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Abstract - For a proper semistable curve X over a DVR of mixed characteristics we reprove the ”invariant

cycles theorem” with trivial coefficients (see [Ch99]) i.e. that the group of elements annihilated by the monodromy

operator on the first de Rham cohomology group of the generic fiber of X coincides with the first rigid cohomology

group of its special fiber, without the hypothesis that the residue field of V is finite. This is done using the explicit

description of the monodromy operator on the de Rham cohomology of the generic fiber of X with coefficients

convergent F -isocrystals given in [CoIo10]. We apply these ideas to the case where the coefficients are unipotent

convergent F -isocrystals defined on the special fiber (without log-structure): we show that the invariant cycles

theorem does not hold in general in this setting. Moreover we give a sufficient condition for the non exactness.

1 Introduction

Let V be a complete discrete valuation ring of mixed characteristics, K its fraction field and k the residue
field, which we assume to be perfect. Let W := W (k) denote the ring of Witt-vectors with coefficients in k
seen as a subring of V and let K0 denote its fraction field.

For a proper variety X over V with semistable reduction and special fiber Xk, via the theory of log
schemes and the work of Hyodo-Kato one defines a monodromy operator on the de Rham comology groups
of its generic fiber XK . It has been known for some time now that associated to this operator there is an
analogue of the classical invariant cycles sequence [Ch99]

Hi
rig(Xk)⊗K0 K → Hi

dR(XK)→ Hi
dR(XK).

The exactness of such a sequence is implied by the weight-monodromy conjecture [Ch99] if the residue field
k is finite. Hence the above invariant cycles sequence is exact if X is a curve or a surface (which are the
cases in which the weight-monodromy conjecture is known) and in this case the first map is even injective if
i = 1 i.e. the following sequence is exact:

0→ H1
rig(Xk)⊗K0 K → H1

dR(XK)→ H1
dR(XK). (1)

In these cases (i.e. in the cases in which the sequence (1) is exact) we obtain an interpretation of the part of
the de Rham cohomology which is annihilated by the monodromy operator: it is the rigid cohomology group
of the special fiber. On the other hand the same exact sequence gives us an interpretation à la Fontaine of
the first rigid cohomology group, in fact we can translate the exactness as follows: since

Dst(H1
ét(XK ×K), Qp) = H1

log−crys(Xk)⊗K

DN=0
st = Dcrys,

then
H1

rig(Xk) = Dcrys(H1
ét(XK ×K), Qp)

In [CoIo10] it was given a new definition of a monodromy operator in the case X is a curve with semistable
reduction using the combinatorics of the curve together with the use of the analytic spaces associated to
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the generic fiber. The authors also considered the case of cohomology with coefficients and generalized
the definition of the monodromy operator on the de Rham cohomology with coefficients non trivial log-F -
isocrystals and they showed that it coincides with the previous definition given by Faltings [Fa]. Using this
definition of the monodromy operator we are able (see §5) to re-prove the exactness of the invariant cycles
sequence (1) without any hypothesis on the finiteness of the residue field. It is then natural to ask, when
the log-F -isocrystals are induced from convergent F -isocrystals on the special fiber, if such an invariant
cycles sequence (1) is still exact. This is one of the aims of the present article. As a matter of fact, the
invariant cycles sequence (1) involves the trivial convergent F -isocrystal on the special fiber of X and its
rigid cohomology. Hence we start with coefficients which a priori do not have singularities being convergent
on the special fiber without any log structure. But, even for the simplest non-trivial coefficients on a curve
( i.e. the unipotent ones) the sequence fails sometimes to be exact and we give a sufficient condition for
such a behavior (see Theorem 10). Underlying our work, of course, is the aim of giving a cohomological
interpretation for the part of the cohomology on which the monodromy operator acts as zero.

Of course the invariant cycles theorem can be studied also in the `-adic and respectively the complex
settings, where it is known for semi-simple perverse sheaves or D-modules of geometric origin and it fol-
lows from the decomposition theorem ([BBD] corollaire 6.2.8, [Mo] theorem 19.47, [Sa], theorem 1, [DeMi],
theorem section 1.7). Our p-adic setting deals with unipotent, non-trivial coefficients, which are therefore
not semi-simple. We did not find any evidence of a similar result for reducible coefficients in the `-adic or
complex settings, although we believe that such results should hold.

Here it is the plan of our article. In §2 we introduce notations and recall results on rigid spaces which will
be used in the article, in the third paragraph we recall some properties of the monodromy operator on the
de Rham cohomology with coefficients on a curve as introduced by Coleman and Iovita and of the associated
invariant cycles sequence. In §4 we give some properties of such a monodromy operator: in particular for
general convergent F -isocrystals we prove that the rigid cohomology of the convergent F -isocrystal injects
on the part of the de Rham cohomology of the associated log-F isocrystal where the monodromy acts as
zero. In §5, we then re-prove ([Ch99]) the invariant cycles theorem for trivial coefficients in a combinatorial
way along the lines of the work in [CoIo10]. In §6 we study the invariant cycles sequence for unipotent
convergent F -isocrystals and we prove a sufficient conditions for the non exactness of the sequence. Finally
we give an explicit example of this on a Tate curve.
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interesting email exchanges on questions pertaining to this research.

2 Notation and Settings. A Mayer-Vietoris exact sequence

We assume the notations in section 1. Let X be a proper curve over V that is semistable, which means
that locally for the Zariski topology there is an étale map to Spec(V [x, y]/xy − π) and we suppose that
the special fiber, union of smooth irreducible components, has at least two components. We denote by Xk

the special fiber of X which we suppose connected, by XK its generic fiber and by Xrig
K the rigid analytic

generic fiber. By theorem 2.8, in [Li] X being a proper, regular curve over V is in fact a projective V -scheme.

Following [CoIo99] we associate to Xk a graph Gr(Xk) whose definition we now recall. To every irreducible
component Cv of Xk we associate a vertex v and if v, w are vertices, an oriented edge e = [v, w] with origin
v and end w corresponds to an intersection point Ce of the components Cv and Cw. We denote by V the
set of vertices and by E the set of oriented edges.
Then we have the specialization map

sp : Xrig
K → Xk

2



defined in [Be].
For every v ∈ V we define

Xv := sp−1(Cv)

and for every e ∈ E
Xe := sp−1(Ce).

The set Xe is an open annulus in Xrig
K and Xv is what is called a wide open subspace in ([Co89] proposition

3.3), that means an open of Xrig
K isomorphic to the complement of a finite number of closed disks, each

contained in a residue class, in a smooth proper curve over K with good reduction. If Cv and Cw intersect
in Ce, then Xv ∩Xw = Xe.
One can prove that {Xv}v∈V is an admissible covering of Xrig

K ([Co89]) and that wide opens are Stein spaces
so that we can use the covering {Xv}v∈V to calculate the de Rham cohomology of Xrig

K using a Čech complex.
Moreover one can prove that the first de Rham cohomology of a wide open is finite ([Co89] theorem 4.2)
proving a comparison theorem with the de Rham cohomology of an algebraic curve minus a finite set of
points.Let (E ,∇) be a module with integrable connection on Xrig

K .
Given the admissible covering {Xv}v∈V that is such that their elements intersect only two by two, we can
write the Mayer-Vietoris sequence:

⊕v∈V H0
dR(Xv, (E ,∇)) α // ⊕e∈E H0

dR(Xe, (E ,∇)) // H1
dR(Xrig

K , (E ,∇)) EDBC
GF@A

// ⊕v∈V H1
dR(Xv, (E ,∇))

β // ⊕e∈E H1
dR(Xe, (E ,∇)).

(2)

Let us remark that every cohomology group that appears in the long exact sequence except for H1
dR(Xrig

K , (E ,∇))
can be calculated as the cohomology of the global sections of the de Rham complex, due to the fact that
every wide open is Stein.
From the equation (2) we can deduce the short exact sequence

0 // H1(Gr(Xk), E)
γ // H1

dR(Xrig
K , (E ,∇))) // Ker(β) // 0. (3)

where H1(Gr(Xk), E) := Coker(α).

3 The monodromy operator and the rigid cohomology

We consider again a proper and semistable curve X, its generic fiber XK and its associated rigid space Xrig
K .

We recall the construction of the monodromy operator in [CoIo10] section 2.2.
By our assumptions there is a proper scheme P over W , smooth around Xk and such that we have a global
embedding X ↪→ P ×Spec(W) Spec(V) = PV . Let us denote by Pk its special fiber and by P rig

K0
and P rig

K the
rigid analytic spaces associated to P , and PV then one has the following diagram:

P rig
K0

��

spP

~~||
||

||
||

Xk
// Pk

// P

where the map between P rig
K0

and Pk is the specialization map that we denote by spP . We also have a
specialization map spPV : P rig

K −→ Pk. One can consider the tubes sp−1
P (Xk) :=]Xk[P and YK := sp−1

PV
(Xk) =

]Xk[PV . Let now, E, be a convergent F -isocrystal on Xk. It has a realization on ]Xk[P : (E ,∇) and we denote
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by (E ,∇)K its base change to K. It is a module with connection on YK . We will denote by the same symbol
its restriction to Xrig

K . We may then define the first rigid cohomology group with coefficients in E as

H1
rig(Xk, E) := H1

dR(]Xk[P , (E ,∇)),

which is a finite dimensional K0-vector space. We also consider

H1
rig(Xk, E)K := H1

dR(]Xk[PV , (E ,∇)K) = H1
dR(YK , (E ,∇)K).

On the other hand we can proceed as before and take Xrig
K as the rigid analytic space associated to XK ,

we then have
ϕ : Xrig

K −→ YK

given by the immersion of X into PV that induces a map in cohomology

ϕ∗ : H1
rig(Xk, E)K := H1

dR(YK , (E ,∇)K) −→ H1
dR(Xrig

K , (E ,∇)K). (4)

In the notations above we define following [CoIo10] a K-linear map

N : H1
dR(Xrig

K , (E ,∇)K)→ H1
dR(Xrig

K , (E ,∇)K).

Due to the fact that wide opens are Stein spaces, every element [ω] in H1
dR(XK , (E ,∇)K) can be described as

a hypercocycle ((ωv)v∈V , (fe)e∈E ), with (ωv) in Ω1
Xv
⊗EXv and fe in EXe that verifies that ωv|Xe

− ωw|Xe
=

∇(fe) if e = [v, w].
Let us remember that every Xe is an ordered open annulus; we can define a residue map

Res : H1
dR(Xe, (E ,∇)K)→ H0

dR(Xe, (E ,∇)K)

as follows. The module with connection (E ,∇)K has a basis of horizontal sections e1, . . . , en on Xe because
Xe is a residue class (lemma 2.2 of [CoIo10]). Hence if z is an ordered uniformizer of the ordered annulus Xe

every differential form µe ∈ H1
dR(Xe, (E ,∇)K) can be written as µe =

∑n
i=1(ei⊗

∑
j ai,jz

jdz) with ai,j ∈ K.
Then Res(µe) =

∑n
i=1 ai,−1ei, and it is an isomorphism of vector spaces.

For a cohomology class [ω] represented as before by ((ωv)v∈V , (fe)e∈E ) we define N as the composition
of the following maps:

Ñ : H1
dR(Xrig

K , (E ,∇)K) −→ ⊕e∈E H0
dR(Xe, (E ,∇)K))

Ñ : [ω] 7→ (Res(ωv|Xe
)e=[v,w])

and the map

i : ⊕e∈E H0
dR(Xe, (E ,∇)K) // ⊕e∈E H0

dR(Xe, (E ,∇)K)/⊕v∈V H0
dR(Xv, (E ,∇)K)

γ // H1
dR(Xrig

K , (E ,∇)K)

i : (fe)e∈E =
(
0, fe/Im(α)

)
v∈V ,e∈E

and γ the same map as in (3).
Hence N is defined as N = i ◦ Ñ . Note that N2 = 0.

In order to give an interpretation of the monodromy operator on the de Rham cohomology defined above
we’ll introduce the log formalism. The curve X can be equipped with a log structure, associated to the
special fiber Xk which is a divisor with normal crossing and Spec(V) with the log structure given by the
closed point. Pulling them back to Xk and to Spec(k) respectively, we may consider Xk and Spec(k) as log
schemes, and when we want to treat them as log schemes we denote them by X×

k and Spec(k)×. The log
structure on Spec(V) induces a log structure on Spf(V), and again when we want to treat it as a log formal
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scheme we denote it by Spf(V)×. We note that in the case of the trivial isocrystal by [HK] the de Rham
cohomology groups of the generic fiber coincide with the log-crystalline ones of X×

k , base-changed to K .
This result holds also in our case with coefficients. In fact if we start with a convergent F -isocrystal on Xk,
then one can associate to it a log-convergent F -isocrystal on X×

k and then a log(-crystalline) F -isocrystal
on X×

k (([Sh1] theorem 5.3.1): we again denote it by E.

Proposition 1. In the previous hypothesis and notations if we start with a convergent F -isocrystal E on Xk

and we denote by (E ,∇) its realization on ]Xk[P , then the cohomology of the restriction Hi
dR(Xrig

K , (E ,∇)K)
coincide with the log-crystalline cohomology of the associated log-F -isocrystal on X×

k , Hi
log−crys(X

×
k , E)⊗K0

K. The monodromy operators coincide as well.

Proof. We are in the case of [Fa]. The Frobenius structure will imply that the relative log cohomology
arising from the deformation gives a locally free module, but it will guarantee also that the exponents of the
associated Gauss-Manin differential system are non-Liouville numbers: hence we may trivialize the system
by the transfer theorem [Cr]. For the coincidence of the monodromy operators we refer to [CoIo10].

Using ϕ∗ of (4) and the monodromy operator N we can form the following sequence

H1
dR(YK , (E ,∇)K)

ϕ∗ // H1
dR(Xrig

K , (E ,∇)K)
N // H1

dR(Xrig
K , (E ,∇)K). (5)

In [Ch99] it is proven the following theorem when k is finite and for varieties of dimensions 1 and 2 and Xk

projective.

Theorem 2. In the sequence (5) if E is the trivial isocrystal, then the map ϕ∗ is injective and Imm(ϕ∗) =
Ker(N).

In the next paragraph we are going to prove that if E is not necessarily the trivial isocrystal, then in
the sequence (5) the map ϕ∗ is injective and Im(ϕ∗) ⊂ Ker(N). Moreover if E is the trivial isocrystal we
will give a new proof of theorem 2 using the explicit description of the monodromy operator as introduced
before.

Remark 3. According to [CoIo10] for the definition of the monodromy operator on the de Rham cohomology
we didn’t need either the Frobenius structure or an isocrystal: we just needed a connection on the generic
fiber. In general we don’t know the interpretation of such an operator in terms of the integral structures.

4 The behavior of the monodromy operator

We would like to study the properties of the monodromy operator as defined in the previous section and, in
particular, the exactness of the sequence (5).

As in section 2 let us consider the graph Gr(Xk) associated to Xk, with vertices in V and edges in E .
For v ∈ V we denote by Xv := sp−1

X (Cv) and by Yv := sp−1
P (Cv); because the definition of ϕ, we have that

ϕ(Xv) ⊂ Yv. In the same way we denote by Xe := sp−1
X (Ce) and by Ye := sp−1

P (Ce); because the definition
of ϕ, we have that ϕ(Xe) ⊂ Ye.
Let us note that Ye is a polidisk because P is smooth. We choose the admissible covering of Xrig

K given by
{Xv}v∈V to calculate the de Rham cohomology using Čech complexes.
As before let E be an F -convergent isocrystal on Xk, we can also use the Mayer-Vietoris spectral sequence
for rigid cohomology with coefficients in E ([Tsu] theorem 7.1.2). We pick as finite close covering of Xk the

5



covering given by {Cv}. Since every intersection of three distinct components is empty the spectral sequence
degenerates in a Mayer-Vietoris long exact sequence ([Go] theorem 4.6.1)

⊕v∈V H0
rig(Cv, E) α // ⊕e∈E H0

rig(Ce, E) // H1
rig(Xk, E) EDBC

GF@A
// ⊕v∈V H1

rig(Cv, E) σ // ⊕e∈E H1
rig(Ce, E).

(6)

whose base-change to K can be described in terms of the de Rham cohomology of YK as

⊕v∈V H0
dR(Yv, (E ,∇)K) α // ⊕e∈E H0

dR(Ye, (E ,∇)K) // H1
dR(YK , (E ,∇)K) EDBC

GF@A
// ⊕v∈V H1

dR(Yv, (E ,∇)K) σ // ⊕e∈E H1
dR(Ye, (E ,∇)K).

(7)

Now we study the exactness property of the sequence (5).

Lemma 4. If E is a convergent isocrystal and (E ,∇) is the coherent module with integrable connection
induced by it, then the map ϕ∗ in the sequence (5) is injective.

Proof. We fix an irreducible component Cv of Xk, we want to prove that the following sequence is exact:

0 −→ H1
dR(Yv, (E ,∇)K) −→ H1

dR(Xv, (E ,∇)K) −→
⊕
e∈Ev

H0
dR(Xe, (E ,∇)K); (8)

where the last map is the residue map and Ev := {e such that there exists a vertex w with e = [v, w]}. As
Cv is proper and smooth the above sequence will be isomorphic to the following sequence:

0 −→ H1
crys(Cv, E)⊗K −→ H1

log−crys(C
××
v , E)⊗K −→

⊕
e∈Ev

H0
dR(Xe, (E ,∇)K), (9)

where C××
v is the log scheme given by the component Cv with the log structure induced by the divisor

given by the intersection points of Cv with the other components. The two sequence are isomorphic be-
cause H1

crys(Cv, E) ⊗ K ∼= H1
dR(Yv, (E ,∇)K) since Cv is proper and smooth, H1

log−crys(C
××
v , E) ⊗ K ∼=

H1
dR(Xv, (E ,∇)K) by [CoIo10] lemma 5.2. Moreover the second one is exact because is the Gysin sequence

for rigid cohomology.
In fact the Gysin sequence for rigid cohomology is the following (proposition 2.1.4 of [ChLeS]):

0 −→ H1
rig(Cv, E)⊗K −→ H1

rig(Uv, E)⊗K −→
⊕
e∈Ev

H0
dR(Xe, (E ,∇)K), (10)

where Uv is the complement in Cv of all the points of Cv that intersect the other components of Xk.
The isomorphism H1

rig(Uv, E) ∼= H1
log−crys(C

××
v , E) follows from [Sh02] paragraph 2.4 and [Sh02] theo-

rem 3.1.1. Moreover H0
dR(Xe, (E ,∇)K) ∼= H0

dR(Ye, (E ,∇)K) because Ye and Xe are residue classes and
E has a basis of horizontal sections on each residue class, which means that both H0

dR(Xe, (E ,∇)K) and
H0

dR(Ye, (E ,∇)K) are isomorphic to Kd where d is the rank of E as OXK
-module. Moreover by the Gysin

isomorphism in degree zero (proposition 2.1.4 of [ChLeS]), with the same notations as before, we have
H0

rig(Cv, E) ∼= H0
rig(Uv, E), which implies that H0

dR(Xv, (E ,∇)K) ∼= H0
dR(Yv, (E ,∇)K), using the same tech-

niques as before.
Using the Mayer-Vietoris long exact sequence for rigid cohomology (7), we can pass to the following short
exact sequence

0 // H1(Gr(Xk), EK) δ // H1
dR(YK , (E ,∇)K)) // Ker(σ) // 0. (11)
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where H1(Gr(Xk), EK) := Coker(α).
Putting together Mayer-Vietoris sequences for the coverings {Xv} and {Yv} respectively we obtain the
following diagram

⊕eH
0
dR(Xe, (E ,∇)K) //

θ

uukkkkkkkkkkkkkkk
⊕eH

0
dR(Xe, (E ,∇)K)

0 // H1(Gr(Xk), EK)
γ // H1

dR(XK , (E ,∇)K)
πX //

Res

OO

⊕vH1
dR(Xv, (E ,∇)K)

OO

0 // H1(Gr(Xk), EK) δ //

OO

H1
dR(YK , (E ,∇)K)

ϕ∗

OO

πY // ⊕vH1
dR(Yv, (E ,∇)K)

ϕ∗

OO

// 0

0

OO

(12)

and by the snake lemma one can conclude that ϕ∗ : H1
dR(YK , (E ,∇)K)→ H1

dR(XK , (E ,∇)K) is injective.

Remark 5. Let us note that in (12) the monodromy operator on H1
dR(XK , (E ,∇)K) acts as N = γ ◦θ ◦Res.

Lemma 6. If E is a convergent F -isocrystal and (E ,∇) is the coherent module with integrable connection
induced by it, then in the sequence (5)

N ◦ ϕ∗ = 0.

Proof. Let us consider [ω] ∈ H1
dR(YK , (E ,∇)K). Then ϕ∗[ω], which is an element of H1

dR(XK , (E ,∇)K), can
be represented by an hypercocycle ((αv)v∈V , (ge)e∈E ) where αv ∈ Ω1

Xv
⊗ EXv and ge in EXe and they verify

that αv|Xe
− αw|Xe

= ∇(ge) if e = [v, w]. We want to calculate N(ϕ∗([ω])). We now look at the diagram
(12). By the definition of N one can see that

N(ϕ∗([ω])) = γ ◦ θ ◦Res(ϕ∗([ω])) = γ ◦ θ ◦Res|Xe
(πX(ϕ∗[ω])).

By the commutativity of the diagram (12) Res|Xe
(πX(ϕ∗[ω])) = Res|Xe

(ϕ∗(πY ([ω])).
If we denote by ωv = πY ([ω]), then we have to compute Res|Xe

(ϕ∗(ωv)):

Res|Xe
(ϕ∗(ωv)) = Res(ϕ∗(ωv)|Xe

) = Res(ϕ∗(γe))

where γe ∈ EYe⊗Ω1
Ye

, but as Ye is an open polydisc we have that H1
dR(Ye, (E ,∇)K) = 0 and so Res(φ∗(γe)) = 0

as claimed.

From the above lemma we can conclude that Im(ϕ∗) ⊂ Ker(N). Now we’d like to characterize in terms
of residues the elements of H1

dR(XK , (E ,∇)K) which are in the image of ϕ∗.
Let us take [ω] ∈ H1

dR(XK , (E ,∇)K). As before we can choose a representative ω = ((ωv)v∈V , (fe)e∈E ), with
(ωv) in EXe

⊗ Ω1
Xv

and fe in EXe
which verifies that ωv|Xe

− ωw|Xe
= ∇(fe) if e = [v, w].

In the next lemma we prove a necessary and sufficient condition for an element of H1
dR(XK , (E ,∇)K) to be

in the image of the map ϕ∗.

Lemma 7. Let us take [ω] ∈ H1
dR(XK , (E ,∇)K) and a representative ω = ((ωv)v∈V , (fe)e∈E ) as above.

Then ResXe(ωv|Xe
) = 0 for every e ∈ E if and only if [ω] ∈ Im(ϕ∗).

Proof. Let us see first that if ResXe(ωv|Xe
) = 0 for every e ∈ E , then [ω] ∈ Im(ϕ∗). If ResXe(ωv|Xe

) = 0,
then thanks to the exact sequence (8) there exists γv ∈ H1

dR(Yv, (E ,∇)K) such that ϕ∗(γv) = ωv for every
v ∈ V . As the map πY in (12) is surjective there exists α ∈ H1

dR(YK , (E ,∇)K) such that πY (α) = (ωv)v∈V .
Now πX([ω]− ϕ∗(α)) = 0, hence, looking again at diagram (12), there exists c ∈ H1(Gr(Xk), EK) such that
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[ω] − ϕ∗(α) = γ(c). By the commutativity of diagram (12) there exists an element µ ∈ H1
dR(YK , (E ,∇)K)

such that ϕ∗(µ) = γ(c). (One can choose µ = δ(c).)
Viceversa if [ω] = ϕ∗(α) for α ∈ H1

dR(YK , (E ,∇)K), then (ωv)v∈V = ϕ∗(πY (α)) := ϕ∗(αv)v∈V . Hence
Res|Xe

(ωv) = Res|Xe
(ϕ∗(αv)) for every v ∈ V . But as in the proof of lemma 6 one can prove that from this

it follows that Res|Xe
(ωv) = 0 for every v ∈ V .

5 The constant coefficients case

In this paragraph we show that if E is the trivial convergent F -isocrystal, then the condition in lemma 7
is fulfilled. This will imply that the sequence in (5) is exact and it will give a new proof of theorem 2 i.e.
the exactness of the invariant cycles sequence under the assumption that k is perfect instead of finite. The
realization of E on Xrig

K is the structure sheaf with trivial connection (OXK
, d).

We’d like to prove that if [ω] ∈ H1
dR(Xrig

K ) is such that N([ω]) = 0, then one can find a hypercocycle
(ωv, fe) representing it such that ResXe

(ωv|Xe
) = 0: hence we may apply lemma 7 and conclude.

Let (ωv, fe) be a hypercocycle representing [ω] and consider ResXe
(ωv|Xe

); if [ω] is in Ker(N), then (ResXe
(ωv|Xe

))e =
0 in H1(Gr(Xk),OK), that means that (ResXe(ωv|Xe

))e ∈ CoKer(⊕v∈V H0
dR(Xv)→ ⊕e∈E H0

dR(Xe)).
On the other hand, thanks to the residue theorem on wide opens (proposition 4.3 of [Co89]), for every
irreducible component Cv in Xk, the family (ResXe

(ωv|Xe
))e verifies that∑

e∈Ev

ResXe
(ωv|Xe

) = 0, (13)

where the notation Ev refers to the set {e such that there exists a vertex w with e = [v, w]}.
Hence to prove that ResXe

(ωv|Xe
) = 0 we are left to prove that if (ResXe

(ωv|Xe
))e ∈ CoKer(⊕v∈V H0

dR(Xv)→
⊕e∈E H0

dR(Xe)) and for every v it verifies that
∑

e∈Ev
ResXe

(ωv|Xe
) = 0, then (ResXe

(ωv|Xe
))e = 0 for all e.

So we are reduced to a linear algebra and graph theory problem, which we can translate as follows.
Let F be a field of characteristic 0. Let G be a connected graph with n vertices and m edges. Let us denote
by V the set of all vertices and by E the set of all oriented edges. We use the notation e = [v, w] to indicate
an edge between the vertex v and the vertex w. We associate to G a vector space V = ⊕e∈EF with the
convention that if e = [v, w] and ē = [w, v] then ae = −aē. Then there is a map

φ : ⊕v∈V F → ⊕e∈E F

(av)v∈V 7→ (ae)e∈E

where ae = av − aw if e = [v, w]. We consider two vector subspaces W and T of ⊕e∈E F where

W = {(ae)e∈E |(ae)e∈E ∈ Im(φ)}

T = {(ae)e∈E |∀v ∈ V
∑
e∈Ev

ae = 0}.

Proposition 8. With notations as before we have W ∩ T = 0

Proof. An element (ae)e∈E which belongs to W and to T is described by the following equations

ae = av − aw

∀v ∈ V
∑
e∈Ev

ae = 0.

We can rewrite the equations as follows:

∀v ∈ V deg(v)av = aw1 + · · ·+ awsv
(14)
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where w1, . . . , wsv are the vertices connected to v by an edge and by deg(v) := sv we denote the cardinality
of the set of the vertices connected to v. Requiring that W ∩ T = 0 is equivalent to requiring that the linear
system in (14) has a 1-dimensional space of solutions, generated by the vector (1, . . . , 1). This is equivalent
to requiring that the matrix associated to the system in (14) has rank n − 1, i.e. that there exists at least
one minor of rank n− 1 whose determinant is non-zero.
This last condition is independent of the field F , hence to prove that W ∩ T = 0 it is enough to prove that
the equations in (14) imply that av = awi for all wi and for all v assuming that F is a totally ordered field.
We assume in what follows that F is a totally ordered field of characteristic 0. Let us suppose by absurd
that the equations in (14) do not imply that av = aw for all w. Let us call

av0 = minv∈V av

which exists because our assumption that our field K is totally ordered; then av0 ≤ av for all v ∈ V . If
av0 = av for all v ∈ V we are done, if not there exists v1 such that av0 < av1 . Moreover we can suppose that
v1 is connected to v0 by an edge because if not, then this means that av0 = av for all v connected to v0 by
an edge. Then if we now fix a v 6= v0 that is connected to v0, we can consider all the w that are connected
to it by an edge; if av = aw for all these w we can go on as before. In the end we will find that all the av

are equal for all v ∈ V which proves the claim.
Hence we suppose that there exists v1 such that av0 < av1 for v1 connected to v0 by an edge. We consider
the equation (14) for v = v0 and we get the contradiction

deg(v0)av0 < aw1 + . . . awsv
.

With this proposition we end the proof of the exactness of the invariant cycles sequence for trivial
coefficients.

Remark 9. We’d like now to give another proof of proposition 8 more in the spirit of graph theory: it uses
proposition 4.3, proposition 4.8 of [Bi], and lemma 13.1.1 of [GoRo].

Proof. The matrix associated to the linear system in (14) is an n × n matrix A = (ai,j), where for i 6= j
ai,j = −1hi,j if there are hi,j edges between the vertex vi and vj and 0 otherwise, and ai,i = deg(vi). We
will prove that the rank of the matrix A is n− 1.
The matrix A is called the Laplacian matrix associated to the graph G; we will see that A = DDt and that
D is an n×m matrix with rank n− 1.
The following are equivalent:

• (i) there exists an (n− 1)× (n− 1) minor of A with determinant different from zero,

• (ii) the rank of A is (n− 1) dimensional,

• (iii) the dimension of the Kernel of A is 1,

• (iv) Kernel(Dt) = Kernel(A).

Assertion (i) is independent from the field K, so we can suppose that K is the field R.
We will prove assertion (iv).
Let us suppose that z is a vector in Rn that is in the Kernel(A), we want to prove that z ∈ Kernel(Dt).
Being z ∈ Kernel(A), then

Az = 0,

DDtz = 0

ztDDtz = 0.

9



But the last equality implies that the vector Dtz has inner product with itself in Rn equal to zero, that
means that Dtz is the zero vector, i.e. z ∈ Kernel(Dt), as we wanted.
We are left to prove that A = DDt and that D is an n×m matrix with rank n− 1.
We consider the matrix D associated to the graph G defined as follows: D is n × m matrix such that
(D)i,j = 1 if the vertex vi is such that ej = [vi,−], (D)i,j = −1 if the vertex vi is such that ej = [−, vi], and
(D)i,j = 0 otherwise.
Now if we consider (DDt)i,j , this is the inner product of the rows di and dj . They have a non zero entry
in the same column if and only if there is an edge between vi and vj , and these entries are one −1 and one
+1, hence (DDt)i,j is given by −1 times the number of edges between vi and vj . Moreover (DDt)i,i is the
number of entries in di different from zero, which means the degree of vi. This proves that A = DDt.
Let us see now that D has rank n− 1.
On every column there is a +1 and a −1, hence the sum of all the elements on the columns are zero, hence
the rank of D is less or equal to n− 1. Let us suppose to have a linear relation∑

i

aidi = 0, (15)

where as before di is the row corresponding to the vertex vi and suppose that not all the ai are zero. Choose
a row dk for which ak 6= 0. This row has non zero entries in the columns corresponding to the edges that
intersect vi. For every such column there is only on other row dl with a non zero entry in that column.
Hence we should have that al = ak, hence al = ak for all vertices vl adjacent to vk. Hence all the ak are
equal, being the graph G connected, and the equation in (15) is a multiple of

∑
i di = 0. But (a1, . . . , an)

that verifies (15) is in Kernel(Dt), hence we have proven that Kernel(Dt) is 1-dimensional and generated by
(1, . . . , 1), the rank is (n− 1)-dimensional and as well as the rank of D.

6 Unipotent coefficients

In this section we study the sequence in (5) when the coefficients are unipotent F -isocrystals. In particular
we prove that, unlike the case of constant coefficients, the sequence in (5) is not necessarily exact. We give
a sufficient condition for non exactness.

Let E be a unipotent convergent F -isocrystal for which the sequence in (5) is exact and let us consider
the following extension in the category of convergent F -isocrystals

0→ E
α→ F

β→ O → 0 (16)

where O is the trivial F -isocrystal. Let us also consider the element x ∈ H1
rig(Xk, E) corresponding to the

class of this extension (x is then fixed by the Frobenius operator; see propositions 1.3.1 and 3.2.1 of [ChLeS])
Let us suppose that x 6= 0.
In the sequel we use sequence (5) for the isocrystals E, F and O; to avoid confusion we denote the first maps
by φ∗E , φ∗F and φ∗O respectively and the monodromy operators by NE , NF and NOX

respectively.
Our assumptions imply that H1

rig(Xk, E) ⊗ K is isomorphic via ϕ∗E to Ker(NE), and this last group
contains the image of NE , as this operator has square zero.

Theorem 10. If ϕ∗E(x⊗1) = NE(y) for y ∈ H1
dR(XK , (E,∇E)K), then if we denote by αdR : H1

dR(XK , (E,∇E)K)→
H1

dR(XK , (E,∇E)K) the map induced by α in the sequence , the following holds:

Kernel(NF ) =
(
H1

rig(Xk, F )⊗K
)
⊕Kαlog−crys(y)

10



Proof. Let us consider the following commutative diagram

H0
rig(Xk)⊗K

i0O //

δ0
rig

��

H0
dR(XK)

N0
O //

δ0
log−crys

��

H0
dR(XK)

δ0
dR

��
H1

rig(Xk, E)⊗K
ϕ∗E //

αrig

��

H1
dR(XK , (E ,∇E)K)

NE //

αdR

��

H1
dR(XK , (E ,∇E)K)

αdR

��
H1

rig(Xk, F )⊗K
ϕ∗F //

βrig

��

H1
dR(XK , (F ,∇F )K)

NF //

βdR

��

H1
dR(XK , (F ,∇F )K)

βdR

��
H1

rig(Xk)⊗K
ϕ∗O //

γrig

��

H1
dR(XK)

NO //

γdR

��

H1
dR(XK)⊗K

γdR

��
H2

rig(Xk, E)⊗K
i2E //

��

H2
dR(XK , (E ,∇E)K)

N2
E //

��

H2
dR(XK , (E ,∇E)K)

��
H2

rig(Xk, F )⊗K //

��

H2
dR(XK , (F ,∇F )K) //

��

H2
dR(XK , (F ,∇F )K)

��
H2

rig(Xk)⊗K // H2
dR(XK) // H2

dR(XK).

(17)

Let ϕ∗E(x ⊗ 1) ∈ ϕ∗E(H
1
rig(Xk, E) ⊗ K) = Ker(NE), with ϕ∗E(x ⊗ 1) = NE(y) and y ∈ H1

dR(XK , (E ,∇E)K).
One can notice that the class of 1 in H0

rig(Xk)⊗K = K is sent to x⊗ 1 in H1
rig(Xk, E)⊗K by the map δ0

rig.
Let us prove first that NF (αdR(y)) = 0.
By the commutativity of the diagram (17) we have that

NF (αdR(y)) = αdR(NE(y)) = αdR(ϕ∗E(x⊗ 1)) = αdR(δ0
dR(1)) = 0,

hence αdR(y) ∈ Ker(NF ).
We claim that z = αdR(y) /∈ ϕ∗F

(
H1

rig(Xk, F ) ⊗ K
)
. Let us suppose that z = αdR(y) = ϕ∗F (b), with

b ∈ H1
rig(Xk, F )⊗K, then

ϕ∗O(βrig(b)) = βdR(ϕ∗F (b)) = βdR(z) = βdR(αdR(y)) = 0.

As ϕ∗O is injective we have βrig(b) = 0, hence b ∈ Ker(βrig) = Im(αrig), i.e. there exists a ∈ H1
rig(Xk, E)⊗K

such that αrig(a) = b. So

z = αdR(y) = ϕ∗F (b) = ϕ∗F (αrig(a)) = αdR(ϕ∗E(a)),

from which it follows that
y − ϕ∗E(a) ∈ Ker(αdR) = Im(δ0

dR).

But the image of δ0
dR is generated by ϕ∗E(x ⊗ 1), as vector space, hence y − ϕ∗E(a) = mϕ∗E(x ⊗ 1) for some

m ∈ K.
Now

NE(y)−NE(ϕ∗E(a)) = NE(mϕ∗E(x⊗ 1)) = 0,

hence
NE(y) = NE(ϕ∗E(a)) = 0,

11



but
NE(y) = ϕ∗E(x⊗ 1) = 0,

which is absurd.
We are left to prove that ∀α ∈ KerNF there exists β ∈ H1

rig(Xk, F ) ⊗ K and t ∈ K such that α =
ϕ∗F (β) + tαdR(y). Let us calculate

NO(βdR(α)) = βdR(NF (α))) = 0,

hence
βdR(α) ∈ Ker(NO) = Im(ϕ∗O),

so that there exists γ ∈ H1
rig(Xk)⊗K such that ϕ∗O(γ) = βdR(α). By lemma 11 we have γrig(γ) = 0. Hence

there exists β ∈ H1
rig(Xk, F )⊗K such that βrig(β) = γ. Let us consider now the element α− ϕ∗F (β); it is in

the Kernel of βdR, because

βdR(α− ϕ∗F (β)) = βdR(α)− ϕ∗O(βrig(b)) = βdR(α)− ϕ∗O(γ) = 0.

Hence there exists u ∈ H1
dR(XK , (E ,∇E)K) such that αdR(u) = α− ϕ∗F (β). Now

αdR(NE(u)) = NF (αdR(u)) = NF (α− ϕ∗F (β)) = 0

because α ∈ Ker(NF ) and NF (ϕ∗F (β)) = 0 by lemma 6. Then NE(u) ∈ Ker(αdR) = Im δ0
dR, i.e NE(u) =

tϕ∗E(x ⊗ 1) = tNE(y), for some t ∈ K and u − ty ∈ Ker(NE) = ϕ∗E(H
1
rig(Xk, E) ⊗ K). Hence there exists

β′ ∈ H1
rig(Xk, E)×K such that u = ty + ϕ∗E(β

′). So

α− ϕ∗F (β) = αdR(u) = αdR(ty + ϕ∗E(β
′)) = tαdR(y) + αdR(ϕ∗E(β

′))

which means that
α = ϕ∗F (β) + tαdR(y) + αdR(ϕ∗E(β

′)),

but ϕ∗F (β) + αdR(ϕ∗E(β
′)) = ϕ∗F (β) + ϕ∗F (αrig(β′)), hence we are done.

Lemma 11. With the same hypothesis and notations as in the previous theorem, the co-boundary map
γrig : H1

rig(Xk)⊗K −→ H2
rig(Xk, E)⊗K induced by the exact sequence (16) is the zero map.

Proof. Clearly, the vanishing of γrig is equivalent to the fact that the map j : H2
rig(Xk, E) ⊗ K −→

H2
rig(Xk, F )⊗K is injective.

Let us first make more explicit the group H2
rig(Xk, G)⊗K, where G is any one of the isocrystals E,F,O

and (G,∇) is the module with integrable connection that it induces. Let us recall the notations of section 3:
we consider the diagram

Xk ↪→ Pk

spPV←− PK

with Pk smooth and let YK := sp−1
PV

(Xk). Then Hi
rig(Xk, G)⊗K = Hi

dR(YK , (G,∇)K).
The relevant part of the Mayer-Vietoris exact sequence for the admissible covering {Yv}v of YK then

reads

⊕eH
1
dR(Ye, (G,∇)K) −→ H2

dR(YK , (G,∇)K) −→ ⊕vH2
dR(Yv, (G,∇)K) −→ ⊕eH

2
dR(Ye, (G,∇)K).

As Ye is a wide open polydisk, Hi
dR(Ye, (G,∇)K) = 0 for i ≥ 1, therefore we have a natural isomorphism

H2
dR(YK , (G,∇)K) ∼= ⊕vH2

dR(Yv, (G,∇)K).
Moreover, as Cv which is the irreducible component of Xk corresponding to v was supposed smooth it follows
that we have canonical isomorphisms Hi

dR(Yv, (G,∇)K) ∼= Hi
crys(Cv, G)⊗K. In particular, if we denote by

Zv a smooth proper curve over K whose reduction is Cv and which contains the wide open Xv, then the
isocrystal G can be evaluated on Zv to give a sheaf with connection which we’ll denote again by (G,∇).
Then Hi

dR(Yv, (G,∇)K) ∼= Hi
dR(Zv, (G,∇)K) for all i ≥ 0.
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Therefore we have a natural isomorphism H2
rig(Xk, G)⊗K ∼= ⊕vH2

dR(Zv, (G,∇)).
For every vertex v we denote as before by Ev := {e such that there exists a vertex w with e = [v, w]}.

For every v and e ∈ Ev we denote by De the residue disk of the point in Cv corresponding to e in Zv. Let
us then remark that the family {Xv, De}e∈Ev

is an admissible covering of Zv and Xv ∩De = Xe for every
e ∈ Ev. We will represent classes in H2

dR(Zv, (G,∇)K) by hypercocycles for the above covering.

We now prove the injectivity of j : H2
rig(Xk, E)⊗K −→ H2

rig(Xk, F )⊗K.
Let z ∈ H2

rig(Xk, E) ⊗ K = ⊕vH2
dR(Zv, (E ,∇)K) such that j(z) = 0. Let zv ∈ H2

dR(Zv, (E ,∇)K) be the
v-component of z and jv : H2

dR(Zv, (E ,∇)K) −→ H2
dR(Zv, (F ,∇)K) be the v component of j. Obviously

jv(zv) = 0 and it would be enough to show that this implies zv = 0 for every v.
Let

(
ωe

)
e∈Ev

be a 2-hyper cocycle representing zv, where ωe ∈ H0(Xe, EK ⊗ Ω1
Zv

) for all e. Then jv(zv)
will be represented by the 2-hyper cocycle

(
α(ωe)

)
e∈Ev

, where let us recall α is defined by the exact sequence
of isocrystals on Xk below

0 −→ E α−→ F β−→ O −→ 0.

As extension on XK this is given by the class ϕ∗E(x ⊗ 1) = NE(y) ∈ H1
dR(XK , (E ,∇)K) and therefore, for

every v, the sequence

0 −→ H0(Xv, EK) α−→ H0(Xv,FK)
β−→ H0(Xv,OXK

) −→ 0,

is exact because Xv are wide opens and moreover, it is naturally split as an exact sequence of OXv -modules
with connections because ϕ∗E(x⊗1) = NE(y) can be represented by (0v, fe) with fe ∈ H0

dR(Xe, (E ,∇)K). Let
s : H0(Xv,OXK

) −→ H0(Xv,FK) be such a section of β. We remark that it is determined by s(1), which
is an element of H0

dR(Xv, (F ,∇)K) such that β(s(1)) = 1.
Therefore, s determines, for every e ∈ Ev, a splitting of the exact sequence

0 −→ H0(Xe, EK) αe−→ H0(Xe,FK)
βe−→ H0(Xe,OXK

) −→ 0

which will also be called se (it is determined by the element se(1) = s(1)|Xe
).

Now the sequence

0 −→ H0
dR(Xe, (E ,∇)K) αe−→ H0

dR(Xe, (F ,∇)K)
βe−→ H0

dR(Xe, (OXK
, d)) −→ 0 (18)

is exact and se induces a natural splitting of it.
The isocrystal G (which is any one of E,F,O regarded as a sheaf with connection on Zv) has a basis of

horizontal sections on De, for every e ∈ Ev. Therefore the natural restriction map H0
dR(De, (G,∇)K) −→

H0
dR(Xe, (G,∇)K) is an isomorphism. Thus the exact sequence (18) implies that the sequence

0 −→ H0
dR(De, (E ,∇)K) αe−→ H0

dR(De, (F ,∇)K)
βe−→ H0

dR(De, (OXK
, d)) −→ 0 (19)

is exact and naturally split, where we denote the splitting by se. By tensoring (19) with Ω1
De

we obtain that
the sequence

0 −→ H0(De, EK ⊗ Ω1
De

) αe−→ H0(De,FK ⊗ Ω1
De

)
βe−→ H0(De,Ω1

De
) −→ 0

is exact, naturally split as sequence of ODe -modules with connection and everything is compatible with
restriction to Xe.

Using these splittings, we write H0(Xv,FK ⊗ Ω1
Xv

) = H0
(
Xv, EK ⊗ Ω1

Xv

)
⊕H0

(
Xv,Ω1

Xv

)
and similarly

for sections over Xe and De.
Now we go back to proving that jv is injective for all v. Suppose that jv(zv) = 0, i.e. for every e ∈ Ev,

αe(ωe) = ηv|Xe
−ρe|Xe

−∇(fe), where ηv ∈ H0
(
Xv,FK ⊗Ω1

Xv

)
, ρe ∈ H0

(
De,FK ⊗Ω1

De

)
, fe ∈ H0

(
Xe,FK

)
.

Using the decompositions above we write (uniquely): ηv = ηv,E + ηv,O, ρe = ρe,E + ρe,O and fe =
fe,E + fe,O, with ηv,E ∈ H0(Xv, EK ⊗ Ω1

Xv
), ρe,E ∈ H0

(
De, EK ⊗ Ω1

De

)
etc.
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Using the fact that the decompositions respect the connections and the restrictions to Xe, we obtain:

ωe −
(
ηv,E |Xe − ρe,E |Xe −∇(fe,E)

)
= ηv,OX

|Xe − ρe,OX
|Xe − dX(fe,O).

As the decomposition is a direct sum decomposition the LHS and the RHS are 0.
Therefore ωe = ηv,E |Xe

− ρe,E |Xe
−∇(fe,E) for every e ∈ Ev and we have zv=0.

A An example for a Tate curve

In this paragraph we use explicit calculations to confirm theorem 10, i.e. that the sequence (5) is not exact
for a certain non-trivial unipotent F -isocrystal E on a specific Tate curve.

Let X be a Tate elliptic curve over K with invariant q, where q ∈ mV . We consider x ∈ H1
rig(Xk).

Thanks to what we said before ϕ∗O(x⊗ 1) in H1
dR(XK) is such that N(ϕ∗O(x⊗ 1)) = 0; since H1

dR(XK) is a
2-dimensional K-vector space, then Im(N) = Ker(N), hence ϕ∗O(x ⊗ 1) ∈ Im(N). This means that in this
case the hypothesis of the theorem 10 are satisfied.
Every element in H1

rig(Xk) corresponds to an extension of the trivial F -isocrystal by itself (proposition 1.3.1
of [ChLeS]), hence the element x corresponds to the following exact sequence

0→ O → E → O → 0.

As before we consider ϕ∗O(x⊗ 1) ∈ H1
dR(XK) and the exact sequence of modules with connections induced

by the one above:
0→ (OXK

, d)→ (E ,∇)→ (OXK
, d)→ 0.

We suppose from now on that ordπq = 3. Then the graph associate to X is a triangle with vertices I, II, III
and edges [I, II], [II, III], [I, III].

The element ϕ∗O(x ⊗ 1), as hypercocycle, can be written as (0v, ge) with ge ∈ H0(Xe); in particular
d(ge) = 0, so ge ∈ K. Moreover since E is an F -isocrystal, the class x is fixed by the Frobenius of H1

rig(Xk)
([ChLeS] prop 3.2.1), in particular we can take ge ∈ Qp for every e.
The OXK

-module E is locally free: on Xv it has a basis given by e1,v, e2,v and on Xw it has a basis given by
e1,w, e2,w. If on Xe we choose e1,v, e2,v as basis, then the changing basis matrix is given by(

1 ge

0 1

)
and the connection on Xe is given by the direct sum of the two trivial connections.
Now we consider (ωv, fe) ∈ H1

dR(XK , (E ,∇)), then

ωv = h1,ve1,v + h2,ve2,v,

ωw = h1,we1,w + h2,we2,w,

ωw|Xe
= (h1,w + geh2,w)e1,v + h2,we2,w,

with h1,v and h2,v elements of Ω1
Xv

and h1,w and h2,w elements of Ω1
Xw

. Let us suppose now that (ωv, fe) ∈
Kernel(NE), which means that

NE(ωv, fe) = (0, Res|Xe
ωv) = 0 in H1

dR(XK , (E ,∇)),

but as the map from H1(Gr, E) to H1
dR(XK , (E ,∇)) is injective, we have that Res|Xe

ωv is zero as element
of H1(Gr, E).
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Let us write the system which tells us that an element ae = (a1
e, a

2
e) ∈ H1(Gr, E) = ⊕eH0

dR(Xe,(E,∇))

⊕vH0
dR(Xv,(E,∇))

,
written in coordinates with respect to the basis ev,1, ev,2, is zero:{

a1
[I,II] = a1

I − a1
II − g[I,II]a

2
II

a2
[I,II] = a2

I − a2
II{

a1
[II,III] = a1

II − a1
III − g[II,III]a

2
III

a2
[II,III] = a2

II − a2
III{

a1
[I,III] = a1

I − a1
III − g[I,III]a

2
III

a2
[I,III] = a2

I − a2
III

Moreover from the Gysin sequence ( [ChLeS] proposition 2.1.4), applied to every component Cv of Xk (on
every wide open Xv (E ,∇) is the direct sum of two copies of (OX , d)), we can derive the following equations:

a1
[I,II] + a1

[I,III] = 0
a1
[II,III] + a1

[II,I] = 0
a1
[III,I] + a1

[III,II] = 0
a2
[I,II] + a2

[I,III] = 0
a2
[II,III] + a2

[II,I] = 0
a2
[III,I] + a2

[III,II] = 0

Putting together the previous equations and writing a linear system in terms of the av’s, we find the following
matrix

A =


2 0 −1 −g[I,II] −1 −g[I,III]

0 2 0 −1 0 −1
−1 −g[II,I] 2 0 −1 −g[II,III]

0 −1 0 2 0 −1
−1 −g[III,I] −1 −g[III,II] 2 0
0 −1 0 −1 0 2


where g[I,II] = −g[II,I], g[II,III] = −g[III,II] and g[I,III] = −g[III,I]. The matrix A has determinant equal to
zero and dimension of the rank equal to 4. Two generators of the Kernel are the following vectors:

K1 = (1, 0, 1, 0, 1, 0)

K2 = (
1
3
g[I,II] +

2
3
g[I,III] +

1
3
g[II,III], 1,−1

3
g[I,II] +

1
3
g[I,III] +

2
3
g[II,III], 1, 0, 1).

If we now write K1 and K2 as elements of H1(Gr, E), i.e. as elements of ⊕eH
0
dR(Xe, (E ,∇)), we find the

following vectors:
H1 = (0, 0, 0, 0, 0, 0),

H2 = (−1
3
g[I,II]−

1
3
g[II,III]+

1
3
g[I,III], 0,−1

3
g[I,II]−

1
3
g[II,III]+

1
3
g[I,III], 0,

1
3
g[I,II]+

1
3
g[II,III]−

1
3
g[I,III], 0).

These computations show that the Kernel of NE consists of the (ωv, fe) ∈ H1
dR(XK , (E ,∇)) such that

Res|Xe
ωv equals H1 or H2. The elements (ωv, fe) of H1

dR(XK , (E ,∇)) which are such that Res|Xe
ωv = H1

are the elements that come from H1
rig(Xk, E)⊗K.

Let us consider now the subvector space

V = {(ωv, fe)|Res|Xe
ωv = tH2,with t ∈ K}

Clearly the elements of ϕ∗E(H
1
rig(Xk, E)⊗K) are contained in V and one can see that V/ϕ∗E(H

1
rig(Xk, E)⊗K)

is a 1-dimensional vector space, in fact two elements in V are multiples one of the other modulo an element
of ϕ∗E(H

1
rig(Xk, E)⊗K).
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