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Abstract

A decomposition theorem for the local Hardy space of Goldberg, in
terms of nonhomogeneous div-curl quantities, is proved via a dual result
for the space bmo.

1 Introduction

Given vector fields V = (v1, . . . , vn) in Lp(Rn, Rn), W = (w1, . . . , wn) in
Lp′(Rn, Rn) with 1 < p < ∞, 1

p + 1
p′ = 1, the scalar (dot) product V · W =∑

viwi will lie in L1(Rn). Coifman, Lions, Meyer, and Semmes [CLMS] showed
that if the following conditions hold in the sense of distributions:

div V :=
∑ ∂vi

∂xi
= 0,

curl W :=
(

∂wj

∂xi
− ∂wi

∂xj

)
ij

= 0,
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then V ·W belongs to the real Hardy space H1(Rn), a proper subspace of L1.
Moreover,

‖V ·W‖H1 ≤ C‖V‖Lp‖W‖Lp′ . (1.1)

This “div-curl lemma” and other results of a similar nature illustrate the re-
cent use of Hardy spaces for applications to nonlinear PDE and in the method
of compensated compactness, originally going back to the work of Murat and
Tartar.

Recall (see [FS]) that a function f belongs to H1(Rn) if the maximal function
Mϕ(f) belongs to L1(Rn), where, for a fixed Schwartz function ϕ,

∫
ϕ = 1, we

define
Mϕ(f)(x) = sup

t>0
|f ∗ ϕt(x)|, ϕt(·) = t−nϕ(t−1·).

Here the norm, defined by ‖f‖H1 := ‖Mϕ‖L1 , depends on the choice of ϕ, but
the space does not since different choices of ϕ give equivalent norms. Functions
in the Hardy space enjoy both improved integrability and cancellation conditions
compared to L1 functions. In particular, if f ∈ H1 then its integral must vanish.

The local real Hardy space h1(Rn), defined by Goldberg [Go], is larger than
H1 and allows for more flexibility, since global cancellation conditions are not
necessary. For example, the Schwartz space is contained in h1 but not in H1,
and multiplication by cut-off functions preserves h1 but not H1, thus making it
more suitable for working in domains and on manifolds. For membership of a
function f in h1(Rn), we use a “local” maximal function mϕ(f), with

mϕ(f)(x) = sup
0<t<1

|f ∗ ϕt(x)|,

and require mϕ(f) ∈ L1(Rn). As for H1, ‖f‖h1 := ‖mϕ‖L1 defines a norm, and
different choices of ϕ give equivalent norms, so we can choose ϕ with compact
support, making clear the local nature of the maximal function.

In [D], sufficient nonhomogeneous conditions on the divergence and curl were
found in order for the dot product V ·W, where V and W are vector fields as
above, to be in h1(Rn). In particular, as a corollary, the following special case
was proved:

Proposition 1.1 ([D]) Suppose V and W are vector fields on Rn satisfying

V ∈ Lp(Rn)n, W ∈ Lp′(Rn)n, 1 < p < ∞,
1
p

+
1
p′

= 1.

If there exists a function f in Lp(Rn) and a matrix-valued function A with
components in Lp′(Rn) such that, in the sense of distributions,

div V = f, curl W = A,

then V ·W belongs to the local Hardy space h1(Rn) with

‖V ·W‖h1 ≤ C (‖V‖Lp‖W‖Lp′ + ‖f‖Lp‖W‖Lp′ + ‖V‖Lp

∑
i,j

‖Aij‖Lp′ ).
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Note that the requirement on the divergence and the components of the curl to
be functions in Lp and Lp′ , respectively, was also used in the original div-curl
lemma of Murat [Mu], and is a natural relaxation of the vanishing divergence
and curl conditions. In fact, by the Hodge decomposition, this can be viewed
as a combination of the following two theorems:

Theorem 1.2 ([D]) Suppose V and W are vector fields on Rn satisfying

V ∈ Lp(Rn)n, W ∈ Lp′(Rn)n, 1 < p < ∞,
1
p

+
1
p′

= 1

and
div V = f ∈ Lp(Rn), curl W = 0

in the sense of distributions. Then V·W belongs to the local Hardy space h1(Rn)
with

‖V ·W‖h1(Rn) ≤ C (‖V‖Lp(Rn) + ‖f‖Lp(Rn)) ‖W‖Lp′ (Rn); (1.2)

and

Theorem 1.3 ([D]) Suppose V and W are vector fields on Rn satisfying

V ∈ Lp(Rn)n, W ∈ Lp′(Rn)n, 1 < p < ∞,
1
p

+
1
p′

= 1.

If A is a matrix with components in Lp′(Rn) and

div V = 0, curl W = A

in the sense of distributions, then V ·W belongs to the local Hardy space h1(Rn)
with

‖V ·W‖h1(Rn) ≤ C ‖V‖Lp(Rn)

[
‖W‖Lp′ (Rn) +

∑
i,j

‖Aij‖Lp′ (Rn)

]
. (1.3)

It may seem that the conditions on the divergence and the curl in the theo-
rems above are too strong, so the question arises as to whether one can charac-
terize functions in the Hardy space in terms of such div-curl quantities. Such a
characterization, providing a kind of converse to the div-curl lemma, was shown
in [CLMS] for H1(Rn):

Theorem 1.4 ([CLMS]) Every function f ∈ H1(Rn) can be written as

f =
∞∑

k=1

λkVk ·Wk,

with {λk} ∈ `1 and Vk,Wk vector fields with norm bounded by 1 in L2(Rn, Rn),
and div Vk = 0, curl Wk = 0 in the sense of distributions on Rn.
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This decomposition was proved in [CLMS], via functional analysis argu-
ments, from the following dual result: for g ∈ BMO(Rn),

‖g‖BMO ≈ sup
V,W

∫
Rn

gV ·W, (1.4)

where the supremum is taken over all vector fields V, W in L2(Rn, Rn), ‖V‖L2 , ‖W‖L2 ≤
1, satisfying div V = 0, curl W = 0 in the sense of distributions on Rn.

The goal of this paper is to prove an analogue, Theorem 2.2, of (1.4) for
functions in bmo(Rn), the dual of the local Hardy space h1(Rn), and conse-
quently a decomposition theorem, Theorem 3.1, for h1 in terms of the div-curl
quantities used in Theorem 1.2 or in Theorem 1.3.

2 The div-curl lemma for local BMO

In [Go] it was shown that the dual of h1(Rn) can be identified with the space
bmo(Rn), consisting of locally integrable functions f with

‖f‖bmo := sup
|I|≤1

1
|I|

∫
I

|f − fI |+ sup
|I|>1

1
|I|

∫
I

|f | < ∞.

Here the supremum can be taken over balls or cubes with sides parallel to the
axes, |I| denotes Lebesgue measure (volume) and fI is the mean of f over I,
i.e. 1

|I|
∫

I
f . The number 1 in the definition can be replaced by any other finite

nonzero constant. Note that unlike the case of BMO, we do not need to consider
this norm modulo constants.

Before stating the main result, let us introduce the following definition in
order to simplify notation.

Definition 2.1 Denote by DCp
1,0 the collection of all functions which can be

written in the form V·W, where V,W are vectors fields, V ∈ Lp(Rn, Rn), W ∈
Lp′(Rn, Rn), ‖V‖Lp ≤ 1, ‖W‖Lp′ ≤ 1, satisfying, in the sense of distributions
on Rn,

div V = f ∈ Lp(Rn), ‖f‖Lp ≤ 1, and curl W = 0. (2.1)

The collection DCp
0,1 can be defined analogously by requiring the vector fields

to satisfy, instead of (2.1), the conditions

div V = 0, (curl W)ij = Aij ∈ Lp′(Rn), ‖Aij‖Lp′ ≤ 1, i, j ∈ {1, . . . , n}. (2.2)

Note that by Theorems 1.2 and 1.3, both DCp
1,0 and DCp

0,1 are subsets of
h1(Rn) for every 1 < p < ∞.
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Theorem 2.2 If g ∈ bmo(Rn), then for 1 < p < ∞,

‖g‖bmo ≈ sup
f∈DCp

1,0

∫
Rn

gf, (2.3)

and
‖g‖bmo ≈ sup

f∈DCp
0,1

∫
Rn

gf, (2.4)

with constants that depend only on p and the dimension.

Proof: Let g ∈ bmo(Rn) (we are assuming that g is real-valued) and take
f ∈ DCp

1,0 ∪ DCp
0,1. As stated above, by Theorems 1.2 and 1.3, f belongs to

h1(Rn) with norm bounded by a constant. The duality of bmo(Rn) with h1(Rn)
then gives ∫

Rn

gf ≤ C‖g‖bmo.

It remains to prove the other direction, i.e.

‖g‖bmo ≤ C ′
∫

Rn

gf

where we take the supremum over f ∈ DCp
1,0 or f ∈ DCp

0,1, respectively.
We will use the definition of bmo with the supremum taken over balls.

Case I: If B is a small ball, say with radius bounded by 1 (although in fact
the proof is independent of the radius), one can use the following estimate from
the proof of Theorem III.2 in [CLMS]:( 1

|B|

∫
B

∣∣g(x)− gB

∣∣2dx
)1/2

≤ Cn sup
∫

g V ·W, (2.5)

where the supremum is taken over all vector fields V,W ∈ C∞
0 (B̃) (here and

below B̃ denotes the ball with the same center and twice the radius of B) with
‖V‖Lp ≤ 1, ‖W‖Lp′ ≤ 1 and div V = 0, curl W = 0. Note that the result in
[CLMS] is stated for a cube Q (instead of a ball B) and for p = p′ = 2, but can
be modified to the case of a ball and for p 6= 2 as follows.

The key inequality used in the proof in [CLMS],

‖g − gB‖L2(B) ≤ C

n∑
i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
W−1,2(B)

, (2.6)

is valid for any Lipschitz domain (see for example [GR], Section I.2.1, Corollary
2.1). This inequality holds in the homogeneous sense, modulo constants. There-
fore, while we denote by W−1,2(B) the dual of the Sobolev space W 1,2

0 (B), which
is the closure of C∞

0 (B) under the norm ‖ϕ‖W 1,2(B) = ‖ϕ‖L2(B)+‖∇ϕ‖L2(B), to
obtain the right-hand-side of (2.6) we test against test functions only bounded
in the homogeneous Sobolev norm ‖u‖Ẇ 1,2(B) = ‖∇u‖L2(B). For a fixed ball the

5



homogeneous and nonhomogeneous norms on C∞
0 (B) functions are equivalent,

but here we use only the homogeneous norm in order for the constant to be
independent of the radius of the ball.

To estimate
∥∥∥ ∂g

∂xi

∥∥∥
W−1,2(B)

, i = 1, . . . , n, we fix a j ∈ {1, . . . , n} \ {i} and

define the vector fields V and W, for the case p ≤ 2, as in [CLMS]: given
u ∈ C∞

0 (B) with ‖∇u‖L2 ≤ 1, let

V = |B|1/2−1/p

(
∂u

∂xi
ej −

∂u

∂xj
ei

)
, (2.7)

where ei denotes the ith coordinate vector in Rn, and let

W = γ|B|−1/p′∇
(

(xj − x0
j )η
(x− x0

R

))
, (2.8)

where x0 and R are the center and radius of B, respectively. Here η is a fixed
smooth function supported in B(0, 2) and identically equal to 1 on B(0, 1).

Note that since p ≤ 2, the support and bound on the L2 norm of ∇u imply
‖V‖Lp ≤ 1, while γ can be chosen, depending only on η, n and p, so that
‖W‖Lp′ ≤ 1. This gives us the desired properties for V and W, and moreover,

V ·W = γ|B|−1/2 ∂u

∂xi
. (2.9)

When p ≥ 2, we need to change the definitions of V and W. As above, we
take u ∈ C∞

0 (B) with ‖∇u‖L2 ≤ 1, but now we set

W = |B|1/2−1/p′∇u (2.10)

and (again taking j ∈ {1, . . . , n} \ {i})

V = γ′|B|−1/p

{
∂(ηBxj)

∂xj
ei −

∂(ηBxj)
∂xi

ej

}
, (2.11)

with ηB defined by ηB(x) = η
(

x−x0

R

)
for η as above. Clearly div V = 0 and

curl W = 0, and by the conditions on u, the fact that p ≥ 2, and the choice of
γ′, we can make ‖V‖Lp ≤ 1 and ‖W‖Lp′ ≤ 1. On B, where ηB is identically
equal to 1, we get V = γ′|B|−1/pei, so that as before

V ·W = γ′|B|−1/2 ∂u

∂xi
. (2.12)

Integrating against g in (2.9) or (2.12), we can proceed for any p ∈ (1,∞).
Taking the supremum over all such u, we get a bound on

∥∥∥ ∂g
∂xi

∥∥∥
W−1,2(B)

by a

constant multiple of |B|1/2 times the right-hand-side of (2.5). We then obtain
(2.5) from (2.6).
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Case II: Now let us consider a large ball B with radius greater than 1. For
this type of ball we need to show a stronger condition, that is, we need to bound
the mean of |g| on B. We will do this by showing two cases of the following
inequality, corresponding to (2.3) and (2.4):( 1

|B|

∫
B

|g(x)|rdx
)1/r

≤ Cn,r sup
∫

g V ·W. (2.13)

In both cases the supremum is to be taken over pairs of smooth vector fields
V, W supported in B̃, V ∈ (Lp)n, W ∈ (Lp′)n, with norms bounded by 1, and
in the first case, with r = p′, the vector fields satisfy condition (2.1), while in
second case, with r = p, they satisfy (2.2).

Note that a priori we have the finiteness of the left-hand-side of (2.13) by
the fact that g ∈ bmo ⊂ BMO ⊂ Lr

loc for any r < ∞.
We first prove estimate (2.13) when B = B1 is the unit ball B(0, 1). In order

to do this we need to use the full (nonhomogeneous) version of inequality (2.6),
namely

‖g‖Lr(B1) ≤ C

{
‖g‖W−1,r(B1) +

n∑
i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
W−1,r(B1)

}
(2.14)

for any r, 1 < r < ∞ (see [Ne], Theorem 1, p. 108, with l = 0).
The estimates for

∥∥∥ ∂g
∂xi

∥∥∥
W−1,r(B1)

are analogous to those above (for a fixed

ball the norm is equivalent to the homogeneous case). Here the test functions
are in W 1,r′

0 (B1), so r′ plays the role of the exponent 2 in the argument above,
and again we need to distinguish the two cases. For r = p′, given u ∈ C∞

0 (B)
with ‖∇u‖Lp ≤ 1, we use the same vector fields as defined in (2.7) and (2.8),
normalized for the unit ball B1. For r = p the test function u will now have
‖∇u‖Lp′ ≤ 1, so we can define the vector fields as in (2.11) and (2.10).

Now we address the part that is different from the homogeneous case - we
have to bound

‖g‖W−1,r(B1) = sup
∣∣∣∣∫ gϕ

∣∣∣∣ , (2.15)

where the supremum is taken over ϕ ∈ C∞
0 (B1), ‖ϕ‖W 1,r′ (B1)

≤ 1. We need to
be able to write any such function ϕ in terms of div-curl quantities V ·W.

Lemma 2.3 If ϕ ∈ C∞
0 (B1) then we can write

ϕ = CV1 ·W1 = CV2 ·W2

for smooth vector fields Vi, Wi with V1 and W2 supported in B1, W1 and V2

supported in the double ball B̃1 = B(0, 2), W1 ∈ (Lp′(B̃1))n, V2 ∈ (Lp(B̃1))n

(with norms bounded by a constant independent of ϕ), and satisfying

div V2 = 0, curl W1 = 0.

In addition, we have
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(i) V1 ∈ (Lp(B1))n and div V1 ∈ Lp(B1) with bounds

‖V1‖Lp ≤ C‖ϕ‖Lp , ‖div V1‖Lp ≤ C‖∇ϕ‖Lp ;

(ii) W2 ∈ (Lp′(B1))n and, for all i, j, (curl W2)ij ∈ Lp′(B1) with bounds

‖W2‖Lp′ ≤ C‖ϕ‖Lp′ , ‖(curl W2)ij‖Lp′ ≤ C‖∇ϕ‖Lp′ .

Proof: [Proof of Lemma 2.3:] Let ϕ ∈ C∞
0 (B1). Take

V1 = ϕe1 = (ϕ, 0, . . . , 0),

and
W1 = ∇(ηx1),

where η is supported in B̃1 = B(0, 2), satisfies ‖η‖L∞ ≤ 1, ‖∇η‖L∞ ≤ 1, and is
identically equal to 1 on the support of ϕ. Note that this ensures that on B1,
W1 = e1, so we get the desired identity

V1 ·W1 = ϕ.

We can bound the norm of W1 by a constant:

‖W1‖Lp′ (B1)
≤ ‖∇η‖∞

(∫
fB1\B1

|x1|p
′

)1/p′

+ ‖η‖∞|B1|1/p′ ≤ Cn,p,

and since W1 is a gradient, we also have curl W1 = 0.
Moreover

‖V1‖Lp(B1) ≤ ‖ϕ‖Lp(B1)

and

‖div V1‖Lp(B1) =
∥∥∥∥ ∂ϕ

∂x1

∥∥∥∥
Lp(B1)

≤ ‖∇ϕ‖Lp(B1).

For the other case, we can take

V2 =
∂(ηx1)
∂x1

e2 −
∂(ηx1)
∂x2

e1 =
(
−x1

∂η

∂x2
, x1

∂η

∂x1
+ η, 0, . . . , 0

)
with η as above. Then

‖V2‖Lp(fB1)
. ‖∇η‖

Lp(fB1)
+ ‖η‖

Lp(fB1)
≤ Cn,p

and div V2 = 0. We also set
W2 = ϕe2,

so as above, since η is identically 1 on the support of ϕ, we have

V2 ·W2 = ϕ.
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In addition,
‖W2‖Lp′ (B1)

≤ ‖ϕ‖Lp′ (B1)

and
‖(curl W2)ij‖Lp′ (B1)

≤ ‖∇ϕ‖Lp′ (B1)
.

Continuation of the proof of Theorem 2.2: We obtain estimate (2.13) for
the unit ball, with r = p′ and condition (2.1) satisfied, by using (2.14), applying
the lemma with the vector fields V1 and W1 to the test functions in (2.15), and
dividing by the appropriate constants. The case r = p and (2.2) corresponds to
using the lemma with V2 and W2.

Now let us prove estimate (2.13) for a ball B = B(x0, R), R ≥ 1. On the
left-hand-side, any g ∈ Lr(B) corresponds in a one-to-one and onto fashion to
a g̃ ∈ Lr(B1) by taking g̃(x) = g(x0 + Rx), with( 1

|B1|

∫
B1

|g̃(x)|rdx
)1/r

=
( 1
|B|

∫
B

|g(y)|rdy
)1/r

.

On the right-hand-side, for any smooth vector fields Vi,Wi corresponding
to the unit ball, as in Lemma 2.3 (i = 1 in the case r = p′, i = 2 in the case
r = p), define

V0 = Vi(R−1(x− x0)), W0 = Wi(R−1(x− x0)).

Then V0,W0 are smooth vector fields supported in B̃ = B(x0, 2R), V0 ∈ (Lp)n,
and W0 ∈ (Lp′)n with bounds

‖V0‖Lp =
(∫

|Vi(R−1(x− x0))|pdx

)1/p

= Rn/p‖Vi‖Lp ≤ Rn/p,

and similarly
‖W0‖Lp′ ≤ Rn/p′ .

Moreover, if i = 1 we have div V0 ∈ Lp,

‖div V0‖Lp =
(∫ ∣∣∣ 1

R
(div V1)

(x− x0

R

)∣∣∣pdx

)1/p

= Rn/p−1‖div V1‖Lp ≤ Rn/p−1,

and
curl W0 = R−1(curl W1)(R−1(x− x0)) = 0,

while if i = 2 we have div V0 = 0 and, for all j, k ∈ {1, . . . , n},

‖(curl W0)jk‖Lp =
(∫ ∣∣∣ 1

R
((curl W2)jk)

(x− x0

R

)∣∣∣p′dx

)1/p′

≤ Rn/p′−1.

9



Letting V = R−n/pV0, W = R−n/p′W0 and using the fact that R ≥ 1, we
get vector fields satisfying either (2.1) in the first case, or (2.2) in the second
case, and∫

g V ·W = R−n

∫
g̃(R−1(x− x0))Vi(R−1(x− x0)) ·Wi(R−1(x− x0))dx

=
∫

g̃ Vi ·Wi.

Taking the supremum over all such Vi,Wi, and using estimate (2.13) for the
unit ball, we get the same inequality for the ball B. This concludes the proof
of the theorem.

Remarks:

1. All vector fields constructed in the proof are smooth with compact sup-
port, so the suprema on the right-hand-side of (2.3) and (2.4) can be
restricted to dot products of such vector fields.

2. As pointed out, the proof of Case I is independent of the radius of the ball
and therefore we have generalized the result (1.4) from [CLMS] to p 6= 2.
Such a generalization and the resulting decomposition of H1(Rn) in terms
of (smooth) div-curl atoms is stated in [BIJZ] (Proposition 2.2) without
proof.

3 The decomposition theorem for h1

Since DCp
1,0 (respectively DCp

0,1) is a bounded symmetric subset of h1(Rn), we
can use Lemmas III.1 and III.2 in [CLMS], the duality of bmo and h1 [Go], and
Theorem 2.2 to obtain the following decomposition of functions in h1 in terms
of the appropriate “div-curl atoms”:

Theorem 3.1 For a function f in h1(Rn), 1 < p < ∞, there exists a sequence
{λk} ∈ `1 such that

f =
∞∑

k=1

λkfk, fk ∈ DCp
1,0 for all k ≥ 1.

Such a decomposition also holds with fk ∈ DCp
0,1 for all k.
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