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Abstract. Let Ω ⊂ R
n be a Lipschitz domain. We prove div-curl type

lemmas for the local spaces of functions of bounded mean oscillation on Ω,
bmor(Ω) and bmoz(Ω), resulting in decompositions for the corresponding lo-
cal Hardy spaces h1

z(Ω) and h1
r(Ω) into nonhomogeneous div-curl quantities.

1. Div-curl lemmas for Hardy spaces and BMO on R
n

This article is an outgrowth, among many others, of the results of Coifman,
Lions, Meyer and Semmes ([7]) which connected the div-curl lemma, part of the
theory of compensated compactness developed by Tartar and Murat, to the theory
of real Hardy spaces in R

n (see [10]). In particular, denote by H1(Rn) the space of
distributions (in fact L1 functions) f on R

n satisfying

(1) Mφ(f) ∈ L1(Rn)

for some fixed choice of Schwartz function φ with
∫
φ = 1, with the maximal

function Mφ defined by

Mφ(f)(x) = sup
0<t<∞

|f ∗ φt(x)|, φt(·) = t−nφ(t−1·).

One version of the results in [7] states that for exponents p, q with 1 < p < ∞,

1/p+ 1/q = 1, and vector fields �V in Lp(Rn,Rn), �W in Lq(Rn,Rn) with

div �V = 0, curl �W = 0
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in the sense of distributions, the scalar (dot) product f = �V · �W belongs to H1(Rn).
Moreover, one can bound the H1 norm (defined, say, as the L1 norm of Mφ(f)) by

‖�V ‖Lp‖ �W‖Lq .
While a local version of this result, in terms of H1

loc, is given in [7], in order
to obtain norm estimates we use instead the local Hardy space h1(Rn). This was
defined by Goldberg (see [11]) by replacing the maximal function in (1) by its
“local” version

(2) mφ(f)(x) = sup
0<t<1

|f ∗ φt(x)|.

Again the norm can be given by ‖mφ(f)‖L1(Rn) and different choices of φ give
equivalent norms. In addition, we can replace the number 1 in (2) by any finite
constant without changing the space.

For this space the following nonhomogeneous versions of the div-curl lemma
can be shown (these are special cases of Theorems 3 and 4 in [8]):

Theorem 1 ([8]). Suppose �v and �w are vector fields on R
n satisfying

�V ∈ Lp(Rn)n, �W ∈ Lq(Rn)n, 1 < p < ∞,
1

p
+

1

q
= 1.

(a) Assume

(3) div �V = f ∈ Lp(Rn), curl �W = 0

in the sense of distributions. Then �V · �W belongs to the local Hardy space
h1(Rn) with

(4) ‖�V · �W‖h1(Rn) ≤ C(‖�V ‖Lp(Rn) + ‖f‖Lp(Rn))‖ �W‖Lq(Rn).

(b) If Mn×n denotes the space of n-by-n matrices over R and

(5) div �V = 0, curl �W = B ∈ Lq(Rn,Mn×n)

in the sense of distributions, then �V · �W belongs to the local Hardy space
h1(Rn) with

(6) ‖�V · �W‖h1(Rn) ≤ C‖�V ‖Lp(Rn)

[
‖ �W‖Lq(Rn) +

∑
i,j

‖Bij‖Lq(Rn)

]
.

Before continuing further, let us make clear what we mean by the divergence
and curl of a vector field in the sense of distributions. Let Ω be an open subset
of Rn, and suppose �v = (v1, . . . , vn) with vi locally integrable on Ω. For a locally
integrable function f on Ω, one says that div�v = f in the sense of distributions on
Ω if

(7)

∫
Ω

�v · �∇ϕ = −
∫
Ω

fϕ

for all ϕ ∈ C∞
0 (Ω) (i.e., smooth functions with compact support in Ω).

Similarly, if �w = (w1, . . . , wn) with wi locally integrable on Ω , and B is an
n × n matrix of locally integrable functions Bij on Ω, we say curl �w = B in the
sense of distributions on Ω if

(8)

∫
Ω

wi
∂ϕ

∂xj
− wj

∂ϕ

∂xi
= −

∫
Ω

Bijϕ
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for all i, j ∈ {1, . . . , n} and all ϕ ∈ C∞
0 (Ω). If the components of �v or �w are suffi-

ciently smooth, these definitions are equivalent to the classical notions of divergence
and curl via integration by parts.

Recall that C. Fefferman [9] identified the dual of the real Hardy space H1 with
the space BMO of functions of bounded mean oscillation, introduced by John and
Nirenberg [13]. In the local case, Goldberg [11] showed that the dual of h1(Rn)
can be identified with the space bmo(Rn), the Banach space of locally integrable
functions f which satisfy

(9) ‖f‖bmo := sup
|I|≤1

1

|I|

∫
I

|f − fI |+ sup
|I|>1

1

|I|

∫
I

|f | < ∞.

Here I can be used to denote either balls or cubes with sides parallel to the axes, |I|
denotes Lebesgue measure (volume) and fI is the mean of f over I, i.e., (1/|I|)

∫
I
f .

As in the case of h1, the upper-bound 1 on the size of the cubes in the definition can
be replaced by any other finite nonzero constant, resulting in an equivalent norm.

In [5], the authors prove (in Theorem 2.2) a kind of dual version to the div-curl
lemmas in Theorem 1, which is a local analogue of a result proved in [7] for BMO:
for G ∈ bmo(Rn),

(10) ‖G‖bmo ≈ sup
�V , �W

∫
Rn

G�V · �W,

where the supremum is taken over all vector fields �V , �W as above, satisfying (3),

with ‖�V ‖Lp , ‖f‖Lp and ‖ �W‖Lq all bounded by 1. Here, and below, one must
obviously consider only real-valued functions g in bmo.

Moreover, the same equation (10) holds if the vector fields, instead of (3),

satisfy (5) with ‖Bij‖Lq ≤ 1 for all i, j ∈ {1, . . . , n}, as well as ‖�V ‖Lp , ‖ �W‖Lq ≤ 1.
As a consequence of these results, one is able to show (see [5, Theorem 3.1])

a decomposition of functions in h1(Rn) into nonhomogeneous div-curl quantities
�V · �W of the type found in Theorem 1, part (a) or part (b).

The goal of this paper is to prove analogues of (10) for functions in local bmo
spaces on a domain Ω, and obtain decomposition results for the local Hardy spaces.
This was done in the case of BMO and with homogeneous, L2 div-curl quantities in
[3], and independently by Lou [16]. In [1] homogeneous div-curl results on domains
were stated under the assumption that one of the vector fields is a gradient, and
extended to Hardy – Sobolev spaces. Related work may be found in [12, 17].

In the next section we introduce some definitions of Hardy spaces and BMO
on domains, as well as explain the boundary conditions for equations (7) and (8).
The statements and proofs of our results are contained in Section 3.

2. Preliminary definitions for a domain Ω

For the moment we will just assume Ω is an open subset of Rn, but often we
will restrict ourselves to a Lipschitz domain, i.e., one whose boundary is made up,
piecewise, of Lipschitz graphs.

Miyachi [19] defined Hardy spaces on Ω by letting δ(x) = dist(x, ∂Ω), replacing
the maximal function M in (1) by

Mφ,Ω(f)(x) = Mφ,δ(x)(f)(x) = sup
0<t<δ(x)

|f ∗ φt(x)|,
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for f ∈ L1
loc(Ω), and requiring Mφ,Ω(f) ∈ L1(Ω). The space of such functions was

later denoted by H1
r (Ω) in [6], since when the boundary is sufficiently nice (say

Lipschitz), H1
r (Ω) can be identified with the quotient space of restrictions to Ω of

functions in H1(Rn) (see [6, 19]). Moreover,

‖f‖H1
r (Ω) := ‖Mφ,Ω(f)‖L1(Ω) ≈ inf{‖F‖H1(Rn) : F |Ω = f}.

The space h1
r(Ω), corresponding to restrictions to Ω of functions in h1(Rn),

can be defined by replacing δ(x) = dist(x, ∂Ω) in Miyachi’s definition by δ(x) =
min

(
δ, dist(x, ∂Ω)

)
, for some fixed finite δ > 0. Since different choices of δ give

equivalent norms, when Ω is bounded one can choose δ > diam(Ω), so h1
r(Ω) is the

same as H1
r (Ω) (with norm equivalence involving constants depending on Ω).

For Ω a Lipschitz domain, the dual of h1
r(Ω) (see [19] for the case of H1 and

BMO, and [2]) can be identified with the subspace

bmoz(Ω) =
{
g ∈ bmo(Rn) : supp(g) ⊂ Ω

}
.

Analogously, one can consider the subspace

h1
z(Ω) =

{
g ∈ h1(Rn) : supp(g) ⊂ Ω

}
.

This was originally done in [15] in the case of H1 functions supported on a closed
subset with certain geometric properties, and later in [6] for a Lipschitz domain
and in [4] for a domain with smooth boundary, in connection with boundary value
problems. For a bounded domain Ω, H1

z (Ω) and h1
z(Ω) do not coincide since func-

tions in H1
z must satisfy a vanishing moment condition over the whole domain Ω,

while those in h1
z do not.

The dual of h1
z(Ω) can be identified with bmor(Ω), defined by requiring the

supremum in (9) to be taken only over cubes I contained in Ω. In fact, one can
actually require the cubes to satisfy 2I ⊂ Ω. This space was originally studied,
in the case of BMO, by Jones [14], who showed that when the boundary of Ω is
sufficiently nice, BMOr(Ω) is the same as the quotient space of restrictions to Ω of
functions in BMO(Rn). This holds in particular when Ω is a Lipschitz domain, and
is also true in the case of bmor, with

‖g‖bmor(Ω) ≈ inf{‖G‖bmo(Rn) : G|Ω = g}.

Note that when Ω is a bounded domain, every element of BMOr(Ω) is in bmor(Ω),
but the bmor norm depends also on the norm of the function in L1(Ω).

Since elements of h1
z(Ω) are controlled in norm up to the boundary, when

discussing div-curl quantities in this space one needs to consider the “boundary
values” of the vector fields �v and �w. As these vector fields are only defined in Lp(Ω)
and do not have traces on the boundary, the appropriate boundary conditions are
expressed, as in the case of Dirichlet and Neumann boundary value problems, by
specifying the class of test functions. In particular, for the equations

div�v = f and curl �w = B,

we now require (7) and (8) to hold in the case when the test functions do not have
compact support in Ω. This is equivalent to saying that the vector fields

(11) �V =

{
�v in Ω
�0 in R

n \ Ω
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and

(12) �W =

{
�w in Ω
�0 in R

n \ Ω

satisfy div �V = f and curl �W = B in the sense of distributions on R
n, with f and

B vanishing outside of Ω.
When the boundary ∂Ω of Ω is sufficiently smooth, let �n = (η1, . . . , ηn) denote

the outward unit normal vector. If the vector fields are sufficiently smooth (so as
to have a trace on the ∂Ω), we can integrate by parts in (7) and (8). If ϕ does not
have compact support in Ω, the boundary values of �v must satisfy �n ·�v = 0, and in
the case of a bounded domain, this also entails

∫
Ω
f = 0, while for �w it must hold

that on ∂Ω

wjηi = wiηj ,

meaning that �w is colinear with �n.
We will denote these conditions as follows. Let Ω be a Lipschitz domain and

suppose f and the components of the vector fields �v and �w are locally integrable
on Ω. As in the statement of the Neumann problem on Ω, write

(13)

⎧⎪⎨⎪⎩
div�v = f in Ω,∫
Ω
f = 0 if Ω is bounded,

�n · �v = 0 on ∂Ω

to indicate that (7) holds for all ϕ ∈ C∞
0 (Rn), and

(14)

{
curl �w = B in Ω,

�n× �w = 0 on ∂Ω

to indicate that (8) holds for all i, j ∈ {1, . . . , n} and all ϕ ∈ C∞
0 (Rn).

3. Div-curl lemmas for local Hardy spaces and BMO on a domain

In order to prove an analogue of (10) for bmoz(Ω), one needs the following
versions of the nonhomogeneous div-curl lemma for h1

r(Ω). The first is a special
case of Theorem 7 in [8]:

Theorem 2 ([8]). Suppose �v and �w are vector fields on an open set Ω ⊂ R
n,

satisfying

�v ∈ Lp(Ω,Rn), �w ∈ Lq(Ω,Rn), 1 < p < ∞,
1

p
+

1

q
= 1,

and

div�v = f ∈ Lp(Ω), curl �w = 0

in the sense of distributions on Ω. Then �v · �w belongs to the local Hardy space h1
r(Ω)

with

(15) ‖�v · �w‖h1
r(Ω) ≤ C(‖�v‖Lp(Ω) + ‖f‖Lp(Ω))‖�w‖Lq(Ω).

The second is a domain version of Theorem 4 in [8], whose proof we shall adapt
below:
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Theorem 3. Suppose �v and �w are vector fields on an open set Ω ⊂ R
n, satis-

fying

�v ∈ Lp(Ω,Rn), �w ∈ Lq(Ω,Rn), 1 < p < ∞,
1

p
+

1

q
= 1,

and

div�v = 0, curl �w = B ∈ Lq(Ω;Mn×n)

in the sense of distributions on Ω. Then �v · �w belongs to the local Hardy space h1
r(Ω)

with

(16) ‖�v · �w‖h1
r(Ω) ≤ C‖�v‖Lp(Ω)(‖�w‖Lq(Ω) +

∑
i,j

‖Bij‖Lq(Ω)).

Proof. Consider a point x ∈ Ω and a cube Qx
l , centered at x and of sidelength

l > 0, depending on x. We choose l = min
(
1, dist(x, ∂Ω)

)
/
√
n, which guarantees

Qx
l lies inside Ω. Without loss of generality assume Qx

l = [0, l]n. Writing �v =
(v1, . . . , vn), and fixing i, we solve −∆ui = vi with mixed boundary conditions: on
the two faces xi = 0 and xi = l we impose Neumann boundary values

∂ui

∂xi
= 0,

and on the other faces (corresponding to xj = 0 and xj = l, j 
= i) Dirichlet
boundary values ui = 0. This can be done by expanding in multiple Fourier series
(with even coefficients in xi and odd coefficients in xj , j 
= i). By the Marcinkiewicz
multiplier theorem (see [18, Theorem 4]) the second derivatives of the solution ui

will be bounded in Lα(Qx
l ) by ‖vi‖Lα(Qx

l )
, for every α ≤ p, i = 1, . . . , n. Note that

by the homogeneity of the multipliers, the constants will be independent of l. Since
we have taken l ≤ 1, we also get that ‖ui‖W 2,p(Qx

l )
≤ C‖vi‖Lp(Qx

l )
with a constant

independent of l.

Set �U = (u1, . . . , un) and consider the function div �U ∈ W 1,p(Qx
l ). This func-

tion satisfies

∆(div �U) = − div�v = 0

in the sense of distributions on Qx
l , since Qx

l ⊂ Ω, and moreover

div �U =
∑ ∂ui

∂xi
= 0

on the boundary, by the choice of boundary conditions above. By the uniqueness

of the solution of the Dirichlet problem in W 1,p
0 (Qx

l ), we must have div �U = 0 on

Qx
l . Let A be the matrix curl �U , i.e.,

Aij =
∂ui

∂xj
− ∂uj

∂xi
.

These are functions in W 1,p(Qx
l ) with first derivatives bounded in the Lα(Qx

l )-norm
by ‖vi‖Lα(Qx

l )
, for every α ≤ p.

Now writing �Aj for the jth column of the matrix A, we have, in the sense of
distributions on Qx

l ,

(17) div �Aj =

n∑
i=1

(
∂2ui

∂xi∂xj
− ∂2uj

∂x2
i

)
=

∂

∂xj
div �U −∆uj = vj ,
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for each j = 1, . . . , n. Taking the dot product with �w and recalling that we identify
curl �w, in the sense of distributions on Ω, with a matrix B whose components are
in Lq(Ω), we have

�v · �w =
n∑

j=1

(div �Aj)wj =
n∑

j=1

div( �Ajwj)−
∑
i,j

Aij
∂wj

∂xi

=

n∑
j=1

div( �Ajwj) +
∑
i<j

AijBij ,

again in the sense of distributions on Qx
l .

Take φ ∈ C∞ with support in B
(
0, 1/(2

√
n)
)
and

∫
φ = 1, and define, for

0 < t ≤ min
(
1, dist(x, ∂Ω)

)
, φx

t by φx
t (y) = t−nφ

(
t−1(x − y)

)
. Since l =

min
(
1, dist(x, ∂Ω)

)
/
√
n we have

supp(φx
t ) ⊂ B(x, t/2

√
n) ⊂ Qx

l ⊂ Ω.

Denote B(x, t/2
√
n) by B̃x

t .
We integrate �v · �w against φx

t , noting that equation (17) holds even if we change
�Aj by adding a vector field which is constant on Qx

l . In particular we modify each

Aij by subtracting its average (Aij)˜Bx
t
over B̃x

t . Integration by parts yields:

∫
φx
t (�v · �w) = −

∑
i,j

∫
t−(n+1) ∂φ

∂yi

(
t−1(x− y)

)
(Aij(y)− (Aij)˜Bx

t
)wj(y) dy

+
∑
i<j

∫
t−nφ

(
t−1(x− y)

)
(Aij − (Aij)˜Bx

t
)Bij .

Take α, β with 1 < α < p, 1 < β < q and 1/α+ 1/β = 1 + 1/n. The Sobolev –

Poincaré inequality in B̃x
t , together with the fact that t ≤ 1, gives (see the proof of

Lemma II.1 in [7]):

|φt ∗ (�v · �w)(x)| ≤ C|�∇φ‖∞
∑
i,j

(
t−n

∫
˜Bx
t

|�∇Aij |α
)1/α(

t−n

∫
˜Bx
t

|�w|β
)1/β

+ C‖φ‖∞
∑
i,j

(
t−n

∫
˜Bx
t

|�∇Aij |α
)1/α(

t−n

∫
˜Bx
t

|Bij |β
)1/β

≤ CφM(|�v|α)(x)1/α
[
M(|�w|β)(x)1/β +

∑
i,j

M(|Bij |β)(x)1/β
]
.

Here the Hardy –Littlewood maximal function on R
n, denoted by M, is applied

to the functions |�v|α, |�w|β and |Bij |β by extending them by zero outside Ω. The
constant depends on the choice of φ but not on t or x.

Recalling that the maximal function is bounded on Lr(Rn), r > 1, we conclude
that:
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sup
0<t<dist(x,∂Ω)

|φt ∗ (�v · �w)(x)| dx

≤ Cφ

(∫
Ω

(
M(|�v|α)(x)

)p/α
dx

)1/p

×
[(∫

Ω

(
M(|�w|β)(x)

)q/β
dx

)1/q

+
∑
i,j

(∫
Ω

(
M(|Bij |β)(x)

)q/β
dx

)1/q]
≤ Cφ‖�v‖Lp(Ω)

[
‖�w‖Lq(Ω) +

∑
i,j

‖Bij‖Lq(Ω)

]
.

This shows �v · �w ∈ h1
r(Ω), and (16) holds. �

Lemma 4. Suppose �v and �w are vector fields on a Lipschitz domain Ω ⊂ R
n,

satisfying the hypotheses of either Theorem 2 or Theorem 3, but with the conditions
on the divergence and the curl satisfied in the stronger sense of (13) and (14). Then
�v · �w ∈ h1

z(Ω) with norm bounded as in (15) or (16).

Proof. Given such vector fields �v and �w on Ω, define the zero extensions �V

and �W as in (11) and (12). The Lp and Lq norms of �V and �W are the same as

those of �v and �w on Ω. Moreover, conditions (13) and (14) guarantee that �V and �W
satisfy (3) (respectively (5)) in the sense of distributions on R

n. Therefore, by using

Theorem 1, part (a) (respectively part (b)), we can conclude that �V · �W ∈ h1(Rn)

with the appropriate bound on its norm. But �V · �W is equal to zero outside Ω and
is �v · �w on Ω, hence this is a function in h1

z(Ω). The h1
z norm is the same as the h1

norm and the bounds can be given in terms of the Lp and Lq norms of the relevant
quantities on Ω. �

Now we can proceed to state and prove the local bmo versions of the div-curl
lemma on a Lipschitz domain:

Theorem 5. Let Ω ⊂ R
n be a Lipschitz domain.

(a) If g ∈ bmoz(Ω), then

(18) ‖g‖bmoz ≈ sup
�v,�w

∫
Ω

g �v · �w,

where the supremum is taken over all vector fields �v ∈ Lp(Ω,Rn), �w ∈ Lq(Ω,Rn),
‖�v‖Lp(Ω) ≤ 1, ‖�w‖Lq(Ω) ≤ 1, satisfying (3) in the sense of distributions on Ω, with
‖f‖Lp(Ω) ≤ 1.

(b) If g ∈ bmoz(Ω), then equation (18) holds with the supremum now taken
over all vector fields �v ∈ Lp(Ω,Rn), �w ∈ Lq(Ω,Rn), ‖�v‖Lp(Ω) ≤ 1, ‖�w‖Lq(Ω) ≤
1, satisfying (5) in the sense of distributions on Ω, with ‖Bij‖Lq (Ω) ≤ 1 for all
i, j ∈ 1, . . . , n.

(c) If g ∈ bmor(Ω) then

‖g‖bmor
≈ sup

�v,�w

∫
Ω

g �v · �w,

the supremum being taken over all vector fields �v and �w as in part (a) or in part
(b), but satisfying the stronger conditions (13) and (14).
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Proof. Let g ∈ bmoz(Ω) (real-valued) and take �v, �w as in the hypotheses of
part (a) (respectively part (b)). By Theorem 2 (resp. Theorem 3), the dot product
�v · �w belongs to h1

r(Ω) with norm bounded by a constant. The duality of bmoz(Ω)
with h1

r(Ω) then gives ∫
Ω

g �v · �w ≤ C‖g‖bmoz .

Conversely, by the nature of bmoz(Ω), the extension G of g to R
n by setting it

zero outside Ω is in BMO(Rn) with ‖G‖bmo ≈ ‖g‖bmoz
. Hence, by (10), one has

‖g‖bmoz ≈ sup
�V , �W

∫
Rn

G �V · �W = sup
�V , �W

∫
Ω

g �V
∣∣
Ω
· �W

∣∣
Ω
,

where the supremum is taken over all vector fields �V ∈Lp(Rn,Rn), �W ∈Lq(Rn,Rn),

‖�V ‖Lp ≤ 1, ‖ �W‖Lq ≤ 1, satisfying (3) (resp. (5)) in the sense of distributions on

R
n. The restrictions �v = �V

∣∣
Ω
, �w = �W

∣∣
Ω
satisfy the same conditions in Ω, proving

the inequality � in (18).
If g ∈ bmor(Ω) and �v, �w are as in part (c), by Lemma 4 �v · �w ∈ h1

z(Ω) with
norm bounded by a constant, so the duality of bmor and h1

z implies∫
Ω

g �v · �w ≤ C‖g‖bmor
‖�v · �w‖h1

z
≤ C‖g‖bmor .

This shows that

sup
�v,�w

∫
Ω

g �v · �w ≤ C‖g‖bmor .

It remains to prove the other direction, i.e.,

‖g‖bmor
≤ C ′ sup

�v,�w

∫
Ω

g �v · �w.

The left-hand side is given by

sup
Q⊂Ω
|Q|≤1

1

|Q|

∫
Q

|g(x)− gQ| dx+ sup
Q⊂Ω
|Q|>1

1

|Q|

∫
Q

|g(x)| dx.

As explained in the proof of Theorem 2.1 in [3] (for the case of BMOr(Ω) but
the same arguments apply to bmor(Ω)), it suffices to take the supremum over cubes

Q satisfying Q̃ = 2Q ⊂ Ω (or with some constant CΩ replacing 2). In that case it
just remains to point out that in the proof of estimate (10) in [5] (see the proof of
Theorem 2.2., Case I), it was shown that for a ball B ⊂ R

n with radius bounded
by 1, (

1

|B|

∫
B

|g(x)− gB |2 dx

)1/2

≤ Cn sup

∫
g �v · �w,

where the supremum is taken over all vector fields �v, �w ∈ C∞
0 (B̃) with ‖�v‖Lp ≤ 1,

‖�w‖Lq ≤ 1 and div�v = 0, curl �w = 0. There we took B̃ = 2B but the argument

immediately applies to B̃ = CΩB for some CΩ > 1. Note that if B̃ ⊂ Ω, such vector
fields will vanish on the boundary ∂Ω and thus satisfy the boundary conditions (13)
and (14).
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Similarly, for a ball B ⊂ R
n with radius larger than 1, we showed in [5] (see

the proof of Theorem 2.2., Case I) that(
1

|B|

∫
B

|g(x)|2 dx

)1/2

≤ Cn sup

∫
g �v · �w,

where this time the supremum can be taken over all vector fields �v, �w ∈ C∞
0 (B̃) with

‖�v‖Lp ≤ 1, ‖�w‖Lq ≤ 1 satisfying the relaxed div-curl conditions (3), or alternatively
the supremum can be taken over such vector fields satisfying (5). Again such vector
fields will automatically satisfy (13) and (14)— the boundary conditions follow
from the vanishing on the boundary and the condition

∫
Ω
div�v = 0, in the case

of bounded Ω, follows from the divergence theorem since we are now dealing with
smooth functions. �

Finally we arrive at the desired nonhomogeneous div-curl decompositions for
the local Hardy spaces on Ω. These are corollaries of Theorem 5 and follow from the
duality between bmoz and h1

r (respectively bmor and h1
z) by using Lemmas III.1

and III.2 in [7]:

Theorem 6. Let Ω ⊂ R
n be a Lipschitz domain and 1 < p < ∞, 1/p+1/q = 1.

(a) For a function f in h1
r(Ω), there exists a sequence of scalars {λk} with∑∞

k=1|λk|<∞, and sequences of vector fields {�vk} in Lp(Ω,Rn), {�wk} in Lq(Ω,Rn)
with ‖�vk‖Lp , ‖�wk‖Lq ≤ 1 for all k, satisfying, for each k, condition (3) in the sense
of distributions on Ω, so that

f =

∞∑
k=1

λk�vk · �wk.

(b) The same result holds as in part (a) but with �vk and �wk satisfying (5)
instead of (3), for each k.

(c) For a function f ∈ h1
z(Ω), there exists a sequence of scalars {λk} with∑∞

k=1|λk| < ∞, and sequences of vector fields {�vk} and {�wk}, as in part (a) or
part (b), but satisfying the div-curl conditions in the stronger sense of (13) for
each �vk and (14) for each �wk, so that

f =

∞∑
k=1

λk�vk · �wk.

Remark. As pointed out in Section 2, when the domain Ω is bounded the
“local” Hardy space h1

r(Ω) coincides with H1
r (Ω) and similarly for BMOz(Ω) and

bmoz(Ω). By taking the constants in the definitions and proofs sufficiently large
(depending on the size of Ω), we do not need to deal with the case of “large” balls
or cubes, so everything reverts to the homogeneous case. As previously mentioned,
this case was dealt with in [3] and [16], but only for p = q = 2, so the current
results are a generalization of the older ones.
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