) = {g +1 deg(Fy) + 2deg(F,) # 0(mod 3).

For convenience, recall that we restrict to the odd cubic primitive characters such that the
restriction to F, is xs.
We have then showed the following.

Lemma 2.9. Suppose q is odd and ¢ = 1 (mod 3). Then,

S La2= Y > oL, (%7XF1XF2) :

X primitive cubic di+d2=g+1 Fietya,
genus(x)=g d1+2d2=1 (mod 3) Fa€Hq,dy
Xlrz =x3 (F1,Fo)=1

and the sign of the functional equation of L,(s, XrXm) is equal to

w(xrXr) = €(xs) ¢ TG (xr XE,),
where x3 is the cubic residue symbol on F;; defined by (3) and €(x3) is defined by (5).

We now suppose that ¢ = 2 (mod 3). Then there are no cubic characters modulo P for
primes of odd degree since 3 { ¢43") — 1. For each prime P of even degree and a € F,[T],
we have the cubic residue symbol yp(a) = «, where « is the unique cubic root of unity in C
such that

gdeg(P) |
a3 =Q«a)(mod P),
where ) takes values in the cubic roots of unity in F .

We extend the definition by multiplicativity to any monic polynomial F' € F,[T] supported
on primes of even degree by defining for F' = P7'... P with distinct primes P; of even
degree,

e es
XF = Xp, - Xp,-
15



Then, xr is a cubic character modulo P; ... P,, and it is primitive if and only if all the e; are
1 or 2. It follows that the conductors of the primitive cubic characters are the square-free
polynomials F' € I [T] supported on primes of even degree, and for each such conductor,
there are 2¥(F) characters, where w(F) is the number of primes dividing F.

Lemma 2.10. Suppose q is odd and ¢ = 2 (mod 3), and let Nyk(g) be the number of even
primitive cubic characters with conductor of genus g. Then, for all € > 0,

Bukq? 4+ O (¢M/#+9)9) 2 ¢,
NnK(g)z{ ke’ + 0 (q ) 2lyg

0 otherwise,
where By = ¢*Fux(1/q) and Fuk(u) is defined by (20), and the implicit constant in the
error term depends on q and €.

As we will see later, any cubic characer over F [T is even when ¢ = 2 (mod 3). We have
added the condition that the character is even for clarity.

Proof. Let a(F) be number of cubic primitive characters of conductor F. By the above
discussion, the generating series for a(F) is given by

Guk (u) = Z a(F)udeg(F) = H (1 + 2udeg(P)) ,
FeM, 2| deg(P)

which is analytic for |u| < 1/¢ with simple poles at u = 1/q and u = —1/¢q. This follows
from the fact that the primes of even degree in F,[T] are exactly the primes splitting in the
quadratic extension F,2(T)/F,(T). Recall that

Zq2 (UZ) — H (1 o udeg(P))72 H (1 o u2deg(P))71 ,
2|deg(P) 2tdeg(P)

where © = ¢~ and the product is over primes P of F,[T]. The analytic properties of G,k (u)
then follow from the analytic properties of Z,(u?), which is analytic everywhere except for
simple poles when u? = ¢ 2.
We write
Fox(u) = Guk(u)(1 —qu)(1 + qu)
= [T (@ +2uke®) (1 —udes®) TT (1 —uts®) (14 uts?)

2|deg(P) 2fdeg(P)
(20) _ H (1 . 3u2deg(P) + 2u3deg(P)) H (1 - u2deg(P)) :
2|deg(P) 2tdeg(P)

which is analytic for |u| < ¢~/2. We seek a formula for the coefficient of w92 in Gk (u),

since even characters have conductor of degree g+ 2. Then, using Perron’s formula (Lemma
2.1), and moving the integral from |u| = ¢~2 to |u| = ¢~(1/?*%) while picking the poles at
u = +q ', we have

_ L Farc(1) du
Nuclg) = 270 Jyymg—2 w93 (1 — qu)(1 4+ qu) u
_ (%1/(]) N (_1>g]:nK(2_]-/Q)> g2 + O (¢/2+9)9) |

16



Notice that Fok(1/q) = Fux(—1/q), so the main term is zero when g is odd. In this case,
we already knew that there are no primitive cubic characters with conductor of odd degree
as every prime which divides the conductor has even degree. For g even, this proves the
result. 0

It is more natural to describe these characters as characters over F2[T] restricting to
characters over F,[T] as in the work of Bary-Soroker and Meisner [BSM19] (generalizing the
work of Baier and Young [BY10] from number fields to function fields) by counting characters
of F2[T] whose restrictions to F,[T] are cubic characters over F,[T']. In what follows, for f
in the quadratic extension F,.[T] over F,[T], we will denote by f the Galois conjugate of f.

Notice that ¢ = 1 (mod 3), and we have then described the primitive cubic characters of
F2[T] in the paragraph before Lemma 2.10. Suppose that 7 is a prime in F [T lying over
a prime P € F,[T] such that P splits as 77. Notice that P splits in F [T if and only if the
degree of P is even. It is easy to see that the restriction of x, to F[T] is the character xp,
and the restriction of yz to F,[T] is the character Xp (possibly exchanging = and 7). Then
by running over all the characters xp where F' € F [T is square-free and not divisible by a
prime P of F,[T], we are counting exactly the characters over F[T] whose restrictions are
cubic characters over F,[T], and each character over F,[T] is counted exactly once. For more
details, we refer the reader to [BSM19].

We also remark that any cubic character over F [T is even when ¢ = 2 (mod 3). Indeed,
by the classification above, such a character comes from yp with F' € Fp[T], and for o €
F, C Fp, we have

xp(a) =Q7 <aQQ3_1 deg(F)) :

Since ¢ is odd and ¢ = 2 (mod 3), we have that (¢ — 1) | (¢* —1)/3.

By (8), it F € F,[T] is the conductor of a cubic primitive character x over FF,[T], it
follows that deg(F') = g + 2. By the classification above, it follows that F' = Py ... P; for
distinct primes of even degree, and the character y (mod F') is the restriction of a character
of conductor 7y ... 7w, over Fp[T], where 7; is one of the primes lying above P,. Then the
degree of the conductor of this character over F2[T] is equal to g/2 + 1.

We have then proved the following result.

Lemma 2.11. Suppose ¢ = 2 (mod 3). Then,

> L20= Y. Ly(1/2,xp).

X primitive cubic FeH 2 o041
genus(x)=g P|F=PgF,[T)

2.3. Generalized cubic Gauss sums and the Poisson summation formula. Let x;
be the cubic residue symbol defined before for f € F,[T]. This is a character of modulus f,
but not necessarily primitive. We define the generalized cubic Gauss sum by

uV
(21) Gq(Va f) = X (u)eq —- |
u(mzodf) ! (f)

with the exponential function defined in (14). We remark that if y has conductor f’ with

deg(f') < deg(f), then G(xy) # G4(1, f).
17



If (a, f) =1, we have
(22) Gy(aV, f) = X7(a)Go(V, f)-

The following lemma shows that the shifted Gauss sum is almost multiplicative as a
function of f, and we can determine it on powers of primes. We have the following.

Lemma 2.12. Suppose that ¢ = 1 (mod 6).
(i) If (f1, f2) = 1, then
Go(Vififs) = Xxp(f2)?Go(V, f1)Go(V. fo)
= GV fo, [1)Gy(V, fa).
(ii) If V.= Vi P* where Pt Vy, then

0 if i <a and i # 0(mod3),
(P if i <« and i = 0(mod3),

G,(V,Py={ —IPI" ifi=a+1 andi=0(mod3),
e(xpi)wlxpi)xpi (Vi )|P|q ifi=a+1 andi# 0(mod3),
0 ifi > a+2,

where ¢ is the Euler ¢-function for polynomials. We recall that e(x) = 1 when x is even.
For the case of xpi, this happens if 3 | deg(P?).

Proof. The proof of (i) is the same as in [Flo17c]. We write u (mod f1 f2) as u = uy f1 + ua fo
for uy (mod f2) and ug (mod f;). Then,

GoV. o) =xp(Mxn(F) Y 3 xalu)xp (e, (ufv ) <uf_v)

u1 (mod f)2 uz (mod f)1
=X1(2)Go(V, [1)Go(V, [2)

by cubic reciprocity (see Lemma 2.7). The second line of (i) follows from (22).
Now we focus on the proof of (ii).
Assume that i < «. Then

G(V,P)y= Y xpi(u)eg(uVPe).
u (mod P?)

The exponential above is equal to 1 since uVy P>~ € F,[T], and if i = 0(mod3), then
xpi(u) =1 when (u, P) = 1. The conclusion easily follows in this case. If i £ 0 (mod 3), the
conclusion also follows easily from orthogonality of characters.

Now assume that i = a + 1. Write u (mod P?) as u = PA + C, with A (mod P*"!) and
C'(mod P). Then

G = X5 w0 (G =P e Y (e (5).

A (mod Pi—1) C (mod P) C (mod P)

If i = 0 (mod 3), then xp:(V; ') =1 and

> w@e(p)= X oalh) -t

C (mod P)



and the conclusion follows. So assume that ¢ # 0 (mod 3). Then

v CN\ | =42 pemy gopir o XPI(S) 3| deg(P),
C(mzo;ip) xpi(C)eg (F) B { E(Xpi)\/azf(ef\)/lq,degw)ﬂ xpi(f) 31deg(P),

and using Lemma 2.2, we can rewrite this as

S (O, (9) _ { wxp)g ™ P2 3| deg(P),

P i ) gdes(P)/2 .
C (mod P) G(XP )w(XP )q 3 T deg(P)
Thus, we get

| wxp)xp (Vi Y|Pl 3 | deg(P),
G,(V,P’) =
e(xpi)w(xp)xp (Vi DIPly % 3t deg(P).

If i > a+ 2, then again the proof goes through exactly as in [Flo17c].

O

Now we state the Poisson summation formula for cubic characters although we will not use
it directly. Recall that for any non-principal character on F, 7(x) is the standard Gauss sum
defined over I, by equation (4). Also recall that for x odd, |7(x)| = /g, and 7(x) = €(X)/4-

For x even, €(y) = 1.

Proposition 2.13. Let f be a monic polynomial in F,x] with deg(f) = n, and let m be a

positive integer. If deg(f) = 0(mod 3), then

m

3 Xf<h>=|qf—| GO0.NH+-1) Y Gv.hH- Y G

hEMg,m a VEMy <n-m—2 VEMgn—m—1

If deg(f) # 0 (mod 3), then

Viias:

> xplh) = W6<Xf) Yo G

heMgm g VEMgn—m—1

We remark that the sums above are zero when taken over M, ; with 7 < 0.

Proof. As in [Flo17c|, we have

> o=t S e (<),

heMg,m |f|q deg(V)<n—-m—1

Using (22), we have

m q-1
q —
> X ={ G0N+ oG Y G
heEMgm a a=1 VEMg <n-m—2
q—1
+ Zx—f(a)efzmtrqup(a)/p Z Gy (V, f)} _
a=1 Vqu,n—m—l
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Now if deg(f) = 0 (mod 3) then x; is an even character, and

—_

=)

X— —q— 1 ZXf 727ritr]pq/]Fp(a)/p - 1

Il
—

a

If deg(f) # 0 (mod 3) then x is an odd character, and

qg—1 g—1
Zx_f(a) =0, Zx—f(a)ef%itmq/wp(a)/p _ T(Xf)-
a=l a=1

Also, if deg(f) # 0 (mod 3), then f is not a cube, and the character xy is non-trivial, which
1mphes that G,(0, f) = 0 by the orthogonality relations. O

3. AVERAGES OF CUBIC GAUSS SUMS

In this section we prove several results concerning averages of cubic Gauss sums which
will be needed later. Assume throughout that ¢ = 1 (mod6). For a,n € Z and n positive,
we denote by [a], the residue of @ modulo n such that 0 < [a], < n — 1.

We will prove the following.

Proposition 3.1. Let f = fif2f3 with fi and fo square-free and coprime. We have, for
e >0,

q 3d - % [d+deg(f1)]

S Gylf F) =01 G Tpl -+ desil) T (1+50)

2/3
FeMyq ( )|f1 Plf1f3 | |q

(Ff)=1
+0 |4 1qé+6d b f Yol ) du
2 .
If]8 21 Jyyjmg—r  udu

with 2/3 < o < 4/3 and where W, (f,u) is given by (23) and p(1,[d + deg(f1)]s) is given by
(28).

Moreover, we have

QLo

L]{ ‘qu(f,U)d_ £
270 Jjul=q-- ul

To prove Proposition 3.1 we first need to understand the generating series of the Gauss

sums. Let
= Y Gy(f, Fyuts®
FeM,
and
(23) Uo(fru) = Y Golf, Fut=®).
FeM,
(F,f):l

The function ¥, (f,u) was studied by Hoffstein [Hof92|, and we will cite here the relevant
results that we need, following the notation of Patterson [Pat07]. We postpone the proof of

Proposition 3.1 to the next sections.
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3.1. Analytic properties of the generating series. We first study the general Gauss
sums associated to the n'® residue symbols as done in [Hof92, Pat07], and we specialize to
n = 3 later. We always assume that ¢ = 1 (modn). Let n € (F,((1/7"))* and define

Y(fomu) =1 —u'g") Y Gy(f, Fyuts™,
FeMq
Fr~n
where the equivalence relation is given by
F e Fine (F,((1/T))°)"

There is difference between our definition of ¥ (f, n,u) above, and the definition of ¢ (r,n, u)
in [Pat07, p. 245]: we are summing over monic polynomials in F,[T"], and not all polynomials
in IF,[T], as in [Hof92]. This explains the extra factors of the type (¢ —1)/n which appear in
[Pat07]. Because our polynomials are monic, it is enough to consider the equivalence classes
that separate degrees, namely n = 7}, where 7, is the uniformizer of the prime at infinity,
i.e. T71in the completion F,((1/T)).

A little bit of basic algebra in F,((1/7")) shows that for any i € Z,

O(f,mlu) = (1 —u"q")"! Z Gy (f, Futee),
FeM,
deg(F)=i (modn)

Then ¢ (f, 7, u) depends only on the value of # modulo n.

We remark that since we have fixed the map between the n'" roots of unity in [, and
n € C* at the beginning of this paper, we do not make this dependence explicit in our
notation, as it is done in [Pat07].

Then we can write the generating series W, (f,u) as

—_

n—

(24) Uo(fu) = (1—u"q") ) o(f 7 u).

i

Il
o

The main result of Hoffstein is a functional equation for o (f, 7, u) [Hof92, Proposition 2.1],
which we write below using the notation of Patterson.

Proposition 3.2. [Hof92, Proposition 2.1] For 0 <i <n and f € M,, we have

. . . . 1 — q_l
qzs,l?b( aﬂ-;ola q—s) _ qn(s—l)Eq(Q—s)zw( ’7_[.0—017 qs—2)f
(1 _ qns n 1)
n(2—s)(B— n—de i— —s e —i i—1—de s5— 1 - qn—ns
+W;aiq (2—s)(B 2)(]2 deg(f)+2 2(](2 )[1+deg(f) ]n¢(f’ 7Tool d g(f)’ q Q)W’

where B = [(1+ deg(f) —i)/n], E =1 — [(deg(f) + 1 — 2i)/n], and Wy; = 7(x3""'X7) with
X3 given by equation (3).

Remark 3.3. Note that we can rewrite the functional equation in the following form (for
n=3)
(25)

(1= g (f 7t ) = |flgu®*s) [m(uw ( e qi) T ag(u)y (f, i -des() i)} 7

*u
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where
ay (u) = —(q%u)(qu) BT (1 — g7 ag(u) = =Wyi(qu) *(1 = ¢*u?),
with Wy ; as above.

By setting u = ¢~® and letting © — oo in the functional equation, Hoffstein showed that

i u'P(f,1,u™)
2 )= DD
(26) R T
where P(f, i, x) is a polynomial of degree at most [(1+deg(f) —¢)/n] in 2. We remark that
while ¢ (f, 7, u) depends only on the value of ¢ modulo n, this is not the case for P(f, i, u™).

Remark 3.4. Note that, from (26), the left-hand side of equation (25) above has no pole
at u® = 1/q¢?, so neither does the right-hand side.
We let
C(f) = D Golf.F).

FeMgy;
By setting z = u™ = ¢~™°, we can write for 0 < <n —1,

1—q¢"a

7>0

If 7 > [(1+ deg(f) —i)/n] with 0 < i <n — 1, then we have the recurrence relation
C(f,i+n(j+1)) = ¢ C(f,i +nj).
Using that, we can rewrite, for any B > [(1 + deg(f) —i)/n],

P(f,i,z) = 1-g™ ( > C(fi+ng)a? +> C(fi+nB)(g") ™ Bx)

L—qa \, o=, 2
1_qn+1
= LY it el + O+ nB)a® Y (¢
q"x 02n <
C(f,i+nB) g
0 ) 1—q D
0<j<B
Let
(28) p(f.0) = tim (=g )q v (fimdq™) = P(fiia ™).
s—1+L

Using the formula above for P(f,i,x), it follows that

N C(f,7)
p(f,l)— (1—(] )qnil(l z)

where ' =i (modn), and i' > deg(f).
To prove Proposition 3.1 we need to obtain an explicit formula for the residue in equation

(28) which we do in the next subsection.
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3.2. Explicit formula for the residue p(f,7). From now on, we will specialize to n = 3.
For 7 prime, following Patterson’s notation, let

¢W( ,ﬂ;oi,u) _ (1 _ u3q3)—1 Z (f F) deg(F)
FeM,
deg(F)=i (mod 3)
(Fym)=1
We will need the following result.

Lemma 3.5. Let m be a prime such that w1 f. We have the following relations

(200 Walfimd a ") = (e a70) = Golf Il Sy (fr, T g7,
(30)  Ue(fmml,a™) = O(fmml,q7) = Go(f, m)lmly  wa(f, m P2, g7,
(31)  wa(fr*mda™) = (A=l ) m a 7).

Proof. These equations appear in page 249 of [Pat07] as part of the “Hecke theory” equations.
For completeness we give here the details of the proof of (30). The proofs of the other two
identities proceed in a similar fashion. Consider

bilfradg ) =(1-gyt Y Glnh

T,
FeM, q
deg(F)=i (mod 3)
(Fym)=1
- - —s)\— G (fﬂ-a 7TF1)
:1/)(]077'7770027(] s) . (1 o q3(1 s)) 1 q—'
Z 7|5 Fals

FreMg
deg(F1)=i—deg(m) (mod 3)

Note that in the second sum above, we need 7||F;, otherwise the Gauss sum will vanish
by Lemma 2.12. We write F; = wF} With m t Fy. Part (i) of Lemma 2.12 implies that
Gy(fm,mFy) = Gy(fr°, F2)Gy(fm,7°) = Gy(f, F2)Gy(fm, 7). Moreover, part (ii) of Lemma
2.12 implies that G, (fm, 72) = |r|,G4(f, 7), where we have used that y,(—1) = 1 since it is
a cubic character. Putting all of this together yields (30). O

Lemma 3.6. Let 7 be a prime such that w1t f. We have the following relation
(32) D(fr0 P m a7 = |mlg o (frd md a7 = (U= |l ) e (f 7 a0,
Proof. We have

(33)
| Y |
G,(fr? F G,(fr F G (fnl, mF
3 o(f : ) _ S o(f : )+ngges 3 o(f S )
- 1E1; - 11 ~ - 13K
deg(F)=i (mod 3) deg(F)=i (mod 3) =1 deg(F)=i (mod 3)
(Fym)=1 (Fym)=1
+1
+ || 6D 3 G (f?T’;;: F)



Now when (F,7) = 1, by (22), it follows that G,(fn*, F) = G,(fr:, F). We also have
using Lemma 2.12 and (22),

Go(f! . 7% F) =G, (fr?*, F)Gy(fn!,7%) = Gy(fn', F)p(7*),
Go(fr!, W F) =Gy (fr¥ F)Gy(fr!,w9h) = Go(frVlst F)G,(falls, wllstt) | ~Uls
:Gq(fﬂ[jb’ 7T[J']3+1F) |ﬂ|g_[j]3.

Using the relations above in (33) and rearranging, we get that

(fﬂ— Gt](fﬁj7F)
Z F Z ‘ ’345 Z ‘F's

deg(F)=i (mod 3) | |q

deg(F)=i (mod 3) q
(Fym)=1
(s G, (frlls | F)
+|7T’z(1] [i]3)(1=s) Z il AR R Yt )
deg(F)=i (mod 3) q
| F

We now do the same with j 4+ 3 and take the difference. Then we have

GQ<f7Tj+37F)_ 3—3s Gq(f’/rjaF) — (1— 2—3s Gq(f’/Tj,F)
D S IR P PR

deg(F)=i (mod 3) q deg(F)=i (mod 3) q deg(F)=i (mod 3) q
(Fym)=1

Dividing by (1 — ¢*(1~*)), we obtain the result. O

We will also use the following periodicity result, which is stated in [Pat07] and in [KP84,
p. 135].

Lemma 3.7 (The Periodicity Theorem). Let 7 be a prime such that w1t f. Then
p(F7I,0) = plf. i),
We also need the following.
Lemma 3.8. Let m be a prime such that wt f. Then

. . J4)
li 1 — 4—3s N J ot S\ p(fﬂ- Ul
Sim4/3q A =g ) (7w q7) T+t

Proof. We multiply relation (32) by ¢**(1 — ¢*~3*)/(1 — ¢*'~)) and take the limit as s — 1.
This yields

p(FR2,0) = [l p(f ) = (1= [, ?) Tim (1 = g* (0, 7 7).
Using Lemma 3.7 we obtain the result. 0

We now explicitly compute the residue p(f,17).

Lemma 3.9. Let f = fif3f3 with f1, f2 square-free and coprime. For n = 3, we have that
p(fi) =0 if fo £ 1 and
4i__ 4

(34) p(f.i) = Go(1, )l ful g 57248l (1, [ — 2deg(f)]5)
when fo = 1. Here

p(l, 0) =1, P(L 1) j4T(X3)Q> p(1>2) = 0.



Proof. We start by computing p(1, [i]3). Recall by definition that

Gq(lvF) = Z XF(U)eq (%)

v (mod F)
v
- Y v Y e (5)
deg(v)<deg(F)—2 deg(v)=deg(F)—1
= > xr@xr@+ Y > xe(@xp(v)em O
ceFy UEMq,gdeg(F)—z ceFy ’Uqu,deg(F)—l
=> xrl0) Y, xr)+7lxr) Y, xr(v).
cely VEMy, <deg(F)—2 VEM deg(F)-1

First suppose that [i]3 = 0, i.e., deg(F') = 0 (mod 3). Then, x is even and

Yoo oxe+ Y m(v)z{&ﬁig

VEMy, <deg(F)—2 VEM g deg(F)—1

Then we write

Go(1,F) = (F)3a(F) + [ 70r) = Sowele) | 30 xelo),

celg VEMg deg(F)-1

where the term dg(F) = 11is 1 if F = and 0 otherwise.
Since [i]s = 0, 7(xr) = =1 and ) __p. xr(c) = ¢ — 1, and we have

YL u) =(1—ug®)™ D Gy(L, Fute!

FeM,
3|deg(F)
=(1 —u?¢®) ™! Z p(F)udes) — q(1 — ud¢®) Z Z xr(v)udeed),
FeMq FeMg veMg geg(F)—1
deg(F)=08 3|deg(F)

Notice that

(35) Yoo xew= Y Y ) =d"#{ve My v =0},

FEquk ’UGMq,kfl ’UG./\/lqykfl Fqu,k

and this gives zero when k # 1 (mod 3).
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This gives
V(1,7 u) =(1—u¢®) ™" Y g(FP)ud s

FG./qu

1 — 3 q Z Z ‘F‘Q 3deg(F)
k=0 FEM, 4

—(1 - u*¢%) Zqzkuak Z

FeMgk
1—Uq Zq4k 3k 1)7

where we have used Proposition 2.7 in [Ros02]. Finally, we get

1—q*1

(1= (1 —udgh)’

and taking the residue,
p(1,0) = 1.
When [i]3 # 0, ZCQF; Xr(c) =0 and we obtain,
(lrdu) =(1=u?g®)™ YT Gy(1, Fute®

FeM,
deg(F)=i (mod 3)

_ T(Xé) deg(F)
"1 — W3 Z Z Xr(v)u '

FeMq UEMq,deg(F)fl
deg(F)=i (mod 3)

When [i]3 = 2, from equation (35), we immediately get that the sum above is zero and
p(1,2) = 0.
On the other hand, if [i]s = 1 we have, by cubic reciprocity,

¢(177T0_01’ = 32 A Z Z Xv

vEMy 35 FGMQ 1435

Z 3j+1 Z 33+1
|w3|q

wEMyg,

X3 q—l Z 1y T(xs)(g = Du

—wg)(1 = uqt)’



where we have used again Proposition 2.7 in [Ros02]. Taking the residue, we get
T(xs)(¢ — 1) _

1,1) = lim .
p( ) sﬁl4/3 (1 _ U3q3) T(X?))q
To obtain equation (34), we start by multiplying equation (30) by ¢**(1—¢*~3*) and taking

the limit as s — 4/3. By Lemma 3.8 for 7 1 f we get that

) 1 O(f - 3 eg(m f> 2d
p(fm,i) ll—m] = Gq(f,m)|mly 3 5 dea (m) 2 1+|ﬁ|§%(”))7

which simplifies to

(36) plfm.i) = Gy(Fom) [l 2q5 % f.i — 2 deg(r)).

4735)

Multiplying equation (31) by ¢**(1 — ¢ , taking the limit as s — 4/3, and applying

Lemma 3.8 we get that

1—|m|g?
2 -\ 2 . q
U7 = plg7) [ |
which implies that
(37) p(fr*,i) =

Notice that by the Periodicity Theorem (Lemma 3.7), p(f,7) depends on the cubic-free
part of f. From this and equation (37) we can suppose that f = f; with f; square-free.
Write f = - -7, By (36), we have

p(f,1) =Go(f /7, T ) mrlq ® 5 ¢ des(me) p(f [k, i — 2deg(ms))
ZGq(f/WkaWk)|7Tk|;§q3 slim2des(mila (/. [i — 2 deg(my)]3)

k k
1o ([ itet tiomsmoks (1103 i)
3

Jj=1 j=1

In the equation above, note that

HGq (Hm,m) = G, (1, f),

which follows by induction on the number of prime divisors of f and part (i) of Lemma 2.12.
This finishes the proof of Lemma 3.9. 0

3.3. Upper bounds for V,(f,u) and ¥, (f u). We will first prove the following result
which provides an upper bound for U, (f,u).

Lemma 3.10. For 1/2 <o <3/2 and |u® — q~*| > 6 where § > 0, we have, for e > 0,

)—i—s

U, (fou) <50 | F1EETT

* as usual, and o = Re(s).

where u = q~
27



Proof. The bound for ¥, (f,q~*) for 1/2 < Re(s) < 3/2 and |u® — ¢~*| > § follows from the
functional equation and the Phragmén—Lindeldf principle. By (24), it suffices to show that
the bound holds for ¢(f, 7%, q~*) for i = 0, 1,2, which follows from the functional equation

and the Phragmén—Lindelof principle.
First, it follows from (26) and (27) that for B = [(1 + deg(f) — i)/3] we have

—1 uip(fui)ug)
w(fvﬂooalo: 1_q4u3
1 C(f.i+ 3B)ui+3B
C(f,i+37)u™ + :
1— i’ Z 43 (1 — 033
1 gu 052 (1= q*u?)(1 = ¢*u?)

We now bound |C(f, k)|. Write F' = F1F, with (F, f) =1 and Fy | f*° (by this we mean
that the primes of F; divide f.) We use repeatedly that |G, (f, F1F2)| = |G4(f, F1)||G4(f, F2)|.
By Lemma 2.12 we have for F, | f> that |G,(f, F»)| = 0 unless Fy | f%. We write

> e fF\—ZZ J(LF) ) (G, Bl

FGMq k Jj=0 F1eMgy,; FQEqukfj
(F1,1)=1 By f?

SIS
0 Fre

FQEMq,k,j
(F1, f) 1 Fy|f?

< Z ¢ q" | fI:
=0
<@ | fl.
Thus

C(f. k)| < ¢ fl5-
We get that for o < 3/2

3842

o a ) € D M < A
k=0

with an absolute constant in that region. In particular,

(38) O(fimd,q°) < Ifl;

when Re(s) = 3/2.
From the functional equation of Remark 3.3, we have for 1/2 < Re(s) < 3/2 and |u® —
g4 > 0 that

(39)  U(fimd,q7%) = au(s) If1y 0 (fomd 0 72) + aos) | fly o0 (fomig ), go72),
where a;(s) and as(s) are absolutely bounded above and below in the region considered
(independently of f).

Using the bound (38) and the functional equation gives that

V(fmd,a7%) < | £l
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when Re(s) = 1/2.

We consider the function ®(f, 77, s) = (1 — ¢*3)(1 — ¢ D(f, 7, ¢ ) (f, 7, ¢*2).
Then ®(f, 7", s) is holomorphic in the region 1/2 < Re(s) < 3/2, and ®(f, 721, s) < |f|o/*™
for Re(s) = 3/2 and Re(s) = 1/2.

Using the Phragmén-Lindel6f principle, it follows that for 1/2 < Re(s) < 3/2, we have
that

O(fmdss) = (1= g1 = ¢ )(f nd, a7 (f md 7)< |1y

Using the functional equation (39), this gives
(40)

—3s s— -7 S— —i _5— i—1—de s— o—g+e
(1=¢"*)(1=""?) [ar(s)p(f, 7, 0 2) + aa(s)0(f md, @ 2o (fomis 80 ¢ 2)] <[ flg 2
in the region 1/2 < Re(s) < 3/2 and |u® — ¢~*| > 6.

If deg(f) + 1 = 2i (mod 3), then the formula above implies that
(41) N R e R A

Now assume that deg(f) + 1 # 2i (mod3). Similarly we consider the function ®(s) =
(1—g* 3 (1= @ ) (f, m, q*)( i desf), q*~%). Then, using the same arguments as
above we get that

(1= ¢"*) (1= ¢*7) [a () (f, 7 @20 s 70 ¢°7%) - ao(s)(fomig 080, ¢ 72)?)
(42 <l
Combining the two equations (40) and (42), it would follow that
(1= ") (1 = ¢ 72) [e(fomsd a7) + o(fo w0, 7))

(43) x aa($)0(f, 7 ¢°7) + an()(f 0D )] < [ fl7
Switching ¢ with deg(f) + 1 — ¢ (since deg(f) + 1 # 2i(mod3)), we get that there exist
absolutely bounded constants b;(s) and by(s) such that

U(f, it q70) = bu(s) | flg 0 (f w7 o) |l (F T a7

If (a1, a9) and (by, by) are not linearly independent, then from the equation above and (39)
it follows that

G(f, w0 = Ao (fmd a7,
for some A(s). Combining this with equation (43), we get that
-1 s5— 3(o—3+e
of ) < U,

and the conclusion again follows by replacing 2 — s by s.
If (a1,a2) and (b, by) are linearly independent, then

(=" )1 = ¢* ) [e(f,mid = )+ (f.nl 7))
X [ () (f, i 5D, ¢7) 4 by () fomd, a2 < Il

From the equation above and (43), by the linear independence condition, we get that

-0 Ss— i—1—de s— —i Ss— ‘7_%"’5
["Qb( 77Too7q 2)+w<f7ﬂ-ool dg(f)7q 2)] w(faﬂ'owq 2)<< |f‘q
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and

, o1
|:¢< ’7TOOZ7qS 2) +77Z)(f, 71_(z);l—deg;(f)7qs—2>] ¢( ,7TZ 1—deg(f ),qS_Q) < |f|q 3+e
By summing the two equations above, we recover equation (41) without any restrictions on
i,
s—2 z 1 deg(f) ,s—2 %(J_%—'—E)
D(f 7, a7 (S, L) < fld :
Summing over ¢ = 0, 1,2 and replacing 2 — s by s finishes the proof.

O

In order to obtain an upper bound for W,(f,u) (recall its definition (23)) we first need to
relate it to W, (f,«) which we do in the next lemma.

Lemma 3.11. Let f = f1f2f3 with f1, f2 square-free and co-prime, and let f; be the product
of the primes diwviding f3 but not dividing f1fs. Then,

q/q(f’ U) = H (1 ( 3 2 deg(P ZM flfga deg(a) H w3 2 deg P))

P|f1f2 alf3
(44) x Y u()(uPq)* T IG (1, O)xe(afif3 /0o (afif5 /¢, U)-
Laf

If1/2 <0 <3/2 and |u® — ¢4, |u® — q72| > 6, then, fore >0,

b, (f,u) <50 |f12270F

Proof. We first show that the last assertion follows from the expression (44) for W, (f, u).
Suppose that 1/2 < o < 3/2 and |u® — ¢ 7|, |u® — ¢7?| > 6. Then, for Re(s) = o

2(5-0)te

(f u) < Z\aylﬂ UZMS/Q 20 aflfg
alf3 lafr q
56
< Ylalet qu }ff2, —o)+e
alf3 lafr
< Yl a0
alfs

< ma (Il ol LA B

We now prove (44
1 = (fife,F)
GQ<f1f22f3> ) XF

T, (f

We first remark that by definition of fi, fa, fi, we have that (f, F') =

)-

= 1 and (fga ) = 1 with (f1f27f3) =1. If (f1f2f3, ) = 1 then
(f3)Gy(f1f3, F) = Go(fLf3, F), and
o(f,

u) = > Gy(fifs FyutE?)

(F\f1f2f3)=1
= D u(@u@ N Gy(fifs, aF)ut®.
alf (F,fi1f2)=1
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If (a, F') # 1, then there is a prime P such that P? | aF and Pt f, 3, and then G,(f1 f,aF) =
0. We can then suppose that (a,F) = 1, and then by Lemma 2.12 (i), we have that

Gq(flfQQaGF) =G (flfzz,a)G (afifi, F), and
(45) ZH Jfifs, a)utE® Z Golafifs, Fute”
alf3 (Fafi1f2)=

Notice that af; fs is square-free and that a, f; and f, are two-by-two co-prime.
Let P be a prime dividing fo, and we write fo = Pf}, and F = P'F’ with (F'f}, P) = 1.
Then, by Lemma 2.12,

Gq(aflffPQ, F’) 1 =0,
Golafif3P?, P'F') = Gy(afif5 P, P)Gy(afi [y PP F') = § —|PI2Gy(afof£ P2 F) =3,
0 otherwise.

We remark that we have used that G,(af, f22P°, F') = G (af, f3*P?, F') for the second line,
since (P, F’) = 1. This gives

Z Golafrf3, Fyu's™

(FvaflfQ)

— Z Glafyf2, Fyude®) — Z G (afi fRP?, F)utes®)
(Fafifs)=1 (Fafif})=1

P|F

= Z (af1f27 F)u deslF) 4 Z (aflffPQ Nu deg(F’)+3deg(P)q2deg(P)
(Fafifs)=1 (F",af1f2)=

= Y Golahif3, F)u® ™ + (u 3q2>deg<P> S Gylafi f3 F ),
(Fvaflfé)zl (F’,af1f2):1

or equivalently
(1= (@)™ @) D" Gulafifi, F)u™® = 3" Gylafif3, Ppu*®.
(Fafif2)=1 (Fafifh)=1

By induction on the prime divisors of f,, we get

ST Gulafif3 Pyt = T (1 - (uP?)e=) ™! > Gilahff Fut,

(Fafif2)=1 Plf2 (Fafi)=
and plugging in (45), we have
(46)
Uy(fou) = [T (1= (2™ ™) 73" wl@)Gy(fif, )™ 3= Gylafif, Fut®),

P|f2 alfy (Fafi)=1

We now do the same thing for 3=, .y Golafif3, F Judes)  dealing with the primes
dividing f; := af; one by one.
Let fi = Pf], and we write

Z o(f1 fz» F)u deg(F) — Z Gq(fl*fg’ F)udeg(F) _ Z Gq(f{pf;PiF/)udeg(F’)Jrideg(P)'
(Ff7)=1 (F,f1)=1 (F.f)=1
F=P'F'i>1
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Using Lemma 2.12, we compute that

Go([iPf3, P'F) = Gy(fiPf3, P)Go(fiP™ f3, F')

Go(fiPf2, F") i=0,
= QG (fIP? 2, F)e(xp)w(xp)xp(flf2) Pl i=2,
0 otherwise,

where we recall that €(xp2) = 1 when 3 | deg(P).
Then,

> Gylfi 13, Fyutestd)

(Ff)=1

= Z o fr 3, F)utes) — Z Go(f1 13, F'yutest)T2des(P) g3deaP)2e(y o Yoy (y p2 ) x p (f1 f3)
(F.f))=1 (F',f)=1
(47)

* £2
— Z L f2 Fu des(F) _ (42¢3/2) 48P ey p2 ) (x p2 ) x P (f1 £7) Z Gy (%,F’) udesE)

(Ff)=1 (F,f1)=1

Now we focus on

Z G f1f2, ydes(¥ Z G f1f2’ ydes(F) _ Z G f1f27 ydes(®

(F.f|P (F.f})=1 (F.f))=
P\F

As before, write F' = P'F’. By Lemma 2.12 as always,

Go(fifs, P'F) = Go(fifs. P)Go(fLiP", F)

Gf](f{fng/) ’L = O,
1/2 .
= S GL(fIfEP, F)e(xp)w(xp)xp (FFDIPL i=1,

0 i>2,

and we get
ST Gy f3 FyuteE®

(FfiP)=1
= Y GoUI FYut0 = 3 0 Gy(fif5, FP)uts e
(F.f1)=1 (F',Pf})=1
= 3 Gy Pt — (g e pw(xp)xm () > Gylfif3P, F s
(F.f)=1 (F',Pf))=1
= Y Gy 13 F)ut — (ug" ) e Pe(xp)w(xp)xp (f163) Y, Galfif3, F)u's™.
(=1 (D=1
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Now we incorporate the equation above into equation (47).

Z Gyl f7 £3, Fyu's

(F.fH)=

= Y Gy 3, Pyt — (@Pq? ) P e (xpr)w(xp2)xp(F113) D Go(f1 13, Fyute™
(B f1)=1 (F',f1)=1
= 3 G P — (@ o (xp e (1) Y GalFifE, Futess)
(=1 (F.r)=1

+ (W) N T G S Fute”

(Ff7)=1

Rearranging, we write

(1= (W)= N~ Gy(fi f3, Futst

(Ffi)=1

= Y Gulfi f3 )t — (PR E P (1 [ e(xpe)wlxpe) Y. Golfif3, Fyudes®
(F,f)=1 (F.f)=1

or

D Glfi B Fyt = (1= @@y S Golfifh, PO

(Ffi)=1 (Ff)=

— (1= (@) P2 B P\ p (1 3)e(xp2)w(xp2) Z Go(f1 13, Fyutes”
Ff1

By applying this idea to each of the primes in the factorization of the square-free polyno-
mial f;', we obtain

Z G fl f27 deg _ H (1 <u3q2>deg(P)> 1

(F.f7)= PIfT
2 3/2 deg(¥) ¢ fl*f22
X Z (¢ H Xp\p ) |Xe / H e(xp2)w(xp2)
o fr P|¢ P|¢

v, (ff€f§7u> |
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Putting everything together in (46), we get

qjl](fau):H(l_( degP) _12# f1f27 deg Z G af1f27 )deg )

P|fa alfs (Fafi)=
_ H 3 2 deg(P Z ,u f1f27 ) deg(a) H (1 (u3q2)deg(P))
P|f2 alfg Plafi
af, f? af, f?
X Z (e u’ 3/2 deg(é HXP ( ) Xe < f2f2> HE(XP2>W<XP2) v, ( f2f2 ,U)
laf: Ple Ple
= I (01— @’g?)s” Zu o(fif3, @) u® @ T[(1 = (wPg?)*e=)) !
P|f1f2 alf3 Pla
af, f? af f?
X Z p(l u’ 3/2 deg(£ HXP ( ) X¢ ( fzfQ) HE(XP2)W(XP2) v, ( fzfg ,u) .
taf Ple Pt
Now note that
_ (Y Gy(1,0)
H (XP (F) e(xp2)w(xp2 )) = m—l/g,
Ple q
which finishes the proof of the lemma. O

3.4. Proof of Proposition 3.1. We are now ready to prove Proposition 3.1.

Proof. By applying Perron’s formula (Lemma 2.1) for a small circle C' around the origin and
using expression (44), we have

fiu) d o
Z Gy(f, F) 27r7,j€ Eﬂ Zu 27”]{0 H ubq?)ies?)) " ZH (13, a)

FeMg,a Plf1fa alf3

(F.f)=1
<TI0 =) S ol G o (42

Pla Laf1

\Ijq <af1f22 7 U> udeg(a)+2 deg(¥)

f du

ud u

(48) X

Now we write

v, (af2f227u> :(1—u3q3) {w (afzfz7 go’ >+w(af1f27 0—017 )+¢(af1f2,7r;2,u)}.

Each ¢ has three poles, at ¢~*/3¢5 k = 0,1,2, where & = €2™/3. We compute the residues
of the poles in the integral above. We recall that formula (26) gives

w P(f,j,u?)
(1 —q*u?)

IP(f.iu3) . . . . .
where % is a power series whose nonzero coefficients correspond to monomials with

deg = j (mod 3), and then the only ¢ which gives a non-zero integral in equation (48) comes
34
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from Y(afif3/¢, 77, u) with j such that j + deg(a) + 2deg(¢) = d(mod3). Note that if
J +deg(a) +2deg(f) > d+ 1, the integral in (48) is zero because the integrand has no poles
inside C'. Hence we assume that j + deg(a) + 2deg(¢) < d.

In (48) we shift the contour of integration to |u| = ¢~7, where 2/3 < ¢ < 4/3 and
we encounter the poles when u® = ¢~*. With j as before, we compute the residue of the

integrand at u® = ¢~* and this gives

2
Res,—gg/ Y (af1f2 J u) ydes(@)+2 deg(t)—d—1 (q g5 F)yd-desla)—2deell)=j (—aflfQ ,j) :

¢ T l
We get that
3(d=J) 2 -t
qs IU’(a’>G (f1f27a) 1
2 Gl ="cgy 2 T g
FeMgq a alf3 lalg Plaf
(F.f)=1 deg(a)<d—j
0O)G,(1,¢ afi f2 afif? . 1 U, (f,u) du
oy OGO, (sE) (0B ), 1 f Bifud
/|3 Yy’ lu|=q—° u u
laf 141

2deg(¢)<d—j—deg(a)

Using Lemma 3.9 and since af; /¢ is square-free and co-prime to f, it follows that

i~ 2/3 ) ]
p(afzf2 ) — ( afl) = -], p< {Hdeg( é‘)L)

Note that j + deg (%) = d + deg(f1) (mod 3), and

Gy aGlL O () 6, (1 %01) = 61, G i) = ll Gl 1),

where we used Lemma 2.12. Combining the three equations above it follows that

N Gof. F) =6t

A(d— [d+deg(f1)]3)m

p(Ld+deg(f)ly) S A

2
v O a7 1l
(F.f)=1 deg(a)<d—j
1\ 14 13 4
(49) < ]1 (1——2) S MO o,
Al TP = 1],

2deg()<d—j—deg(a)

where we have used Lemma 3.11 to bound the integral.
Now using Perron’s formula (Lemma 2.1) for the sum over ¢ we have

pt) 1 Moo (1= 4
U Plaf1 [Plq x
(50) >, LT 7{ [EEEe]
Laf1 1 (1 N CL’)ZE i
2 deg(£)<d—j—deg(a)

where we are integrating along a small circle around the origin. Let a(a) = 0 if deg(a) =

d—j (mod2) and a(a) = 1 otherwise. Introducing the sum over a and using Perron’s formula,
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it follows that

-1 deg(P)

p(a) desta)taa ( 1 ) < xdes )

) sl ] [ R -
1Pl |1Plq

a"f3* |a|q P|a
deg(a)<d—j
1 -1
14 22 p(a)  desca) ( 1 > ( xdeg(P)>
= —txr 2 1— — 1—
> 2w, U 7,
deg(a)<d—j
1 -1
s 1 — X2 ILL(CL) deg(a) ]_ IdEg(P)
—1)d-7 T2 (—1)des(a) 1— 1 —
N el DR v A VGl P 7,
alf3 Pla q
deg(a)<d—j
(x%w)deg(P) (17 xd‘e]f‘(qP) )
1 ey (1 .
_ldaz 1 ]{ #ie(1-7g) dw
2 27 (1 —w)wi=J w

1 e odeg(P)

I | by (1_ st )

R Plfs P (e

ajl—w2 1 A dw
2 2mi (1 —w)wti w

1 e Ldeg(P)
i (1 e )
PIf3 p
1 w

1 (-7 :
(51) —% (1 — w2)wd_j (1 -+ ZL‘2U}) U,

+(=1)

where again we are integrating along a small circle around the origin and we did the change
of variables w — —w to the second integral to reach the last line. Let R(z,w) denote the
Euler product above. Using equations (50) and (51) it follows that

(a) 1\ (4)
Z Ilra|q H (1—@) Z Mg

‘€|afl | |q

alf3 Plafi
deg(a)<d—j 2 deg(£) <d—j—deg(a)

1 1\ deg(P) R da d
A ) () e
(27i) P P2 Pl ) (1—2)(1 —w?)(zzw)d T ow
We first shift the contour in the integral over z to |x| = ¢~ and we encounter a pole at

2 = 1. We then shift the contour over w to |w| = ¢z~ and encounter a pole at w = 1. Then

SR 5 I () o

alf3 Plafy tafs [l P|fif3
deg(a)<d—j 2 deg(¢)<d—j—deg(a)

Using the formula above in (49) and the fact that |G,(1, fi)| = |f1]¢ finishes the proof of the
first statement of Proposition 3.1.

U
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4. THE NON-KUMMER SETTING
We now assume that ¢ is odd with ¢ = 2 (mod 3). We will prove Theorem 1.1.

4.1. Setup and sieving. Using Proposition 2.4 and Lemma 2.11, we have to compute

Z Lq<1/27 X) = Sl,principal + Sl,duah

X primitive cubic

genus(x)=g
where
(52)
1 1 1
S1,principal = Z e Z xr(f)+ 1 V2 Z =2 Z xr(f)
feEMy <a FEHqQ,g/Q_'_l feEMg at1 FE’Hq2,g/2+1
P|F=PgF,[T] P|F=PgF,[T]
and
1 —
S1,dual = Z ~des(f)/2 Z w(xr)XF(f)
feMg<g—a-1 g Fet 2 o4
P|F=PgF,[T)
(53) 1 1
+ - Va Z qdegw Z w(xr)XF(f)-
feMqgg—a FEH 2 /211
P|F=PgF,[T]

We will choose A = 0(mod 3), and we recall that 0 < A < g — 1. For the principal term,
we will compute the contribution from cube polynomials f and bound the contribution from
non-cubes. We write

Sl,principal = SL@ + Sl,#@’
where S| g corresponds to the sum with f a cube in equation (52) and S| 6 corresponds
to the sum with f not a cube, namely,

1
(54) Sg= >, e > L

feMg<a FEH 2 47511
/=6 (F,f)=1
P|F=PgF,[T)
and
R 1 1 1
s (e Z e (D2 Z xr(f) + 1— /g Z glee (D2 Z xr(f)-
fGMq,SA F'G;"lqz’%+1 feMy at1 F'G;"lqz’%le
[#8 P|F=PgF,[T) P|F=PgF,[T)

Since A = 0 (mod 3), note that the second term in (52) does not contribute to the expression
(54) for Sl -

The main results used to prove Theorem 1.1 are summarized in the following lemmas
whose proofs we postpone to the next sections.

Lemma 4.1. The main term Sl,@ s given by the following asymptotic formula

_¢(3/2) L1\ ¢78¢,(1/2) 11
8= 6 A (o) + 7 A () + Ol

3



with Ayk(z,u) given by equation (59). In particular,

11 1 1 2
Ank (—273): 11 (1—2—> 11 (1— R )
) pdn N R sy U (R DR a4 12

deg(R) odd deg(R) even
and
11 1 3
(I () 1 (o)
deg(R) odd deg(R) even

In combination with the dual term S; gy this gives the following result.

Lemma 4.2. We have

¢ (3/2 1 AL 59, 39 (9 o
SL@‘FSl,dual:%AnK 7 +O<q9 20 4 gt 4 gu 0 )A),

where 7/6 < o < 4/3.
We also have the following upper bound for 5, L

Lemma 4.3. We have that
S g < gt
1,4 :

4.2. The main term. Here we will prove Lemma 4.1. In equation (54), write f = k3.
Recall that A = 0 (mod 3). Then S, 5 can be rewritten as

1
S9= 2. Fwmwp 2. L

kqu,Sé FeHp2 /511
(Fk)=1

P|F=P¢F4[T]

We first look at the generating series of the sum over F'. We use the fact that

(55) > wD)=

DEF,[T]
D|F

1 if F has no prime divisor in F,[T7,
0 otherwise,

where we have taken u over F,[T]. Then

(56) Z pdes(F) — Z dee(F) Z (D) = Z “(D)xdeg(D) Z pdes(F)

FeH 2 FeH 2 DeFg4[T] DeFq4[T] FeH o
(Fk)=1 (Fik)=1 D|F (D,k)=1 (F,Dk)=1
P|F=PgF,[T]

We evaluate the sum over F' in the equation above and we have that

Z xdeg(F) _ H (1 + mdeg(P)) _ Zq2 (17)

deg(P)y’
FeH o PEF [T Zp(2?) H (14 ol ))
(FkD)=1 PIDk PEF 5[T]
P|Dk
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so from equation (56) and the above it follows that

deg(D
Z pdes(F) _ Zp(z) Z p(D)zeD)

Fers Z2(22) H (1+ xdeg(P)) DeFLT] H (1+ xdeg(P)>
(Fk)=1 PEF [T (D:k)=1 PeF 5 [T]
P|F=P¢Fq[T] Plk P|D

Now we write down an Euler product for the sum over D and we have that

(57)
D deg(D) deg(R) deg(R)
> PR ] () T ().
DEF, [T H 1+ ) Rréw,m REF,[T] (I+z27)
(Dk)=1 PE€F »[T] (R,k)=1 (R.k)=1
P|ID deg(R) odd deg(R) even

where the product over R is over monic, irreducible polynomials. Let Ag(x) denote the first
Euler factor above and Bg(z) the second. Then we rewrite the sum over D as

I Ax@ [ Bk

REIE‘q 1] REIFq 1]
(57) _ deg(R) odd deg(R) even
H Ag(z) H Br(z)
REF,[T] REF,[T]
R|k Rlk
deg(R) odd deg(R) even

and putting everything together, it follows that

) [ Arx) ][ Bal)

REF,[T] REF,[T]
deg(R) odd deg(R) even
(58) > kel = ,
FeH Zp(a?) H (1 + ate) H Ag(x) H Bpg(x)
(Fk)=1 PEF 2T REeF,[T] ReF, [T
P|F=P¢Fq[T] Plk Rlk R|k
deg(R) odd deg(R) even

We now introduce the sum over k£ and we have

kez/\;q [T a+a2%®) ] Az ][] Brl)

udes(k)

PEF 2[T] ReF, (T ReF,[T]
Pl Rk Rk
deg(R) odd deg(R) even
udeg(R) deg(R)
= 1l [1 T 0 29 ) A () (1 = udegm))] I, o)
REF[T] R REF[T] (I+z )2Br(x)(1 — udesH))
deg(R) odd deg(R) even
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where R denotes a monic irreducible polynomial in F,[7]. Combining the equation above
and (58) we get that the generating series for the double sum over F' and k is equal to

Zy2 (&3) 1
deg(k) deg(F) _ Za"\"/)
Z u Z t _Zqz (22) H (1 4 2des(R)) (1 — ydes(R))

keM, FeH 2 REF,[T)

(F,k)=1 deg(R) odd
P|F=P¢F4(T]
1 deg(R) udes(®)
X H T dea(®) L (1 +2x 2 + T(R)
rer,m) (L1+a 2 )2 1 —ufee
deg(R) even
Z 2(1’)
_Z () =22\ g
Q(u) Zq2 ([EQ)A K(xa u)7
where
1 1 deg(R)
59) Ax@uw)= [] —mx I —=a— <1 42 51— udeg(m)) .
’ eg(R) deg(R)
REF[T] Lt rew,r) (L+z 2 )2
deg(R) odd deg(R) even

Using Perron’s formula (Lemma 2.1) twice in (54) and the expression of the generating series
above, we get that

f ]g A (2, 1) (1 = *2?) dr du
50" @i P 0 g - )1 — et @

where we are integrating along circles of radii |u| < # and |x| < q%. First note that

Auk (2, 1) is analytic for |z| < 1/q, |zu| < 1/q, |zu?| < 1/¢% We initially pick |u| = 1/¢2*
and |z| = 1/¢**¢. We shift the contour over x to |z| = 1/¢'™ and we encounter a pole at
x = 1/¢*. Note that the new double integral will be bounded by O(¢?*%9). Then

S\e= s }'{ Audz B O(ghhen),
OB 2 S (1 qu)(1 - ¢ Pu) ()

Now we shift the contour of integration to |u| = ¢~¢ and we encounter two simple poles: one

at u=1/q2 and one at u = 1/q. We evaluate the residues and then

_G0B/2) (i 1) ¢*PG,(1/2) (1 1) s~4+e
5.8~ Go(3) Auc\ @ gr) Co(3) Ay ) 1O '

which finishes the proof of Lemma 4.1.

4.3. The contribution from non-cubes. Recall that 5, 6 is the term with f not a cube
in 51 principal Of (52). Since A = 0 (mod 3), the term we want to bound is equal to

1 1 1
So= 2 mmmr 2 wWDti—z Y mmmn 2. well)

feEMg <a FquQ’%+1 feEMyg at1 FquQ’%+1
[#8 P|F=PgF,[T) P|F=PgF, [T



Let Si; be the first term above and Sis the second. Note that it is enough to bound S,
since bounding S, will follow in a similar way. We use equation (55) again for the sum over
F and we have

(60) Su= Y X MDY )

feEMy<a DEM!LS%-H Fquz,%-q—l—deg(D)
79 (D,f)=1 (F,D)=1
Note that we used the fact that xp(f) = 1since D, f € F,[T]. Now we look at the generating
series for the sum over F. We have the following.

> weBu = [T (e n(pure) - 220 T L

2 _ 2deg(P) *
FeH 2 PEF 2[T] LqQ (U aXf) PEF 5[T] 1 XP(f)u €g

(F,D)=1 PtDf Pif
P|D

Using Perron’s formula (Lemma 2.1) and the generating series above, we have

Z % (u, Xx7y) H 1 — xp(f)us?) du
xr( 2 x7)udti-desd) I — 2deg(P) ,,
Fera g dcg(D) = omi L (u Juz g PF ol 1 —xp(f)u U
(FD) IISI%

where we are integrating along a circle of radius |u| = E around the origin. Now we use the
Lindelof bound for the L—function in the numerator and a lower bound for the L—function
in the denominator. We have, by Lemmas 2.5 and 2.6,

Loz (u, xp)| < gD, | Lo (w?,X7)] > g7 480,

Then
Z xr(f) < q%*deg(D)q48 deg(f)+2e deg(D)

FeH 2 11— deg(D)
(FD)

Trivially bounding the sums over D and f in (60) gives a total upper bound of
S K ¢q %ﬁga
and similarly for Si. This finishes the proof of Lemma 4.3.
4.4. The dual term. Here we will evaluate S gua and prove Lemma 4.2. Recall the ex-
pression (53) for Sy gua. We further write Sy qual = S11.dual + S12.dual-
For I as in the expression (53), we have that xr is an even primitive character over

F,[T] of modulus F F (recall that F is the Galois conjugate of F). The modulus has degree
2deg(F) = g + 2 and by Corollary 2.3 the sign of the functional equation is

_9_
wixr)=q 2 1G(XF)>
where the Gauss sum 1is

G(xr) = Z xr(a) e, <%) ,

a€F,[T)/(FF)
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By the Chinese Remainder Theorem, since F" and F are co-prime, if 3 runs over the classes
in F2[T]/(F) then SF + BF runs over the classes in Fy[T]/(FF). Then

G(xr) = Z xr(BF) €q <M>

BeF 2 IT)/(F) FF

= Z Xr(B) e (g)
BEF o T1/(F)
=Gp(1, F),

where we have used that xz(F') = 1 due to cubic reciprocity.
Using the fact that G2(1, F)Xr(f) = G (f, F) when (f, F') = 1 and X7 (f) = 0 otherwise,
we get

1
—9__
(61) Stawt =¢ Y =Y Y. GelfF),
feMg <g-a FEHqQ,%+1
(F,f)=1
P|F=P¢F,[T)
and
g ! 1
(62) S12,dual = 1- /g Z qdes(1/2 Z G (f, F).
feMyg—a FG?'lqz’%H
(F.f)=1
P|F=PgF,[T)

We first prove the following important feature of G2(1, f).
Lemma 4.4. Let f € F,[T] be square-free. Then
Gpe(l,f) = qdeg(f).
Proof. As usual, we denote by & the Galois conjugate of . We have

GeLN= > il (—7&>: S @ (‘70‘)

a€F 2[T]/(f) a€F 2 [T1/(f)

—a a
= Y xsla)eg (7> =xs(=1) > xs(@)ep (?)
a€F 2 [T)/(f) a€F 2 [T)/(f)
=Gp2(1, f).
In the first line we used the fact that e2(—a/f) = ep2(—a/ f) which follows because tr(o) =

-1

tr(&). In the second line we used that y;(—1) = Q71((=1)"5 de)) = 1.
Notice that for f,g € F,[T], (f,9) =1, xs(g9) = 1 because
X7(9) = x7(9) = xs(9),

which implies that xf(g) € R, hence it has to be equal to 1.
Then by Lemma 2.12, we have that

qu(l, fg) = qu(l, f)Gq2<1> g)'
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Now if P € F,[T], then
Gy (1, P)* = e(xp)w(xp)’| Pl = e(xp)w(xe)| Pl | Ply” = G (1, P)g ™)

and from this we conclude that

Gp(1, P) = gt
By multiplicativity, since f is square-free,
Gee(1, f) = g*=).

Now we go back to (61) and (62). Using the sieve (55), we get that

Z GQQ(faF) = Z M(D) Z GQQ(faDF)

FEH 2 g DEF[T FeM e
(F,}jffl deg(D)qu[J/]%l q?ﬁ,/;):l e
P|F=P¢F,[T] (D.f)=1
= > wD)Gp(f.D) > X#(D)Ge(f, F)
DeF,[T] FeM 2 /941 —deg(D)
deg(D)<g/2+1 (F,Df)=1
(D7f):1
(63) = Y wD)Ge(f, D) > Ggp(fD,F),
DeF,[T) FEMy2 g/511-deg(D)
deg(D)<g/2+1 (F,Df)=1
(D,f)ZI

where we have used that G2(f, DF) = 0 if (D, F) # 1, since (f, DF) = 1 due to the last
case of Lemma 2.12 (ii) for a = 0.

Using Proposition 3.1 (recall that we are working in F2[T] and that f = fif3f3 with fi,
fa square-free and coprime) we get that

2948 ddeg(D)—4 deg(f1)—5[g/2+1+deg(f1)]3

q:3 ~ 1 £
Z GQQ(fD7F> :6f2=1 <2(2) Gq2<17f1D)
Fqu2,g/2+lfdeg(D> !
(F.fD)=1
1 —1
xp(1,[g/2+1+deg(f))s) [[ (1+
|P|q2
PEIFqQ [T]
P|fD
§+sgfdeg(D)(1+25)7m) L \I~Jq2 (fD7 u) d_u

with dp,—y = 1 if fo =1 and 67,1 = 0 otherwise. Combining equations (61), (63), (64) and
Lemma 4.4, we write

(65) S11,dual = M1 + E,
where M; corresponds to the main term in (64) and E; corresponds to the two error terms
in (64).

We will obtain an asymptotic formula for M; and keep Fj in its integral form, postponing
bounding it for the moment. We will then do the same for the term Si2 a1, Obtaining a

main term and an integral form error term. We will combine the two expressions to obtain
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a main term of size qg_g for S1 qual, together with the integral form errors. We will then
note that the term of size qg’% cancels out the corresponding term from Theorem 4.1. Only
at this point will we bound the integrals. Note that the order in which we perform these
calculations matters: bounding the error terms wouldn’t allow us to detect the cancellation
with the term of size qg*% in Theorem 4.1, as we do not a priori know the sizes of the various
terms involved.

We have
59/6-+5/3 5 —2[g/2+1+deg(f1)]3
_q fo=1q 3 —4deg(D) 2
M=""5 > s /2T s ()3 >, uD)y |G2(1, D)
1 fEMg<g—a—1 DEF, [T
deg(D)<g/2+1
(D,f)=1
1 —1
<ol o2+ 1+ deg(rls) TT (14 )
PEF 2 [T) a
P|fD
59/6+5/3 5 —5lg/2+1+deg(f1)]s
_q f2=1q 3
e X L lo/2 + 1+ des()l)
e feEMg<g-n1
1\ 1 \!
1 D —2deg(D) 1 )
< T () X w0 I
PEF [T DEF,[T] PEF 2[T]
P|f deg(D)<g/2+1 P|D
(D,f):l

We first treat the sum over D. We consider the generating series of the sum over D. We
have that

-1
1(D) ( 1 ) deg(D
1+ wie®)
Z q2 deg(D) H ’P’qQ

DEF[T] PEF 5[T]
(D.f)=1 P|D
deg(R) deg(R)
- H [1 o 2deg(R§U 1 ] H [1 o 2deg(R’;U 1 217
ReF[T] a (1+ q“eg(R)) REF,[T] q (1+ qdeg<R>)
deg(R) odd deg(R) even
Rif Rtf

where we have counted the primes in Fp2[T] by counting the primes of F,[T] lying under
them. Recall from Section 2.2 that P € F [T splits in F [T if and only if deg(P) is even.

Let Aqualr(w) denote the first factor above and Bgya r(w) the second factor, for any R
(not restricted to those R 1 f). Define

Tk (w) = H Adual,r(w) H Baual,r(w),
ReF[T] REF,[T]
deg(R) odd deg(R) even

which is absolutely convergent for |w| < ¢.
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Then by Perron’s formula (Lemma 2.1) we have

1\ 1 Tk (w)
—2deg(D) _ = n
2 e 1 (”\P\qz) ~3m f Wt (- w)

DEeF,[T] PEF o
deg(D)<g/2+1 P|D

(D,f)=1
dw
Adua ! Baua i
< ] Awwarr(w) [ ] dual, R (W) ”

REF,[T) REF,[T]
deg(R) odd deg(R) even
R|f R|f

Now we introduce the sum over f. Using the expression for the sum over D above, we get
that

59/6+5/3 5 2+ 1+ deg(f 1 -1
A = 3 r=1P(L, g/ eg(f1)]s) HT] (1+q (R))

(2(2) feMomeas q3[g/2+1+deg(f1)]sqdeg(f)/2+deg(f1)/3 h 2deg
deg(R) odd
R[f
(66)
1 7?1 Tk (w 1 _y dw
< 11 (145a§65) 2mi ZEEﬁT—_———‘ Il Awawr@)™ ] Bawr(w) e
REF,[T) REF,[T) REF[T]
deg(R) even deg(R) odd deg(R) even
R|f R|f R|f
Let
5f2:1 -1 1 deg( )
(1) =) qdea()/2+deg(f1)/3 I Catw)* 1] Datw)
f REeF[T] ReF, [T
deg(R) odd deg(R) even
R|f R|f
where

1 des(R) I
OR(’U.)) = 1 _I_ quGg(R) - q2deg(R)’ DR(w) = (1 + qdeg(R)> o q2deg(R) ’

Then we can write down an Euler product for H,k(u, w) and we have that

1 O Bit+1) deg(R) O 37 des(R)
—1
Huxc(u, w) = H 1+ Cr(w) <qdeg R)[3 L o(3i+1) deg(R)/2 + Z ¢ des(R)/2
ReF, [T j=1
deg(R) odd
1 O Bit+1) deg(R) O 37 des(R)
-1
X H 1+ DR(w) <qdeg( R)/3 Z q(3]+1) deg(R)/2 + Z q3j deg(R)/2
ReF [T j=1
deg(R) even
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After simplifying, we have

” ( ) H o ( ) . deg(R) u3deg(R)
K (U, W) = 1+ Cr(w)~ 5/6 43 deg(R) RE—y
REF,[T] RI°(1 - |R‘§/2 ) |RJY — usdes)
deg(R) odd e
deg(R) ud deg(R)
X H 1+ Dp(w)™ 5/6 EY T RN—Y
Reg 1 RO =) |RIG™ — uddest®)
deg(R) even e
U
(67) =Z P Bk (u, w),

with Byk(u,w) analytic in a wider region (for example, B,k (u,w) is absolutely convergent
for [u| < ¢& and |uw| < ¢ ).

We will use Perron’s formula (Lemma 2.1) for the sum over f in equation (66) which
involves p(1,[g/2 + 1 + deg(f1)]s. Note that by Lemma 3.9, this depends on ¢/2 + 1 +
deg(f1) (mod 3), and we treat each case in turn. Recall that deg f = deg fi mod 3, since
fa=1

If /24 1+ deg(f1) = 0(mod 3), then deg(f1) = g — 1 (mod 3). In this case by Lemma
3.9, p(1,0) = 1. Applying Perron’s formula (Lemma 2.1) for the sum over f with deg(f) =
g — 1 (mod 3) (recall that A = 0(mod3)), we get that this contribution is equal to

59/6+5/3 Hok (u, w) Tk (W) dw du
w2 (1 — w2411 —ud) w u’

where we are integrating along small circles around the origin.

If g/2 + 1+ deg(f1) = 1(mod3), then deg(f;) = g (mod3), and by Lemma 3.9 again we
have p(1,1) = 7(x3)¢®. Note that 7(x3) = ge(xs) and e(x3) = (—1)*5 = 1. Since ¢ is odd,
we have p(1,1) = ¢3. We use Perron’s formula for the sum over f with deg(f) = g (mod 3),

and since g — A — 1 = g — 1 (mod 3), we have that deg(f) < g — A — 3. Then we get that
the contribution from deg(f) = g (mod 3) in (66) is

59/6+5/3 %% nK U w)jnK( )q1/3 dw du

w2 (1 —w)u=A3(1—ud) w u’

where we are again integrating along small circles around the origin.
It is clear from Lemma 3.9 that there is no contribution when g/2+1+deg(f1) = 2 (mod 3).
Combining the two equations above, we get that
1 q'/? dw du

5g/6+5/3j{j{anK U, W jnK( )

w9211 — w) {ugAl(l —u?) + w= A3 (1 —wd) | w u’

where we integrate along small circles around the origin.
We first shift the contour over w to |w| = ¢*~¢ (since Jox(w) is absolutely convergent for
lw| < ¢) and encounter the pole at w = 1. Note that H,k(u, 1) has a pole at u = ¢~/. Let

(68) Kuk(u) = Buk (u, 1) Tak (1).
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Then

59/6+5/3 d
M, _4 ?{ - nk () ——(1+ q1/3u2) au
(@2 J (1 —ug" )( — u)u u
N q5g/6+5/3f f* HnK(u,w)jnK<w) 1 N q1/3 dw du
C2(2) Jiueg-ro-e Jjpjegr-= - w91 —w) ungfl(l—u:") w A1 —wud) | w w
59/6+5/3
_4a j{ Kok (u) (1 +q1/3u2) +O( R g)'
G0 f T ag )i — @
Note that K,k (u) is absolutely convergent for |u| < ¢s. We shift the contour of integration
to |u| = ¢~¢, we compute the residue at u = ¢~/% and we get that
~1/6
My =249~ 5+2 K (a”1"*) +0 (q%—%+ag>
Co? 2(2)( Va— 1)
(P9/6+5/3 % Kok (u) 1+ ey 2y U du
luf=g—= (1 — ug'/6)(1 — ud)ug—A-1 u
_A ’CnK(q_l/6> 594
(69) —0q9 5 +2 +O (qs 59).
C2(2) (Vg —1)
Now we consider the error term F; from equation (65). The first term coming from the
first error in equation (64) will be bounded by
g 1 . . dex(f1) A
S DU B DT Ll t e T LA
feMg <g—a—1 deg(D)<g/2+1
Then we get that
| 1 U2 (fD,u) du
—g9/2-1_~ — S C o
Ex —1 211 fj |=g-20 Z qdeg(f)/2 Z M(D)qu(fa D) w9/2+1—deg(D) 4,
u= feMy,<g-a—1 DeF,[T]
deg(D)<g/2+1
(D.f)=1
+ 0¢85+,
where recall that 2/3 < o < 4/3.
Combining the expressions for M; and F; it follows that
_A ICnK(q_l/G) 39
C2(2) (v —1)
1 1 Uo(fD,u) du
-g9/2-1_—~_ - S e e/,
ta 21 ]{ [— Z qdeg(f)/2 Z “<D)Gq2(f’ D)ug/2+l—deg(D) u
w=e feMg <g-a—1 DeF[T]
deg(D)<g/2+1
(D,f)=1
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We treat Si2.quar similarly and since deg(f) = g — A we have [g/2 + 1+ deg(f1)]s = 1. Then
as before p(1,1) = 7(x3) = ¢*, and we get that

g—% ICnK(q_l/G) %9 £g
coou—u o)

_9_1 W
q 2 1 1 Ve (fD,u) du
NP 7{”2 >, gwmmr 2. MDCe(D) e

SlQ,dual =q

T feEMyg_a DEF,[T)
degég)fﬁ)g_/lzﬂ
Combining the two equations above, we get that
(70)
A
@' 5Kk (q7)¢(1/2) 50
ual — — O ( +Eg>
S1,dual ) +0O (¢
1 1 U2 (fD,u) du
-g/2-1_~ q 3 el
T4 211 % -2 Z qdes(f)/2 Z ”(D)G‘f(f’ D) w9/2+1—deg(D) 4,
=072 fe My cqoas DEF,[T)
deg(D)<g/2+1
(D,f)=1
—9_1 ~
q 2 1 j{ 1 U2 (fD,u) du
b L Y s X DG D)0
— eg(f)/2 q /2+1—deg(D)
V=4 2mi J=g2o ;G 4 g(f)/ Dl us e(D) o
deg((D)S)g/2+1
D,f)=1
We have
1 1
awn= T [=mers] T |- g
REF,[T) [RIZ+1 ReF,[T] (IRlg+1)
deg(R) odd deg(R) even

and using the definition (67) for Bk (u, w)

1 1 1
BnK(q_l/ﬁa 1) - H 1 + 1 + 1/2 3/2 |:1 o _:|
pergny | P =) RPOREY - ) | L 1l
deg(R) odd B

< I |+ ! ! + ! [1—L]
Lt e VIR =) REP(RE? — —25) |2,

REF,[T) [Rlq e
deg(R) even
1 1
= 1+ 5 [1 - —] :
RGIFI:I[T} (1 + m)(uﬂq - 1)] |R‘q
deg(R) even

By (68),

o 11 (o) T ()

REF,[T)
deg(R) odd deg(R) even
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and we have that K.k (¢7/%) = Aux(1/¢% 1/q). Since (,(3) = ¢;2(2), by using equation (70)
and Lemma 4.1 we note that the corresponding terms of size qg_% in the expressions for
51 & and S gua1 cancel out. Hence

q72(,(3/2) 11 _a 50
S Sldual =———1"2 A, - — O(g9—2+e9 &+eg
g 1 1 U, (fD,u) du
ppl — - Fe\J LU du
K= N 3 e Y. uD)Gelf, D)
77 feMg<g-a DEF,[T]
deg(D)<g/2+1
(D,f):l
—9_1 ~
q 2 1 f{ 1 Ve (fD,u) du
+ i Yo mpE Q. MD)Ga(f D) —.
— eg(f)/2 q /2+1—deg(D)
1 \/627'(7, [u|=g—20 feMoya qece Der ] u9 g u
deg(D)<g/2+1
(D,f)=1

Now we consider the integral terms above. Note that it is enough to bound the first one.
Using Lemma 3.11, the term in the second line above is bounded by

-4 1 deg(D) og—30 deg(D)+3 deg(D)-+deg(f) (2 —0)
<q ? Z ez (D2 Z q q ’ 2
feMg,<g—a—1 deg(D)<g/2+1

<<gq%gf(270)A
as long as 0 > 7/6. Then
9+2¢.(3/2 1 1 A 5 3g o
(71) S e+ Stdua = %:(,))/)Am (q—2, W) +0 (qgff%g fgete T U)A+€g) ,
q
which finishes the proof of Lemma 4.2.

Remark 4.5. Note that the error term of size q%g can be computed explicitly from equation
(69) by evaluating the residue when u® = 1. The other error terms will eventually dominate

the term of size q%g, so we do not carry out the computation. However, we believe this term
will persist in the asymptotic formula.

4.5. The proof of Theorem 1.1. Using Lemmas 4.2 and 4.3, we get that

2
E Lq (1’ XF) = qg+ Cq<3_/2)./4n}( (—1 7—1 >—|—O (quE*Aﬂ:‘g + q%ng&g + q%g*@*U)AJrEg) ,
FeM 2 Gal(3) ¢

a2, §+1

P|F=-P¢F4[T)

where 7/6 < o < 4/3. Picking 0 = 7/6 and A = 3[g/4] finishes the proof of Theorem 1.1.

5. THE KUMMER SETTING

We now assume that ¢ is odd with ¢ = 1 (mod 3). We will prove Theorem 1.2.
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5.1. Setup and sieving. By Lemma 2.9, we want to compute

(72) Z Z L < XF1F2> = SQ,principal + SQ,dual;

d1+deo=g+1 ety
di1+2do=1 (mod 3) er’Hq’d2
(F1,F2)=1

where we have from Proposition 2.4 and Lemma 2.7 (cubic reciprocity)

(73) S2,principal = Z Z Z S Fl Xf F2>7

£l
di+de=g+1  Fi€Hga, fEMy<a
d142d2=1 (mod 3) FaeHq,dy
(F1,F)=1
(74) 2,dual = wXP XF) Iy R
di+da=g+1  F1€Hqa, feEMy<g—a1 |f|
d14+2d2=1 (mod 3) Fa€Hqa,
(F1,F2)=1

We will choose A = 0(mod3). For the principal term, we will compute the contribution
from cube polynomials f and bound the contribution from non-cubes. We write

SQ,principal = 327@ + 525,5@7

where
- Xrd)Xp£2) Fl Xf Fz)
(75) S, = > > 2 BTV
d1+da=g+1 F1E7'[q7d1 feEMg <a |f‘
di+2d2=1(mod3) FheH,q, [=0
(Fy,F2)=1
and
B Xs (F)X5 (F2)
(76) S0 40 = > >, D T om
di1+da=g+1 FlGHq dq fEMq <A |f|
d1+2d2=1 (mod 3) FheH,, dy f£9
(Fy,Fy)=1

The main results used to prove Theorem 1.2 are summarized in the following lemmas whose
proofs we postpone to the next sections.

Lemma 5.1. The main term 527@ s giwen by the following asymptotic formula

S, = Cxa9¢°"" + Cx 2" + Di1gg®*' ™% + Diag®*' "5 + 0 (q%+€g + qg_%%g) :

for some explicit constants Ck 1,Ck 2, Dk 1, Dk 2 (see formula (88)).

We also have the following upper bounds for S, 6 and S gual-

Lemma 5.2. We have that
S, g < gt
20,40 S 4 :
Lemma 5.3. The dual term is bounded by
Sy dual < q(1+8)9 e q(fg gte)o—(13-5)4 =+ q%g*A(Q*UHEg

for7/6 <o < 4/3.
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We finish the section by sieving out the values of F} and F5.

Lemma 5.4. For f a monic polynomial in F [T the following holds.

S oxEIGE) = Y w(D)u(Ds)xs (D Dy)
FieHq.a, D1eMg, <ay /2
Faety,a, DaeMg<ay )2
(F1,F3)=1
X Z w(H)x (D1, H)*(Do, H))

deg(H)<min{dy—deg(D1),d2—deg(D2)}
deg(H)—deg(D1,H)<d1—2deg(D1)
deg(H)—deg(D2,H)<dz—2deg(D2)
(H,f)=1

x > X (L)XF(La).

L1eMg 4, 2 deg(D1)—deg(H)+deg(Dy,H)
L2€Mg, dy—2 deg(Dy)—deg(H)+deg(Dg, H)

Proof. We have that

o xi(FOXF(F) = > u(D)u(Da)xs(DIDy) > X (FD)X7 (F)

Fietg,q, Di1eMy <ay )2 F{eMy a4, —2 deg(Dy)
F2€H 4y DaeMy,<dy/2 Fy€My dy—2 deg(Dy)
(F1,F2)=1

(DlF{,DgFé):l

= Y MDD (DID) 2.

DieMy <d, /2
DreMy <dy /2

x > X ¢ (FV)X7 (F).

F{€Mg ) ~2 deg(Dy)
F3€Mg,dy—2 deg(Dy)
H|(D1F{,D2Fy)

We remark that H | (D1 F], DoF}) is equivalent to H; = @% | F| and H,
This gives

Y oxiE)X(F) = > u(D)u(Da)x(DiDy)
FieHq,d, D1eMy <ay /2
Fa€Hy ay DaeMg <ay/2
(F1,F»)=1

x > p(H ) x g (HLH;) >

deg(H)<min{d1—deg(D1),d2—deg(D2)} FY' €My q, —2 deg(Dy)—deg(H)
deg(H1)<d1—2deg(D1)

FjleMg a,— _
deg(Hz)<da—2 deg(D2) 27 adpm2des(Dy) ~des (M)

We rewrite Lemma 5.4 in the following form.
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p(H)

HEMg, <min{d; —deg(D1),dg—deg(D2)}

H
~ (D2,H) | £5
Xy (FY x5 (Fy).



Corollary 5.5. For f a monic polynomial in F[T] the following holds.

Yo XAFOXG(E) = > p(H) > p(B1)xr(B)

Flqu’dl HEMq,Smin{dl,dQ} RlGM%Sdl—deg(H)
Fa€Hq,4, (H.f)=1 Ri|H
(F1,F2)=1
2 2
X E M(R2)Xf(32) E (Dl)Xf<D1)
RaeMg <dy—deg(H) DreM _d) —deg(H)—deg(R))
Ro|H (D1 H)=
X E w(D2)x(D2) E Xy (L1)X5(La).
DQEMq<d27deg(H)7deg(R2) L1€EM g d, —2deg(Dy)—deg(H)—deg(Ry)
a7—27
(Do, H)=1 L2EMg,dy—2 deg(Dy) —deg(H)—deg(Ry)
Proof. This follows by taking R; = (D;, H) in Lemma 5.4. O

5.2. The main term. Here we will obtain an asymptotic formula for the main term (75)
by proving Lemma 5.1. Recall that

(F1)x7(F:
52,@: Z Z Z XA TR 2)'

|£1a”
di+da=g+1 Fietga, fEMg<a
d1+2d2=1 (mod 3) F2€Hq,d2 f=0

(F1,F2)=1

Let 29+ 1 = a(mod 3) and g = b(mod 3) with a,b € {0,1,2}. Notice that then 1 + 2a =
b (mod 3). Recall that A = 0(mod3). Since dy +dy = g+ 1 and d; + 2dy = 1 (mod 3), it
follows that d; = a (mod 3). In the equation above, write f = k*. Then the main term S, 69
can be rewritten as 7

1
(77) S2,@ - Z Z Z |/{2|3/2

di+do=g+1 Fi1€Hqa, k:e/vl %

di=a (mod 3) FLeH
(R
We consider the generating series
deg(k)
(78) Celwyu)= Y S et deg<F2>”—3/2.
F1 FQEH(I k‘EMq |k|q
(F1,F)=1 (k,Fy Fy)=1
Note that
~1
deg(k) udes(P) des(P)
u u
(79) Z L1372 - H (1 P3/2> =24 <W> H (1 P3/2>'
keMy | |q PtF1 F> | | P|F1 F> | |
(k,Fy Fo)=1

Let Cpk(u) denote the Euler factor above. Now we introduce the sum over Fy and we
have that

(80) Z ydeg(F2) H CP,K(“) _ H (1 + ydeg(P)OP,K(U)) H (1 + ydeg(P)CP’K(u))fl .

FaeHy P|Fy P P|Fy
(Fp,F1)=1
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Let Bpk(y,u) be the P-factor when P | Fy. Finally, introducing the sum over F; and
combining equations (79) and (80), we have that

(81) Z Ideg ) H CPK BPK(y» ) H (1 + C(]deg(P)CRK(U)Bp,K(y,U)) .

FieMt, P|Fy P

Combining equations (78), (79), (80) and (81) and simplifying, we get that

u deg(P) , . deg(P) utest)
Crc(r,y,u) =2, | =75 | [T 1+ @%e? gty (1 - ——p
q P 1P|

U
(52) -2, () 202,00 Do),
where
(83) DK .CL’ R H 2deg(P y2deg(P) (xy)deg( )+ (LU y)deg( )+ (y2x)deg(P)
P
(uw)deg(P) (uy)deg(P) (x2u>deg(P) <y2u)deg(P) 2(xyu>deg(P)
— —~ —- -
3/2 3/2 3/2 3/2 3/2
Pl P Pl |PIY Pl
(x2yu)deg(P) (nyu)deg(P)
Pl PRz )

Note that Dk(z,y,u) has an analytic continuation when |z| < 1,|y| < 1,|z%y| < %, ly2x| <
é,|xu| < @2 lyul < ¢ |2%u| < /g, [y*u| < /g, |ryu| < \/g. Using equation (82) and
Perron’s formula (Lemma 2.1) three times in equation (77), we get that

S 7{%?{ Dx (z,y, u) du dy dx
260~ — - — Af3gdoedi 4 4
d1+d =g+1 2mi)? (1 —qx)(1 —qy)(1 —uw)urBydzh u y x
d1=a (mod 3)
where we initially integrate along circles around the origin of radii |u| = i x| =yl = 1 L.

We first shift the contour over u to |u| = ¢°/2, and encounter two poles one at u =1 and
another at u = ,/q. We compute the residues of the poles and then

]{ a1 (1 _DK@’%Z))UA/?) d;u =G,(3/2)Dk(,y,1) + 47 ¢,(1/2)Dk(y, V)

vt
_}_% DK(.CE,y,U) du
u=grr2 (1= =) (1 —wut/? u
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Plugging this into the expression for S,  and bounding the new triple integral by ¢“ % teg
give

(84) S, = =C,(3/2) j{ j{ dy dz
S d1+d2 g+1 2mi) 2= 1 lyl= e (1—q2)(1 —qy)yPzah y =z
di1=a (mod 3)
~6 1 Dx(z,y,/q) dy d:p
(85) a2 Y _j{ j{
‘1 d1+d€:g+1) (2mi)? lzl= v Jlyl=11 1 (1= qz)(1 = gy)y®ah y =
di1=a (mod 3

+O(go ™5 +e),

We first focus on the first term (84). Note that Dk(x,y, 1) has an analytic continuation for
o] < Lyl < 1, [a%y| < o, [y?z] < ;.

We remark that in (84) we can shift the contours of integration to the smaller circles
lz| = ¢73 and |y| = ¢~ without changing the value of the integral as we are not crossing

any pole.
We write d; = 3k + a and compute the sum over dy. Note that k < [(g+1—a)/3] = [¢/3].
Then

(84) = ¢,(3/2) —— 7{ j{ Dic(,9.1) {ym_b o 1 dy dz.
! 27” al=q—3 Jyi=q—> (1 = q2)(1 — qy)(y® — 2°) [agtet  yoti-a] y o

We write the integral above as a difference of two integrals. Note that the second double
integral vanishes, because the integrand for the integral over x has no poles inside the circle
|| =q7°

Hence

(84) =¢,(3/2) —— ]{ 7{ Dy (z,y, Dy*+~* dy dz
' (270)% Jiaj=g=s Jiyj=g—2 (1 —aqx)(1 —qy)(y® — 2®)z97e=0 y

Note that for the integral over y, the only poles of the integrand inside the circle |y| = ¢ 2
are at y*> = 2%, so when y = &} for i € {0, 1,2} and & = €2™/3. Hence

1 Dx(z,y, Dyt dy 1 [Dg(z, 1) N Di(x, £z, 1)E3T07°
270 Jyy=g2 29T (1 = qy) (v — 2%) y 3ot 1—qzx 1 —qg&sx
D (z, &, 1)E3 Jere?)
1- Q§3
To compute the integral over x, we shift the the contour of integration to |z| = ¢~'/3%¢,

I corresponding to each of the three functions above.
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Notice that the first integral has a double pole at s = 1/q. This gives

1 Dk (z,2,1)  Dk(w, &z, 1)E3T0
(84) =G,(3/2)5 27i j{vzq_s 3(1 — qr)zott [ l—qzx ' 1= adsw

_Fz>K<x,5§x,1>§§@*ab)] dx

1 —q&z x

G(3/2) d
= 3 (g+2) g+1D (q qal) _qu_DK(xax71)|x:1/q

1 & 14+2a

+qg+1DK(a7 ;71> +qg+1D (q ') )53

1 =& 1-&

1 & qye2ta & 1 q)e2a

+q9+1DK(q’ q’l) +qg+1DK(q’q’1) 3 +O(q§+6g),
1-¢& 1 =&

where we have used the fact that 1 + 2a = b (mod 3).
Since Dk(x,y,1) = Dk(y, z, 1), we further simplify (84) to

g+1 1d

(84) Cq(3/2) (g+2)DK(%7%a1)_5%DK($ 2, 1)]a=1/q
2
DK(}] £q3’1) 2a+2 DK(%,%,U g+1 "
- - 2 +0(q3™)
1-&3 1—&35

ZCKJQC]%L1 + CK,qu+1 + O(q%+6g)a

where
(86)
11
K(_a ) )
CKJ _€Q(3/2) q3 1 )
(87)
PPN L1 N W PP Rtk ) L AL
K,2 =Gq — — Y&, L) |e=1/q — - 5
3 3q dx 3(1—&3) 3(1—-&3)

and where we used the fact that 2g + 1 = a (mod 3). We remark that the constants above
are real, which reflects the fact that the sum is a real number.
We similarly compute the term (85) and we get that

_A 1 &3 2a+2
Co(1/2)q7 5 11 1d Dk(y: %2, v/a)Ss
= 2)Dk (=, = ———D —1/q —
(85) =S (g4 9D 8, V) = LD g — —
D & 1 a+l
_ K(ql’tI’\/E) 3 —I—O(q%_%ﬁg)
— &3
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Putting everything together, we get that

1 &3 g+1
= q9+1 11 1d DK(57;71) 3
527@ —Cq(3/2) 3 (g + 2>DK(57 E? 1) - Q@IDK('I‘7Q:> 1)|$:1/q - 1 53
Di(%,1,1)¢3+? C,(1/2)qot1% 1d
q9°'4q q
- —& + 3 (94 2)Dk(y: 3- V) —Q%DK(%I,\/@b:uq

5.3. The contribution from non-cubes. Here we will prove Lemma 5.2. Recall the
definition (76) of S, L6 the term coming from the contribution of non-cube polynomials.

Using the sieve of Corollary 5.5, we rewrite .5, 6] 38

S,o- Y Y S wm Y aR)y(R)

171
di+do=g+1 feMgy<a 9  HEMg <min{dy,dy} Ry |H
d1+2d2=1 (mod 3) f#8 (H,f)=1 deg(R1)<d1—deg(H)
2 2
X > p(Ra)x s (Re) > 1(D1)xs(D1)
Ro|H DieM ) —deg(H)~des(Ry)
deg(R2)<d2—deg(H) q,7(D1 Rl):%
X E 1(D2)x ¢ (D2) E X7 (L1)xX7(La).
DzquKdz—deg(H)—deg(Rz) L1EM a1 2 deg(Dy) ~deg(H) —deg(R1)
_(D27R2):f L2EMg,dy—2 deg(Dy) —deg(H) —deg(Ra)

Using Perron’s formula for the sums over L; and Lo, we have that

1 L(u, xy) du
Z Xf(Ll) - % %u:qlﬂ ud1—2deg(D1)—deg(H)—deg(R1) 7

LieMg,d) —2deg(Dy)—deg(H)—deg(R)

and

(L) — 1 L(u, X7) du
Z Xf( 2) - % | =g-1/2 udg—?deg(Dg)—deg(H)—deg(Rz) ?

L2eMg a5 -2 deg(Dy)—deg(H)—deg(Ry)

Note that since f is not a cube, the numerators in the expressions above have no poles, so
we can integrate over the circle of radius |u| = ¢~/2. Using the Lindelof hypothesis (Lemma
2.5) for L(u, xf) we have that

dy /2

q
> Xr(L1) < | fI5 —
L1€Mg d) —2deg(Dy)—deg(H)—deg(R;) |D1 |q |HR1 |q

and
da /2

_ q
Z X7 (L) < |15 e
L2€Mq,d2—2deg(Dg)—deg(H)—deg(Rg) |D2|q |HR2|q
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Now the sums over Diand D, are both bounded by ¢*?, while the sums over R; and R, are
both bounded by 7(H), where 7(H) denotes the divisor function. Introducing the sum over

f, we trivially bound it by q§+€9, obtaining that

A+tg
S2¢@<<q 5 +£g

5.4. The dual term. We now treat the dual term by proving Lemma 5.3. Recall from
equation (74) that

52,dual = Z Z XFIXFQ Z M

|£1d"?
d1+do=g+1 Fietq,ay feEMg <g—a—1 q
d1+2dp=1 (mod 3) FreHg q,

(F1,F3)=1

Since d; + 2dy = 1(mod3), by Corollary 2.3 and formula (5), the sign of the functional
equation is

w(xmXE) =€(x3)g MG (xr XE)
=e(x3)q TG, (1, 7)G, (1, Fy),

where x3 is defined by (3). We rewrite the dual sum as

(89)
- 1 -
S2.dual =€(X3)q (ot 1)/2 Z Z L el/2 Z Go(fs F1)G(f, F2),
di+da=g+1  feMg<g_a—1 |f| FieHg,a,
d1+2d2=1 (mod 3) Fy GHq,dQ

(F1, Fo)=(F1F2,f)=1

where we have used the fact that

XF1(f>GfI(17F1) = GQ<f7 Fl) (fv Fl) =1,

0 otherwise,

Xr(F)Go(1, 1) = {

and similarly for F,. We first notice that if F7 or Fy are not square-free, then since (Fy Fy, f) =
1, we have by Lemma 2.12 that G,(f, F1) = 0 or G,(f, F>) = 0. Therefore, we can write

Yo G R)G(fF) = Y Gf PG, F)
FieMtg,q, FieMy ay
FQG’Hq,d2 FQGMq,d2
(F1,F2)=(F1F2,f)=1 (F1,F2)=(F1F2,f)=1

= > uH)G(f F)G(f. Fa)

FlEMq dq Hl(Fl FQ)

FaeMg,ay
(F1F,f)=1
= Y. ) Y, Gf HR)G,(f HE).
deg(H)<min (d1,d2) Fy EMq,dl —deg(H)
FQGMq,dQ—deg(H)
(HF1 Fa,f)=1
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Again, if (H, Fl) §£ 1or (H, FQ) % 1, then Gq(f, HFl) =0or Gq(f, HFQ) =0. If (H, FlFQ) =
1, we can apply Lemma 2.12 and write

(90) > Go(f, F1)G,(f, F2) = > uH)H]|,

Fy EHq7d1 deg(H)<min (d1,d2)
FZEHq,dz (H’f):l
(F1,F2)=(F1F2, f)=1

x Y GUHR) Y G(fHE)

FireMg,d) —deg(m) FaeMq ay—deg(H)
(F1,f)=1 (F2,f)=1
(Fy,H)=1 (Fa,H)=1

where we have used the fact that G,(f, H)G,(f, H) = |H|,. Using equation (89) it follows
that

St =)y @2 S I S )|,

71"
di1+da=g+1 feEMg <g—a—1 deg(H)<min (d1,d2)

d142d2=1 (mod 3) (H,f)ZI

(91) x Y. GyfH,R) > G(fH F).
FreMy ) —deg(H) FreMy ay—deg()
(F1,fH)=1 (F2,fH)=1

Using Proposition 3.1 we have that

q% (d1—deg(H))—5[d1+deg(f1)]3
Y GfH Fy) =05 Gy(1, fLH)p(1, [dy + deg(f1)]s)

2
Flqu,dl—deg(H) Cq(2)|f1H|§’
(F17fH):1
-1 4 _deglt) | o (d) —deg(H)) ,
X H (1 + ) + O (6f21q ’ + qo'ler(%*%O') deg(H)|f|§(%—0') ’
PIFH A8

and a similar formula holds for the sum over F5. Note that the second error term dominates
the first error term. Then we have

Yoo GUHFR) > G(fHF)

F1eMg,d) —deg(1) Fae Mg dy—deg()
(F1,fH)=1 (F2,fH)=1

q%—+1)—3 deg(H)— 2 ([d1+deg(f1)]3+[d2+deg(f1)]3)

:5f2:1 1 p(la [dl + deg(fl)]3)p(17 [dQ + deg(fl)]?))
G2 filg
—2
X H (1 + —)
L ST
(92)
413 Geg(H) 13 42 3 deg(H) 103
L0 (q A WL I HE R oY R G DR HE
| f1lq | f1lg
(93)
+ 19) < sz—‘r(% % )deg(H)’f|§(%—0)q0d1+<%—%0) deg(H ’f’2(2 >
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Then the main term of S5 gya1 is equal to

q%(g+1) q—%([d1+deg(f1)J3+[dz+deg(f1)]3)

(,(2)? Z Z 0fp=1 172, 4 11/3
7 d1+d2:g+1 fEMq,Sg—A—l ‘fl ‘flyq
d1+2d2=1 (mod 3)

x p(1, [di + deg(f1)]3)p(1, [d2 + deg(f1)]3)

H 1\ 2
<y MU ()
: |H[? |Plg
deg(H)<min (d1,d2) P|fH
(H,f)=1

Notice that the product of the terms involving p is nonzero only when d; +deg(f;) = 1 (mod 3)
(and therefore dy + deg(f;) = 0(mod 3)). By Lemma 3.9,

q 1
Maw =2z D Y. Onmiinm
q ditda=g+1  fEMy <y a1 | fla" "1 f1lg
di1+2ds=1 (mod 3)

-2
p(H) 1
X 14+ —
2 |H2H<+|P|q |
deg(H)<min (d1,d2) 4 P|fH
(H,f)=1

where we have also used that 7(xs) = €(x3)/q-
We look at the generating series of the sum over H. We have

) T )

q P|H Ptf

Let Rp(w) denote the P—factor above and let Rk(w) = [[» Rp(w). By Perron’s formula,

we get that
3 pH) 1(1+ LN L%RK(w) [1py Re(w) ™" dw
|H |3 |P|q - 2mi (1 — w)wmin{drdz} ¢

deg(H)<min{dy,d2} 9 PIH
(H.f)=1

Recall from Section 5.2 that d; = a (mod3),2g + 1 = a(mod3),g = b(mod3) and A =
0 (mod 3). Then we need deg(f) = b (mod 3). Now we look at the sum over f. The generating
series 1s

So I >

1/2
| fla |f1 Pif
1 (37+1) deg( P) oo 3jdeg(P))]

1

u2deg(P)

_H L ] deg(P)(l—f- |P|§/3)
- Rp(w)(1 + pp)? \P\5/6(1—“|3;T§}§>)
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Let

e T e Oy
K(u,w)—l;[ p(w) +RP(UJ)(].+ ) ’P’5/6(1_uT;(‘e3g/(§)) = q(m) k(u, w),
and
wdes(P) i) [PIPut s P (14 )
”K(“’w):g( \PP”) PP (P, 1 )

Write deg(f) = 3k + b. Since deg(f) <g—A—1landg—A—1=0b—1(mod3), we have

by Perron’s formula

1 1\ B
fqu <g—A-1 |f1 |f‘ P‘f a
deg(f)=b(mod 3)

(g—A—3-b)/3
du

Qmj{ Z 3k+bg (u, w) "

5 d
o = o) i
Tomi ) (1 —ud)usA3
where we are integrating along a small circle around the origin.
Introducing the sum over d;, we have

(95)

q6g+1 %% ( ) —min{d;,d2} dw du
M ua, bR T
dual = (27i)2 1 —ug'/%)(1 — u?)us=—4-3(1 — w) Z v wou

di+da=g+1
d1+2d2=1 (mod 3)

where the integral is taken over small circles of radii |u| < ¢~'/% and |w| < 1. Note that since
d; = a (mod 3), we have that dy = a — 1 (mod 3). For simplicity of notation, let o = [a — 1];.
We rewrite the sum over dy, ds as

lg+1=20)/6] (g—1=20)/6] 4
—min{di,d2} __
Z v = Z w3k+a t Z w3kt
d1+d2=g+1 k=0 k=0
d1+2do2=1 (mod 3)
Assume that ¢ is odd. We have
g—1—2a g—3—2a
(91— 2)/6) = L7272 (g — 1 - 20)/6) = L7222
Then using the above in (95) we get that
v q69+1 j{j{ U (u, w)(1 + w) dw du
dual — 27TZ 1 . uq1/6 1— u3)ug—A—3(]_ _ )(1 _ U)S) ;1 w u'

where the integral is taken over small circles of radii |u| < ¢~'/% and |w| < 1. Note that we
have a pole at u = ¢~/6.
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We compute the residue at u = ¢~'/% while moving the integral just before the poles at
u® = 1 and obtain

Mdualz_qg—é‘HMZLm]{ Uk (% w)(1+w) dw

(o(2)2 (1- )(1 —ww'T W

qt39+1 % % ( )(1+w) d_wd_u
27” =g Jpui=g—= (1 — ug!/6)(1 — u3)us=4-3(1 — w)(1 — wi)w's w u

" —-1/6 5¢
96+1<q(1/2>%j{ Uk (¢~ w)(1 +w) dw L0 <q6+sg)7

C(2)? (1 —w)(1— w?’)wg%1 w

(96)

where |w| < 1.
In the integral above we have a double pole at w = 1 and simple poles at w = &3, w = &3.

We have

6y =TT (1= L) (1= = ! — Hyclw
o) =TT (1= (1 <\P|q+1>2+<|P|q+1><1—L>> = el

P 7T

We compute the residue of the double pole at w = 1 and get that it is equal to

+ 2 2H: (1
2y 20,
Note that
(IPl2 +2|Pl, = 2)(|Pl, — 1)?
C H : q|P|4 : :DK(]-/Q7 1/Q7 \/&)7
q P q

where recall that DK(JI, y,u) is defined by (83).
Now we compute the residue of the pole at w = ;' which is equal to

Mk (€35)(1+ &5) ~ Hk(&8) Logro
(1-¢£5)°(1 - &) 31-¢&)7

The residue at w = &3 is equal to

Hi(€3) L +8) g1 Hk(8s) g
(1-&)2(1—-¢) 3(1—&)°

Putting everything together, we have

g—1
§s°

gt Gll/2) ( g+ 2Hi(1)  Hk(&8) 2902 Hr(&8) o1
Meyat =¢°~ " ) ( 5 k() +— 3(1—&2) 3(1— &) >
g—7+1Cq(1/2) Hi(w)(1 + w) d_w (§+¢)9
T Gq(2)? 2mi jl{vl g== (1 —w)(1 —w)w T ow +O<q )

_ g-a1G(1/2) [ g +2 2Hi(1)  Hk(&) cgv2  Hx(&) g
=i (5 e+ T - e - )
—|—O<q5?g+€9>.
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Remark 5.6. As in Remark 4.5, the error term of size q%g can be computed explicitly by
evaluating the residue when u® = 1 in (96). The other error terms will eventually dominate
the term of size q%g, so we do not carry out the computation. However, we believe this term
will persist in the asymptotic formula.

Now assume that ¢ is even. Then

— 2a g2«

[(g+1—2a)/6] = , (g +1—-20)/6] =

Similarly as before, we get that
u qeg+1 ]4]{ U (u, w)(1 + w?) dw du
dual = (2mi)? 1 — ug!/6)( 1 —ud)us=A-3(1 —w)(1 —wdHw? w u

_ A+1Cq(1/2 U (g% w)(1 + w?) dw 59 1 cq
-7 (o(2)? 27”% (1—w)(1—w3)w% w —i—O(q )

Then the residues give

Hi(E)(1 + &) 5% _ Hi(E3) L2g+2

(I-&rl-&)"  301-&)7"
and

HK(£3>(1 +€§) fg _ HK(&’)) g+1

(1-&)P1-&)" 301-&)"
SO

Ca,G(1)2 +2 2H (1 Hi(£3) oy H g
Mypal =¢° 6+1<<q(<2/)2) (_9 : Hic(1) + g( ) _ 3(1K£§2§) §+2 _ 3(;{&2) 3+1>

+0 (q%“g) .

We remark that assuming g even leads to the same asymptotic formula as before.
We now bound the mixed terms (92) and (93) in S5 gua. For the terms of the type (92)
we have

132 _4)
<t gt S A 3

di+da=g+1 feMgega 1F1 1111 deg(rr)<min (dr,ds)
(H,f)=1
_9 2 R 1 (;_30) deg(H)
<<q 2 Z q 3 Z — T T Z q 4 2 .
dy+da=g+1 feMa<gai I8 *1f1ld deg(H()gr}i)ingdhda)

Setting o > 5/6, and bounding trivially the sum over H by < ¢%, it follows that these
terms are bounded by

< gqeot(B-5) - Ares o ((5-5+e)o—(15-5)4,
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We now bound the error term coming from (93). This term will be bounded by

A D DIED DI D D e

di+de=g+1 feEMy <g-a—1 deg(H)<min (d1,d2)
(H,f)=1

< qag Z4eg+(g—A)(2—-0) < q —A(2—0)+eg

as long as o > 7/6.
Then the error from S 4y Will be bounded by

Equa < q(IQ §te)o— (13- %)A_i_q%‘LA(zfg)%g'

This finishes the proof of Lemma 5.3.

5.5. The proof of Theorem 1.2. Combining Lemmas 5.1, 5.2 and 5.3, it follows that

> > L ( XF1F2> — Ci19q" + Ck ¢ + Di19q” =% + Dy og?™' %

di+do=g+1  F1€Hy4,

d1+2d2=1 (mod 3) FheH

10 (q%w R ey Uree—g 4 o(B-gte)o-(5-8)A q?g—A<2—a>+eg>

q,d2
(F1,F2) 1

3

Y

where 7/6 < o < 4/3. Picking o = 3= 2\[ and A =3 [ s 1)} (so that A = 0 (mod 3)) gives

a total upper bound of size qg %429 and finishes the proof of Theorem 1.2.
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