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Maximal characterization of Hardy-Sobolev spaces on
manifolds

N. Badr and G. Dafni

Abstract. Let M be a complete non-compact Riemannian manifold with a
doubling measure and admitting a Poincaré inequality. In the present paper,
we identify the Sobolev space Ṁ1

1 , introduced by Hajłasz, with a new Hardy-
Sobolev space defined by requiring the integrability of a certain maximal func-
tion of the gradient. This completes the circle of ideas begun in [4], where Ṁ1

1
was identified with a Hardy-Sobolev space via atomic decomposition.

1. Introduction

Let M be a complete, non-compact Riemannian manifold, equipped with a
doubling measure µ. In previous work [4], we compared Hardy-Sobolev spaces on
M , defined in terms of atomic decomposition, with an L1-Sobolev space defined by
Hajłasz ([11]), M1

1 , and showed they can be identified under the assumption of a
Poincaré inequality. The proof was based on a characterization of M1

1 on metric-
measure spaces with doubling measures, by means of a Calderón-type Sobolev sharp
maximal function Nf , found in [15]. However, the most “natural” characterization
remained to be shown: namely that, as in the Euclidean case, a function is in the
Hardy-Sobolev space if its derivatives lie in the real Hardy space H1, in the sense
that a maximal function of the derivatives is integrable.

The problem arose in determining how to define the maximal function of the
derivatives of f . In the Euclidean case, or the local case (i.e. on a chart on a compact
manifold), one can consider the partial derivatives ∂f

∂xj
, in the sense of distributions,

and use the usual maximal function characterization of H1 ([19], [16]). However,
in the global case, i.e. on a non-compact Riemannian manifold, one would like to
view the derivatives of f in terms of the gradient ∇f or the differential df . In [4] we
identified df for f ∈ M1

1 with elements of the molecular Hardy space of differential
forms defined in [1], but maximal characterization there only holds under stronger
geometric conditions.
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2 BADR AND DAFNI

Given a locally integrable function f on M , one can define its gradient in the
sense of distributions, by setting

(1.1) 〈∇f,Φ〉 := −
ˆ

M
fdiv Φ dµ

for all smooth vector fields Φ of compact support. Following the ideas from the
scalar case (see [21]), a natural (“grand”) maximal function would be to take, at a
point x ∈ M ,

sup
∣∣∣∣
ˆ

M
fdiv Φdµ

∣∣∣∣ ,

where the supremum is taken over some family T1(x) of test vector fields Φ.
In order to do this, we need to extend the notion of divergence to a broader

class of (minimally smooth) test vector fields. In [4], we defined a maximal function
(∇f)+ (see Definition 3.1 below) where the test vector fields were, in a sense, only
Lipschitz continuous. Moreover, it was shown (see [4], Proposition 5.3) that for
f ∈ L1

loc(M), (∇f)+ ≤ Nf at every point of M , and therefore a function f in the
homogeneous Hajłasz Sobolev space Ṁ1

1 , characterized by the condition Nf ∈ L1,
also satisfies (∇f)+ ∈ L1.

The difficulty arose in obtaining the converse, namely, showing that a function
f with (∇f)+ ∈ L1(M) belongs to Ṁ1

1 , either by controlling Nf or via an atomic
decomposition. In particular, when attempting to do this, the sticking point is
the problem of writing a given test function η, with

´

η = 0, as the divergence
of a sufficiently smooth vector field of compact support. In the Euclidean setting,
this can be done by a simple well-known construction involving iterated integration
with respect to the coordinates (see for example Lemma 6 in [16], or Lemma 4
in [5]) which preserves the smoothness with no gain. However, adapting such
a construction to a manifold with constants which are independent of the local
coordinates is not evident. In addition, if one wants to have a gain of derivatives,
the case of p = ∞, which corresponds to starting with η ∈ L∞ and obtaining a
vector field whose components have bounded derivatives, is not possible ([18]). In
[5], the authors discuss existence of L∞ solutions in the endpoint case η ∈ Ld,
where d is the dimension.

Recently, in [8], this problem was studied again on arbitrary domains in Rn, in
weighted Sobolev spaces. We were able (see Proposition 5.1) to adapt the techniques
used there to the case of a Riemannian manifold admitting a Poincaré inequality
(P1), to obtain a solution of div Φ = η with both η and Φ in L∞. However, this does
not give control on the derivatives of the components of Φ aside from its divergence,
and therefore we can no longer restrict ourselves to “Lipschitz” vector fields as in
Definition 3.1.

In Section 3, we give the definition of a new Hardy-Sobolev maximal func-
tion M+(∇f), which generalizes that of the maximal function M (1)f used in [2]
to characterize Hardy-Sobolev spaces on Lipschitz domains in Rn, and use it to
define the homogeneous maximal Hardy-Sobolev space ḢS

1
max. In Section 4, we

compare this space with the homogeneous Hajłasz Sobolev space Ṁ1
1 . Our main

result, Theorem 4.4, is that under the assumption of a doubling condition and a
Poincaré inequality (P1), the two spaces coincide. The proof of the theorem, based
on Proposition 5.1, is contained in Section 5.
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2. Preliminaries

We work on a complete non-compact Riemannian manifold M . With the dis-
tance function ρ and the measure µ (volume) given by the Riemannian structure,
we view (M, ρ, µ) as a metric measure space, and use B(x, r) to denote the metric
ball of radius r > 0 centered at x ∈ M .

Denote by 〈·, ·〉x the Riemannian metric on the the tangent space TxM , let T ∗x M
be the cotangent space at x, and d the exterior derivative. For a smooth function f ,
the gradient ∇f can be viewed as the image of the 1-form df under the isomorphism
between T ∗x M and TxM (see [22], Section 4.10). Given a smooth vector field Φ
with compact support, one can also define the divergence div Φ ∈ C∞(M) so that

ˆ

M
〈∇f,Φ〉xdµ = −

ˆ

M
f div Φdµ

(see [20], Section 3.1.1).
We now extend this to a locally integrable function f on M , in order to define

∇f in the sense of distributions, as in (1.1). If this distributional gradient coincides
with a measurable vector-field, which we again denote by ∇f , we can take its length
in the Riemannian metric, |∇f |x := 〈∇f,∇f〉1/2

x , and (dropping the subscript x for
simplicity) compute the semi-norms

‖∇f‖p :=
( ˆ

M
|∇f |pdµ

)1/p
, 1 ≤ p < ∞.

The nonhomogeneous Sobolev space W 1,p(M) is then defined as the space of f in
Lp(M, µ) with ‖∇f‖p < ∞. For the homogeneous Sobolev space Ẇ 1,p(M), we
require only f ∈ L1

loc(M) with ‖f‖Ẇ 1,p := ‖∇f‖p < ∞, and consider the resulting
space modulo constants.

A function will be called Lipschitz (continuous), denoted f ∈ Lip(M), if there
exists C < ∞ such that

|f(x)− f(y)| ≤ Cρ(x, y) ∀ x, y ∈ M,

and the smallest such constant C will be denoted by ‖f‖Lip. By Lip0(M) we will
mean the space of compactly supported Lipschitz functions.

We will assume the measure µ on M satisfies the following:

Definition 2.1 (Doubling Condition). There exists a constant C > 0 such
that for all balls B(x, r), x ∈ M , r > 0, we have

(D) µ(B(x, 2r)) ≤ Cµ(B(x, r)).

For certain results we will also assume:

Definition 2.2 (Poincaré inequality on M). We say that a Riemannian man-
ifold M admits a Poincaré inequality (Pq) for some q ∈ [1,∞) if there exists a
constant C > 0 such that, for every every ball B in M of radius r > 0,

(Pq)
(
 

B
|f − fB |qdµ

)1/q

≤ Cr

(
 

B
|∇f |qdµ

)1/q

whenever f and its distributional gradient ∇f are q-integrable on B.
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3. The maximal Hardy-Sobolev space

Let us first recall the following definition:

Definition 3.1. ([4]) Let f ∈ L1
loc(M). Define the maximal function (∇f)+

by

(∇f)+(x) := sup
∣∣∣∣
ˆ

f (〈∇ϕ,Φ〉x + ϕdiv Φ) dµ

∣∣∣∣ ,

where the supremum is taken over all pairs ϕ ∈ Lip0(M), Φ ∈ C1
0 (M,TM) such

that for some ball B of radius r containing x, we have

(3.1) suppϕ ⊂ B, ‖ϕ‖∞ ≤ 1
µ(B)

, ‖∇ϕ‖∞ ≤ 1
rµ(B)

,

‖Φ‖∞ ≤ 1, and ‖div Φ‖∞ ≤ 1
r
.

Note that in case both ϕ and Φ are smooth, the quantity 〈∇ϕ,Φ〉x + ϕdiv Φ
represents the divergence of the product ϕΦ, so the supremum on the right-hand-
side is of |〈∇f, ϕΦ〉|, as defined by (1.1). In fact, when we control the maximal
function (∇f)+(x), we actually control the gradient of f , not just in the distribu-
tional sense but in the pointwise sense. This was shown by the following:

Proposition 3.2. (see Proposition 5.2 in [4]) Let f ∈ L1
loc(M). If (∇f)+ ∈

L1(M) then ∇f , initially defined by (1.1), is given by an element of L1(M,TM)
and satisfies

|∇f |x ≤ C(∇f)+(x) for µ− a.e. x.

Consequently, f ∈ Ẇ 1,1(M) with

‖f‖Ẇ 1,1 ≤ C‖(∇f)+‖L1 .

As explained in the introduction, the maximal function (∇f)+ appears to be
too small since the test vector fields are assumed to have some Lipschitz smoothness.
We want to relax the conditions on the vector fields even further.

Before defining the appropriate maximal function, it is necessary to extend
the definition of divergence to non-smooth vector fields, namely to define it in a
distributional sense. Following [8], which dealt with the case of a bounded domain
in Rn, we give the following definition.

Definition 3.3. Let Ω be a domain in M , µ(Ω) < ∞, and Φ be a vector field
in L∞(Ω, TM). We say that div Φ = g in the (strong) distributional sense if there
exists g ∈ L∞(Ω) such that

(3.2)
ˆ

Ω
fgdµ = −

ˆ

Ω
〈∇f,Φ〉xdµ

for all f ∈ L1
loc(M) with f and its distributional gradient ∇f integrable on Ω.

Remark 3.4. (i) Taking f to be a constant (since µ(Ω) < ∞), we must have
´

gdµ = 0.
(ii) If Φ is smooth with compact support in Ω, then identity (3.2) holds for

all f ∈ C∞(Ω) with g = div Φ in the strong sense. In the Euclidean case, if Ω
has smooth boundary ∂Ω, and ν is the normal to the boundary, then it suffices to
require that Φ · ν|∂Ω = 0. Requiring (3.2) to hold for f without compact support
is thus interpreted as Φ satisfying a boundary condition (see Section 2 in [8] or
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[7] for a domain in the Euclidean case), hence the use of the word “strong” in the
definition.
(iii) If ϕ,Φ are as in Definition 3.1, with B containing the support of ϕ, then for f
and ∇f integrable on B, we have that

∇(fϕ) = ϕ∇f + f∇ϕ.

Hence
ˆ

〈∇f, ϕΦ〉xdµ = −
ˆ

f (〈∇ϕ,Φ〉x + ϕdiv Φ) dµ.

and div (ϕΦ) = 〈∇ϕ,Φ〉x + ϕdiv Φ on B, in the sense of Definition 3.3.

Now we will define the new maximal homogeneous Hardy-Sobolev space ḢS
1
max.

Definition 3.5. We define the maximal homogeneous Hardy-Sobolev space
ḢS

1
max as follows:

ḢS
1
max :=

{
f ∈ L1

loc : M+(∇f) ∈ L1
}

,

where M+(∇f) is given by

M+(∇f)(x) := sup
∣∣∣∣
ˆ

f div Φ dµ

∣∣∣∣ .

Here the supremum is taken over all Φ ∈ T1(x), that is: Φ ∈ L∞(B, TM) for some
ball B of radius r containing x, such that there exists g ∈ L∞(B), g = div Φ in the
sense of Definition 3.3, and

‖Φ‖∞ ≤ 1
µ(B)

, ‖g‖∞ ≤ 1
rµ(B)

.

We equip this space with the semi-norm

‖f‖
ḢS

1
max

= ‖M+(∇f)‖1.

Note that the definition of M+(∇f) generalizes that of the maximal function
M (1)f used in [2] to characterize Hardy-Sobolev spaces on Lipschitz domains in
Rn.

Remark 3.6. By Remark 3.4(iii), we have that for f ∈ L1
loc(M), (∇f)+ ≤

M+(∇f), and thus Proposition 3.2 shows that for f ∈ ḢS
1
max,

|∇f | ≤ CM+(∇f) µ− a.e.

Consequently,

ḢS
1
max ⊂ Ẇ 1,1(M)

with

‖f‖Ẇ 1,1 ≤ C‖f‖
ḢS

1
max

.
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4. The Hajłasz Sobolev space

The goal of this paper is to compare the maximal Hardy-Sobolev space with the
Hajłasz Sobolev space, which can be defined on any metric-measure space (X, d, µ):

Definition 4.1 (Hajłasz). Let 1 ≤ p ≤ ∞. The (homogeneous) Sobolev space
Ṁ1

p is the space of all functions u ∈ L1
loc such that there exists a measurable function

g ≥ 0, g ∈ Lp, satisfying
(4.1) |u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)) µ− a.e.

We equip Ṁ1
p with the semi-norm

‖u‖Ṁ1
p

= inf
g satisfies(4.1)

‖g‖p.

Modulo constants, Ṁ1
p becomes a Banach space. A nonhomogeneous version

M1
p := Lp ∩ Ṁ1

p can be defined using the norm ‖u‖p + ‖u‖Ṁ1
p
. For p > 1, these

spaces can be identified with the usual Sobolev spaces in the Euclidean case (see
[11]) and are part of a more general theory of Sobolev spaces on metric-measure
spaces (see [12],[14]). For p = 1, in the Euclidean case, Koskela and Saksman [16]
identified Ṁ1

1 (Rn) with the homogeneous Hardy-Sobolev space ḢS
1
(Rn) (a more

recent result [17] identifies Ṁ1
p (Rn), p > n

n+1 , with Triebel-Lizorkin spaces defined
in terms of Littlewood-Paley decompositions).

Hardy-Sobolev spaces on Rn can be defined by requiring all partial derivatives
of f up to a certain order, taken in the sense of distributions, to lie in the real Hardy
space Hp. These Hardy spaces can also be characterized, as was done by Gatto,
Segovia and Jimenez [10], via a type of maximal function used by Calderón [6] in
the case p > 1, or by another maximal function, shown by Devore and Sharpley
[9] to be pointwise equivalent to Calderón’s maximal function, as in the work of
Miyachi [19]. We now define this latter maximal function, which we call a Sobolev
sharp maximal function, corresponding to the case of one derivative in H1:

Definition 4.2. For f ∈ L1
loc, define Nf by

Nf(x) = sup
B: x∈B

1
r(B)

 

B
|f − fB |dµ,

where B denotes a ball, r(B) its radius and fB the average of f over B.
Note that this definition also makes sense in any metric-measure space. In this

more general setting, but assuming a doubling condition, Kinnunen and Tuominen
[15] show that Ṁ1

1 consists of those functions for which Nf (called a “fractional
sharp maximal function” in [15]), is integrable. This characterization extends to
p = 1 a previous result of Hajłasz and Kinnunen [13] for p > 1:

Theorem 4.3 ([15]). On a metric space with metric d and doubling measure
µ,

Ṁ1
1 = {f ∈ L1

loc : Nf ∈ L1}
with

‖f‖Ṁ1
1
∼ ‖Nf‖1.

Moreover, if f ∈ L1
loc and Nf ∈ L1, then f satisfies

(4.2) |f(x)− f(y)| ≤ Cd(x, y)(Nf(x) + Nf(y))

for µ− a.e. x, y.
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Using this characterization, in our previous work [4] we were able to identify the
Hajłasz Sobolev spaces Ṁ1

1 and M1
1 with the (homogeneous and nonhomogeneous)

atomic Hardy-Sobolev spaces studied in [3]. The following result completes this
circle:

Theorem 4.4. Let M be a complete Riemannian manifold satisfying (D). Sup-
pose f ∈ L1

loc. Then at every point of M ,

(4.3) M+(∇f) ≤ Nf.

Consequently,
Ṁ1

1 ⊂ ḢS
1
max

with
‖f‖

ḢS
1
max

≤ C‖f‖Ṁ1
1
.

If moreover we assume (P1), then

M+(∇f) ≈ Nf

and
ḢS

1
max = Ṁ1

1 .

5. Proof of Theorem 4.4

Proof. Let f ∈ L1
loc and x ∈ M . Take Φ ∈ T1(x), as in Definition 3.5,

associated to a ball B containing x. Then as pointed out in Remark 3.4(i),
ˆ

div Φdµ = 0

so we can write ∣∣∣∣
ˆ

fdiv Φdµ

∣∣∣∣ =
∣∣∣∣
ˆ

B
(f − fB)div Φdµ

∣∣∣∣

≤ 1
rµ(B)

ˆ

B
|f − fB |dµ

≤ Nf(x).

Here r is the radius of B. Taking the supremum over all such Φ, we get (4.3).
We proceed now to the proof of the reverse inequality. For this, we will need

the following:

Proposition 5.1. Let M be a complete Riemannian manifold satisfying (D)
and (P1). Let B a ball of M ,

g ∈ L∞0 (B) := {g ∈ L∞(B) :
ˆ

B
gdµ = 0}.

Then there exists Φ ∈ L∞(B, TM) such that

div Φ = g

holds in the sense of Definition 3.3 (with Ω = B), and

‖Φ‖∞ ≤ Cr‖g‖∞,

where C is the constant appearing in (P1) and is independent of B and g.
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Before proving the proposition, we conclude the proof of Theorem 4.4. Again
take f ∈ L1

loc, x ∈ M , and B a ball of radius r containing x. If g ∈ L∞0 (B),
‖g‖∞ ≤ 1, and we solve div Φ = g with Φ as in Proposition 5.1, then (with the
same constant C) the vector field

Φ̃ :=
Φ

Crµ(B)
∈ T1(x),

and ∣∣∣∣
ˆ

B
fgdµ

∣∣∣∣ =
∣∣∣∣
ˆ

B
fdiv Φdµ

∣∣∣∣ = Crµ(B)
∣∣∣∣
ˆ

B
fdiv (Φ̃) dµ

∣∣∣∣ .

Thus
1

rµ(B)

ˆ

B
|f − fB |dµ =

1
rµ(B)

sup
g∈L∞0 (B),‖g‖∞≤1

∣∣∣∣
ˆ

B
fgdµ

∣∣∣∣

≤ C sup
eΦ∈T1(x)

∣∣∣∣
ˆ

fdiv (Φ̃)dµ

∣∣∣∣

= CM+(∇f)(x).

Taking the supremum on the left over all balls B containing x, we get Nf(x) ≤
CM+(∇f)(x). !

Proof of Proposition 5.1. The proof follows that of Proposition 3.2 in [8]
in the Euclidean weighted case. Let B be a ball and g ∈ L∞0 (B). Consider

S := {V ∈ L1(B, TM) : ∃f ∈ L1
loc(M), V = ∇f on B}.

We view S as a subspace of L1(B, TM) with the norm

‖V ‖L1(B,TM) =
ˆ

B
|V |xdµ.

Define a linear functional on S by

Λ(V ) = −
ˆ

B
gfdµ if V = ∇f ∈ S.

This functional is well defined since
´

B gdµ = 0 (the Poincaré inequality implies
that on B, if V = ∇f = 0 then f must be constant), and Λ is bounded on S, again
thanks to the Poincaré inequality (P1):

|Λ(V )| =
∣∣∣∣
ˆ

B
g(f − fB)dµ

∣∣∣∣ ≤ Cr‖g‖∞
ˆ

B
|∇f |dµ = Cr‖g‖∞‖V ‖L1(B,TM).

The Hahn-Banach theorem shows that Λ can be extended to a bounded linear
functional on L1(B, TM) with norm no greater than Cr‖g‖∞. By duality, there
exists a vector field Φ ∈ L∞(B, TM) such that

ˆ

B
〈Φ,∇f〉xdµ = Λ(∇f) = −

ˆ

B
gfdµ

for all f ∈ L1
loc(M) for which ∇f ∈ L1(B, TM). By Definition 3.3, this means

div Φ = g on B . Moreover,

‖Φ‖∞ ≤ Cr‖g‖∞.

!
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