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Abstract

Several possible notions of Hardy–Sobolev spaces on a Riemannian manifold with a doubling measure
are considered. Under the assumption of a Poincaré inequality, the space M1

1 , defined by Hajłasz, is identi-
fied with a Hardy–Sobolev space defined in terms of atoms. Decomposition results are proved for both the
homogeneous and the nonhomogeneous spaces.
 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to compare different definitions of Hardy–Sobolev spaces on mani-
folds. In particular, we consider characterizations of these spaces in terms of maximal functions,
atomic decompositions, and gradients, some of which have been shown in the Euclidean setting,
and apply them to the L1 Sobolev space defined by Hajłasz.
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In the Euclidean setting, specifically on a domain Ω ⊂ Rn, Miyachi [28] shows that for a
locally integrable function f to have partial derivatives ∂αf (taken in the sense of distributions)
belonging to the real Hardy space Hp(Ω), is equivalent to a certain maximal function of f being
in Lp(Ω). Earlier work by Gatto, Jiménez and Segovia [14] on Hardy–Sobolev spaces, defined
via powers of the Laplacian, used a maximal function introduced by Calderón [6] in character-
izing Sobolev spaces for p > 1 to extend his results to p ! 1. Calderón’s maximal function was
subsequently studied by DeVore and Sharpley [12], who showed that it is pointwise equivalent
to the following variant of the sharp function. For simplicity we only give the definition in the
special case corresponding to one derivative in L1, which is what this article is concerned with.
We will call this function the Sobolev sharp maximal function (it is also called a “fractional sharp
maximal function” in [21]):

Definition 1.1. For f ∈ L1,loc, define Nf by

Nf (x) = sup
B: x∈B

1
r(B)

−
∫

B

|f − fB |dµ,

where B denotes a ball, r(B) its radius and fB the average of f over B .

Another definition of Hardy–Sobolev spaces on Rn, using second differences, is given by
Strichartz [30], who also obtains an atomic decomposition. Further characterizations of Hardy–
Sobolev spaces on Rn by means of atoms are given in [8] and [25]. For related work see [20].

Several recent results provide a connection between Hardy–Sobolev spaces and the p = 1
case of Hajłasz’s definition of Lp Sobolev spaces on a metric measure space (X,d,µ):

Definition 1.2 (Hajłasz). Let 1 ! p ! ∞. The (homogeneous) Sobolev space Ṁ1
p is the set of all

functions u ∈ L1,loc such that there exists a measurable function g " 0, g ∈ Lp , satisfying

∣∣u(x) − u(y)
∣∣ ! d(x, y)

(
g(x) + g(y)

)
, µ-a.e. (1)

We equip Ṁ1
p with the semi-norm

‖u‖Ṁ1
p

= inf
g satisfies (1)

‖g‖p.

In the Euclidean setting, Hajłasz [15] showed the equivalence of this definition with the usual
one for 1 < p ! ∞. For p ∈ (n/n + 1,1], Koskela and Saksman [22] proved that Ṁ1

p(Rn) co-
incides with the homogeneous Hardy–Sobolev space Ḣ 1

p(Rn) defined by requiring all first-order
partial derivatives of f to lie in the real Hardy space Hp (the same space defined by Miy-
achi [28]). In recent work [23], the Hajłasz Sobolev spaces Ṁs

p , for 0 < s ! 1 and n
n+s < p < ∞,

are characterized as homogeneous grand Triebel–Lizorkin spaces.
In the more general setting of a metric space with a doubling measure, Kinnunen and Tuomi-

nen [21] show that Hajłasz’s condition is equivalent to Miyachi’s maximal function characteri-
zation, extending to p = 1 a previous result of Hajłasz and Kinnunen [17] for p > 1:

Theorem 1.3. (See [17,21].) For 1 ! p < ∞,

Ṁ1
p = {f ∈ L1,loc: Nf ∈ Lp}
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with

‖f ‖Ṁ1
p

∼ ‖Nf ‖p.

Moreover, if f ∈ L1,loc and Nf ∈ L1, then f satisfies

∣∣f (x) − f (y)
∣∣ ! Cd(x, y)

(
Nf (x) + Nf (y)

)
(2)

for µ-a.e. x, y.

We now restrict the discussion to a complete Riemannian manifold M satisfying a doubling
condition and a Poincaré inequality (see below for definitions). In this setting, Badr and Berni-
cot [5] defined a family of homogeneous atomic Hardy–Sobolev spaces ḢS

1
t,ato and proved the

following comparison between these spaces:

Theorem 1.4. (See [5].) Let M be a complete Riemannian manifold satisfying a doubling condi-
tion and a Poincaré inequality (Pq) for some q > 1. Then ḢS

1
t,ato ⊂ ḢS

1
∞,ato for every t " q and

therefore ḢS
1
t1,ato = ḢS

1
t2,ato for every q ! t1, t2 ! ∞.

In particular, under the assumption of the Poincaré inequality (P1), for every t > 1 we can
take 1 < q ! t for which (Pq) holds, so all the atomic Hardy–Sobolev spaces ḢS

1
t,ato coincide

and can be denoted by ḢS
1
ato.

The main result of this paper is to identify this atomic Hardy–Sobolev space with Hajłasz’s
Sobolev space for p = 1:

Theorem 1.5. Let M be a complete Riemannian manifold satisfying a doubling condition and
the Poincaré inequality (P1). Then

Ṁ1
1 = ḢS

1
ato.

The definition of the atomic Hardy–Sobolev spaces, as well as the doubling condition, the
Poincaré inequality, and other preliminaries, can be found in Section 2. The proof of Theo-
rem 1.5, based on the characterization given by Theorem 1.3 and a Calderón–Zygmund de-
composition, follows in Section 3. In Section 4, a nonhomogeneous version of Theorem 1.5 is
obtained. Finally, in Section 5, we characterize our Hardy–Sobolev spaces in terms of derivatives.
In particular, we show that the space of differentials df of our Hardy–Sobolev functions coin-
cides with the molecular Hardy space of differential one-forms defined by Auscher, McIntosh
and Russ [4] (and by Lou and McIntosh [24] in the Euclidean setting).

2. Preliminaries

In all of this paper M denotes a complete non-compact Riemannian manifold. We write TxM

for the tangent space at the point x ∈ M , 〈·,·〉x for the Riemannian metric at x, and µ for the
Riemannian measure (volume) on M . The Riemannian metric induces a distance function ρ

which makes (M,ρ) into a metric space, and B(x, r) will denote the ball of radius r centered at
x in this space.
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Let T ∗
x M be the cotangent space at x, ΛT ∗

x M the complex exterior algebra, and d the exterior
derivative acting on C∞

0 (ΛT ∗M). We will work only with functions (0-forms) and hence for a
smooth function f , df will be a 1-form. In fact, in most of the paper we will deal instead with
the gradient ∇f , defined as the image of df under the isomorphism between T ∗

x M and TxM

(see [32], Section 4.10). Since this isomorphism preserves the inner product, we have

〈df, df 〉x = 〈∇f,∇f 〉x. (3)

Letting Lp := Lp(M,µ), 1 ! p ! ∞, and denoting by | · | the length induced by the Rie-
mannian metric on the tangent space (forgetting the subscript x for simplicity), we can define
‖∇f ‖p := ‖|∇f |‖Lp(M,µ) and, in view of (3), ‖df ‖p = ‖∇f ‖p . If d∗ denotes the adjoint of d

on L2(ΛT ∗
x M), then the Laplace–Beltrami operator & is defined by dd∗ + d∗d . However since

d∗ is null on 0-forms, this simplifies to &f = d∗df on functions and we have, for f,g ∈ C∞
0 (M),

using (3),

〈&f,g〉L2(M) =
∫

M

〈&f,g〉x dµ =
∫

M

〈df, dg〉x dµ = 〈∇f,∇g〉L2(M).

We will use Lip(M) to denote the space of Lipschitz functions, i.e. functions f satisfying, for
some C < ∞, the global Lipschitz condition

∣∣f (x) − f (y)
∣∣ ! Cρ(x, y) ∀x, y ∈ M.

The smallest such constant C will be denoted by ‖f ‖Lip. By Lip0(M) we will denote the space of
compactly supported Lipschitz functions. For such functions the gradient ∇f can be defined µ-
almost everywhere and is in L∞(M), with ‖∇f ‖∞ ≈ ‖f ‖Lip (see [7] for Rademacher’s theorem
on metric measure spaces and also the discussion of upper gradients in [18], Section 10.2).

2.1. The doubling property

Definition 2.1. Let M be a Riemannian manifold. One says that M satisfies the (global) doubling
property (D) if there exists a constant C > 0, such that for all x ∈ M , r > 0 we have

µ
(
B(x,2r)

)
! Cµ

(
B(x, r)

)
. (D)

Observe that if M satisfies (D) then

diam(M) < ∞ ⇔ µ(M) < ∞

(see [1]). Therefore if M is a complete non-compact Riemannian manifold satisfying (D) then
µ(M) = ∞.

Lemma 2.2. Let M be a Riemannian manifold satisfying (D) and let s = log2 C(D). Then for all
x, y ∈ M and θ " 1,

µ
(
B(x, θR)

)
! Cθ sµ

(
B(x,R)

)
. (4)
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Theorem 2.3 (Maximal theorem). (See [9].) Let M be a Riemannian manifold satisfying (D).
Denote by M the non-centered Hardy–Littlewood maximal function over open balls of M , de-
fined by

Mf (x) := sup
B ball
x∈B

|f |B,

where fE := −
∫
E f dµ := 1

µ(E)

∫
E f dµ. Then for every 1 < p ! ∞, M is Lp bounded and

moreover it is of weak type (1,1). Consequently, for r ∈ (0,∞), the operatorMr defined by

Mrf (x) :=
[
M

(
|f |r

)
(x)

]1/r

is of weak type (r, r) and Lp bounded for all r < p ! ∞.

Recall that an operator T is of weak type (p,p) if there is C > 0 such that for any α > 0,
µ({x: |Tf (x)| > α}) ! C

αp ‖f ‖p
p .

2.2. Poincaré inequality

Definition 2.4 (Poincaré inequality on M). We say that a complete Riemannian manifold M

admits a Poincaré inequality (Pq) for some q ∈ [1,∞) if there exists a constant C > 0 such that,
for every function f ∈ Lip0(M) and every ball B of M of radius r > 0, we have

(
−
∫

B

|f − fB |q dµ

)1/q

! Cr

(
−
∫

B

|∇f |q dµ

)1/q

. (Pq )

We also recall the following result

Theorem 2.5. (See [16], Theorem 8.7.) Let u ∈ Ṁ1
1 and g ∈ L1 such that (u, g) satisfies (1). Take

s
s+1 ! q < 1 and λ > 1. Then (u, g) satisfies the following Sobolev–Poincaré inequality: there
is a constant C > 0 depending on (D) and λ, independent of (u, g) such that for all balls B of
radius r > 0,

(
−
∫

B

|u − uB |q∗
dµ

)1/q∗

! Cr

(
−
∫

λB

gq dµ

)1/q

, (5)

where q∗ = sq
s−q .

Applying this together with Theorem 1.3, for u ∈ Ṁ1
1 we have

(
−
∫

B

|u − uB |q∗
dµ

)1/q∗

! Cr

(
−
∫

λB

(Nu)q dµ

)1/q

(6)

for all balls B .
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2.3. Comparison between Nf and |∇f |

The following Proposition shows that the maximal function Nf controls the gradient of f

in the pointwise almost everywhere sense. In the Euclidean setting this result was demonstrated
by Calderón (see [6], Theorem 4) for his maximal function N(f,x) (denoted by f ) in Sec-
tion 4.2 below), which was shown to be pointwise equivalent to our Nf by DeVore and Sharpley
(see also the stronger inequality (5.5) in [28], which bounds the maximal function of the partial
derivatives).

Recall that if u ∈ C∞
0 (M), given any smooth vector field Φ with compact support, we can

write, based on (3) and the definition of d∗,

∫

M

〈∇u,Φ〉x dµ :=
∫

M

〈du,ωΦ〉x dµ =
∫

M

u
(
d∗ωΦ

)
dµ,

where ωΦ is the 1-form corresponding to Φ under the isomorphism between the tangent space
TxM and the co-tangent space T ∗

x M (see [32], Section 4.10). Denoting d∗ωΦ by divΦ , we can
define, for u ∈ L1,loc, the gradient ∇u in the sense of distributions by

〈∇u,Φ〉 := −
∫

M

u(divΦ) dµ (7)

for all smooth vector fields Φ with compact support (see [27]). When M is orientable, divΦ
is given by ∗d ∗ ωΦ with ∗ the Hodge star operator (see [32]), and in the Euclidean case this
corresponds to the usual notion of divergence of a vector field.

Proposition 2.6. Assume that M satisfies (D), and suppose u ∈ L1,loc with Nu ∈ L1. Then ∇u,
initially defined by (7), is given by an L1 vector field and satisfies

|∇u| ! CNu, µ-a.e.

Proof. Fix r > 0. We begin with a covering of M by balls Bi = B(xi, r), i = 1,2 . . . , such that

1. M ⊂ ⋃
i Bi ,

2.
∑

i 16Bi ! K .

Note that the constant K can be taken independent of r . Then we take {ϕi}i a partition of unity re-
lated to the covering {Bi}i such that 0 ! ϕi ! 1, ϕi = 0 on (6Bi)

c, ϕi " c on 3Bi and
∑

i ϕi = 1.
The ϕi ’s are C/r Lipschitz. For details concerning this covering we refer to [13,21,19,10]. Now
let (see [13], p. 1908 and [21], Section 3.1)

ur(x) =
∑

j

ϕj (x)u3Bj . (8)

The sum is locally finite and defines a Lipschitz function so we can take its gradient and we have,
for µ-almost every x,
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∣∣∇ur(x)
∣∣ =

∣∣∣∣
∑

j

∇ϕj (x)u3Bj

∣∣∣∣

=
∣∣∣∣

∑

{j : x∈6Bj }
∇ϕj (x)(u3Bj − uB(x,9r))

∣∣∣∣

! CK
1
r

−
∫

B(x,9r)

|u − uB(x,9r)|dµ

! CKNu(x). (9)

We used the fact that
∑∇φj = 0 and that for x ∈ 6Bj , 3Bj ⊂ B(x,9r).

To see that ur → u, µ-a.e. and moreover in L1 when r → 0 (see also [13], p. 1908), write, for
x a Lebesgue point of µ,

∣∣ur(x) − u(x)
∣∣ !

∑

j

∣∣ϕj (x)
∣∣∣∣u(x) − u3Bj

∣∣ !
∑

{j : x∈6Bj }

∣∣u(x) − u3Bj

∣∣ ! CKrMq(Nu)(x)

where s
s+1 ! q < 1. The last inequality follows from estimates of |u(x) − uB(x,9r)| and |u3Bj −

uB(x,9r)|, x ∈ 6Bj , which are the same as estimates (12)–(14) in the proof of Lemma 1 in [21],
using the doubling property and (6).

Now let Φ be a smooth vector field with compact support. Using the convergence in L1, the
fact that divΦ ∈ C∞

0 (M), and the estimate on |∇ur | above, we have

∣∣∣∣

∫

M

〈∇u,Φ〉x dµ

∣∣∣∣ =
∣∣∣∣

∫

M

u(divΦ) dµ

∣∣∣∣

=
∣∣∣∣ lim
r→0

∫

M

ur(divΦ) dµ

∣∣∣∣

! lim sup
r→0

∫

M

|∇ur ||Φ|dµ

! CK

∫
|Nu||Φ|dµ.

Taking the supremum of the left-hand side over all such Φ with |Φ| ! 1, we get that the total
variation of u is bounded (see [27], (1.4), p. 104), i.e.

|Du|(M) ! C‖Nu‖L1(M) < ∞,

hence u is a function of bounded variation on M , and |Du| defines a finite measure on M . We
can write the distributional gradient as

〈∇u,Φ〉 =
∫

M

〈Xu,Φ〉x d|Du|
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for some vector field Xu with |Xu| = 1 a.e. (see again [27], p. 104 where this is expressed in
terms of the corresponding 1-form σu). Moreover, from the above estimates and the fact that
Nu ∈ L1, we further deduce that the measure |Du| is absolutely continuous with respect to the
Riemannian measure µ, so there is an L1 function g such that we can write ∇u = gXu, and
|∇u| ! CNu, µ-a.e. !

Corollary 2.7. Assume that M satisfies (D). Then

Ṁ1
1 ⊂ Ẇ 1

1 .

Proof. The result follows from Proposition 2.6 and Theorem 1.3. !

2.4. Hardy spaces

We begin by introducing the maximal function characterization of the real Hardy space H1.

Definition 2.8. Let f ∈ L1,loc(M). We define its grand maximal function, denoted by f +, as
follows:

f +(x) := sup
ϕ∈T1(x)

∣∣∣∣

∫
f ϕ dµ

∣∣∣∣ (10)

where T1(x) is the set of all test functions ψ ∈ Lip0(M) such that for some ball B := B(x, r)

containing the support of ψ ,

‖ψ‖∞ ! 1
µ(B)

, ‖∇ψ‖∞ ! 1
rµ(B)

. (11)

Set H1,max(M) = {f ∈ L1,loc(M): f + ∈ L1(M)}.

While this definition assumes f to be only locally integrable, by taking an appropriate se-
quence ϕε ∈ T1(x), the Lebesgue differentiation theorem implies that

∣∣f (x)
∣∣ = lim

ε→0

∣∣∣∣

∫
f ϕε

∣∣∣∣ ! f +(x) for µ-a.e. x, (12)

so H1,max(M) ⊂ L1(M).
Another characterization is given in terms of atoms (see [10]).

Definition 2.9. Fix 1 < t ! ∞, 1
t + 1

t ′ = 1. We say that a function a is an H1-atom if

1. a is supported in a ball B ,

2. ‖a‖t ! µ(B)
− 1

t ′ , and
3.

∫
a dµ = 0.
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We say f lies in the atomic Hardy space H1,ato if f can be represented, in L1(M), by

f =
∑

λj aj (13)

for sequences of H1-atoms {aj } and scalars {λj } ∈ 11. Note that this representation is not unique
and we define

‖f ‖H1,ato := inf
∑

|λj |,

where the infimum is taken over all atomic decompositions (13).

A priori this definition depends on the choice of t . However, we claim

Proposition 2.10. Let M be a complete Riemannian manifold satisfying (D). Then

H1,ato(M) = H1,max(M)

with equivalent norms

‖f ‖H1,ato ≈
∥∥f +∥∥

1

(where the constants of proportionality depend on the choice of t).

In the case of a space of homogeneous type (X,d,µ), this was shown in [26] (Theorem 4.13)
for a normal space of order α and in [31] (Theorem C) under the assumption of the existence
of a family of Lipschitz kernels (see also the remarks following Theorem (4.5) in [10]). For the
manifold M this will follow as a corollary of the atomic decomposition for the Hardy–Sobolev
space below. We first prove the inclusion

H1,ato(M) ⊂ H1,max(M). (14)

Proof. We show that if f ∈ H1,ato then f + ∈ L1. Let t > 1 and a be an atom supported in
a ball B0 = B(x0, r0). We want to prove that a+ ∈ L1. First take x ∈ 2B0. We have a+(x) =
supϕ∈T1(x) |

∫
B aϕ dµ| ! CM(a)(x). Then by the Lt -boundedness of the Hardy–Littlewood

maximal function for t > 1 (Theorem 2.3) and the size condition on a,

∫

2B0

∣∣a+(x)
∣∣dµ ! µ(B0)

1/t ′
( ∫

2B0

∣∣a+∣∣t dµ

)1/t

! Cµ(B0)
1/t ′ ‖Ma‖t

! Ctµ(B0)
1/t ′ ‖a‖t ! Ct . (15)

Note that the constant depends on t due to the dependence of the constant in the boundedness of
the Hardy–Littlewood maximal function, which blows up as t → 1+.

Now if x ∈ M \ 2B0, there exists k ∈ N∗ such that x ∈ Ck(B0) := 2k+1B0 \ 2kB0. Let ϕ ∈
T1(x) and take a ball B = B(x, r) such that ϕ is supported in and satisfies (11) with respect to B .
Using the moment condition for a and the Lipschitz bound on ϕ, we get
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∣∣∣∣

∫

B

aϕ dµ

∣∣∣∣ =
∣∣∣∣

∫

B∩B0

a(y)
(
ϕ(y) − ϕ(x0)

)
dµ(y)

∣∣∣∣

! C

∫

B∩B0

∣∣a(y)
∣∣d(y, x0)

rµ(B)
dµ(y)

! C
r0

rµ(B)
‖a‖1.

Note that for the integral not to vanish we must have B ∩ B0 0= ∅. We claim that this implies

r > 2k−1r0 and 2k+1B0 ⊂ 8B. (16)

To see this, let y ∈ B ∩ B0. Then r > d(y, x) " d(x, x0) − d(y, x0) " 2kr0 − r0 " 2k−1r0. Thus
if d(z, x0) < 2k+1r0 then d(z, x) ! d(z, x0) + d(x, x0) < 2k+1r0 + 2k+1r0 < 8r and we deduce
that 2k+1B0 ⊂ 8B . We then have

µ
(
2k+1B0

)
! C8sµ(B)

by (4). Using this estimate and the fact that ‖a‖1 ! 1, we have

∫

x /∈2B0

∣∣a+∣∣(x) dµ =
∑

k!1

∫

Ck(B0)

∣∣a+∣∣(x) dµ

! C‖a‖1
∑

k!1

8s21−k

µ(2k+1B0)
µ

(
Ck(B0)

)

! C8s
∑

k!1

21−k

! C.

Thus a+ ∈ L1 with ‖a+‖1 ! Ct .
Now for f ∈ H1,ato, take an atomic decomposition of f as in (13). By the convergence of the

series in L1, we have, for each x and each ϕ ∈ T1(x),

∣∣∣∣

∫
f ϕ dµ

∣∣∣∣ !
∑

|λj |
∣∣∣∣

∫
ajϕ dµ

∣∣∣∣ !
∑

|λj |a+
j (x)

so f + is pointwise dominated by
∑ |λj |a+

j , giving

∥∥f +∥∥
1 !

∑

j

|λj |
∥∥a+

j

∥∥
1 ! Ct

∑

j

|λj |.

Taking the infimum over all the atomic decompositions of f yields ‖f +‖1 ! Ct‖f ‖H1 . !
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The proof of the converse, namely that if f + ∈ L1 then f ∈ H1,ato, relies on an atomic de-
composition and will follow from the proof of Proposition 3.4 below.

2.5. Atomic Hardy–Sobolev spaces

In [5], the authors defined atomic Hardy–Sobolev spaces. Let us recall their definition of
homogeneous Hardy–Sobolev atoms. These are similar to H1 atoms but instead of the usual Lt

size condition they are bounded in the Sobolev space Ẇ 1
t .

Definition 2.11. (See [5].) For 1 < t ! ∞, 1
t + 1

t ′ = 1, we say that a function a is a homogeneous
Hardy–Sobolev (1, t)-atom if

1. a is supported in a ball B ,

2. ‖a‖Ẇ 1
t

:= ‖∇a‖t ! µ(B)
− 1

t ′ , and
3.

∫
a dµ = 0.

They then define, for every 1 < t ! ∞, the homogeneous Hardy–Sobolev space ḢS
1
t,ato as fol-

lows: f ∈ ḢS
1
t,ato if there exists a sequence of homogeneous Hardy–Sobolev (1, t)-atoms {aj }j

such that

f =
∑

j

λj aj (17)

with
∑

j |λj | < ∞. This space is equipped with the semi-norm

‖f ‖
ḢS

1
t,ato

= inf
∑

j

|λj |,

where the infimum is taken over all possible decompositions (17).

Remarks 2.12.

1. Since condition 2 implies that the homogeneous Sobolev Ẇ 1
1 semi-norm of the atoms is

bounded by a constant, the sum in (17) converges in Ẇ 1
1 and therefore we can consider

ḢS
1
t,ato as its subspace.

2. Since we are working with homogeneous spaces, we can modify functions by constants
so the cancellation conditions are, in a sense, irrelevant. As we will see below, and when
comparing to other definitions in the literature (see, for example, [25]), condition 3 can be
replaced by one of the following:

3′. ‖a‖1 ! r(B), or

3′′. ‖a‖t ! r(B)µ(B)
− 1

t ′ ,

where r(B) is the radius of the ball B . Clearly condition 3′′ implies 3′, and conditions 2 and 3
imply 3′ (respectively 3′′) if we assume the Poincaré inequality (P1) (respectively (Pt )). It
is most common to consider the case t = 2 under the assumption (P2).



Author's personal copy

N. Badr, G. Dafni / Journal of Functional Analysis 259 (2010) 1380–1420 1391

3. As mentioned in the introduction, from Theorem 1.4 we have that under (P1) all the spaces
ḢS

1
t,ato can be identified as one space ḢS

1
ato. As we will see, in this case the atomic decom-

position can be taken with condition 3′ instead of 3.

3. Atomic decomposition of Ṁ1
1 and comparison with ḢS

1
t,ato

We begin by proving that under the Poincaré inequality (P1), ḢS
1
ato ⊂ Ṁ1

1 . While under this

assumption the space ḢS
1
ato is equivalent to any one of the spaces ḢS

1
t,ato defined above, if we

want to consider the norms we need to fix some t > 1.

Proposition 3.1. Let M be a complete Riemannian manifold satisfying (D) and (P1). Let 1 <

t ! ∞ and a be a homogeneous Hardy–Sobolev (1, t)-atom. Then a ∈ Ṁ1
1 with ‖a‖Ṁ1

1
! Ct , the

constant C depending only on t , the doubling constant and the constant appearing in (P1), and
independent of a.

Consequently ḢS
1
t,ato ⊂ Ṁ1

1 with

‖f ‖Ṁ1
1

! Ct‖f ‖
ḢS

1
t,ato

.

Proof. Let a be an (1, t)-atom supported in a ball B0 = B(x0, r0). We want to prove that
Na ∈ L1. For x ∈ 2B0 we have, using (P1),

Na(x) = sup
B: x∈B

1
r(B)

−
∫

B

|a − aB |dµ ! C sup
B: x∈B

−
∫

B

|∇a|dµ

= CM
(
|∇a|

)
(x).

Then, exactly as in (15), by the Lt boundedness ofM for t > 1 (with a constant depending on t),
and properties 1 and 2 of (1, t)-Hardy–Sobolev atoms,

∫

2B0

∣∣Na(x)
∣∣dµ ! Cµ(B0)

1/t ′
( ∫

2B0

(
M

(
|∇a|

))t
dµ

)1/t

! Ctµ(B0)
1/t ′ ‖∇a‖t ! Ct .

Now if x /∈ 2B0, then there exists k ∈ N∗ such that x ∈ Ck(B0) := 2k+1B0 \ 2kB0. Let B =
B(y, r(B)) be a ball containing x. Then

1
r(B)

−
∫

B

|a − aB |dµ = 1
r(B)

1
µ(B)

( ∫

B∩B0

|a − aB |dµ +
∫

B∩Bc
0

|aB |dµ

)

! 3
r(B)

1
µ(B)

∫

B∩B0

|a|dµ. (18)
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From (16) we have that B ∩ B0 0= ∅ implies r(B) > 2k−1r0 and µ(2k+1B0) ! C8sµ(B). This,
together with the doubling and Poincaré assumptions (D) and (P1), the cancellation condition 3
for a and the size condition 2 for ∇a, yield

Na(x) ! 3
2k−1r0

8s

µ(2k+1B0)

∫

B0

|a|dµ ! 3
2k−1

8s

µ(2k+1B0)

∫

B0

|∇a|dµ ! 3
2−k+18s

µ(2k+1B0)
.

Note that at this point we could have used condition 3′ (see Remarks 2.12) instead of conditions
2,3, (D) and (P1).

Therefore
∫

x /∈2B0

|Na|(x) dµ =
∑

k!1

∫

Ck(B0)

|Na|(x) dµ

! C8s
∑

k!1

2−k+1
∫

Ck(B0)

1
µ(2k+1B0)

dµ(x)

! C8s
∑

k!1

2−k+1 = Cs.

Thus Na ∈ L1 with ‖Na‖1 ! Cs,t .
Now if f ∈ ḢS

1
t,ato, take an atomic decomposition of f : f = ∑

j λj aj with aj (1, t)-atoms
and

∑
j |λj | < ∞. Then the sum

∑
j λjNaj converges absolutely in L1 so by Theorem 1.3

the sequence of functions fk = ∑k
j=1 λj aj has a limit, g, in the Banach space Ṁ1

1 . By Proposi-
tion 2.6, this implies convergence in Ẇ 1

1 . Since (as pointed out in Remarks 2.12) the convergence
of the decomposition f = ∑

j λj aj also takes place in Ẇ 1
1 , we get that f = g in Ẇ 1

1 . This allows
us to consider f as a (locally integrable) element of Ṁ1

1 , take Nf and estimate

‖Nf ‖1 !
∑

j

|λj |‖Naj‖1 ! Ct

∑

j

|λj |.

Taking the infimum over all the atomic decompositions of f yields ‖Nf ‖1 ! Ct‖f ‖
ḢS

1
t,ato

. !

Remark 3.2. As pointed out in the proof, Proposition 3.1 remains valid if we take, for the defini-
tion of a (1, t)-atom, instead of condition 3 of Definition 2.11, condition 3′ or 3′′ of Remarks 2.12.

Now for the converse, that is, to prove that Ṁ1
1 ⊂ ḢS

1
t,ato, we establish an atomic decomposi-

tion for functions f ∈ Ṁ1
1 . To attain this goal, we need a Calderón–Zygmund decomposition for

such functions. We refer to [2] for the original proof of the Calderón–Zygmund decomposition
for Sobolev spaces on Riemannian manifolds.

Proposition 3.3 (Calderón–Zygmund decomposition). Let M be a complete Riemannian mani-
fold satisfying (D). Let f ∈ Ṁ1

1 , s
s+1 < q < 1 and α > 0. Then one can find a collection of balls

{Bi}i , functions bi ∈ W 1
1 and a Lipschitz function g such that the following properties hold:
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f = g +
∑

i

bi ,

∣∣∇g(x)
∣∣ ! Cα for µ-a.e. x ∈ M, (19)

suppbi ⊂ Bi, ‖bi‖1 ! Cαµ(Bi)ri, ‖∇bi‖q ! Cαµ(Bi)
1/q,

∑

i

µ(Bi) ! C

α

∫
Nf dµ, (20)

and

∑

i

χBi ! K. (21)

The constants C and K only depend on the constant in (D).

Proof. Let f ∈ Ṁ1
1 , s

s+1 < q < 1 and α > 0. Consider the open set

Ω =
{
x: Mq(Nf )(x) > α

}
.

If Ω = ∅, then set

g = f , bi = 0 for all i

so that (19) is satisfied according to the Lebesgue differentiation theorem. Otherwise

µ(Ω) ! C

α

∫

M

Mq(Nf )dµ

! C

α

∫

M

(
M(Nf )q

)1/q
dµ

! C

α

∫

M

Nf dµ < ∞. (22)

We used the fact the M is L1/q bounded since 1/q > 1 and Theorem 1.3. In particular Ω 0= M

as µ(M) = +∞.
Let F be the complement of Ω . Since Ω is an open set distinct from M , let {Bi}i be a Whitney

decomposition of Ω (see [10]). That is, the Bi are pairwise disjoint, and there exist two constants
C2 > C1 > 1, depending only on the metric, such that

1. Ω = ⋃
i Bi with Bi = C1Bi , and the balls Bi have the bounded overlap property;

2. ri = r(Bi) = 1
2 d(xi,F ) and xi is the center of Bi ;

3. each ball Bi = C2Bi intersects F (C2 = 4C1 works).
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For x ∈ Ω , denote Ix = {i: x ∈ Bi}. By the bounded overlap property of the balls Bi , we have
that 3Ix ! K , and moreover, fixing k ∈ Ix , 1

ri
! rk ! 3ri and Bi ⊂ 7Bk for all i ∈ Ix .

Condition (21) is nothing but the bounded overlap property of the Bi ’s and (20) follows from
(21) and (22). Note also that using the doubling property, we have

∫

Bi

|Nf |q dµ ! Cµ(Bi) −
∫

Bi

|Nf |q dµ ! µ(Bi)Mq
q(Nf )(y) ! Cαqµ(Bi) (23)

for some y ∈ Bi ∩F , whose existence is guaranteed by property 3 of the Whitney decomposition.
Let us now define the functions bi . For this, we construct a partition of unity {χi}i of Ω

subordinate to the covering {Bi}i . Each χi is a Lipschitz function supported in Bi with 0 ! χi ! 1
and ‖∇χi‖∞ ! C

ri
(see for example [13], p. 1908).

We set bi = (f − ci)χi where ci := 1
χi (Bi )

∫
Bi

fχi dµ and χi (Bi) means
∫
Bi
χi dµ, which is

comparable to µ(Bi). Note that by the properties of the χi we have the trivial estimate

‖bi‖1 !
∫

Bi

|f − ci |dµ !
∫

Bi

|f |dµ + µ(Bi)

χi (Bi)

∫

Bi

|f |dµ ! C

∫
1Bi |f |dµ, (24)

but we need a better estimate, as follows:

‖bi‖1 ! 1
χi (Bi)

∫

Bi

∣∣∣∣

∫

Bi

(
f (x) − f (y)

)
χi (y) dµ(y)

∣∣∣∣dµ(x)

! 1
χi (Bi)

∫

Bi

∫

Bi

∣∣f (x) − f (y)
∣∣dµ(y)dµ(x)

! 2
µ(Bi)

χi (Bi)

∫

Bi

∣∣f (x) − fBi

∣∣dµ(x)

! Cri

(∫

Bi

|Nf |q dµ

)1/q

µ(Bi)

! CriMq(Nf )(y)µ(Bi)

! Criαµ(Bi), (25)

as in (23). Here we have used the Sobolev–Poincaré inequality (6) with λ = 4 and the fact that
q∗ > 1.

Together with the estimate on ‖bi‖1, we use the fact that |∇f | is in L1 (see Proposition 2.6)
to bound ‖∇bi‖1 and conclude that bi ∈ W 1

1 :

‖∇bi‖1 !
∫

Bi

|f − ci ||∇χi |dµ +
∫

Bi

|∇f |dµ
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! C
1
ri

riµ(Bi)

(
−
∫

4Bi

|Nf |q dµ

)1/q

+
∫

Bi

|∇f |dµ

! Cαµ(Bi) +
∫

Bi

|∇f |dµ < ∞. (26)

Similarly, we can estimate bi in the Sobolev space Ẇ 1
q ; note again that by Proposition 2.6,

|∇f | is in L1 and can be bounded pointwise µ-a.e. by Nf :

‖∇bi‖q !
∥∥∣∣(f − ci)∇χi

∣∣∥∥
q

+
∥∥|∇f |χi

∥∥
q

! µ(Bi)
1
q −1

χi (Bi)

∫

Bi

∫

Bi

∣∣f (x) − f (y)
∣∣χi (y)

∣∣∇χi (x)
∣∣dµ(y)dµ(x) +

(∫

Bi

|∇f |q dµ

)1/q

! C

(
−
∫

Bi

|Nf |q dµ

)1/q

µ(Bi)
1/q +

(∫

Bi

|Nf |q dµ

)1/q

! Cαµ(Bi)
1/q (27)

by (23).
Set now g = f − ∑

i bi . Since the sum is locally finite on Ω , g is defined almost everywhere
on M and g = f on F . Observe that g is a locally integrable function on M . Indeed, let ϕ ∈ L∞
with compact support. Since d(x,F ) " ri for x ∈ suppbi , we obtain

∫ ∑

i

|bi ||ϕ|dµ !
(∫ ∑

i

|bi |
ri

dµ

)
sup
x∈M

(
d(x,F )

∣∣ϕ(x)
∣∣).

Hence by (25) and the bounded overlap property,

∫ ∑

i

|bi ||ϕ|dµ ! Cα
∑

i

µ(Bi) sup
x∈M

(
d(x,F )

∣∣ϕ(x)
∣∣) ! CKαµ(Ω) sup

x∈M

(
d(x,F )

∣∣ϕ(x)
∣∣).

Since f ∈ L1,loc, we conclude that g ∈ L1,loc.
It remains to prove (19). Indeed, using the fact that on Ω we have

∑
χi = 1 and

∑∇χi = 0,
we get

∇g = ∇f −
∑

i

∇bi

= ∇f −
(∑

i

χi

)
∇f −

∑

i

(f − ci)∇χi

= 1F ∇f −
∑

i

(f − ci)∇χi . (28)
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From Proposition 2.6, the definition of F and the Lebesgue differentiation theorem, we have
that 1F |∇f | ! 1F Nf ! α, µ-a.e. We claim that a similar estimate holds for

h =
∑

i

(f − ci)∇χi ,

i.e. |h(x)| ! Cα for all x ∈ M . For this, note first that by the properties of the balls Bi and the
partition of unity, h vanishes on F and the sum defining h is locally finite on Ω . Then fix x ∈Ω

and let Bk be some Whitney ball containing x. Again using the fact that
∑

i ∇χi (x) = 0, we can
replace f (x) by any constant in the sum above, so we can write

h(x) =
∑

i∈Ix

(
−
∫

7Bk

f dµ − ci

)
∇χi (x).

For all i, k ∈ Ix , by the construction of the Whitney collection, the balls Bi and Bk have equiva-
lent radii and Bi ⊂ 7Bk . Thus

∣∣∣∣ci − −
∫

7Bk

f dµ

∣∣∣∣ ! 1
χi (Bi)

∫

Bi

∣∣∣∣f − −
∫

7Bk

f dµ

∣∣∣∣χi dµ

# −
∫

7Bk

|f − f7Bk |dµ

# rk

(
−
∫

7λBk

|Nf |q dµ

)1/q

# αrk. (29)

We used (D), (6) , χi (Bi) 2 µ(Bi) and (23) for 7Bk . Hence

∣∣h(x)
∣∣ #

∑

i∈Ix

αrk(ri)
−1 ! CKα. ! (30)

Proposition 3.4. Let M be a complete Riemannian manifold satisfying (D). Let f ∈ Ṁ1
1 . Then

for all s
s+1 < q < 1, q∗ = sq

s−q , there is a sequence of homogeneous (1, q∗) Hardy–Sobolev atoms
{aj }j , and a sequence of scalars {λj }j , such that

f =
∑

j

λj aj in Ẇ 1
1 , and

∑
|λj | ! Cq‖f ‖Ṁ1

1
.

Consequently, Ṁ1
1 ⊂ ḢS

1
q∗,ato with ‖f ‖

ḢS
1
q∗,ato

! Cq‖f ‖Ṁ1
1
.

Remark 3.5. Note that for the inclusion Ṁ1
1 ⊂ ḢS

1
q∗,ato, we do not need to assume any additional

hypothesis, such as a Poincaré inequality, on the doubling manifold.
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Proof of Proposition 3.4. Let f ∈ Ṁ1
1 . We follow the general scheme of the atomic decompo-

sition for Hardy spaces, found in [29], Section III.2.3. For every j ∈ Z∗, we take the Calderón–
Zygmund decomposition, Proposition 3.3, for f with α = 2j . Then

f = gj +
∑

i

b
j
i

with b
j
i , gj satisfying the properties of Proposition 3.3.

We want to write

f =
∞∑

−∞

(
gj+1 − gj

)
(31)

in Ẇ 1
1 . First let us see that gj → f in as j → ∞. Indeed, since the sum is locally finite we can

write

∥∥∇
(
gj − f

)∥∥
1 =

∥∥∥∥∇
(∑

i

b
j
i

)∥∥∥∥
1
!

∑

i

∥∥∇b
j
i

∥∥
1.

By (26),

∑

i

∥∥∇b
j
i

∥∥
1 ! CK2jµ(Ωj ) + K

∫

Ωj

|∇f |dµ

= Ij + IIj . (32)

When j → ∞, Ij → 0 since
∑

j 2jµ(Ωj ) ≈
∫
Mq(Nf )dµ < ∞. This also implies Mq(Nf )

is finite µ-a.e., hence
⋂

Ωj = ∅ so IIj → 0, since |∇f | ∈ L1.
When j → −∞, we want to show ‖∇gj‖1 → 0. Breaking ∇g up as in (28), we know that

∫

Fj

∣∣∇gj
∣∣ =

∫
1Fj |∇f | !

∫

{Nf "2j }

Nf → 0, (33)

since Nf ∈ L1. For the other part we have, by (30),

∫

Ωj

∣∣∇gj
∣∣ =

∫ ∣∣h(x)
∣∣ ! CK2jµ

(
Ωj

)
→ 0 (34)

from the convergence of
∑

2jµ(Ωj ), as above.
Denoting gj+1 − gj by 1j , we have supp1j ⊂ Ωj so using the partition of unity {χ j

k } cor-
responding to the Whitney decomposition for Ωj , we can write f = ∑

j,k 1
jχ

j
k in Ẇ 1

1 . Let us

compute ‖1jχ
j
k ‖Ẇ 1

q∗ . We have

∇
(
1jχ

j
k

)
=

(
∇1j

)
χ

j
k + 1j∇χ

j
k .
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From the estimate ‖∇gj‖∞ ! C2j it follows that (−
∫
B

j
k
|∇1j |q∗

dµ)1/q∗ ! C2j , while

1j∇χ
j
k =

( ∑

i:Bj
k ∩B

j
i 0=∅

(
f − c

j
i

)
χ

j
i −

∑

l:Bj
k ∩B

j+1
l 0=∅

(
f − c

j+1
l

)
χ

j+1
l

)
∇χ

j
k . (35)

Observe that since Ωj+1 ⊂ Ωj , for a fixed k, the balls B
j+1
l with B

j
k ∩ B

j+1
l 0= ∅ must have

radii r
j+1
l ! cr

j
k for some constant c. Therefore B

j+1
l ⊂ (B

j
k )′ := (1 + 2c)B

j
k . Moreover, by

the properties of the Whitney balls, given λ > 1 we can take c sufficiently large so that (B
j
k )′

contains λB
j
i for all B

j
i intersecting B

j
k . Using this fact as well as (6) and (23), and proceeding

in the same way as in the derivations of (25) and (29), we get

(
r
j
k

)q∗
∫

B
j
k

∣∣1j∇χ
j
k

∣∣q∗
dµ ! Kq∗−1

∫

B
j
k

(∑

i

1
B

j
i

∣∣f − c
j
i

∣∣q∗
+

∑

l

1
B

j+1
l

∣∣f − c
j+1
l

∣∣q∗
)

dµ

! Kq∗−1
∑

i: B
j
k ∩B

j
i 0=∅

∫

B
j
i

∣∣f − c
j
i

∣∣q∗
dµ

+ Kq∗−1
∫

(B
j
k )′

∑

l

1
B

j+1
l

∣∣f − f
(B

j
k )′ + f

(B
j
k )′ − c

j+1
l

∣∣q∗
dµ

# Kq∗−1
∑

i: B
j
k ∩B

j
i 0=∅

(
r
j
i 2j

)q∗
µ

(
B

j
i

)
+ Kq∗(

r
j
k 2j

)q∗
µ

((
B

j
k

)′)

# Kq∗(
r
j
k 2j

)q∗
µ

((
B

j
k

)′)
. (36)

Therefore

(
−
∫

(
B

j
k

)′

∣∣1j∇χ
j
k

∣∣q∗
dµ

) 1
q∗

! CK2j . (37)

The 1jχ
j
k ’s seem to be a good choice for our atoms but unfortunately they do not satisfy the

cancellation condition. If we wanted to get atoms with property 3′ (see Remarks 2.12) instead
of the vanishing moment condition 3, we could use (25) to bound the L1 norm of 1jχ

j
k , then

normalize as below. However, if we want to obtain the vanishing moment condition, we need to
consider instead the following decomposition of the 1j ’s: 1j = ∑

k 1
j
k with

1
j
k =

(
f − c

j
k

)
χ

j
k −

∑

l

(
f − c

j+1
l

)
χ

j+1
l χ

j
k +

∑

l

ck,lχ
j+1
l , (38)
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where

ck,l := 1

χ
j+1
l (B

j+1
l )

∫

B
j+1
l

(
f − cl+1

j

)
χ

j+1
l χ

j
k dµ.

First, this decomposition holds since
∑

k χ
j
k = 1 on the support of χ j+1

l and
∑

k ck,l = 0. Fur-
thermore, the cancellation condition

∫

M

1
j
k dµ = 0

follows from the fact that
∫
M(f − c

j
k )χ

j
k dµ = 0 and the definition of ck,l , which immediately

gives
∫
((f − c

j+1
l )χ

j+1
l χ

j
k − ck,lχ

j+1
l ) dµ = 0.

Noting that 1j
k is supported in the ball (B

j
k )′ (see above), let us estimate ‖∇1

j
k‖Lq∗ ((B

j
k )′).

Write

∇1
j
k = (∇f )χ

j
k +

(
f − c

j
k

)
∇χ

j
k −

∑

l

(
f − c

j+1
l

)
∇χ

j+1
l χ

j
k

−
∑

l

(
f − c

j+1
l

)
χ

j+1
l ∇χ

j
k − (∇f )1Ωj+1χ

j
k +

∑

l

ck,l∇χ
j+1
l

= ∇f (1 − 1Ωj+1)χ
j
k +

((
f − c

j
k

)
−

∑

l

(
f − c

j+1
l

)
χ

j+1
l

)
∇χ

j
k

−
∑

l

(
f − c

j+1
l

)
∇χ

j+1
l χ

j
k +

∑

l

ck,l∇χ
j+1
l .

Since the first term, concerning the gradient of f , is supported in B
j
k ∩ Fj+1, we can use Propo-

sition 2.6, the definition of Fj+1 and the Lebesgue differentiation theorem to bound it, namely

∫

B
j
k

|∇f |q∗
dµ ! 2(j+1)q∗

µ
(
B

j
k

)
.

Recalling (35), we see that the estimate of the Lq∗ norm of the second term is given by (37). The
third term can be handled by the pointwise estimate (30):

∥∥∥∥
∑

l

(
f − c

j+1
l

)
∇χ

j+1
l χ

j
k

∥∥∥∥
q∗

! CK2j+1µ
(
B

j
k

)1/q∗
.
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For
∑

l ck,l∇χ
j+1
l , note first that ck,l = 0 when B

j
k ∩ B

j+1
l = ∅ and |ck,l | ! C2j r

j+1
l thanks to

(25). By the properties of the partition of unity, this gives |ck,l∇χ
j+1
l | ! C2j for every l, and as

the sum has at most K terms at each point we get the pointwise bound

∣∣∣∣
∑

l

ck,l∇χ
j+1
l

∣∣∣∣ ! CK2j ,

from which it follows that

∥∥∥∥
∑

l

ck,l∇χ
j+1
l

∥∥∥∥
q∗

! CK2jµ
((

B
j
k

)′)1/q∗
.

Thus

∥∥∇1
j
k

∥∥
q∗ ! γ 2jµ

((
B

j
k

)′)1/q∗
. (39)

We now set a
j
k = γ−12−jµ((B

j
k )′)−11

j
k and λj,k = γ 2jµ((B

j
k )′). Then f = ∑

j,k λj,ka
j
k ,

with a
j
k being (1, q∗) homogeneous Hardy–Sobolev atoms and

∑

j,k

|λj,k| = γ
∑

j,k

2jµ
((

B
j
k

)′)

! γ ′ ∑

j,k

2jµ
(
B

j
k

)

! γ ′ ∑

j

2jµ
({

x: Mq(Nf )(x) > 2j
})

! C

∫
Mq(Nf )dµ

! Cq‖Nf ‖1 ∼ ‖f ‖Ṁ1
1
.

We used that µ((B
j
k )′) ∼ µ(B

j
k ) thanks to (D), and the fact that the B

j
k are disjoint. !

Remark 3.6. As pointed out in the proof following (37), we can get an atomic decomposition
as in Proposition 3.4, but replacing the vanishing moment condition 3 of the atoms from Defini-
tion 2.11 by condition 3′ in Remarks 2.12. This does not assume a Poincaré inequality.

Conclusion. Let M be a complete Riemannian manifold satisfying (D). Then

1. for all s
s+1 < q < 1,

Ṁ1
1 ⊂ ḢS

1
q∗,ato.
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2. (Theorem 1.5) If moreover we assume (P1), then

Ṁ1
1 = ḢS

1
t,ato

for all t > 1.

4. The nonhomogeneous case

We begin by recalling the definitions of the nonhomogeneous versions of the spaces consid-
ered above.

Definition 4.1. (See [16].) Let 1 ! p ! ∞. The Sobolev space M1
p is the set of all functions

u ∈ Lp such that there exists a measurable function g " 0, g ∈ Lp , satisfying

∣∣u(x) − u(y)
∣∣ ! d(x, y)

(
g(x) + g(y)

)
, µ-a.e. (40)

That is, M1
p = Lp ∩ Ṁ1

p . We equip M1
p with the norm

‖u‖M1
p

= ‖u‖p + inf
g satisfies (40)

‖g‖p.

From Theorem 1.3, we deduce that for 1 ! p ! ∞,

M1
p = {f ∈ Lp: Nf ∈ Lp}

with equivalent norm

‖f ‖M1
p

= ‖f ‖p + ‖Nf ‖p.

Definition 4.2. We define the Hardy–Sobolev space M̃1
1 as the set of all functions u ∈ H1,max

such that there exists a measurable function g " 0, g ∈ L1, satisfying

∣∣u(x) − u(y)
∣∣ ! d(x, y)

(
g(x) + g(y)

)
µ-a.e. (41)

We equip M̃1
1 with the norm

‖u‖M̃1
1

=
∥∥u+∥∥

1 + inf
g satisfies (41)

‖g‖1.

We have M̃1
1 = H1,max ∩ Ṁ1

1 .

Again by Theorem 1.3,

M̃1
1 = {f ∈ H1,max: Nf ∈ L1},

with equivalent norm

‖f ‖M̃1
1

=
∥∥f +∥∥

1 + ‖Nf ‖1.
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By (12) and Corollary 2.7, we have

M̃1
1 ⊂ M1

1 ⊂ W 1
1 .

In [5], the authors also defined the nonhomogeneous atomic Hardy–Sobolev spaces. Let us
recall their definition.

Definition 4.3. (See [5].) For 1 < t ! ∞, we say that a function a is a nonhomogeneous Hardy–
Sobolev (1, t)-atom if

1. a is supported in a ball B ,

2. ‖a‖W 1
t

:= ‖a‖t + ‖∇a‖t ! µ(B)
− 1

t ′ ,
3.

∫
a dµ = 0.

They then define, for every 1 < t ! ∞, the nonhomogeneous Hardy–Sobolev space HS1
t,ato as

follows: f ∈ HS1
t,ato if there exists a sequence of nonhomogeneous Hardy–Sobolev (1, t)-atoms

{aj }j such that f = ∑
j λj aj with

∑
j |λj | < ∞. This space is equipped with the norm

‖f ‖HS1
t,ato

:= inf
∑

j

|λj |,

where the infimum is taken over all such decompositions.
We also recall the following comparison between these atomic Hardy–Sobolev spaces.

Theorem 4.4. (See [5].) Let M be a complete Riemannian manifold satisfying (D) and a
Poincaré inequality (Pq) for some q > 1. Then HS1

t,ato ⊂ HS1
∞,ato for every t " q and there-

fore HS1
t1,ato = HS1

t2,ato for every q ! t1, t2 ! ∞.

4.1. Atomic decomposition of M̃1
1 and comparison with HS1

t,ato

As in the homogeneous case, under the Poincaré inequality (P1), HS1
t,ato ⊂ M̃1

1 :

Proposition 4.5. Let M be a complete Riemannian manifold satisfying (D) and (P1). Let 1 <

t ! ∞ and a be a nonhomogeneous Hardy–Sobolev (1, t)-atom. Then a ∈ M̃1
1 with ‖a‖M̃1

1
! Ct ,

the constant depending only on t , the doubling constant and the constant appearing in (P1) , but
not on a. Consequently HS1

t,ato ⊂ M̃1
1 with

‖f ‖M̃1
1

! Ct‖f ‖HS1
t,ato

.

Proof. The proof follows analogously to that of Proposition 3.1, noting that in the nonhomoge-
neous case every Hardy–Sobolev (1, t)-atom a is an H1 atom and so by (14) is in H1,max with
norm bounded by a constant. !

Now for the converse, that is, to prove that M̃1
1 ⊂ HS1

t,ato, we establish, as in the homogeneous
case, an atomic decomposition for functions f ∈ M̃1

1 using a Calderón–Zygmund decomposition
for such functions.
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Proposition 4.6 (Calderón–Zygmund decomposition). Let M be a complete Riemannian mani-
fold satisfying (D). Let f ∈ M̃1

1 , s
s+1 < q < 1 and α > 0. Then one can find a collection of balls

{Bi}i , functions bi ∈ W 1
1 and a Lipschitz function g such that the following properties hold:

f = g +
∑

i

bi ,

∣∣g(x)
∣∣ +

∣∣∇g(x)
∣∣ ! Cα for µ-a.e x ∈ M,

suppbi ⊂ Bi, ‖bi‖1 ! Cαµ(Bi)ri,
∥∥bi + |∇bi |

∥∥
q

! Cαµ(Bi)
1/q,

∑

i

µ(Bi) ! C

α

∫ (
f + + Nf

)
dµ,

and
∑

i

χBi ! K.

The constants C and K only depend on the constant in (D).

Proof. The proof follows the same steps as that of Proposition 3.3. We will only mention the
changes that occur due to the nonhomogeneous norm. Let f ∈ M̃1

1 , s
s+1 < q < 1 and α > 0. The

first change is that we consider the open set

Ω =
{
x: Mq

(
f + + Nf

)
(x) > α

}
.

We define, as in the homogeneous case, the partition of unity χi corresponding to the Whit-
ney decomposition {Bi}i of Ω , the functions bi = (f − ci)χi with ci := 1

χi (Bi )

∫
Bi

fχi dµ, and
g = f − ∑

bi . In addition to the previous estimates (25)–(27) for bi and ∇bi , we need here to
estimate ‖bi‖q .

We begin by showing that for x ∈Ω ,

|ci | ! Cα (42)

for every i ∈ Ix . Set ϕi = γ χi
χi (Bi )

. From the properties of χi , in particular since χi (Bi) ≈ µ(Bi),
we see that we can choose γ (independent of i) so that ϕi ∈ T1(y) and thus

|ci | ! γ−1f +(y) for all y ∈ Bi.

Recall that the ball Bi = C2Bi has nonempty intersection with F . Taking y0 ∈ F ∩ Bi , we get,
by integrating the inequality above,

|ci | ! γ−1
(

−
∫

Bi

(
f +)q

dµ

)1/q

! C

(
−
∫

Bi

(
f +)q

dµ

)1/q

! CMq

(
f +)

(y0) ! Cα.
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Combining this with (12), we have

‖bi‖q !
(∫

Bi

|f − ci |q
) 1

q

!
(

−
∫

Bi

∣∣f +∣∣q dµ

) 1
q

µ(Bi)
1
q + |ci |µ(Bi)

1
q ! Cαµ(Bi)

1
q .

For g, we need to prove that ‖g‖∞ ! Cα. We have

g = f 1F +
∑

i

ciχi . (43)

For the first term we have |f | ! f + !Mq(f +) at all Lebesgue points and thus |f 1F | ! α,
µ-a.e. For the second term, thanks to the bounded overlap property and (42), we get the desired
estimate. !

Proposition 4.7. Let M be a complete Riemannian manifold satisfying (D). Let f ∈ M̃1
1 . Then

for all s
s+1 < q < 1, there is a sequence of (1, q∗) (q∗ = sq

s−q ) nonhomogeneous atoms {aj }j ,
and a sequence of scalars {λj }j , such that

f =
∑

j

λj aj in W 1
1 , and

∑
|λj | ! Cq‖f ‖M̃1

1
.

Consequently, M̃1
1 ⊂ HS1

q∗,ato with ‖f ‖HS1
q∗,ato

! Cq‖f ‖M̃1
1
.

Proof. Again, we will only mention the additional properties that one should verify in compari-
son with the proof of Proposition 3.4.

First let us see that (31) holds in the nonhomogeneous Sobolev space W 1
1 . We already showed

convergence in the homogeneous Ẇ 1
1 norm so we only need to verify convergence in L1. By (24)

∥∥gj − f
∥∥

1 !
∑

i

∥∥b
j
i

∥∥
1 ! C

∑

i

∫
1

B
j
i
|f |dµ ! CK

∫

Ωj

|f |dµ → 0, (44)

as j → ∞. Here we’ve used the properties of the χ
j
i , the bounded overlap property of the B

j
i ,

the fact that f ∈ L1 and that
⋂

Ωj = ∅ sinceMq(f + + Nf ) is finite µ-a.e.
Taking now j → −∞, we write, by (43), (42), and the bounded overlap property

∫ ∣∣gj
∣∣ !

∫

Fj

|f | +
∫ ∑

i

∣∣cj
i

∣∣χ j
i !

∫

{Mq (f +)"2j }

Mq

(
f +)

+ CK2j
∣∣Ωj

∣∣ → 0. (45)

For the functions 1j = gj+1 − gj , we have

∥∥1jχ
j
k

∥∥
q∗ ! C2jµ

(
B

j
k

) 1
q∗

since by Proposition 4.6, ‖gj‖∞ ! C2j . This estimate also applies when we replace 1jχ
j
k by the

moment-free “pre-atoms”
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1
j
k :=

(
f − c

j
k

)
χ

j
k −

∑

l

(
f − c

j+1
l

)
χ

j+1
l χ

j
k +

∑

l

ck,lχ
j+1
l

= f

(
1 −

∑

l

χ
j+1
l

)
χ

j
k + c

j
kχ

j
k +

∑

l

c
j+1
l χ

j+1
l χ

j
k +

∑

l

ck,lχ
j+1
l .

The first term, involving f , is f 1Fj+1χ
j
k which is bounded by 2j+1 since |f | ! f + !Mq(f +),

µ-a.e. For the second and third terms, we use (42) and the bounded overlap property of the B
j+1
l .

Finally, that

|ck,l | =
∣∣∣∣

1

χ
j+1
l (B

j+1
l )

∫

B
j+1
l

(
f − cl+1

j

)
χ

j+1
l χ

j
k dµ

∣∣∣∣ ! c2j

follows by arguing as in the proof of (42), since
χ

j+1
l χ

j
k

χ
j+1
l (B

j+1
l )

can be considered as a multiple

of some ϕ ∈ T1(x) for every x ∈ B
j+1
l , due to the fact that |∇χ

j
k | # (r

j
k )−1 # (r

j+1
l )−1 when

B
j+1
l ∩ B

j
k 0= ∅.

Thus we obtain the stronger L∞ estimate

∥∥1j
k

∥∥
∞ ! C2j (46)

from which we conclude, as 1
j
k is supported in the ball (B

j
k )′ = (1 + 2c)B

j
k , that ‖1j

k‖q∗ !
C2jµ(B

j
k )

1
q∗ .

The rest of the proof is exactly the same as that of Proposition 3.4. !

Now we can state the converse inclusion from Theorem 2.10:

Corollary 4.8. Let M be a complete Riemannian manifold satisfying (D). Then

H1,max(M) ⊂ H1,ato(M)

with

‖f ‖H1,ato #
∥∥f +∥∥

1,

for any choice of t in the definition of H1 atoms, 1 < t ! ∞, with a constant independent of t .

Proof. Assuming f + ∈ L1 and letting

Ωj =
{
x: Mq

(
f +)

(x) > 2j
}
,

we follow the steps outlined in the proofs of Propositions 4.6 and 4.7, which use only the maxi-
mal function f +, while ignoring the estimates on the gradients from the proofs of Proposition 3.3
and 3.4, which are the only ones involving Nf . From the L∞ bound (46) we are able to obtain
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atoms satisfying the conditions of Definition 2.9 with t = ∞, hence for every other t with uni-
form bounds. !

Conclusion. Let M be a complete Riemannian manifold satisfying (D). Then

1. for all s
s+1 < q < 1,

M̃1
1 ⊂ HS1

q∗,ato.

2. If we moreover assume (P1), then

M̃1
1 = HS1

t,ato

for all t > 1.

4.2. Atomic decomposition for the Sobolev space M1
1

For this we need to define new nonhomogeneous atomic spaces LS1
t,ato, where the L is used

to indicate that the atoms will now be in L1 but not necessarily in H1. Let us define our atoms.

Definition 4.9. For 1 < t ! ∞, we say that a function a is an LS1
t,ato-atom if

1. a is supported in a ball B;

2. ‖∇a‖t ! µ(B)
− 1

t ′ ; and
3. ‖a‖1 ! min(1, r(B)).

We then say that f belongs to LS1
t,ato if there exists a sequence of LS1

t,ato-atoms {aj }j such that
f = ∑

j λj aj in W 1
1 , with

∑
j |λj | < ∞. This space is equipped with the norm

‖f ‖LS1
t,ato

= inf
∑

j

|λj |,

where the infimum is taken over all such decompositions.

Remark 4.10. As discussed previously, condition 3 in Definition 4.9 is a substitute for the can-
cellation condition 3 in Definition 2.11. Assuming a Poincaré inequality (Pt ), LS1

t,ato-atoms
corresponding to small balls (with r(B) bounded above) can be shown (see [11], Appendix B)
to be elements of Goldberg’s local Hardy space (defined by restricting the supports of the test
functions in Definition 2.8 to balls of radii r < R for some fixed R – see [29], Section III.5.17),
so that LS1

t,ato is a subset of the “localized” space H1,loc.

As in the homogeneous case, under the Poincaré inequality (P1), LS1
t,ato ⊂ M1

1 :

Proposition 4.11. Let M be a complete Riemannian manifold satisfying (D) and (P1). Let 1 <

t ! ∞ and a be an LS1
t,ato-atom. Then a ∈ M1

1 with ‖a‖M1
1
! Ct , the constant C depending only

on t , the doubling constant and the constant appearing in (P1), and independent of a.
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Consequently LS1
t,ato ⊂ M1

1 with

‖f ‖M1
1

! Ct‖f ‖LS1
t,ato

.

Proof. The proof follows analogously to that of Proposition 3.1, noting that we can use Re-
mark 3.2 thanks to property 3 in Definition 4.9, and that this property also implies every atom a

is in L1. !

Now for the converse, that is, to prove that M1
1 ⊂ LS1

t,ato, we again establish an atomic de-
composition for functions f ∈ M1

1 . In order to do that we must introduce an equivalent maximal
function f ), which is a variant of the one originally defined by Calderón [6] and denoted by
N(f,x) (here we are only defining it in the special case q = 1 and m = 1, where for x a Lebesgue
point of f , the constant P(x, y) in Calderón’s definition is equal to f (x), and we are allowing
for the balls not to be centered at x).

Definition 4.12. Let f ∈ L1,loc(M). Suppose x is a Lebesgue point of f , i.e.

lim
r→0

−
∫

B(x,r)

∣∣f (y) − f (x)
∣∣dµ(y) = 0.

We define

f )(x) := sup
B: x∈B

1
r(B)

−
∫

B

∣∣f (y) − f (x)
∣∣dµ(y).

Then f ) is defined µ-almost everywhere.

We now show the equivalence of f ) and Nf . As discussed in the Introduction, the following
Proposition was proved in [12] (see also [28]) in the Euclidean case.

Proposition 4.13. Let M be a complete Riemannian manifold satisfying (D). Then, there exist
constants C1, C2 such that for all f ∈ L1,loc(M),

C1Nf ! f ) ! C2Nf

pointwise µ-almost everywhere.

Proof. Let f ∈ L1,loc and x be a Lebesgue point of f , so that there exists a sequence of balls
Bn = B(x, rn) with rn → 0 and fBn → f (x). Given a ball B containing x, take n sufficiently
large so that Bn ⊂ B . Since x ∈ B , there is a smallest k " 1 such that 2kBn = B(x,2krn) ⊃ B ,
and for this k we have 2krn ! 4r(B), so

∣∣fB − fBn(x)
∣∣ ! −

∫

B

|f − f2kBn
|dµ +

k∑

j=1

|f2j Bn
− f2j−1Bn

|
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! µ(2kBn)

µ(B)
−
∫

2kBn

|f − f2kBn
|dµ +

k∑

j=1

µ(2jBn)

µ(2j−1Bn)
−
∫

2j Bn

|f − f2j Bn
|dµ

! 2C2
(D)

k∑

j=1

2j rnNf (x)

! 16C2
(D)r(B)Nf (x).

Taking the limit as n → ∞, we see that |fB − f (x)| ! Cr(B)Nf (x) so that

−
∫

B

∣∣f (y) − f (x)
∣∣dµ(y) ! −

∫

B

∣∣f (y) − fB

∣∣dµ(y) +
∣∣fB − f (x)

∣∣ ! Cr(B)Nf (x).

Dividing by r(B) and taking the supremum over all balls B containing x, we conclude that
f )(x) ! CNf (x).

For the converse, again take any Lebesgue point x and let B be a ball containing x. Writing
|f (y) − fB | ! |f (y) − f (x)| + | −

∫
B f − f (x)|, we have

−
∫

B

∣∣f (y) − fB

∣∣dµ(y) ! 2 −
∫

B

∣∣f (y) − f (x)
∣∣dµ(y) ! 2r(B)f )(x).

Taking the supremum over all balls B containing x, we deduce that Nf (x) ! 2f )(x). !

Proposition 4.14 (Calderón–Zygmund decomposition). Let M be a complete Riemannian mani-
fold satisfying (D). Let f ∈ M1

1 , s
s+1 < q < 1 and α > 0. Then one can find a collection of balls

{Bi}i , functions bi ∈ W 1
1 and a Lipschitz function g such that the following properties hold:

f = g +
∑

i

bi ,

∣∣g(x)
∣∣ +

∣∣∇g(x)
∣∣ ! Cα for µ-a.e. x ∈ M, (47)

suppbi ⊂ Bi, ‖bi‖1 ! Cαµ(Bi)ri,
∥∥bi + |∇bi |

∥∥
q

! Cαµ(Bi)
1
q , (48)

∑

i

µ(Bi) ! Cq

α

∫ (
|f | + Nf

)
dµ, (49)

and
∑

i

χBi ! K. (50)

The constants C and K only depend on the constant in (D).

Proof. The proof follows the same steps as that of Propositions 3.3 and 4.6. Again we will only
mention the changes that occur. Let f ∈ M1

1 , s
s+1 < q < 1 and α > 0. By Proposition 4.13, we

have f ) ∈ L1 with norm equivalent to ‖Nf ‖1. Thus if we consider the open set

Ω =
{
x: Mq

(
|f | + f )

)
(x) > α

}
,
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its Whitney decomposition {Bi}i , and the corresponding partition of unity {χi}i , we get immedi-
ately (50) and (49) by the bounded overlap property and the boundedness of the maximal function
in L1/q .

We again define bi = (f − ci)χi but this time we set ci = f (xi) for some xi ∈ Bi chosen as
follows. Recall that Bi = 4Bi contains some point y of F = M \Ω so that

−
∫

Bi

|f |q !Mq(f )q(y) ! αq (51)

as well as

−
∫

Bi

(
f )

)q !Mq

(
f )

)q
(y) ! αq . (52)

Let

Ei =
{
x ∈ Bi : x is a Lebesgue point of f and |f |q , and

∣∣f (x)
∣∣ ! 2α

}
.

We claim that

µ(Ei) "
(
1 − 2−q

)
µ(Bi).

Otherwise we would have µ(Bi \Ei) > 2−qµ(Bi) and so, since f and |f |q are locally integrable
and the set of points which are not their Lebesgue points has measure zero,

∫

Bi\Ei

|f |q " (2α)qµ(Bi \ Ei) > αqµ(Bi),

contradicting (51).
Now we claim that for an appropriate constant cq (to be chosen independent of i and α), there

exists a point xi ∈ Ei with

f )(xi) ! cqα. (53)

Again, suppose not. Then we have, by (52),

(cqα)qµ(Ei) !
∫

Ei

(
f )

)q
dµ ! αqµ(Bi),

implying that µ(Ei) ! c
−q
q µ(Bi). Taking cq > (1 − 2−q)−1/q , we get a contradiction.

Thanks to our choice of xi , we now have

|ci | =
∣∣f (xi)

∣∣ ! 2α
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and

‖bi‖1 ! C

∫

Bi

∣∣f (y) − f (xi)
∣∣dµ(y) ! Cµ(Bi)rif

)(xi) ! Ccqriαµ(Bi).

Moreover for ‖bi‖q , one has, by (51),

‖bi‖q ! C

(∫

Bi

|f − ci |q dµ

) 1
q

! C

(∫

Bi

|f |q dµ

) 1
q

+ C2αµ(Bi)
1
q ! Cαµ(Bi)

1
q .

Finally, for ∇bi , we can estimate the L1 norm by

‖∇bi‖1 !
∥∥(f − ci)∇χi |

∥∥
1 +

∥∥(∇f )χi

∥∥
1

!
∫

Bi

∣∣f (x) − f (xi)
∣∣∣∣∇χi (x)

∣∣dµ(x) +
∫

Bi

|∇f |dµ

! Cµ(Bi)f
)(xi) +

∫

Bi

|∇f |dµ

! Ccqαµ(Bi) +
∫

Bi

|∇f |dµ, (54)

showing (since |∇f | in L1 by Proposition 2.6) that bi ∈ W 1
1 , and the Lq norm by

‖∇bi‖q
q !

∥∥(f − ci)∇χi |
∥∥q

q
+

∥∥(∇f )χi

∥∥q

q

! µ(Bi)
1−q

(∫

Bi

∣∣f (x) − f (xi)
∣∣∣∣∇χi (x)

∣∣dµ(x)

)q

+
∫

Bi

|∇f |q dµ

! Cµ(Bi)f
)(xi)

q +
∫

Bi

|Nf |q dµ

! C(cqα)qµ(Bi) +
∫

Bi

∣∣f )
∣∣q dµ

! Cαqµ(Bi),

where we used Propositions 2.6 and 4.13, and (52). Taking the 1/q-th power on both sides, we
get (48).

It remains to prove (47). First note that ‖g‖∞ ! Cα since

g = f 1F +
∑

i

ciχi
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and for the first term, by the Lebesgue differentiation theorem, we have |f 1F | !Mq(f )1F ! α,
µ-a.e., while for the second term, thanks to the bounded overlap property and |ci | ! 2α, we get
the desired estimate.

Now for the gradient, we write, as in (28),

∇g = 1F (∇f ) −
∑

i

(
f − f (xi)

)
∇χi .

Again we have, by Propositions 2.6 and 4.13, that 1F (|∇f |) ! C1F (Nf ) ! C1F (f )) ! Cα,
µ-a.e. Let

h =
∑

i

(
f − f (xi)

)
∇χi .

We will show |h(x)| ! Cα for all x ∈ M . Note first that the sum defining h is locally finite
on Ω and vanishes on F . Then take x ∈Ω and a Whitney ball Bk containing x. As before, since∑

i ∇χi (x) = 0, we can replace f (x) in the sum by any constant so

h(x) =
∑

i∈Ix

(
f (xk) − f (xi)

)
∇χi (x).

Recall that for all i, k ∈ Ix , by the construction of the Whitney collection, the balls Bi and Bk

have equivalent radii and Bi ⊂ 7Bk . Thus

∣∣f (xk) − f (xi)
∣∣ !

∣∣f7Bk − f (xk)
∣∣ +

∣∣f7Bk − f (xi)
∣∣

! −
∫

7Bk

∣∣f − f (xk)
∣∣dµ + −

∫

7Bk

∣∣f − f (xi)
∣∣dµ

! 7rk
(
f )(xk) + f )(xi)

)
! 14rkcqα, (55)

by (53). Therefore we again get the estimate (30). !

Proposition 4.15. Let M be a complete Riemannian manifold satisfying (D). Let f ∈ M1
1 . Then

for all s
s+1 < q < 1, there is a sequence of LS1

q∗,ato-atoms {aj }j (q∗ = sq
s−q ), as in Definition 4.9,

and a sequence of scalars {λj }j , such that

f =
∑

j

λj aj in W 1
1 , and

∑
|λj | ! Cq‖f ‖M1

1
.

Consequently, M1
1 ⊂ HS1

q∗,ato with ‖f ‖LS1
q∗,ato

! Cq‖f ‖M1
1
.

Proof. Here as well we will only mention the additional properties that one should verify in
comparison with Proposition 3.4 and 4.7. We use the Calderón–Zygmund decomposition (Propo-
sition 4.14) above with Ωj corresponding to α = 2j , and denote the resulting functions by gj

and b
j
i , recalling that for the definition of the constant c

j
i we have c

j
i = f (x

j
i ) for a specially

chosen point x
j
i ∈ B

j
i .
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First let us see that gj → f in W 1
1 . For the convergence in L1 we just repeat (44) and (45) from

the nonhomogeneous case, replacing f + by |f |. For the convergence in Ẇ 1
1 , we can estimate

∑
i ‖∇b

j
i ‖1 exactly as in (32), using (54) instead of (26), and replacing Nf by f ) andMq(Nf )

byMq(|f | + f )). This gives ∇gj → ∇f in L1 as j → ∞. For the convergence of ∇gj to 0 as
j → −∞, we imitate (33) and (34), using (28) and (30) with f ) and our new choice of c

j
i .

We define the functions 1j = gj+1 − gj as in Proposition 3.4 but this time we just use

1
j
k := 1jχ

j
k

for the “pre-atoms”, since we no longer need to have the moment condition
∫
1
j
k = 0 (see Re-

mark 3.6). From the L∞ bounds (47) on gj and ∇gj in Proposition 4.14, we immediately get

∥∥1j
k

∥∥
1 ! C2jµ

(
B

j
k

)

and ‖|∇1j |χ j
k ‖q∗ ! C2jµ(B

j
k )1/q∗

. We need a similar estimate on ‖1j |∇χ
j
k |‖q∗ in order to

bound ‖∇1
j
k‖q∗ . As in (36), write

r
j
k

(
−
∫

B
j
k

∣∣1j∇χ
j
k

∣∣q∗
dµ

)1/q∗

! C

(
−
∫

B
j
k

(∑

i

1
B

j
i

∣∣f − c
j
i

∣∣ +
∑

l

1
B

j+1
l

∣∣f − c
j+1
l

∣∣
)q∗

dµ

)1/q∗

Expanding |f − c
j
i | = |f − f

B
j
k

+ f
B

j
k

− c
j
k + c

j
k − c

j
i | and using the bounded overlap property

of the balls, the Sobolev–Poincaré inequality (6), Proposition 4.13, and properties (53) and (55)
of the constants c

j
i = f (x

j
i ), we have for the integral of the first sum on the right-hand side:

(
−
∫

B
j
k

(∑

i

1
B

j
i

∣∣f − c
j
i

∣∣
)q∗

dµ

)1/q∗

! K

(
−
∫

B
j
k

|f − f
B

j
k
|q∗

dµ

)1/q∗

+ K
∣∣f

B
j
k

− c
j
k

∣∣ +
(

−
∫

B
j
k

( ∑

B
j
i ∩B

j
k 0=∅

1
B

j
i

∣∣cj
k − c

j
i

∣∣
)q∗

dµ

)1/q∗

! CKr
j
k

(
−
∫

B
j
k

(Nf )q
)1/q

+ Kr
j
k f )

(
x

j
k

)
+ CKr

j
k 2j

! CKr
j
k 2j .

The analogous estimate holds for the integral of the second sum, in l, since as pointed out previ-
ously, when B

j+1
l ∩ B

j
k 0= ∅ we have that r

j+1
l ! cr

j
k . This gives

∥∥∇1
j
k

∥∥
q∗ ! γ 2jµ

((
B

j
k

)′)1/q∗
,

as desired. The rest of the proof follows in the same way as that of Propositions 3.4 and 4.7. !
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Conclusion. Let M be a complete Riemannian manifold satisfying (D). Then

1. for all s
s+1 < q < 1,

M1
1 ⊂ LS1

q∗,ato.

2. If moreover we assume (P1), then

M1
1 = LS1

t,ato

for all t > 1.

5. Comparison between Ṁ1
1 and Hardy–Sobolev spaces defined in terms of derivatives

5.1. Using a maximal function definition

In the Euclidean case, the homogeneous Hardy–Sobolev space ḢS
1

consists of all locally
integrable functions f such that ∇f ∈ H1(Rn) (i.e. the weak partial derivatives Djf = ∂f

∂xj
be-

long to the real Hardy space H1(Rn)). In [28], it was proved that this space is nothing else than
{f ∈ L1,loc(Rn): Nf ∈ L1}, which also coincides with the Sobolev space Ṁ1

1 [22].
Does this theory extends to the case of Riemannian manifolds? If this is the case, which

hypotheses should one assume on the geometry of the manifold? We proved an atomic character-
ization of Ṁ1

1 but we would like to clarify the relation with Hardy–Sobolev spaces defined using
maximal functions.

Definition 5.1. We define the (maximal) homogeneous Hardy–Sobolev space ḢS
1
max as follows:

ḢS
1
max :=

{
f ∈ L1,loc(M): (∇f )+ ∈ L1

}

where ∇f is the distributional gradient, as defined in (7), and the corresponding maximal func-
tion is defined, analogously to (10), by

(∇f )+(x) := sup
∣∣∣∣

∫
f

(
〈∇ϕ,Φ〉 + ϕ divΦ

)
dµ

∣∣∣∣,

where the supremum is taken over all pairs ϕ ∈ T1(x), Φ ∈ C1
0(M,T M) such that

‖Φ‖∞ ! 1 and ‖divΦ‖∞ ! 1
r

for the radius r of the same ball B containing x for which ϕ satisfies (11). We equip this space
with the semi-norm

‖f ‖
ḢS

1
max

=
∥∥(∇f )+

∥∥
1.
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Note that in case both ϕ and Φ are smooth, the quantity 〈∇ϕ,Φ〉 + ϕ divΦ represents the
divergence of the product ϕΦ , so the definition coincides with that of the maximal function
M(1)f given in [3] for the case of domains in Rn, but here we want to allow for the case of
Lipschitz ϕ.

Proposition 5.2. Let f ∈ ḢS
1
max. Then ∇f , initially defined by (7), is given by an L1 function

and satisfies

|∇f | ! C(∇f )+, µ-a.e.

Consequently,

ḢS
1
max ⊂ Ẇ 1

1

with

‖f ‖Ẇ 1
1

! C‖f ‖
ḢS

1
max

.

Proof. We follow the ideas in the proof of Proposition 2.6. Let Ω be any open subset of M and
consider the total variation of u on Ω , defined by

|Df |(Ω) := sup
∣∣〈∇f,Φ〉

∣∣,

where the supremum is taken over all vector fields Φ ∈ C1
0(Ω, T M) with ‖Φ‖∞ ! 1. For such a

vector field Φ , take r > 0 sufficiently small so that ‖divΦ‖∞ ! r−1 and dist(supp(Φ),M \Ω) >

12r . As in the proof of Proposition 2.6, take a collection of balls Bi = B(xi, r) with 6Bi having
bounded overlap (with a constant K independent of r), covering M , and a Lipschitz partition
of unity {ϕi}i subordinate to {6Bi}i , with 0 ! ϕi ! 1 and |∇ϕi | ! r−1. Then for all x ∈ Bi ,
ϕi/µ(Bi) ∈ T1(x), so

∣∣∣∣

∫
f

[
〈∇ϕi ,Φ〉 + ϕi divΦ

]
dµ

∣∣∣∣ ! (∇f )+(x)µ(Bi).

Hence
∣∣∣∣

∫
f

[
〈∇ϕi ,Φ〉 + ϕi divΦ

]
dµ

∣∣∣∣ !
∫

Bi

(∇f )+(x) dµ.

Summing up over i such that 6Bi ⊂ Ω , by the choice of r we still get
∑

ϕi = 1 on the support
of Φ , hence

∑∇ϕi = 0, so using the bounded overlap of the balls we have

∣∣∣∣

∫
f divΦ dµ

∣∣∣∣ !
∑

{i: 6Bi⊂Ω}

∫

Bi

(∇f )+ dµ ! K

∫

Ω

(∇f )+ dµ ! K
∥∥(∇f )+

∥∥
1 < ∞.

The rest of the proof proceeds as in the proof of Proposition 2.6, replacing Nf by (∇f )+. !
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Proposition 5.3. Let f ∈ L1,loc. Then at every point of M ,

(∇f )+ ! Nf.

Consequently,

Ṁ1
1 ⊂ ḢS

1
max

with

‖f ‖
ḢS

1
max

! C‖f ‖Ṁ1
1
.

Proof. Let f ∈ L1,loc and x ∈ M . Take ϕ ∈ T1(x), Φ ∈ C1
0(M,T M) as in Definition 5.1. Then

∫ (
〈∇ϕ,Φ〉 + ϕ divΦ

)
dµ = 0

so we can write

∣∣∣∣

∫
f

(
〈∇ϕ,Φ〉 + ϕ divΦ

)
dµ

∣∣∣∣ =
∣∣∣∣

∫
(f − fB)

(
〈∇ϕ,Φ〉 + ϕ divΦ

)
dµ

∣∣∣∣

! 1
rµ(B)

∫
|f − fB |dµ

! Nf (x). !

We would like to prove the reverse inclusion. However, this would require some tools such as
Lemma 6 in [22] or Lemma 10 in [3] (solving divΨ = φ with Ψ having compact support) which
are particular to Rn.

Another possible maximal function we can use, following the ideas in [21] (see Section 4.1),
is given by

Definition 5.4.

M∗(∇f )(x) := sup
j

|∇frj |

with the “discrete convolution” frj defined as in (8), corresponding to an enumeration of the

positive rationals {rj }j , where for each j we have a covering of M by balls {Bj
i }i of radius rj ,

and a partition of unity ϕ
j
i subordinate to this covering.

We have already shown in the proof of Proposition 2.6 (see (9)) that

Lemma 5.5. Let f ∈ L1,loc. Then at µ-almost every point of M ,

M∗(∇f ) ! Nf.
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5.2. Derivatives of molecular Hardy spaces

As noted in the previous section, on a manifold, obtaining a decomposition with atoms of
compact support from a maximal function definition is not obvious. In [4], the authors con-
sidered instead Hardy spaces generated by molecules. We begin by recalling their definition of
Hmol,1(Λ

1T ∗M) (a special case with N = 1 of H 1
mol,N (ΛT ∗M) in Definition 6.1 of [4], where

we have dropped the superscript 1 for convenience). If in addition the heat kernel on M satis-
fies Gaussian upper bounds, this space coincides with the space H 1(ΛT ∗M), which also has a
maximal function characterization (see [4], Theorem 8.4).

A sequence of non-negative Lipschitz functions {χk}k is said to be (a partition of unity)
adapted to a ball B of radius r if suppχ0 ⊂ 4B , suppχk ⊂ 2k+2B \ 2k−1B for all k " 1,

‖∇χk‖∞ ! C2−kr−1 (56)

and

∑

k

χk = 1 on M.

A 1-form a ∈ L2(Λ1T ∗M) is called a 1-molecule if a = db for some b ∈ L2(M) and there exists
a ball B with radius r , and a partition of unity {χk}k adapted to B , such that for all k " 0

‖χka‖L2(Λ1T ∗M) ! 2−k
(
µ

(
2kB

))−1/2 (57)

and

‖χkb‖2 ! 2−kr
(
µ

(
2kB

))−1/2
.

Summing in k, this implies that ‖a‖L2(Λ1T ∗M) ! 2(µ(B))−1/2 and ‖b‖L2 ! 2r(µ(B))−1/2.
Moreover, there exists a constant C′, depending only on the doubling constant in (D), such
that

‖12k+2B\2k−1Bb‖2 !
∥∥∥∥∥

k+3∑

l=k−3

χlb

∥∥∥∥∥
2

! C′r2−k
(
µ

(
2k+2B

))−1/2
. (58)

Definition 5.6. (See [4].) We say that f ∈ Hmol,1(Λ
1T ∗M) if there is a sequence {λj }j ∈ 11 and

a sequence of 1-molecules {aj }j such that

f =
∑

j

λj aj

in L1(Λ
1T ∗M), with the norm defined by

‖f ‖Hmol,1(Λ1T ∗M) = inf
∑

j

|λj |.
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Here the infimum is taken over all such decompositions. The space Hmol,1(Λ
1T ∗M) is a Banach

space.

Proposition 5.7. Let M be a complete Riemannian manifold satisfying (D) and (P1). We then
have

Hmol,1
(
Λ1T ∗M

)
= d

(
ḢS

1
2,ato(M)

)
. (59)

Moreover

‖g‖Hmol,1(Λ1T ∗M) ∼ inf
df =g

‖f ‖
ḢS

1
2,ato(M)

.

Consequently, in this case we have an atomic decomposition for Hmol,1(Λ
1T ∗M) (this was al-

ready proved in [4], after Theorem 8.4).

Remark 5.8. As pointed out in Remarks 3.2 and 3.6, we can define the atomic Hardy–Sobolev
space ḢS

1
2,ato(M) by using (1,2)-atoms satisfying condition 3′′ of Remarks 2.12 instead of con-

dition 3 of Definition 2.11. As will be seen from the proof below, if we restrict ourselves to this
kind of atoms we do not require the hypothesis (P1) for (59). Under the assumption (P1), we
actually get the stronger conclusion

Hmol,1
(
Λ1T ∗M

)
= d

(
ḢS

1
2,ato

)
= d

(
ḢS

1
t,ato

)
= d

(
Ṁ1

1
)

for all t > 1.

Proof. Take f ∈ ḢS
1
2,ato. There exists a sequence {λj }j ∈ 11 and (1,2)-atoms bj such that f =∑

j λj bj in Ẇ 1
1 . This means

∑
j λj∇bj converges in L1 to ∇f , and by the isometry between

the vector fields and the 1-forms, we have df = ∑
j λj dbj in L1(Λ

1T ∗M).
We claim that aj = dbj are 1-molecules. Indeed, fix j , take Bj to be the ball containing the

support of bj and let {χk
j }k be a partition of unity adapted to Bj . Then

∥∥χ0
j aj

∥∥
2 ! ‖dbj‖2 = ‖∇bj‖2 ! 1

µ(Bj )
1
2

and by condition 3′′ of Remarks 2.12 (alternatively condition 3 of Definition 2.11 and (P1)) we
get

∥∥χ0
j bj

∥∥
2 ! ‖bj‖2 ! rj

1

µ(Bj )
1
2

.

For k " 1, there is nothing to do since suppbj ⊂ Bj and suppχk
j ⊂ 2k+2Bj \ 2k−1Bj ⊂ (Bj )

c.
Consequently, df ∈ Hmol,1(Λ

1T ∗M) with ‖df ‖Hmol,1(Λ1T ∗M) ! ∑
j |λj |. Taking the infimum

over all such decompositions, we get ‖df ‖Hmol,1(Λ1T ∗M) ! ‖f ‖
ḢS

1
2,ato

.
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Now for the converse, let g ∈ Hmol,1(Λ
1T ∗M). Write

g =
∑

j

λj aj :=
∑

j

λj dbj

where
∑

j |λj | < ∞, for every j , aj is a 1-molecule associated to a ball Bj , and the convergence
is in L1. Let {χk

j }k be the partition of unity adapted to Bj . Then

g =
∑

j

λj

∑

k

dbjχ
k
j =

∑

j

λj d

(∑

k

bjχ
k
j

)
=

∑

j

λj

∑

k

d
(
bjχ

k
j

)

since the sum is locally finite and
∑

k χ
k
j = 1.

We claim that for every j , k, βk
j := 2k−1γ bjχ

k
j , with γ a constant to be determined, satisfies

properties 1,2 and 3′′ (see Definition 2.11 and Remarks 2.12) of a (1,2)-homogeneous Hardy–
Sobolev atom. Indeed, βk

j is supported in the ball 2k+2Bj with

∥∥βk
j

∥∥
2 ! 2k−1γ

2−krj

µ(2kBj )
1
2

! 2k+2rj

µ(2k+2Bj )
1
2

for an appropriate choice of γ depending only on the doubling constant in (D). Furthermore, by
(57), (56), and (58),

∥∥∇βk
j

∥∥
2 = 2k−1γ

∥∥d
(
bjχ

k
j

)∥∥
2

! 2k−1γ
(∥∥ajχ

k
j

∥∥
2 +

∥∥bjdχ
k
j

∥∥
2

)

! 2k−1γ
(
2−k

(
µ

(
2kBj

))−1/2 + C2−kr−1
i ‖12k+2Bj \2k−1Bj

bj‖2
)

! µ
(
2k+2Bj

)−1/2
.

Here we again chose γ conveniently, depending only on the doubling constant, and used the fact
that k " 0.

Since
∑

j,k |λj |γ−121−k ! 4γ−1 ∑
j |λj | < ∞, the sum f := ∑

j λj
∑

k γ
−121−kβk

j defines

an element of ḢS
1
2,ato, with the convergence being in Ẇ 1

1 . This means that in L1 we have

df = d

(∑

j,k

λj

(
bjχ

k
j

))
=

∑

j

λj

∑

k

d
(
bjχ

k
j

)
= g.

Therefore g = df = d(
∑

j,k λj (bjχ
k
j )), with ‖f ‖

ḢS
1
2,ato

! 4γ−1 ∑
j |λj |. Taking the infimum

over all such decompositions of g, we see that

inf
df =g

‖f ‖
ḢS

1
2,ato

! 4γ−1‖g‖Hmol,1(Λ1T ∗M). !



Author's personal copy

N. Badr, G. Dafni / Journal of Functional Analysis 259 (2010) 1380–1420 1419

Corollary 5.9. In the Euclidean case, we then obtain

Hmol,1
(
Rn,Λ1) =H1

d

(
Rn,Λ1) = d

(
Ṁ1

1
)
= d

(
ḢS

1
t,ato

)

for all t > 1. (For details on H1
d(Rn,Λ1), see [24].)
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