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Abstract. Let E be an elliptic curve over Q with L-function LE(s). We
use the random matrix model of Katz and Sarnak to develop a heuristic
for the frequency of vanishing of the twisted L-functions LE(1, χ), as χ
runs over the Dirichlet characters of order 3 (cubic twists). The heuris-
tic suggests that the number of cubic twists of conductor less than X
for which LE(1, χ) vanishes is asymptotic to bEX1/2 logeE X for some
constants bE , eE depending only on E. We also compute explicitely
the conjecture of Keating and Snaith about the moments of the special
values LE(1, χ) in the family of cubic twists. Finally, we present exper-
imental data which is consistent with the conjectures for the moments
and for the vanishing in the family of cubic twists of LE(s).

1. Introduction

Let E be an elliptic curve defined over Q with conductor NE , and let

LE(s) =
∏

p-NE

(
1− ap

ps
+

1
p2s−1

)−1 ∏

p|NE

(
1− ap

ps

)−1

=
∞∑

n=1

an

ns
(1)

be the L-function of E. Then, from the work of Wiles, Taylor [30, 28] and
Breuil, Conrad, Diamond, Taylor [1], LE(s) has analytic continuation to the
whole complex plane and satisfies the functional equation

ΛE(s) =
(√

NE

2π

)s

Γ(s)LE(s) = ωEΛE(2− s)

where −ωE = ±1 is the eigenvalue of the Fricke involution. Let χ be a
primitive character of conductor f coprime to NE . We can then form the
twisted L-function

LE(s, χ) =
∞∑

n=1

anχ(n)
ns

.

which also has analytic continuation to the whole complex plane, and satis-
fies the functional equation

(2) ΛE(s, χ) =
(

f
√

NE

2π

)s

Γ(s)LE(s, χ) =
ωEχ(NE)τ(χ)2

f
ΛE(2− s, χ)

where τ(χ) is the Gauss sum [25, Theorem 3.66].
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In the particular case where χd is a quadratic character of discriminant
d, the functional equation is

(3) ΛE(s, χd) =
( |d|√NE

2π

)s

Γ(s)LE(s, χd) = ωEχd(−NE)ΛE(2− s, χd).

Then, for about half of the discriminants d, ωEχd(−NE) = −1 and LE(s, χd)
vanishes at s = 1. For each quadratic character χd, let rd be the order of
vanishing of LE(s, χd) at s = 1. Goldfeld conjectured that [9]

∑

|d|≤X

rd ∼ 1
2

∑

|d|≤X

1 as X →∞,

where both sums run over quadratic characters of discriminant |d| ≤ X. In
particular, Goldfeld’s conjecture implies that

N≥2(X) = # {|d| ≤ X such that rd ≥ 2} = o(X).

There are lower bounds for N≥2(X), first obtained by Gouvêa and Mazur
[11], and improved by Stewart and Top [27]. More precisely, N≥2(X) À
X1/2 under the Parity Conjecture [11, 27]. See the review article [24] for a
more complete account of these results, and for other similar results [23].

In the recent years, a new approach to the understanding of zeroes of
L-functions in families emerged from the work of Katz and Sarnak on zeroes
of L-functions and random matrix theory [16, 17]. For example, Goldfeld’s
conjecture is a particular case of their Density Conjecture, inspired by their
work over function fields. Using similar ideas, Conrey, Keating, Rubinstein
and Snaith [6] predicted a precise asymptotic for N≥2(X). Their work is
described in more detail in Section 3.

In this paper, we study vanishing of the twisted L-functions LE(s, χ) by
Dirichlet characters of order 3 (cubic characters). In all the following, χ will
be a cubic character of conductor f. Let E be an elliptic curve over Q, and
let

N(X) = # {cubic characters χ of conductor f ≤ X}(4)
FE = {LE(s, χ) : χ is a cubic character}(5)

NE(X) = # {LE(s, χ) ∈ FE : LE(1, χ) = 0 and f ≤ X} .(6)

What can we say about the asymptotic behavior NE(X) ? The situation
is different from the case of quadratic twists, as the functional equation (2)
now relates LE(s, χ) and LE(s, χ) and does not force vanishing of LE(1, χ)
when the sign of the functional equation is not 1. There is then no reason
to predict that the set of cubic characters for which LE(1, χ) vanishes has
positive density. We also note that in the case of cubic twists, the twisted
L-function LE(s, χ) is conjecturally related to the points that E acquires
over cyclic cubic fields. More precisely, let K be cyclic cubic field, and let Ĝ
be the character group of Gal(K/Q). Let L(E/K, s) denote the L-function
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of E seen as an elliptic curve over the field K. Then,

L(E/K, s) =
∏

χ∈Ĝ

LE(s, χ),

i.e. the vanishing of LE(s, χ) is related (via the Birch and Swinnerton-Dyer
conjecture) to the existence of rational points on E(K).

Kuwata [20] and Fearnley and Kisilevsky [8] have shown that if there is
one cubic twist χ such that LE(1, χ) vanishes, then there are infinitely many.
When E is a curve with rational 3-torsion with some additional conditions,
Fearnley and Kisilevsky have shown that NE(X) À X1/2.

We give in this paper a heuristic, based on the connection between zeroes
of L-functions in families and random matrix theory introduced by Katz and
Sarnak, to predict the asymptotic behavior of NE(X). As in [6], we use the
ideas of Keating and Snaith [18, 19] to predict the value distribution at the
central critical point of the L-functions in our families. Similar heuristics can
be developed for families of higher order twists, and this work is presently
in progress [7].

We would like to emphasize that the cubic twists we discuss in this paper
refer to the L-functions of elliptic curves over Q twisted by cubic Dirichlet
characters. These are different from the L-functions arising from the family
of (complex multiplication) elliptic curves x3 + y3 = m. Those curves are
isomorphic to the elliptic curve x3+y3 = 1 by an isomorphism of order three,
and are also called cubic twists. That family was studied by Zagier and
Kramarz [31] who obtained some numerical data suggesting that a positive
proportion of those curves have rank two or more. The numerical data for
this family was extended recently by Watkins [29], suggesting that it is more
likely that the proportion goes to zero. Watkins also shows that random
matrix theory predicts that the number of curves in the family x3 + y3 = m
with even non-zero rank has density zero, following the ideas of [6] and the
present paper.

The structure of the paper is as follows. The second section presents
a discretisation of the special values LE(1, χ). The third section reviews
the work of Keating and Snaith, which suggests that the value distribution
of the L-functions at the critical point is related to the value distribution
of characteristic polynomials of random matrices. This leads to a random
matrix conjecture for the asymptotic behavior of NE(X). In the fourth
section, we write a precise conjecture for the integral moments of LE(1, χ)
in our family, following from the work of Keating and Snaith. We compute
explicitly the arithmetic constant for the family. The conjecture can then be
tested numerically, providing support for the random matrix models of the
L-functions LE(1, χ) in the family of cubic twists. The fifth section contains
asymptotics for N(X) and related sums which are needed in the rest of the
paper. Finally, the last section presents some experimental results.
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2. Discretisation of the special values

Following Mazur, Tate and Teitelbaum [21], we define the algebraic part
of LE(1, χ) to be

Lalg
E (1, χ) =

2 f LE(1, χ)
Ω τ(χ)

(7)

=
∑

a mod f

χ(a)Λ(a, f)

where Λ(a, f) ∈ Z and Ω is a non-zero rational multiple of the real period
ΩE . Then, Lalg

E (1, χ) is an algebraic integer in Z[ρ] where ρ is a third root
of unity. In fact, we have

Theorem 2.1.

|Lalg
E (1, χ)| =





nχ if ωE = 1;

√
3 nχ if ωE = −1;

for some non-negative integer nχ.

Proof: As E is defined over Q, we have that LE(1, χ) = LE(1, χ). Also,
as χ is a cubic character, χ(−1) = 1 and τ(χ) = χ(−1)τ(χ) = τ(χ). From

(7), this gives Lalg
E (1, χ) = Lalg

E (1, χ). Now, using the functional equation

Lalg
E (1, χ) =

2 f LE(1, χ)
Ω τ(χ)

=
2ωE χ(NE) τ(χ)

Ω
LE(1, χ)

= ωE χ(NE) Lalg
E (1, χ)

= ζχ Lalg
E (1, χ) with ζχ = ωEχ(NE).

Then, Lalg
E (1, χ) satisfies an equation

λ = ζχλ(8)

for ζχ ∈ C∗. It is easy to see that any two solutions λ1, λ2 of such an
equation satisfy λ1 = αλ2 with α real. Suppose that ωE = 1, which implies
that ζχ is a third root of unity. If ζχ = 1, then Lalg

E (1, χ) is real, and as
Lalg

E (1, χ) ∈ Z[ρ], we must have Lalg
E (1, χ) ∈ Z. If ζχ is a primitive third

root of unity, then λ = ζ2
χ satisfies (8) and we have Lalg

E (1, χ) = αζ2
χ with

α real. As Lalg
E (1, χ) ∈ Z[ρ], we must have α ∈ Z. Suppose that ωE = −1.

If ζχ = −1, then λ =
√−3 satisfy (8) and we have Lalg

E (1, χ) = α
√−3 with

α real. As Lalg
E (1, χ) ∈ Z[ρ], we must have α ∈ Z. If ζχ is a primitive sixth

root of unity, then λ = (ζχ − ζχ)ζ2
χ satisfies (8) and we have Lalg

E (1, χ) =
α(ζχ − ζχ)ζ2

χ with α real. As Lalg
E (1, χ) ∈ Z[ρ], we must have α ∈ Z. ¤



ON THE VANISHING OF TWISTED L-FUNCTIONS OF ELLIPTIC CURVES 5

As LE(1, χ) vanishes if and only if the integer nχ vanishes, this gives
a discretisation on the special values LE(1, χ). One should mention that
the distribution of the integers nχ is very interesting. For example, the
experimental data suggests that there are infinitely many cubic characters
χ for which nχ = 1 (see Table 5). This seems to be very difficult to prove.
We also submit the following conjecture, obtained in part by observation
of the experimental data, and in part by analogy with the genus theory of
number fields.

Conjecture 2.2. Suppose that E is isogenous to a curve with a rational 3-
torsion point. For any positive integer n, let ν(n) be the number of distinct
prime divisors of n. Let χ be a cubic character of conductor f, and let nχ

be the integer defined by Theorem 2.1. Then

3ν(f)−1 | nχ.

In order to obtain a heuristic for the vanishing in the family FE , we have
to make some assumptions on the distribution of the integers nχ. From
the above conjecture, it seems that we should distinguish between the cases
where E has rational 3-torsion or not. This distinction is also suggested by
the work of Fearnley and Kisilevsky discussed in the introduction, and fits
the experimental data as we will see in Section 6.

3. Random Matrix Theory

Let G(N) be one of the classical compact irreducible symmetric spaces.
For each A ∈ G(N), let λ1 = eiθ1 , . . . , λN = eiθN be the eigenvalues of A
which are ordered by the eigenangles θ1, . . . , θN such that

0 ≤ θ1 ≤ · · · ≤ θN < 2π.

Let F = {Lf (s)} be a family of L-functions with symmetry type G(N). It
is conjectured by Katz and Sarnak that the statistics of the low-lying zeroes
of F should fit those of the eigenangles of random matrices in G(N) [16, 17].

Let PA(λ) = det (A− λI) be the characteristic polynomial of A, and let
{Lf (1/2)}f∈F be the central critical values of the L-functions in F . Keating
and Snaith [18, 19] suggest that the value distribution of the L-functions
at the critical point is related to the value distribution of the characteristic
polynomials |PA(1)| with respect to the Haar measure of G(N).

Using this model, vanishing in the family of quadratic twists was studied
in [6]. More precisely, let

FE+ = {LE(s, χd) : χd quadratic with ωEχd(−NE) = 1}
NE+(X) = # {LE(s, χd) ∈ FE+ : LE(s, χd) = 0 and |d| ≤ X} ,

i.e. FE+ is the family of quadratic twists for which the sign of the functional
equation is 1. Then, either LE(1, χd) 6= 0, or it vanishes with even order at
least 2.
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Conjecture 3.1 (Conrey, Keating, Rubinstein and Snaith [6]). There are
constants bE 6= 0 and eE such that

NE+(X) ∼ bEX3/4 logeE X

when X →∞.

In this section, we make a similar analysis for the family FE of cubic
twists. As the symmetry type of our family is the unitary group U(N), we
now review the work of Keating and Snaith for this symmetry group. All
the results cited below are from [18]. Let

MU (s,N) =
∫

U(N)
|PA(1)|s dHaar

be the moments for the distribution of |PA(1)| in U(N) with respect to the
Haar measure. Keating and Snaith prove that

MU (s,N) =
N∏

j=1

Γ(j)Γ(j + s)
Γ2(j + s/2)

,(9)

and then MU (s,N) is analytic for Re(s) > −1, and has meromorphic con-
tinuation to the whole complex plane. The probability density function is
the Mellin transform

PU (x,N) =
1

2πi

∫

(c)
MU (s,N)x−s−1ds

for some c > −1. For x small, the value of PU (x,N) is determined by the
first pole of MU (s,N) at s = −1, and this gives

PU (x,N) ∼ 1
Γ(N)

N∏

j=1

Γ(j)2

Γ2(j − 1/2)
= R(N) as x → 0.

We have

R(N) ∼ N1/4G2(1/2) as N →∞,

where G is the Barnes G-function defined by

G(1 + z) = (2π)z/2e−((1+γ)z2+z)/2
∞∏

n=1

(
(1 + z/n)ne−z+z2/2n

)
.

Let ME(s,X) be the moments

ME(s,X) =
1

N(X)

∑

f≤X

|LE(1, χ)|s(10)

where the sum runs over all cubic characters of conductor ≤ X. As the
family FE of such L-function has symmetry type U(N), we have
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Conjecture 3.2 (Keating and Snaith Conjecture for cubic twists).

ME(s,X) ∼ aE(s/2)MU (s,N)

where N ∼ 2 log X and aE(s/2) is an arithmetic factor depending only on
the curve E.

In the conjecture, the relation between N and X is obtained by equating
the mean density of eigenangles of matrices in the unitary group, and the
mean density of non-trivial zeroes of the twisted L-functions LE(s, χ) at a
fixed height. More precisely, let

N(T, χ) = # {s ∈ C : 0 < Re(s) < 2, 0 < Im(s) < T and LE(s, χ) = 0}
be the number of zeroes of LE(s, χ) in the critical strip up to height T .
Then, using the Argument Principle, one proves that

N(T, χ) =
T

π
log

(√
NE fT

2π

)
− T

π
+ O (log T ) .

Equating the densities of zeroes at a fixed height T , one gets

N

2π
∼ 1

π
log

(√
NE f T

2π

)
⇒ N ∼ 2 log f

as stated in Conjecture 3.2. The arithmetic factor aE(s/2) captures the
arithmetic missing from the random matrix theory, and we can compute
it for the family of cubic twists FE in the next section. The conjectural
moments can then be compared with the empirical ones (see Table 4), and
our data is consistent with the Keating and Snaith Conjecture for the family
FE .

From Conjecture 3.2, the probability density function for the distribution
of the special values |LE(1, χ)| for L-functions LE(s, χ) ∈ FE is

PE(x,X) =
1

2πi

∫

(c)
ME(s, X) x−s−1 ds

∼ 1
2πi

∫

(c)
aE(s/2) MU (s,N) x−s−1 ds

∼ aE(−1/2) R(N) for small x(11)

∼ aE(−1/2)G2(1/2)N1/4 for large N.(12)

Figure 6 compares the empirical distribution with the probability density
function PU (x,N).

Let kE = 1 when ωE = 1, and kE =
√

3 when ωE = −1. From (7) and
Theorem 2.1, we have

|LE(1, χ)| =
∣∣∣∣
Ω τ(χ) kE nχ

2 f

∣∣∣∣ =
|Ω kE |

2
nχ√

f
= nχ

cE√
f

(13)

where cE is a constant depending only on the curve E. We now use the
properties of the integers nχ to give the measure of the interval of vanishing
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for |LE(1, χ)|, i.e. we write

Prob { |LE(1, χ)| = 0 } = Prob { |LE(1, χ)| < B(f) }
for some function B(f) of the conductor of the character. In view of Theorem
2.1 and Conjecture 2.2, we set

B(f) =





cE3ν(f)−1

√
f

if E has rational 3-torsion;

cE√
f

otherwise

which completely determines our probabilistic model. Using the probability
density function PE(x,X) ∼ aE(−1/2)R(N) for small x, we have

Prob { |LE(1, χ)| = 0 } =
∫ B(f)

0
aE(−1/2)R(N) dx

= aE(−1/2) R(N) B(f).

We first consider the case where E does not have rational 3-torsion. Sum-
ming the probabilities, this gives

NE(X) = cE aE(−1/2) R(N)
∑

f≤X

1√
f
.

As

N(X) =
∑

f≤X

1 ∼ c3X as X →∞

for some constant c3 (see Corollary 5.3), we obtain using partial summation

NE(X) ∼ 2 c3 cE aE(−1/2) R(N) X1/2

∼ 25/4 G2(1/2) c3 cE aE(−1/2) X1/2 log1/4 X

∼ bE X1/2 log1/4 X as X →∞.

Similarly, if E has rational 3-torsion,

NE(X) = cE aE(−1/2) R(N)
∑

f≤X

3ν(f)−1

√
f

As ∑

f≤X

3ν(f) ∼ c3
′X log2 X as X →∞

for some constant c3
′ (see Theorem 5.5), we obtain using partial summation

NE(X) =
2
3

c3
′ cE aE(−1/2) R(N)

√
X log2 X

∼ 25/4

3
G2(1/2) c3

′ cE aE(−1/2)
√

X log9/4 X

∼ bEX1/2 log9/4 X as X →∞.



ON THE VANISHING OF TWISTED L-FUNCTIONS OF ELLIPTIC CURVES 9

Hence the nature of the logarithmic factor seems to depend subtly on the
arithmetic of the curve E. On the other hand, the heuristic model points to
a growth rate satisfying

log NE(X) ∼ 1
2

log X.

This is supported by the empirical data in Section 6, and is consistent with
the lower bounds for curves with rational 3–torsion proved in [8]. In fact,
the empirical data seems to indicate a more refined conclusion of the type
conjectured in [6]

NE(X) ∼ bEX1/2 logeE X

for some constants bE and eE depending on E (see Figures 2 and 3).

4. Moments

As mentioned in the last section, the work of Keating and Snaith led to
some remarkable conjectures for the moments of special values in families
of L-functions. Their conjectures agree with the known results for the first
few integral moments of the Riemann zeta-function (see [12, 13]), and with
the known results the first few integral moments of twists by quadratic
Dirichlet characters (see [10, 15, 26]). They also agree with the number
theoretic heuristics of [3, 4]. In order to verify that our empirical data also
provide support for the Keating and Snaith conjectures, we need to compute
the arithmetical factor aE(s/2) of Conjecture 3.2.

Let k be a positive integer. We now consider the 2kth moments

ME(2k, X) =
1

N(X)

∑

f≤X

|LE(1, χ)|2k

where the sum runs over cubic characters of conductor less than X. In this
special case, the Keating and Snaith conjectures can be stated as

Conjecture 4.1 (Keating and Snaith Conjecture for cubic twists). Let k
be a positive integer. Then,

ME(2k, X) ∼ aE(k) gk (2 log X)k2

where

gk =
k−1∏

j=0

j!
(j + k)!

and aE(k) is some arithmetical factor related to the curve E.

The arithmetical factor aE(k) cannot be obtained from the random matrix
model which contains no arithmetic, but can be computed using an number-
theoretic heuristic as explained in [5]. We consider

L(s) =
1

N(X)

∑

f≤X

|LE(s, χ)|2k
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in some half plane Re(s) > c. Following [5], one keeps only the diagonal
terms, and neglects all error terms to write L(s) as ζ(s)k2

f(s) for some
function f(s) analytic at s = 1. Then, specialising at s = 1, ζ(s)k2

corre-
sponds to (log X)k2

and f(s) to aE(k). One can then evaluate aE(k) at any
k ∈ C, and in particular at k = −1/2 as in Section 3.

We write

L(s) =
1

N(X)

∑

f≤X

|LE(s, χ)|2k

=
1

N(X)

∑

f≤X

LE(s, χ)k LE(s, χ)k

=
1

N(X)

∑

f≤X

∑
n1,...,n2k

an1 . . . an2k

(n1 . . . n2k)s
χ(n1 . . . nkn

−1
k+1 . . . n−1

2k )

=
∑

n1,...,n2k

an1 . . . an2k

(n1 . . . n2k)s

1
N(X)

∑

f≤X

χ(n1 . . . nkn
−1
k+1 . . . n−1

2k ).

If n1 . . . nkn
−1
k+1 . . . n−1

2k is a rational cube, the innner sum is

1
N(X)

∑
f≤X

(n1...n2k,f)=1

1 ∼ c3(d)

as X →∞, where for d = n1 . . . n2k and c3(d) as defined in Corollary 5.4.
For integers n1, . . . , n2k, let c(n1, . . . , n2k) = c3(d) for d = n1 . . . n2k, and

let ψ(n1, . . . , n2k) = 1 when n1 . . . nkn
−1
k+1 . . . n−1

2k is a rational cube, and
ψ(n1, . . . , n2k) = 0 otherwise. Considering only the contribution from the
terms where n1 . . . nkn

−1
k+1 . . . n−1

2k is a rational cube, we obtain

L(s) ∼
∑

n1,...,n2k

an1 . . . an2k

(n1 . . . n2k)s
c(n1, . . . , n2k) ψ(n1, . . . , n2k)

=
∑

n1,...,n2k

f(n1, . . . , n2k),
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where f(n1, . . . , n2k) is a multiplicative function of the 2k variables. Then,
L(s) has the Euler product

L(s) =
∏
p

∑
e1,...,e2k

e1+···+ek≡ek+1+···+e2k mod 3

ape1 . . . ape2k

(pe1+···+e2k)s c(pe1 , . . . , pe2k)

=
∏

p≡2 mod 3

∑
e1,...,e2k

e1+···+ek≡ek+1+···+e2k mod 3

ape1 . . . ape2k

(pe1+···+e2k)s

∏

p≡1 mod 3

1 +
p

p + 2

∗∑
e1,...,e2k

e1+···+ek≡ek+1+···+e2k mod 3

ape1 . . . ape2k

(pe1+...e2k)s

∏

p=3

1 +
9
11

∗∑
e1,...,e2k

e1+···+ek≡ek+1+···+e2k mod 3

ape1 . . . ape2k

(pe1+...e2k)s(14)

=
∏
p

E(p, s)(15)

where ∗ indicates that the term e1 = · · · = e2k = 0 is missing from the sum.

Lemma 4.2. Let E(p, s) be the Euler factor defined by Equation (15). For
any ε > 0,

E(p, s) = 1 + k2
a2

p

p2s
+ Ok

(
p−3s+ε

)
.

Proof: Suppose p ≡ 2 mod 3. Then,

E(p, s) =
∑

e1,...,e2k
e1+···+ek≡ek+1+···+e2k mod 3

ape1 . . . ape2k

(pe1+···+e2k)s .

Using n =
∑2k

i=1 ei, n1 =
∑k

i=1 ei and n2 =
∑2k

i=k+1 ei, and collecting the
terms with the same n, we write the above sum as

∞∑

n=0

cn

pns
.

Clearly, c0 = 1 and c1 = 0. For n = 2, the only choice with n1 ≡ n2 mod 3
is n1 = n2 = 1. There are k2 tuples (e1, . . . , e2k) with n1 = n2 = 1 and for
each such tuple,

ape1 . . . ape2k

(pe1+···+e2k)s =
a2

p

p2s
,
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and c2 = k2a2
p. In general, there are O(nk) tuples with

∑2k
i=1 ei = n, and for

each such tuple ape1 . . . ape2k is at most O
(
p2knε

)
for any ε > 0. This gives

E(p, s) = 1 + k2
a2

p

p2s
+ Ok

( ∞∑

n=3

(
p−s+ε

)n

)

= 1 + k2
a2

p

p2s
+ Ok

(
p−3s+ε

)

for any ε > 0. The proof for p ≡ 0, 1 mod 3 is similar. ¤
From Lemma 4.2, L(s) has a pole of order k2 at s = 1 as does the Rankin-

Selberg convolution

L(E ⊗E, s) =
∞∑

n=1

(
an√
n

)2 1
ns

=
∞∑

n=1

a2
n

ns+1

(see [14, Section 13.8] for more details). Then,

L(s) = ζ(s)k2
∏
p

(
1− 1

ps

)k2

E(p, s)

where
∏
p

(
1− 1

ps

)k2

E(p, s)

is analytic at s = 1. We then set

aE(k) =
∏
p

(
1− 1

p

)k2

E(p, 1).(16)

We now write the Euler factors E(p, 1) in a more suitable form using the
multiplicativity of the ap’s.

Lemma 4.3. Let ρ be a primitive third root of 1, and let

F (p) =
∑

e1,...,e2k
e1+···+ek≡ek+1+···+e2k mod 3

ape1 . . . ape2k

pe1+···+e2k
.

Then, as a formal series, F (p) is



1
3

(
1− ap

p
+

1
p

)−2k

+
2
3

(
1− ρap

p
+

ρ2

p

)−k (
1− ρ−1ap

p
+

ρ−2

p

)−k

for p - NE;

1
3

(
1− ap

p

)−2k

+
2
3

(
1− ρap

p

)−k (
1− ρ−1ap

p

)−k

for p | NE.

Proof: Using n1 =
∑k

i=1 ei, n2 =
∑2k

i=k+1 ei, and the characteristic function

1
3

(
1 + ρn1−n2 + ρ−n1+n2

)
=

{
1 if n1 ≡ n2 mod 3;
0 otherwise,
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we have the formal equalities
∑

e1,...,e2k
n1≡n2 mod 3

ape1 . . . ape2k

pe1+···+e2k
=

1
3

∑
e1,...,e2k

ape1 . . . ape2k

pe1+···+e2k
+

2
3

∑
e1,...,e2k

ape1 . . . ape2k

pe1+···+e2k
ρn1−n2

=
1
3

( ∞∑

e=1

ape

pe

)2k

+
2
3

( ∞∑

e=1

ape ρe

pe

)k ( ∞∑

e=1

ape ρ−e

pe

)k

.(17)

Using the multiplicativity of the Fourier coefficients an, we get for any α ∈
C∗

∞∑

e=1

ape αe

pe
=





(
1− α ap

p
+

α2

p

)−1

if p - NE ;

(
1− α ap

p

)−1

if p | NE .

Replacing in (17), this proves the lemma. ¤
Using the above lemma in (14), we can write the Euler factors as

E(p, 1) =





p

p + 2
F (p) +

2
p + 2

for p ≡ 1 mod 3;

F (p) for p ≡ 2 mod 3;

9
11

F (p) +
2
11

for p = 3.

This expression is now valid for all k ∈ C, and not only integers. This value
of aE(k) is used to compute the conjectural moments of Table 4.

5. Number of cubic conductors

We give in this section asymptotics for

N(X) = # {cubic characters of conductor f ≤ X}
Nd(X) = # {cubic characters of conductor f ≤ X with (f, d) = 1}
S(X) =

∑

f≤X

3ν(f)

which are needed in the rest of the paper. The estimate for N(X) can also
be found in [2].

Lemma 5.1. Let χ be a cubic character of conductor f. Then, f = (9)αp1 . . . pt

where p1, . . . , pt are distinct primes congruent to 1 modulo 3, and α = 0 or
1. Furthermore, for each such conductor, there are 2(t+α) = 2ν(f) distinct
cubic characters with conductor f.

Proof: A cubic Dirichlet character of conductor f can be written uniquely
as a product of cubic Dirichlet characters of prime power conductor. Since
the prime power conductors of cubic characters are either 9 or a prime p
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congruent to 1 modulo 3, the first statement of the lemma follows. Fur-
themore, writing f = (9)αp1 . . . pt, we see that there are 2α+t = 2ν(f) cubic
characters with conductor f since there are two characters of order 3 for each
such prime power conductor. ¤

Let a(n) be the number of cubic characters of conductor n. Then, it
follows from the above lemma that

L(s) =
∞∑

n=1

a(n)
ns

=
(

1 +
2
9s

) ∏

p≡1 mod 3

(
1 +

2
ps

)
,

and the above series converges for Re(s) > 1. We then have to analyse the
analytic behavior of L(s) at s = 1. We find out that

Proposition 5.2.

L(s) =
∞∑

n=1

a(n)
ns

has a simple pole at s = 1 with residue

c3 =
11
√

3
18π

∏

p≡1 mod 3

(
1− 2

p(p + 1)

)
.

Proof:

L(s) =
(

1 +
2
9s

) ∏

p≡1 mod 3

(
1 +

2
ps

)
= g(s)

∏

p≡1 mod 3

(
1− 1

ps

)−2

where

g(s) =
(

1 +
2
9s

) ∏

p≡1 mod 3

(
1− 1

ps

)2 (
1 +

2
ps

)

=
(

1 +
2
9s

) ∏

p≡1 mod 3

(
1− 3

p2s
+

2
p3s

)

is analytic at s = 1.
Let K be the field obtained by adding a third root of 1. Then, K =

Q(
√−3) and the Dedekind zeta function

ζK(s) =
(

1− 1
3s

)−1 ∏

p≡1 mod 3

(
1− 1

ps

)−2 ∏

p≡2 mod 3

(
1− 1

p2s

)−1

.

has a simple pole at s = 1 with residue

ρ =
2r+sπsreg(K)hK

ωK |∆K |1/2
=

π

3
√

3
.
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Using this fact, we get

L(s) = g(s)
∏

p≡1 mod 3

(
1− 1

ps

)−2

= g(s)
(

1− 1
3s

) ∏

p≡2 mod 3

(
1− 1

p2s

)
ζK(s)

= h(s)ζK(s)

where

h(s) =
(

1 +
2
9s

) (
1− 1

3s

) ∏

p≡1 mod 3

(
1− 3

p2s
+

2
p3s

) ∏

p≡2 mod 3

(
1− 1

p2s

)

is analytic at s = 1. One computes

h(1) =
11
9

2
3

∏

p≡1,2 mod 3

(
1− 1

p2

) ∏

p≡1 mod 3

(
1− 3p−2 + 2p−3

)

(1− p−2)

=
11

12ζ(2)

∏

p≡1 mod 3

(
1− 2

p(p + 1)

)

Then, L(s) has a simple pole at s = 1 with residue

c3 =
π

3
√

3
h(1) =

11
√

3
18π

∏

p≡1 mod 3

(
1− 2

p(p + 1)

)
= 0.3170564 . . .

¤
Corollary 5.3. N(X) ∼ c3X as X →∞.

Proof: Using Proposition 5.2 and the Tauberian Theorem (see for exam-
ple [22]), we have

N(X) =
∑

n≤X

a(n) ∼ c3X.

¤
Remark: The constant cQ(C3) on [2, p. 104] is half of our constant as

there are two characters per cyclic cubic field.

Corollary 5.4. Let d be a positive integer. Then,

Nd(X) ∼ c3(d) N(X) as X →∞
where

c3(d) =





∏
p≡1 mod 3

p|d

p

p + 2
for 3 - d;

9
11

∏
p≡1 mod 3

p|d

p

p + 2
for 3 | d.
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Proof: Suppose that 3 - d. Let b(n) be the number of cubic characters
of conductor n when (n, d) = 1, and b(n) = 0 otherwise. We consider the
L-function

L2(s) =
∞∑

n=1

b(n)
ns

=
(

1 +
2
9s

) ∏
p≡1 mod 3

p|d

(
1 +

2
ps

)−1 ∏

p≡1 mod 3

(
1 +

2
ps

)

= f(s)L(s)

where

f(s) =
∏

p≡1 mod 3
p|d

(
1 +

2
ps

)−1

=
∏

p≡1 mod 3
p|d

ps

ps + 2

is analytic at s = 1. Then, using Proposition 5.2 and the Tauberian Theo-
rem, this gives ∑

n≤X

b(n) ∼ f(1)c3X,

and the result follows. The proof for 3 | d is similar. ¤

Corollary 5.5.

S(X) =
∑

f≤X

3ν(f) ∼ c3
′X log2 X as X →∞

for some constant c3
′.

Proof: Using Lemma 5.1, we write
∑

f≤X

3ν(f) =
∑

n≤X

a(n)

where

a(n) =
{

6ν(n) if n is the conductor of cubic character;
0 otherwise.

Now, working exactly as above, consider the L-function

L(s) =
∞∑

n=1

a(n)
ns

=
(

1 +
6
9s

) ∏

p≡1 mod 3

(
1 +

6
ps

)
= ζK(s)3g(s)

where g(s) is analytic at s = 1. Then, L(s) has a pole of order 3 with residue
c′3 (say) at s = 1, and it follows from the Tauberian Theorem that

S(X) =
∑

n≤X

a(n) ∼ c′3 X log2 X.

¤



ON THE VANISHING OF TWISTED L-FUNCTIONS OF ELLIPTIC CURVES 17

6. Numerical Data

In order to effectively compute twisted L-functions, we use the series
representation

LE(1, χ) =
∞∑

n=1

an

n
exp

(
− 2πn

f
√

NE

)(
χ(n) + ωEχ(NE)

τ(χ)2

f
χ(n)

)

derived from the functional equation (2). This series is rapidly convergent
for small values of f

√
NE and has an easily computable (though conservative)

bound on the truncation error after k terms, namely
4

1− q
qk where q = exp

(
− 2π

f
√

NE

)
.

A small sample of eight elliptic curves was selected and computer runs of
varying lengths were performed to establish a database of cubic twists. The
curves were chosen to represent a variety of torsion and rank. Curves of small
conductor are chosen in order to maintain precision in the calculations; in
the case of E11A and E14A, up to 16,000,000 terms were summed for the
highest conductor twists. The computations were greatly assisted by the fact
that nχ is an integer. At least four decimal place accuracy was maintained in
these integers throughout the calculations. The empirical results are shown
the next figures.

Curve Torsion Rank Maximal Number of Number of
conductor characters vanishing

E11A 5 0 2,023,513 320,795 1152
E14A 6 0 2,108,767 260,001 4347
E15A 8 0 399,979 51,890 807
E32A 4 0 300,217 47,577 117
E36A 6 0 283,051 36,718 346
E37A 1 1 279,211 41,991 559
E37B 3 0 364,723 54,830 1899
E389A 1 2 99,991 15,851 408

Figure 1. The eight elliptic curves selected for this study
with the sample sizes used. The number of characters is the
number of characters χ with conductor f smaller than the
maximal conductor and such that (f, NE) = 1. For each con-
ductor f, there are 2 conjugate cubic characters χ, χ with
LE(1, χ) = LE(1, χ), and only of them is counted. The
number of vanishing is the number of such characters with
LE(1, χ) = 0.
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Figure 2. Ratio of the empirical NE(X) with
√

X log1/4 X
for the curve E11A and 1 ≤ X ≤ 2, 023, 513.

Figure 3. Ratio of the empirical NE(X) with
√

X log9/4 X
for the curve E14A and 1 ≤ X ≤ 2, 108, 767.
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Curve s = 1/2 s = 1 s = 3/2 s = 2 s = 3 s = 4
E11A Empirical 1.420 2.878 7.349 22.02 274.3 4617.

Conjectural 1.436 2.962 7.621 22.34 227.7 2288.
Ratio 0.990 0.972 0.964 0.985 1.205 2.017

E14A Empirical 1.268 2.196 4.696 11.76 104.6 1302.
Conjectural 1.282 2.243 4.796 11.66 83.18 599.8

Ratio 0.990 0.979 0.979 1.008 1.257 2.171
E15A Empirical 1.384 2.609 5.995 15.86 149.4 1874.

Conjectural 1.400 2.677 6.175 15.87 117.9 816.9
Ratio 0.989 0.974 0.971 1.000 1.266 2.294

E32A Empirical 1.221 1.928 3.641 7.863 49.23 407.2
Conjectural 1.225 1.946 3.629 7.468 35.42 154.8

Ratio 0.996 0.991 1.003 1.052 1.389 2.630
E36A Empirical 1.184 1.792 3.202 6.491 35.34 253.6

Conjectural 1.193 1.814 3.188 6.101 24.29 86.90
Ratio 0.992 0.988 1.004 1.063 1.454 2.919

E37A Empirical 1.468 3.196 8.935 29.50 441.3 8592.
Conjectural 1.483 3.280 9.197 29.40 341.3 3547.

Ratio 0.990 0.974 0.972 1.003 1.292 2.421
E37B Empirical 1.119 1.656 2.946 6.060 36.15 311.3

Conjectural 1.127 1.646 2.829 5.395 22.69 93.66
Ratio 0.993 1.006 1.041 1.123 1.593 3.323

E389A Empirical 1.594 3.960 13.08 52.36 1210. 38636.
Conjectural 1.614 4.088 13.68 53.95 1015. 17901.

Ratio 0.988 0.969 0.956 0.971 1.192 2.158

Figure 4. Moments of cubic twists for the eight selected el-
liptic curves. The empirical moments are the moments (10)
for various values of s and up to X given in Table 1. The con-
jectural moments are computed following Conjecture 3.2 with
the arithmetic factor aE(s) of Section 4. For small values of
s, our data supports Conjecture 3.2. The divergence between
the conjectural and empirical data for higher moments can
be explained by the asymptotic nature of the moments. We
use only the leading order asymptotic for the conjectural mo-
ments, but there are several other terms which will contribute
strongly when the sample size is relatively small. For integral
moments, there is a new heuristic which gives all the main
terms for the asymptotic behavior of the moments [5], and
using this new heuristic, one would get a better empirical fit
with a smaller sampling size.
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Curve E11A E14A E15A E32A E36A E37A E37B E389A
Factor 10 6 8 4 2 4 12 12
nχ = 0 1152 4347 807 117 346 559 1899 408
nχ = 1 1662 344 287 695 118 1096 150 962
nχ = 2 1117 440 229 509 108 645 136 493
nχ = 3 2676 1379 414 209 683 1264 1419 761
nχ = 4 1328 336 660 201 54 799 171 521
nχ = 5 1069 288 219 515 97 657 147 427
nχ = 6 1711 2707 470 194 535 715 785 374
nχ = 7 1827 390 327 789 161 879 188 542
nχ = 8 1125 442 504 768 107 527 105 330
nχ = 9 2578 2365 378 209 959 836 2853 414
nχ = 10 631 293 174 329 58 376 88 223
nχ = 11 1336 299 227 534 95 533 118 325
nχ = 12 2183 2188 872 66 260 702 993 301
nχ = 13 1607 365 274 666 122 624 149 327
nχ = 14 1015 489 229 559 119 429 98 225
nχ = 15 1625 1044 288 164 466 618 810 252
nχ = 16 1182 330 790 516 71 388 103 216
nχ = 17 1262 273 217 519 104 439 99 199
nχ = 18 1624 5605 353 138 766 385 1489 187
nχ = 19 1433 331 256 605 106 459 151 221
nχ = 20 770 272 388 131 44 349 60 162
nχ = 21 2562 1439 409 219 679 686 1173 250
nχ = 22 786 255 139 327 65 237 75 116
nχ = 23 1193 276 203 467 80 400 84 167
nχ = 24 1634 2304 721 211 487 405 606 138
nχ = 25 952 241 203 478 73 323 116 136
nχ = 26 852 385 187 477 90 306 67 112
nχ = 27 2169 2571 319 182 919 450 3111 176
nχ = 28 1199 315 526 183 43 346 107 138
nχ = 29 1119 236 156 408 91 330 85 128
nχ = 30 920 1719 218 80 256 254 461 87

Maximal value 10139 9872 4250 1867 2322 1968 1935 1443

Figure 5. Frequency distribution for nχ. Each line of the
table is the number of incidences of nχ = 0, 1, . . . , 30 for all
characters with conductor 1 ≤ f ≤ X for the sample sizes
given in Table 1. The maximal value is the largest nχ in
this sample. The factor of the first line is the multiple of
the period ΩE used to make the values nχ integral without
common factor.
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Figure 6. Histogram of the empirical values |LE(1, χ)| for
the curve E14 and the sample size of Table 1 supersim-
posed with the probability distribution function PU (x, N)
with N = 12. The probability distribution is computed using
the approximations of [18].
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E-mail address, David: cdavid@mathstat.concordia.ca

E-mail address, Fearnley: jack@mathstat.concordia.ca

E-mail address, Kisilevsky: kisilev@mathstat.concordia.ca


