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1 Introduction

Let K be a finite extension of Qp and X an algebraic variety over K. As Illusie remarked
in Cohomologie de de Rham et cohomologie étale p-adique [I], “le groupe H1

dR(X/K) se
trouve muni d’une structure plus riche qu’il n’y parait de prime abord.” This “hidden
structure” has been discussed by many people including Berthelot and Ogus [BO] when
X is proper with good reduction and more generally by Hyodo and Kato [HK]. In this
paper, we expose it in the relative situation over a curve with semi-stable reduction using
residues and p-adic integration. More precisely we study de Rham cohomology of a semi-
stable curve with coefficients in the relative cohomology of a smooth proper family over
that curve. The information on crystalline and de Rham cohomology of a curve with
semi-stable reduction supplied by this article is similar to that of the theory of vanishing
cycles for `-adic cohomology.

Suppose K has residue field k and ring of integers V . Let W := W (k) denote the
ring of Witt-vectors with coefficients in k, K0 its fraction field and we denote by σ the
Frobenius automorphism of K0. Let CK be a smooth projective curve over K with a
semi-stable model C over V . By this we mean that locally C is smooth over Spec(V )
or étale over Spec (V [X, Y ]/(XY − π)), where π is a uniformizer of V . Denote by C :=
C ×Spec(V) Spec(k), its special fiber and by Sing, the singular sub-scheme of C.

Then the vector space H1
dR(CK) has enough hidden structure so that one can recover

the corresponding representation of GK = Gal(K/K) on the étale cohomology of CK ,
à la Fontaine. I.e. besides the Hodge filtration it has a K0-lattice (the log-crystalline
cohomology of C with Qp-coefficients) with linear monodromy and σ-semi-linear Frobenius
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operators. One can use this to describe the representation. This is true much more
generally (see for example [Fa4] and [Ts].)

Let g : Z −→ C be a flat proper morphism. Suppose P is a sub-scheme of C, finite and
étale over V whose reduction is disjoint from Sing. Let C× be the log formal scheme over
V associated to the pair (C,P ) (i.e. the formal completion of C along its special fiber
together with the log-structure associated to P ). Denote g−1(P ) by DP and let Z× be
the log formal scheme over V associated to the pair (Z,DP ). We’ll abuse notation and
also let g : Z× −→ C× denote the morphism of log formal schemes induced by g. Then
DP is a divisor of Z and we will suppose from now on that DP ∪ Z is a reduced divisor
with normal crossings. Here Z is the special fiber of Z. Suppose that the restriction of
g induces a smooth proper map (Z\DP ) −→ (C\P ). Then, under all of the assumptions
above g : Z× → C× is log smooth.

For example, if C = X(N, p) := X1(N) ×X(1) X0(p) where (N, p) = 1 and N > 4,
Z = E(N, p), the universal generalized elliptic curve over C with level structure and
f : Z −→ C is the natural map, then if one takes P to be the divisor of cusps on C, the
quadruple (C,Z, f, P ) satisfies the above conditions.

If h, i, j ≥ 0, Sh i j(Z/C, P ) will denote the h-th hypercohomology group of the complex

of sheaves, SymjGi(Z/C, P )
Symj

D−→ SymjGi(Z/C, P )⊗ Ω1
CK/K

(log(PK)), where

Gi(Z/C, P ) = K ⊗V Rig∗Ω
•
Z×/C× = K ⊗V H i

dR(Z×/C×)

and D is the Gauss-Manin connection.

The group Sh i j(Z/C, P ) naturally has a Hodge filtration which we call Fh i j,•(Z/C, P ).
After choosing a branch of the p-adic logarithm on K×, we will use the rigid geometry
of Z/C and p-adic integration to produce a K0-lattice Sh i jint (Z/C, P ) in Sh i j(Z/C, P ), a
linear operatorN int

h on this lattice and make a σ-semi-linear operator Φint
h on Sh i j(Z/C, P )

such that N int
h Φint

h = pΦint
h N

int
h .

A four-tuple (M,F,N,F•) where M is a finite dimensional vector space over K0, F and
N are σ-semi-linear and respectively linear operators on M such that NF = pFN and
F• is a decreasing exhaustive filtration of MK := M ⊗K0 K by K-vector subspaces is
called a filtered, Frobenius, monodromy (FFM) module over K (see [Fo]). The category
of FFM-modules is an additive, tensor category with kernels, cokernels and a notion
of short exact sequences but it is not abelian. Its subcategory of weakly admissible
modules (which are now known to be admissible by [CF]) is abelian, see also [Fo]. To a
Qp-representation of GK , Fontaine associated an FFM-module and if this representation
“comes from geometry” one can recover it from the FFM-module.

In particular, if g : Z → C is as above then

Mh i j
int (Z/C, P ) := (Sh i jint (Z/C, P ),Φint

h , N
int
h ,Fh i j,•(C,P ))

is an FFM-module over K.
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We will prove,

Theorem 1.1. The FFM-module Mh i j
int (Z/C, P ) is the one associated to

Vh i j(Z/C, P ) := Hh
ét((C − P )K , Symj(Rig∗,étQp))

via Fontaine theory. In particular,

Vh i j(Z/C, P ) ∼=
(
Bst ⊗ (Mh i j

int (Z/C, P ))
)Φ=Id,N=0 ∩ Fil0

(
BdR ⊗K Mh,i,j

int (Z/C, P )K
)
.

We obtain our theorem from results of Faltings [Fa3], which we now describe.

Let us denote by C
×

the scheme C with the inverse image log structure from C×. Suppose

E is a filtered logarithmic F-isocrystal on C
×
. Such an object associates to the “enlarge-

ments” (thickenings) of C
×

(see [O] for the non-logarithmic case and [Fa2], [Sh1],[Sh2]
in general) coherent sheaves in a compatible way. We will recall the precise definitions
in sections 3.3 and 6. The notion of an F-isocrystal and it’s initial development is due
to Berthelot and Ogus [BO1], [O]. The notion of a filtered logarithmic F-isocrystal was
defined by Faltings in [Fa2] and developed by Shiho in [Sh1] and [Sh2]. In particular, one
gets from E a coherent sheaf EC× on CK with an integrable connection D with logarith-
mic singularities at P . Therefore, if g, Z, C and P are as above, there is a filtered log-F

isocrystal E i jZ/C on C
×

which associates to the enlargement C×, SymjGi(Z/C, P ).

In [Fa3], Faltings associated étale local systems on C, L(E) to certain (very special) filtered
log-F isocrystals, E , and made families of FFM-modules, (Hh

deg(E),Φ
deg
h , Ndeg

h ,Fh,•deg) (see

section 2.1 for more details). Let us very briefly describe Hh
deg(E). It is the log crystalline

cohomology on C, with a certain log structure C
××

, with values in E . As C is a reduced
divisor with normal crossings in C, let C×× be C with the log-structure induced by

C ∪ P . Let C
××

be C with the pull back log structure. Similarly, let Spec(V )× be
Spec(V ) with the log structure given by the closed point, let Spec(k)× be Spec(k) with
the pull-back log structure and let Spec(W )× be Spec(W ) with the Teichmüler lift of the

log structure on Spec(k)×. Then E is a filtered log F-isocrystal on C
××

over Spec(W )×

and we set Hh
deg(E) := Hh

cris(C
××
/Spec(W )×, E) for h ≥ 0. It is proved in [Fa3] that the

étale cohomology Hh
et((C − P )K ,L(E)) and these FFM-modules are associated to each

other via Fontaine’s theory. In the case, E = E i jZ/C , Hh
deg(E) ⊗K0 K = Sh i j(Z/C, P ),

Fh,•deg is the Hodge filtration and Hh
et((C − P )K ,L(E)) = Vh i j(Z/C, P ). In this paper,

we will extend the definitions in [C1] of FFM-modules Hh
int(E) to regular (see section 6)

logarithmic F-isocrystals E on C
×

over Spec(W ) and prove

Hh
deg(E) = Hh

int(E)

for all h ≥ 0, when all the irreducible components of C are absolutely irreducible.

We have several applications of our theorem. We first point out that our descriptions
of the operators Φint

h , N int
h are more explicit than those of the corresponding operators
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defined by Hyodo-Kato in ([HK]) and Faltings in ([Fa3]). If C = X(N, p), with (N, p) = 1
and N > 4 (see the notations above) and E = SymjG1(E/C, P ) then we prove that

the rank of Ndeg
1 on H1

cris(C
×,×

/Spec(W )×, E)p−new is exactly half the dimension over
K0 of this vector space (see corollary 7.4.) As a consequence we derive that if f is a
p-new cuspidal eigenform of weight k = j + 2 on X(N, p) and Vf denotes the p-adic GK-
representation attached to f , then Vf is semi-stable but not crystalline (corollary 7.5).
This was proved in [S] in a very indirect way, using the local Langlands correspondence
and results of Carayol on the rank of the monodromy operator on the `-adic (` 6= p)
Weil-Deligne representation attached to f .

Our main result is also used in [IS] in order to give an explicit description of the image of
the p-adic Abel-Jacobi map applied to Heegner cycles on certain Shimura curves in terms
of extension classes in the category of FFM-modules. In particular a p-adic Gross-Zagier
formula for higher weight modular forms is proved in that paper.

Finally, another application of our results is to get an explicit description of the Mazur-
Tate-Teitelbaum L-invariants which we now describe.

Suppose now that k ≥ 0 is an integer and (M,F,N,F•) is a FFM-module overK such that
F iM is MK for i ≤ k and it is 0 for i ≥ k+2. Suppose H is a commutative Zp-algebra free
of finite rank which acts on M such that Fk+1M is a rank 1 HQp := H⊗Qp-submodule,

MK = Fk+1M ⊕ (N ⊗ 1K)MK

and N ⊗ 1K : Fk+1M −→ (N ⊗ 1K)MK is a non-zero HQp-isomorphism. Then, if v ∈ M
is an eigenvector for F such that (N ⊗ 1K)MK = HQp · Nv, the L-invariant L(M) of
(M,F,N,F(D)•) is the unique element in HQp such that

v − L(M)Nv ∈ Fk+1M.

The general definition of an L-invariant becomes arithmetically significant when we attach
it to a cuspidal newform on X(N, p) of weight k + 2 (as above), with k ≥ 0 even, which
is split multiplicative at p. This means precisely that ap = pk/2 (see [M].) The quest
for an L-invariant which is intimately connected to the relationship between complex
and p-adic L-functions was initiated by Mazur-Tate-Teitelbaum (86) in [MTT]. There,
a definition in the weight 2 case was offered. Its relationship with values of L-functions
was established by Greenberg and Stevens using Hida theory (91) in [GS]. Teitelbaum
proposed the first definition in the higher weight case under some restrictions on the level
using the uniformization of Shimura curves by the p-adic upper half plane (90) in [T] (his
definition does not involve a FFM-module but see [IS]), the first author of the present
paper offered a definition using the FFM-module M1 i j

int (E(N, p)/X(N, p),Cusps) and H
is the Hecke-algebra acting on X(N, p), in [C1]. Finally, Fontaine-Mazur defined an L-
invariant associated to a cusp form as above using the FFM-module Dst(V ), where V is
the local Galois representation attached to the cusp form and Dst is Fontaine’s functor
(see [Fo]) in [M]. The algebra H is again the Hecke algebra acting on X(N, p). K. Kato,
M. Kurihara and T. Tsuji established the connection between the L-invariant of Fontaine
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and Mazur and special values of the complex and p-adic L-functions while G. Stevens
has established the connection between the L-invariant defined in [C1] and special values
of the complex and p-adic L-functions using p-adic families of modular forms, see [St].
The result of Kato, Kurihara and Tsuji has not yet been published. The present paper
together with the results in [IS] establishes the equality of all the L-invariants (whenever
they are defined). Of course, the results of Kato-Kurihara-Tsuji and Stevens togeher also
imply (indirectly) the equality of the L-invariants defined in [C1] and the corresponding
Fontaine-Mazur L-invariants.

We mention that P. Colmez also proved (in [Cz]) a formula giving the L-invariant of
Fontaine-Mazur as derivative of a family of eigenvalues of Frobenius. Together with the
result of Stevens mentioned above involving the L-invariant defined in [C1], this gives
another local proof of the equality of the two L-invariants we consider.

In [G-K] Grosse-Klönne extended the Hyodo-Kato theory and showed that there are
natural Frobenius and monodromy operators on the de Rham cohomology of a quite
general rigid space. He has been able to explicitly compute these when the space is a
quotient of a p-adic symmetric domain.

Writing this paper we had two options, namely to present the definitions, statements
and proofs in the most general case (the logarithmic case), which would have made the
notations very complicated and would have obscured the ideas of the proofs or, to first
present some of the definitions, statements and proofs in the non-logarithmic case, then to
give the definitions and make the precise statements in general and leave it to the reader
to check that the same proofs go through with the obvious adjustments. We choose to do
the latter.
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2 Definitions of the operators

Let K,V, k,W,K0, CK , C, P, C, P be as in section 1. Let us recall that we suppose that
the reduction of P , P does not meet the singular divisor of C. We endow the formal
completion of C along its special fiber with the natural log structure defined by the

divisor P and denote the resulting formal log scheme by C×. We let C
×

denote the
log scheme C with the inverse image log structure. We also denote by C×× the formal
completion of C along its special fiber with log structure given by the divisor with normal

crossings P ∪C. We denote C
××

the scheme C with the inverse image log structure. Let

E be a filtered log F-isocrystal on C
×
. We fix a uniformizer π of K and fix the branch,

log, of the p-adic logarithm in K× such that log(π) = 0. Then, if E is regular (see below)
there are two ways to attach a family of FFM-modules to E , as we shall explain below.

2.1 The definition via degeneration

We first briefly review the definition given by G. Faltings in [Fa3]. We give more details
in later sections. By deformation theory, the pair (C,P ) can be regarded as the fiber at
the point π of S := Spf(W [[t]]) over W , of a pair (X,P) consisting of a family of curves X

defined over S and a smooth divisor P of X over S. Let X× denote the log formal scheme
X with the log structure given by the divisor P . Let f : X −→ S denote the structure
morphism. Let Y denote the fiber of this morphism at t = 0. Then P and Y are disjoint
and Y is a divisor of X with normal crossings. We denote by X×× the formal scheme X

with the log structure associated to the divisor P ∪ Y . If we let X = Xrig, S = Srig and
Prig := PX denote the rigid analytic spaces over K0 associated to X, S and P respectively
and if f : X −→ S is the induced morphism then we have

i) X −→ Spec(K0) is smooth
ii) Y := f−1(0) = Yrig is a semi-stable curve over K0

iii) P0 := PX ∩ Y is disjoint from the singular divisor of Y
iv) f |X∗ : X∗ = (X − Y ) −→ S∗ = (S − {0}) is smooth.

The evaluation of E on X× is a coherent OX-module EX× , with a relative, logarithmic,
integrable connection DX/S. Let us denote by K•X/S the complex of sheaves on X

EX×
DX/S−→ EX× ⊗OX

Ω1
X/S(log(Y ∪ PX)).

The relative connection DX/S is induced from the absolute connection:

EX×
DX/K0−→ EX× ⊗OX

Ω1
X/K0

(log(PX))

by composing with the natural map: Ω1
X/K0

(log(PX)) −→ Ω1
X/S(log(Y ∪ PX)).

See section 3.3 and section 6. We denote by Hi the i-th logarithmic relative de Rham
cohomology group of X/S with coefficients in EX× , i.e. the sheaf Rif∗(K

•
X/S) for i = 0, 1, 2.
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For every i, Hi is a free OS-module with an integrable, regular-singular connection

∇i : Hi −→ Hi ⊗OS
Ω1
S/K0

(log 0).

Fix a parameter t on S, with t(0) = 0. The Frobenius on E together with the Frobenius
ϕ on S which sends t to tp and acts on the coefficients as the absolute Frobenius on K0,
endow Hi with a ϕ-semi-linear, horizontal (with respect to ∇i) Frobenius operator

Φi : ϕ
∗Hi −→ Hi.

If s is a point of S, let Hi
s denote the fiber of Hi at s. The i-th logarithmic de Rham

cohomology of CK , with coefficients in EC× , H i
dR

(
CK , EC×

)
is canonically isomorphic to

Hi
π. (Recall, P is the fiber of PX at s = π.) We denote these groups by H i(C,P, E). On

the other hand, Hi
0 is canonically isomorphic to the logarithmic de Rham cohomology of

Y with coefficients in EY× , i.e. the i-th hypercohomology on Y of the complex of sheaves

EY×
DY/W−→ EY× ⊗OY Ω1

Y××/Spf(W )×
,

where Y×× is the formal scheme Y with the inverse image log structure from X××. We
denote this group by H i(Y, P0, E).

Now let H i
deg(E) denote the FFM-module (H i(Y, P0, E),Φdeg

i , Ndeg
i ,F•deg), where the oper-

ators are defined as follows

the monodromy operator: Ndeg
i := Res0(∇i) : H i(Y, P0, E) −→ H i(Y, P0, E),

and

the Frobenius operator: Φdeg
i := Φi|Hi(Y,P0,E) : H

i(Y, P0, E) −→ H i(Y, P0, E).

These operators satisfy Ndeg
i Φdeg

i = pΦdeg
i Ndeg

i .

We still have to define the filtration on (H i
deg(E))K := H i(Y, P0, E)⊗K0 K. For this let us

recall from [C] (this was also proved in [Fa3]) that the triple (Hi,∇i,Φi) is determined
by the triple (H i(Y, P0, E), Ndeg

i ,Φdeg
i ). More precisely we have a natural, horizontal,

Frobenius-equivariant isomorphism of OS-modules

(Hi,∇i,Φi) ∼= (H i(Y, P0, E)⊗K0 OS, (∇i)
′,Φdeg

i ⊗ ϕ),

where the connection (∇i)
′ is defined by,

(∇i)
′(h⊗ x) = Ndeg

i (h)⊗ xdt
t

+ hdx, for all h ∈ H i(Y, P0, E), x section of OS.

Here a few comments are in order. For i = 0, 2 the pair (Hi,∇i) is very simple. Namely,

let i = 0. Then H0 = (EX×(X))DX/S =: EX/S and the connection ∇0 is the composition

EX/S
DX/K0−→ EX/S ⊗OS

Ω1
S −→ EX/S ⊗OS

Ω1
S(log(0)),
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where DX/K0 is the absolute connection mentioned at the beginning of this section. There-

foreNdeg
0 = Res0(∇0) = 0 and so applying the above we get that H0 ∼= H0(Y, P0, E)⊗K0OS

and (∇0)
′ (therefore also ∇0) is the trivial connection. The same happens for i = 2 by

Poincaré duality (see [Fa3]).

∇1 is not trivial in general so let us define H1
log = H1⊗OS

OS[`(t)], where `(t) is a variable.
We endow H1

log with the connection ∇1(log) := ∇1 ⊗ 1 + 1 ⊗ d where d : OS[`(t)] −→

OS[`(t)]⊗OS
Ω1
S/K0

(log(0)) is defined by d(`(t)) = 1⊗ dt

t
.

For all h ∈ H1(Y, P0, E) the sections of H1
log

h⊗ 1−Ndeg
1 (h)⊗ `(t)

are horizontal for ∇1(log) hence the connection ∇1(log) is trivial.

Therefore, letting Hi
log = Hi if i = 0, 2 we have for i = 0, 1, 2 and every K-point s 6= 0 of

S natural identifications (by parallel transport, see [D])(
H i

deg(E)
)
K

= H i(Y, P0, E)⊗K0 K
∼= (Hi

log)s

where by (Hi
log)s we denote the pull back of Hi

log by the map OS[`(t)] −→ K sending
t → s and `(t) → log(s), where let us recall that the branch of the logarithm chosen at
the beginning of this section is such that log(π) = 0. In particular, for s = π we have
(Hi

log)π = Hi
π = H i

dR(CK , EC×(log(P )) and we define the filtration on
(
H i

deg(E)
)
K

to be the
inverse image under this isomorphism of the Hodge filtration on H i

dR(CK , EC×(log(P )).

Remark 2.1. Actually Faltings does not mention the basis of horizontal sections defined
above in [Fa3] and it seems to us that he does not identify fibers of Hi

log (see also the
remark before lemma 2.1 in [Fa3]).

2.2 The definition via p-adic integration

We generalize the definition given in [C1] when E is regular. As pointed out above,
the evaluation of E on C× is a coherent OCK

-module with a regular singular (at P )
integrable connection D : EC× −→ EC×⊗OCK

Ω1
CK/K

(log(P )). Recall that we have denoted

by H i(C,P, E) the K-vector spaces H i
dR(CK , EC×(log(P )), for i = 0, 1, 2.. The following

lemma will be proved in section 3.3

Lemma 2.2. The connection D has a basis of horizontal sections on every residue class
of CK.

We’ll assume that the components of C are smooth, absolutely irreducible and there are
at least two of them. Also suppose that the singular points of the reduction are defined
over k.
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For i = 0, 2 we have the K0-lattices in H i(C,P, E), H i
int(E) := H i

cris(C
××
, E) with the re-

spective Frobenii and zero monodromies. The filtrations on H i(C,P, E) are the respective
Hodge filtrations.

For i = 1 the situation is more complicated. For an admissible covering D of a rigid space
let G := G(D) be the graph whose vertices v(G) are the elements of D and whose oriented
edges ε(G) correspond to ordered triples e := (U, V,W ) where U 6= V ∈ D and Ae := W
is a connected component of U ∩ V . Also, if e is such an edge then its origin a(e) is U
and its end b(e) is V . We set τ(e) = (V, U,W ). If v ∈ v(G(D)) we will denote by Uv the
element of D corresponding to it. We choose and fix a system of representatives e(G) of
the quotient set ε(G)/τ .

Consider
C = {red−1Z : Z is a component of C},

where red: CK = Crig −→ C is the reduction map. Then C is an admissible open cover
of CK by wide opens (see [C4]). Let G = G(C), v(G) be the vertices of G and ε(G), the
edges of G. If v ∈ v(G), Cv will denote the corresponding component of C. We also set
C0
v = Cv −

⋃
w 6=v Cw. In this situation, for each e ∈ e(G), Ae is an oriented wide open

annulus. Given lemma 2.2, there is a natural residue map

Rese : H
1
dR(Ae, EC×) ∼= H0

dR(Ae, EC×) = (EC×|Ae)
D.

We will sometimes abuse notation and allow Rese to denote the composition of Rese with
the natural map from H1(C,P, E) to H1

dR(Ae, EC×).

Elements of H1(C,P, E) are represented by pairs of collections

({ωv}v∈v(G), {fe}e∈e(G))

where ωv ∈ (EC ⊗ Ω1
Uv

)(logPv))(Uv) and fe ∈ E(Ae) are such that

ωa(e)|Ae − ωb(e)|Ae = Dfe

for all e ∈ e(G). We denote P ∩ Uv by Pv. From the Mayer-Vietoris exact sequence
corresponding to the covering C we get a short exact sequence

0→ (⊕e∈e(G)H
0
dR(Ae, EC×))/(⊕v∈v(G)H

0
dR(Uv, EC×(log(Pv))))

ι→ H1(C,P, E)
γ→ Ker(⊕v∈v(G)H

1
dR(Uv, EC×(log(Pv)))→ ⊕e∈e(G)H

1
dR(Ae, EC×))→ 0.

(1)

First, let us observe that the left and right terms in the exact sequence (1) have natural
K0-lattices, with Frobenii. To see this, note that H0

dR(Ae, EC×) contains a natural K0-
lattice, namely H0

cris(xe, E), where xe is the point of C corresponding to the edge e,
and it has a natural Frobenius. Therefore we get a natural K0-lattice with a Frobenius
on the left module of the exact sequence (1) which will be denoted H0,1(C) and F0,cris

respectively. Moreover, for v ∈ v(G), H1
dR(Uv, EC×(log(Pv))) contains a natural K0-lattice

with a Frobenius, namely the first log crystalline cohomology with coefficients in E of
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the component corresponding to the vertex v, C××v where the log structure is the one

induced by the log structure on C
××

. See [Fa2]. Therefore, the right module of the exact
sequence (1) has a natural K0-lattice, denoted H1,0(C), with a Frobenius denoted F1,cris.
To define a K0-lattice, H1

int(E) of H1(C,P, E), together with a Frobenius operator Φint
1 and

a monodromy operator N int
1 we’ll first split the exact sequence (1) by defining a section s

of ι. This can be done if the log F-isocrystal E is regular.

Definition 2.3. We say that the log F-isocrystal E on C
×

is regular if for every v ∈ v(G)
and x closed point of Cv − P the characteristic polynomials of Frobenius on H0

cris(x, E)
and H1

cris(C
××
v , E)) are relatively prime.

Remark 2.4. It will be proved in section 6 that the definition (2.3) is satisfied by all log

F-isocrystals on C
×

coming from a family of schemes Z −→ C as in the section 1.

For the rest of the section we’ll assume that E is regular. Let ω ∈ H1(C,P, EC×) be
represented by the hypercocycle ({ωv}v, {fe}e) as above. If v ∈ v(G) one can define a
p-adic integral of ωv, λv, on Uv − Pv, which depends on our choice of the logarithm and
is well defined up to a rigid horizontal section of EC×|Uv (see section 5.2). Then s(ω) will
be represented by the cocycle ({ge}e), where

ge = fe − (λa(e)|Ae − λb(e)|Ae).

Let u be the corresponding section of γ. Then defineH1
int(E) to be the FFM-module, where

the underlying K0-vector space is ι(H0,1(C)) + u(H1,0(C)) and the Frobenius operator,
Φint

1 (ω), is
ι(F0,cris(s(ω)) + u(F1,cris(γ(ω)).

Moreover, the monodromy operator, N int
1 , is defined to be the composition

ι ◦ ⊕e∈e(G)Rese.

The operators satisfy the relation,

N int
1 Φint

1 = pΦint
1 N int

1 .

Finally the filtration on (ι(H0,1(C)) + u(H1,0(C))) ⊗K0 K = H1(C,P, E) is the Hodge
filtration.

Remark 2.5. The same construction can be performed for every fiber Xs where s ∈ S∗ =
S−{0}, i.e., we have residue maps Res(s), monodromy operators N int

(i,s) and Frobenii Φint
(i,s),

for i = 0, 1, 2.

The main result of this paper is

11



Theorem 2.6. Suppose that E is a regular filtered log F-isocrystal on C
×
. Then the

isomorphism H i(Y, P0, E) ⊗K0 K
∼= (Hi

log)π obtained by parallel transport yields an iso-
morphism of FFM-modules H i

deg(E) ∼= H i
int(E).

Remark 2.7. Actually regularity is only needed in order to compare the K0-lattices and
the Frobenii. We shall prove the equality of the monodromy operators (tensored with the
identity of K) without any restriction.

Theorem 2.6 is an easy consequence of the definitions for i = 0, 2. The next sections of
the paper will be devoted to the proof of this theorem for i = 1. We’ll first prove the
theorem (2.6) in the non-logarithmic case (i.e. P is the void set) and then we’ll provide
all the necessary definitions and results so that the reader should be able to fill in the
details of the proof in the logarithmic case.

3 F-Isocrystals

3.1 Formal schemes, rigid analytic spaces and weak completions

In this section we review some constructions and results on formal schemes, rigid analytic
spaces and weak completions which will be used later in the paper.

3.1.1 The functor rig.

We recall a standard construction in rigid analytic geometry, the functor “rig” (for more
details see section 02 of [B] or [dJ]). This is a functor from the category of locally
noetherian formal V -schemes (or formal W -schemes) to the category of rigid analytic
spaces over K (respectively K0).

Let X be a locally noetherian formal scheme over Spf(V ) (the case where V is replaced
by W is treated in the same way) having the property that the scheme (X,OX/I)red is
locally of finite type, where I is an ideal of definition of X. To the formal scheme X we
attach a rigid analytic space X := Xrig over K as follows.

We first suppose that X is affine, X = Spf(A), let I = H0(X, I) and fix f1, f2, ..., fr a set
of generators of the ideal I. For every n ≥ 1 define the V -algebra

Bn := A〈T1, T2, ..., Tr〉/(fn1 − πT1, f
n
2 − πT2, ..., f

n
r − πTr),

where π is a uniformizer of V , and as usual, A〈T1, T2, ..., Tr〉 denotes the p-adic (or π-adic)
completion of the polynomial ring A[T1, T2, ..., Tr]. The conditions on X imply that the
k-algebra

Bn/πBn
∼= A/(π, fn1 , f

n
2 , ..., f

n
r )[T1, T2, ..., Tr]

is of finite type which implies that Bn itself is topologically of finite type. Therefore Bn⊗V
K is a Tate-algebra over K. For m > n ≥ 1 we have canonical V -algebra homomorphisms
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Bm −→ Bn sending Ti → fm−ni Ti for all 1 ≤ i ≤ r. The induced morphism of affinoids
Spm(Bn⊗K) −→ Spm(Bm⊗K) identifies the source with the affinoid sub-domain of the
target given by |fi| ≤ |π|1/n, 1 ≤ i ≤ r. We define X := Xrig to be the inductive limit of
Spm(Bn ⊗K), where these affinoids form, by definition, an admissible covering of X. In
fact one can prove that Xrig is independent of the ideal of definition I and of the choice
of generators f1, f2, ..., fr and that it is functorial in X.

If the ideal of definition of X is πOX, i.e. X is a p-adic formal V -scheme topologically of
finite type, then Xrig is the usual “generic fiber of X” à la Raynaud.

Let X,Xrig be as above. Then one can define a reduction (or specialization) map red :
Xrig −→ X as follows. For m > n ≥ 1 the natural V -algebra homomorphisms A −→
Bm −→ Bn induce the following commutative diagram:

Spm(Bm ⊗K)
red−→ Spf(Bm) −→ X

↓ ↓ ||
Spm(Bn ⊗K)

red−→ Spf(Bn) −→ X

Here the morphisms red : Spm(Bn ⊗K) −→ Spf(Bn) are the usual reduction maps for p-
adic formal schemes and their generic fibers, i.e. defined as follows. Let x ∈ Spm(Bn⊗K)
be a point and let mx be the respective maximal ideal. Then K(x) := (Bn ⊗K)/mx is a
finite extension of K and we have V -algebra morphisms: Bn −→ Bn ⊗K −→ K(x). We
define red(x) to be the point of Spf(Bn) corresponding to the unique closed point of the
finite, local V -algebra which is the image of Bn in K(x).

The morphism red : Xrig −→ X is obtained by gluing the morphisms Spm(Bn⊗K) −→ X

in the above diagram.

For a general X, we obtain Xrig and the morphism red : Xrig −→ X by taking an affine
cover {Ui}i of X and gluing U rig

i and redUrig
i

.

Under the notations and hypothesis at the beginning of the section, let Z be a closed
sub-scheme of (X,OX/I). We denote by X/Z the formal completion of X along Z. We
have canonical morphisms X/Z −→ X and (X/Z)rig −→ Xrig. The image of the latter
morphism is an admissible open subset of Xrig which may be canonically identified with
red−1(Z) :=]Z[X (see Proposition 0.2.7 of [B]).

3.1.2 Formal models

Let X be a p-adic formal V -scheme (or W -scheme), separated and topologically of finite
type and let X := Xrig. Assume that X is reduced and let U be an admissible affinoid
open of X.

Lemma 3.1. There is a canonical p-adic formal scheme U over V (respectively over W ),
depending on X, with a morphism U −→ X whose generic fiber is the inclusion U ⊂ X.
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Proof. Let, as usual X1 denote the special fiber of X and consider an affine open covering
of X1, {Vi}i. Let Ui := red−1(Vi) ∩ U ⊂ U , the family {Ui}i is an admissible covering
of U and let us denote by Ui := Spf(Ai) where Ai is the sub-ring of functions of OU(Ui)
bounded by 1 (we say that Ui is ”the canonical formal model” of Ui). Let Vij be the inverse
image of Vi ∩ Vj under the map of special fibers (Ui)1 −→ X1. Then Ui ∩Uj = red−1

i (Vij),
where redi : Ui −→ Ui is the reduction map and the canonical model of Ui ∩ Uj is the
formal open sub-scheme of Ui whose support is Vij Therefore, one can glue the formal
schemes Ui along the canonical formal models of Ui ∩ Uj and obtain the required formal
model of U . This is independent of the covering {Vi}i, as one may take the covering of
X1 consisting of all the affine open sub-schemes.

These formal models of affinoid opens of X have the following functorial property.

Let X,X′ be p-adic formal schemes, separated, topologically of finite type over V (or W )
and let X = Xrig, X ′ = X′rig and assume that X,X ′ are reduced. Let U,U ′ be admissible
affinoid opens of X respectively X ′ and assume that we are given morphisms f : U ′ −→ U
and g : (X′)1 −→ (X)1 such that the following diagram commutes.

U ′ ⊂ X ′
red−→ (X′)1

f ↓ g ↓
U ⊂ X

red−→ (X)1

Then there exists a canonical morphism h : U′ −→ U inducing f on generic fibers and
such that h1 : (U′)1 −→ (U)1 is compatible with g.

3.1.2.1 Logarithmic structures

In this section we’d like to recall some basic notions in the theory of log schemes from
[Ka], [HK], sections 2.8, 2.9 and [Sh1].

Suppose A is a scheme (or a formal scheme or a rigid space). A morphism of sheaves
of monoids on the Zariski site of A, α : M → OA, will be called a pre log structure on
A. Call the pair (A,α) a pre log scheme (or formal pre log scheme) and denote it A×

and denote M , MA× . A pre log scheme (A,α) is called a log scheme if α induces an
isomorphism α−1(O∗A) ∼= O∗A. The sheaf of log one forms ωA× on A associated to α is the
quasi-coherent sheaf Ω1

A ⊕OA ⊗O∗A MA× subject to the relations α(m)⊗m = dα(m), for
m ∈MA× . One has a natural derivation on the exterior algebra of ωA× over OA such that
d(1⊗m) = 0, for m ∈MA× .

If P is a divisor on A, MP is the sheaf MP (U) = OA(U)∩O∗A(U−P ) and αP : MP → OA is
the inclusion, then A×P =: (A,αP ) is a log-scheme which is fine (“coherent” and “integral”).
If A is noetherian and reduced and if A is a variety ωA×P

is naturally isomorphic to

Ω1
A(logP ). If P = ∅, αP is called the a trivial log structure on A.

G. Faltings defines and uses a more restricted notion of log-structures in [Fa2] and [Fa3]
(see the appendix of [Ka] for the precise relationship between the two notions.)
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Henceforth, all log structures will be fine.

Let T× be a formal log scheme. Let us denote by T0 the reduced sub-scheme of the closed
sub-scheme of T corresponding to the ideal sheaf pOT . We have a closed immersion

ι : T0 −→ T

and we’ll let T×0 be the log scheme corresponding to the log structure on T0

ι−1(MT×) −→ ι−1(OT ) −→ OT0 .

We use, as in [Ka] the notation ι−1 for the inverse image of a sheaf and ι∗ for the inverse
image of a log structure.

Let now g : U× → T× be a morphism of formal log schemes, g = (f, h) : (U,MU×) →
(T,MT×) . Here f : U → T is a morphism of formal W -schemes and we have a commu-
tative diagram

f−1MT×
h−→ MU

↓ ↓
f−1OT −→ OU

and also
U

f−→ T
ι′ ↑ ↑ ι
U0

f0−→ T0

Therefore, we have a commutative diagram

f−1
0 (ι−1MT×) = (ι′)−1f−1MT× −→ (ι′)−1MU×

↓ ↓ ↓
f−1

0 (ι−1OT ) = (ι′)−1f−1OT −→ (ι′)−1OU
↓ ↓

f−1
0 (OT0) −→ OU0

which defines a morphism g0 : U×0 → T×0 .

Definition 3.2. Let X×, Y × be schemes or formal schemes with fine log structures and let
M −→ OX (respectively N −→ OY ) denote the morphisms of monoids on X (respectively
on Y ) giving the log structures. Let f : X× −→ Y × be a morphism.

i) We say that f is a closed immersion if the underlying morphism of schemes X −→ Y
is a closed immersion and the map f ∗N −→M is surjective.

ii) We say that f is an exact closed immersion if f is a closed immersion and the map
f ∗N −→M is a bijection.

Definition 3.3. Let as above X×, Y × be schemes or formal schemes with fine log struc-
tures given by the sheaves of monoids M respectively N and let f : X× −→ Y × be a
morphism. We say that f is smooth (respectively étale) if the underlying morphism of
schemes X −→ Y is locally of finite presentation and for any commutative diagram

T
′× s−→ X×

↓ ι ↓ f
T×

t−→ Y ×
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where ι is an exact closed immersion such that the ideal of T ′ in T is nilpotent, there exists
locally on T a morphism (respectively there exists a unique morphism) g : T× −→ X×

such that gι = s and fg = t.

See [HK] 2.9 for other equivalent formulations of definition 3.3.

Moreover we have the following result from [Ka] 4.10:

Lemma 3.4. If f : X× −→ Y × is a closed immersion, then there exists locally on X a
factorization of f as: X×

ι−→ T×
g−→ Y × where T× is a fine log scheme, ι is an exact

closed immersion and g is an étale morphism.

3.1.3 Fibrations and rigid analytic Poincaré lemmas

3.1.3.1 Let us first consider a smooth affine scheme Z of finite type over k and let ι : Z −→
T and ι : Z −→ T ′ be closed immersions of Z into smooth p-adic formal affine schemes
over W . Let us assume that we have a smooth morphism of formal schemes u : T ′ −→ T
such that u◦ ι′ = ι. Let T ′/Z , T/Z denote the formal completions of T ′ respectively T along

Z and let T ′ := (T ′/Z)rig and T := (T/Z)rig. Then locally on T ′ we have integers d and

natural isomorphisms T ′ ∼= T ×K0 S
d, where let us recall that S is the open unit disk over

K0, such that the following diagram is commutative

T ′ −→ T ×K0 S
d

u ↓ ↓
T = T

In the above diagram the right vertical map is the natural projection. For a proof of the
result see [B] Theorem 1.3.2. An easy consequence of this result on ”fibrations” is the
following

Lemma 3.5 (smooth Poincaré lemma). Let the notations be as at the beginning of
this section. Let E denote an isocrystal on Z/W (see section 3.3) and let us consider the
de Rham complexes of sheaves on T ′ and T denoted DR(T ′, E)• and DR(T, E)• obtained
by evaluating E at the enlargements T/Z and T/Z. The morphism u : T ′ −→ T induces a
morphism of complexes DR(T, E)• −→ u∗DR(T ′, E)• which is a quasi-isomorphism.

We’d like to recall the similar result in the relative situation and with log structures from
[Sh1],[Sh2] and [Sh3].

Let us now recall that we have denoted S = Spf(W [[t]]). Let us endow this formal scheme
with the fine log structure given by the divisor t = 0 and denote this log formal scheme
by S×. The closed immersion Spec(k) −→ S given by t → 0 endows Spec(k) with the
pull-back log structure. Let Z× be a fine, smooth, affine log scheme over Spec(k)× and
let ι : Z× −→ T × and ι′ : Z× −→ T ′× denote exact closed immersions over S× into
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smooth, affine log formal schemes (we assume that T , T ′ are endowed with the (t, p)-
toplogy). Suppose that u : T ′× −→ T × is a morphism of log formal schemes over S×
such that u ◦ ι′ = ι. Let T ′/Z , T/Z denote the completions of T ′ respectively T along Z

and let ]Z×[T ′ := (T ′/Z)rig, ]Z×[T := (T/Z)rig denote the tubes of Z× relative to T ′× and T

respectively.. We denote by ω1
]Z×[T ′

the sheaf on ]Z×[T ′ given by: Ω1
(T ′

/Z
)×/S× ⊗W K0 and

similarly for ω1
]Z×[T

. Then we have the following log Poincaré lemma.

Proposition 3.6 (Lemma 2.2.15, [Sh1]). Let E be an isocrystal (without log structures)
on Z. If u is a smooth morphism of log formal schemes then the natural morphism of de
Rham complexes

DR(T, E)• := ET/Z
⊗OT/Z

ω•]Z×[T
−→ u∗

(
DR(T ′, E)• := ET/Z

⊗OT ′
/Z

ω•]Z×[T ′

)
.

is a quasi-isomorphism.

3.1.4 Weakly Complete Algebras

3.1.4.1 Weakly complete liftings

In this and the next sections we prove an important generalization of the “weak lifting
theorem” (theorem A.1 of [C2]) and give a geometric interpretation of it (in §3.1.5).

We start with some notations which will be used as such only in this section. Let R be
a complete local ring of characteristic (0, p) with maximal ideal p. If n is a non-negative
integer set Rn := R〈T1, T2, ..., Tn〉. Fix now k a non-negative integer. For an Rk-algebra
A, the weak completion A† of A is the smallest sub-algebra of the p-adic completion of
A which is p-adically saturated and contains the elements∑

(I1,...,in)∈Nn

ri1,...,ina
i1
1 ...a

in
n ,

for any aj ∈ pA, 1 ≤ j ≤ n and ri1,...,in ∈ Rk. (When R is discretely valued this is
equivalent to the notion of weak completion of A over (R, p) in [MW], §1.) The algebra
A is weakly complete over Rk if A = A†. Let Am := A[x1, x2, ..., xm] and Rk,n = (Rk)

†
n. A

quotient of Rk,n for some n by a finitely generated ideal is a semi-dagger algebra over
Rk, [C3]. Such algebras are weakly complete. Denote A := A/pA. If f : A −→ B is a
homomorphism of semi-dagger Rk-algebras, we say B is formally smooth over A if B is
smooth over A and

AnnB(ρ) = AnnA(ρ)B,

for all ρ ∈ R.
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Theorem 3.7. Suppose A,B,C and D are flat semi-dagger algebras over Rk and we have
a commutative diagram

A −→ C
↓ ↓
B −→ D

Suppose, in addition, C −→ D is surjective, B is formally smooth over A and there exists
an Rk-algebra homomorphism s : B −→ C which commutes with the reduction of the
above diagram. Then there exists an Rk-algebra homomorphism s : B −→ C which lifts s
and commutes with this diagram.

Sketch of proof. The proof of the less general result Theorem A.1 of [C2] translates easily.
We first outline the proof.

There exists an integer n and G1, ..., Gm ∈ A†n so that we can take B = A†n/(G1, ..., Gm).
Let g and V be the compositions A†n −→ B −→ D and An −→ B −→ C respectively.
Let I be the kernel of C −→ D. Let X := (x1, ..., xn) ∈ Ann and G = (G1, ..., Gm). First
one shows there exists an Rk-algebra homomorphism V0 : A†n −→ C over Rk which lifts
V such that V0 = g( mod I). Now one shows there exists an n×m matrix N an m×m
matrix Q and an m-tuple of m×m matrices M with coefficients in A†n such that

G(X +GN) = GMGt +GQ

where Gt is the transpose of G and the coordinates of Q are in pA†. Now for a non-negative
integer s set

Vs+1 = Vs(X) +G(Vs(X))N(Vs(X)).

The Vs converge to the required V as s goes to infinity. The proof of which we now
explain:

Lemma 3.8. Suppose f : A −→ B is a surjective map of Rk-semi-dagger algebras. The
kernel of f is a finitely generated ideal.

Proof. Without loss of generality may suppose that A = Rk,a and B = Rk,b/J , where
J is a finitely generated ideal of Rk,b. Let us denote by g : Rk,b −→ B the natural
map (in particular J is the kernel of g) and call the ”weak” variables in Rk,a and Rk,b

by x1, ..., xa and respectively y1, ..., yb. Let h : Rk,b −→ Rk,a so that f(h(x)) = g(x),
h(yi) ∈ f−1(g(yi)), 1 ≤ i ≤ b. Let x′i ∈ g−1(f(xi)). The kernel of f is generated by h(J)
and the finite set {xi − h(x′i)}i=1,a.

In the notations of theorem 3.7, because B is formally smooth over A, we may write
B = A†n/(G1, ..., Gm). Let g and V be the compositions A†n −→ B −→ D and An −→
B

s−→ C respectively. Let I be the kernel of the homomorphism C −→ D and let
X = (x1, ..., xn) ∈ Ann.

Lemma 3.9. There exists V0 : A†n −→ C over Rk which lifts V such that V0 = g(mod I).
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Proof. Let g′(X) be an element of Cn such that

g′(X) = g(X)mod I

and define a homomorphism V ′ : A†n −→ C in the natural way. Similarly there is a
homomorphism V ′ : A†n −→ C which lifts V ,

V ′ = g′ mod (p, I)Cn.

We can write
V ′(X)− g′(X) = a− b,

where a ∈ pCn and b ∈ ICn. Let V0 : A†n −→ C such that V0(X) = V ′(X)− a.

Let G = (G1, ..., Gm) and X = (x1, ..., xn). Formal smoothness implies

Lemma 3.10. There exists a n × m matrix N an m × m matrix Q and an m-tuple of
m×m-matrices M over A†n such that

G(X +GN) = GMGt +GQ

where Gt is the transpose of G and the coordinates of Q are in pA†n. Here we think of
each G as a row vector of functions of X and by the notation G(X + GN) we mean the
composition of functions .

For an integer s ≥ 0 set

Vs+1(X) := Vs(X) +G(Vs(X))N(Vs(X).

Suppose Q, V0(G) = 0 mod q, for q ∈ pR. Then for s ≥ 1,

Vs+1(X)− Vs(X) = ((GMGt +GQ)(Vs−1(X)))N(Vs(X)) = 0 mod qs+1.

This is enough to show that the sequence Vs converges p-adically. We will now give some
idea about why it “weakly converges”.

If r ∈ pQ, r > 1, let Rk,n(r) denote the sub-ring of Rk,n consisting of series which converge
on Bk[1]×Bn[r]. If f : Rk,n −→ A is a surjection and r > 1, let A(f, r) denote the subring
f(Rk,n(r)) and for F ∈ A(f, r) set

||F ||f,r = max{||G||r | G ∈ Rk,n(r), f(G) = F}.

Choose once and for all surjective homomorphisms

Rk,a −→ A, and Rk,b −→ C.

Let Rk,a+n −→ A†n be the induced surjection. If e : Rk,c −→ E is one of these homomor-
phisms, let

E(r) = E(e, r) and || ||r = || ||e,r.
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We can show there exist real numbers u > 1, d > 0, and L < 1 such that for 1 ≤ t ≤ u
the entries of N and G lie in A†n(u) and

(i) Vs(A
†
n(t

d)) ⊂ C(t),

(ii) ||Vs(X)− V0(X)||t < 1,

(iii) ||G(Vs(X))||t ≤ Ls||G(V0(X))||t,

(iv) L ≥ ||N(Vs(X))||t||G(V0(X))||t,

(v) Vs = V0( mod I).

Now, (iii) and (iv) imply the sequences Vs|A†n(td) converge to continuous homomorphisms

Vt : A†n(t
d) −→ C(t), for 1 ≤ t ≤ u, compatible with decreasing t. Let V : A†n −→ C be

thye direct limit of these Vt. Condition (ii) implies that V lifts V , (iii) implies G(V (X)) =
0, so V factors through a a morphism B −→ C which lifts B −→ C and finally (v) implies
this morphism commutes with the diagram.

Remark 3.11. A statement needed to prove (iv) which is analogous to a result used but
not stated explicitly in [C2] is, with notation as in the proof of lemma A-8 of [C2],

||h(F )||g,t ≤ ||F ||f,td .

Corollary 3.12. Suppose R is discretely valued and B is a flat, formally smooth semi-
dagger algebra over Rk. Then B is very smooth over (Rk, pRk) in the sense of [MW],
definition 2.5.

Corollary 3.13. Suppose R is discretely valued and B and C are flat Rk semi-dagger
algebras, formally smooth over Rk and there exists an Rk-algebra isomorphism s : B −→
C. Then there exists an Rk-algebra isomorphism s : B −→ C lifting s.

Proof. This follows from the previous corollary and the proof of theorem 3.3 of [MW].

3.1.4.2 Weak completions

Let the notations be as in §3.1.4.1. In this section, given a finitely generated Rk-algebra
A, we give a geometric interpretation of the ring A†⊗RK, which will be used later in the
article.

Suppose R is discretely valued.

Proposition 3.14. Let A be a finitely generated flat Rk-algebra. Set A = A/pA, Â =
lim
←,n

A/pnA, U = Spec(A), Û = Spf(Â) and U = Spec(A). Let g : U −→ X be an open

immersion of U into a scheme X proper and flat over Rk. Let X̂ be the formal completion
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of X along its special fiber and ÛK =]U [X̂ . Then A† ⊗R K ∼= lim
→,V

A(V ), where V ranges

over all affinoid strict neighbourhoods of ÛK in X̂K and A(V ) denotes the affinoid algebra
of V .

Proof. Let Z be the complement of U in X with the reduced closed sub-scheme structure
and let Z be its reduction modulo p. Let π be a uniformizer of R. Suppose {Wi}i is
an affine cover of X and suppose that fi1, ..., fini

∈ OX̂K
(]Wi[) are such that f i1, ..., f ini

generate the ideal in OWi
defining Z ∩Wi. For λ ∈ pQ, |λ| ≥ |π|, let Vλ be the union over

all i of
{x ∈]Wi[ | there exists j, 1 ≤ j ≤ ni such that |fj(x)| ≥ λ}.

As in [B] §1.2, the Vλ’s are independent of the choices and form a co-final system of
strict neighbourhoods of ÛK in Xrig

K . Then we see that Vλ is contained in U rig
K (⊂ Xrig

K ).
This implies that the inductive limit we consider does not depend on the choice of the
embedding U −→ X. Choose a presentation A = Rk[T1, ..., Tn]/I, which gives a closed
immersion U −→ An

Rk
and let X be the closure of U in PnRk

. Then we see that A(Vλ) is
isomorphic to (Rk〈T1, ..., Tn〉λ/I) ⊗R K, where Rk〈T1, ..., Tn〉λ denotes the ring of power

series over Rk converging on the closed disk {(y, x) ∈ Kk+n | |y| ≤ 1, |x| ≤ 1/λ}. Hence
its inductive limit coincides with (Rk[T1, ..., Tn]

†/I)⊗R K ∼= A† ⊗R K.

Remark 3.15. It is possible to improve this result. If Z ⊂ X are affinoids, set |g|Z =
sup{|g(x)| : x ∈ Z} and

AZ(X) = {f ∈ A(X) : |f |Z ≤ 1}.

Then we can show, in the above notation, A† ∼= lim
→,V

AÛK
(V ), where as before V ranges

over all strict affinoid neighbourhoods of ÛK in X̂K if A,A are normal, X is reduced and
U is irreducible.

3.2 The geometry of the family

Let us resume the notations of the introduction. We’ll briefly recall from [Fa3] how the
family of curves X −→ S in section 2 is constructed. In this section we assume that P is
empty.

As C is regular, C is a reduced divisor with simple normal crossings and each singular
point is k-rational we may find a deformation of C, X → S := Spf(W [[t]]) with the
following properties

• X is defined over W

• the curve C is the base change of X by the map W [[t]]→ V sending t to π.

• Zariski locally X is smooth over W [[t]] or isomorphic to W [[t]]〈x, z〉/(xz − t).
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Let X := Xrig −→ S := Srig as defined in section 3.1. In this particular case the general
construction gives the following. Let R0 := W [[t]] and for each integer n ≥ 1 let Rn :=
W [[t]]〈T 〉/(tn − pT ); it turns out that Rn is the p-adic completion of W [t, T ]/(tn − pT )
and that we have natural maps

• Rn → V defined by t→ π, T → πn/p for all n >[K : K0]

and

• Rn+1 → Rn over W [[t]] defined by T → tT . Denote by Xn, X0 ×SpfR0
SpfRn.

Let, for n ≥ 1, Xn and Sn denote the generic fibers of the p-adic formal schemes Xn and
Spf(Rn) and let

X := lim
→,n

Xn and S := lim
→,n

Sn

The rest of this section will be devoted to understanding the rigid analytic structure of
the family X/S. As Sn := Spm(Rn ⊗K0) is defined by |t| ≤ |p|1/n, it follows that Sn is
the affinoid disk centred at 0 of radius |p|1/n and therefore S is isomorphic to the open
disk of radius 1 centred at 0.

In [C4] (see also [C5]) a one-dimensional wide open was defined to be a rigid space which is
isomorphic to the complement in a proper curve of a “discoid subdomain.” We now define
a wide open, in general, to be the rigid space associated to a complete, flat, topologically
finitely generated, semi-local ring over W (or over V ) (see §7 of [dJ]). Residue classes
of affinoids are wide opens. One can show ([C6]) that such spaces have a finite number
of irreducible components. We suspect, when they are smooth, that they have finite
dimensional de Rham cohomology.

First, as X is a deformation of C, the ideal tOX + pOX of OX is an ideal of definition for
this formal scheme and the closed sub-scheme of X defined by this ideal is isomorphic to
C as schemes over k. Therefore, by section 3.1 we have a reduction map red: X → C,
and we define the covering of X:

C := {red−1Z : Z is an irreducible component of C}.

This is an admissible open cover of X. If v is an irreducible component of C, we denote
by Uv ∈ C the corresponding open and if e is a singular point of C we let Ae =red−1(e).
We’ll see in section 3.5 an interpretation of these notions in terms of graphs.

Moreover, if s ∈ S∗, then the restriction (i.e. base change) of C to the fiber Xs is an
admissible covering Cs of Xs described in section 2.2 for s = π. For every v irreducible
component of C let us denote by

Zv := Uv −
⋃
w
w 6=v

Uw.
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Then Zv is a rigid space over S such that all of its fibers are affinoids for all v. Let e be
a fixed singular point of C. Then we have

Lemma 3.16. There are functions xe and xτ(e) on Ae = Aτ(e) such that xexτ(e) = t,
|xe(u)| → 1 as u approaches Za(e). Moreover, the map α → (xe(α), xτ(e)(α)) maps Ae
isomorphically to the open unit ball in A2

K0
, i.e. the rigid subspace of A2

K0
defined by

{(x, z) : |x| < 1 and |z| < 1}.

Proof. This follows easily from the fact that the singularities of X/S are given by local
equations of the form xz = t.

Let us recall that Y is the fiber of X/S above 0 ∈ S. Let L be a finite, non-trivial, totally
ramified extension of K0 and πL a uniformizer of L. Let also B := Spf(OL〈y〉) denote
the formal scheme whose generic fiber is the closed disk centred at 0 of radius |πL|. If
n > [L : K0] we have a natural morphism φ : B −→ Spf(Rn) −→ S induced by the
morphisms R0 −→ Rn −→ OL〈y〉 given by t → πLy and T → (πnL/p)y

n, whose generic
fiber induces B := BL ⊂ S. We denote by XB := Xn ×Spf(Rn)

B, which is independent of

n > [L : K0]. Let us remark that by [dJ] 7.2.4, we have (XB)
rig = X ×S B which will be

denoted XB.

Lemma 3.17. In the notations above there is a natural isomorphism

ξL : C × A1
k −→ (XB)1 as schemes over A1

k

where let us recall, k is the residue field of K and if Z is a formal scheme over OL, Z1

denotes the closed formal sub-scheme of Z of ideal πLOZ.

Proof. The special fiber of the map φ defined above, φ1 : B1 = A1
k −→ S1 = Spf(k[[t]]) is

the constant map, induced by the map sending t to 0. Then (XB)1 = (Y)1×A1
k = C×A1

k,
where let us recall Y is the fiber at 0 of X −→ S.

Proposition 3.18. Let L, πL, B, B be as in lemma 3.17. Then, for every vertex v
of G there is an admissible wide-open strict neighbourhood Wv of Zv,B := Zv ×S B in
Uv,B := Uv ×S B, and for every s ∈ B an isomorphism

αv,s := αL,v,s : Wv,s ×B ∼= Wv over B,

lifting the isomorphism

ξL : C
0

v × A1
k
∼= (Zv)1

given by lemma 3.17. We have denoted by Wv,s the fiber of Wv at s and by C
0

v the
complement of singular points of C in the component Cv corresponding to v.
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Proof. Let ZB,v denote the formal model of ZB,v in XB, which is the formal spectrum of
the ring of integral valued rigid functions on ZB,v. As the special fiber of Zv,B with respect

to the ideal generated by (t, πL) is the affine scheme C
0

v of finite type over k, Zv,B is an

affinoid over B. By lemma 3.17 we have (ZB,v)1
∼= C

0

v×A1
k. We also have an isomorphism

βv,s : (Zv,s ×B)1
∼= C

0

v ×A1
k, where Zv,s is the fiber of ZB,v at s ∈ B. Now using theorem

3.7 the isomorphism between (ZB,v)1 and (Zv,s × B)1 lifts to an isomorphism over B of

Z†B,v and (Zv,s×B)†. From proposition 3.14 and Theorem 3.3 of [MW] we deduce βv,s lifts
to an isomorphism over B of strict affinoid neighbourhoods T of ZB,v in UB,v and Ts ×B
of Zv,s ×B in Uv,s ×B, over B, where Ts denotes as usual the fiber of T at s. By lemma
3.1, Ts has a canonical, p-adic formal model Ts over OF (F being the residue field of s)
with a morphism Ts −→ Xs which induces the inclusion Ts ⊂ Uv,s ⊂ Xs. This morphism
induces a morphism between the special fiber T of Ts and C. (In fact this morphism
identifies T with a certain blow-up of the component Cv of C corresponding to v.) Let
T v denote the component of T isomorphic to Cv under this morphism.

Now, let T := Ts×̂B, then T rig ∼= Ts × B ∼= T . We define Wv to be the inverse image

under the reduction T
red−→ T of the component T v of T , i.e. Wv :=]T v[T . Similarly, let

Wv,s be the inverse image under the reduction Ts
red−→ T of T v, i.e. Wv,s :=]T v[Ts . Then

both Wv and Wv,s × B are wide open spaces over B containing Zv,B and contained in
T ⊂ Uv,B, respectively Ts × B ⊂ Uv,s × B, which are isomorphic under the restriction of
the above isomorphism between T and Ts ×B.

We have the following very easy consequence of the proof of proposition 3.18, which we
record for later use.

Lemma 3.19. There are canonical, isomorphic formal models Wv,Wv,s × B of the wide
opens Wv, Wv,s×B in proposition 3.18, which are wide open enlargements of Cv (and so
of C). Moreover, there is a (non canonical) morphism of formal schemesWv −→ XB over
B whose generic fiber is the inclusion Wv ⊂ XB and whose special fiber is the morphism
Cv ⊂ C

Proof. Let us consider the formal scheme Wv := T/T v
i.e. the formal completion of the

formal scheme T defined in the proof of proposition 3.18 along the closed sub-scheme
T v. Then Wrig

v
∼= Wv as rigid spaces over B. Let us remark that Wv

∼= Wv,s × B, where
Wv,s := Ts/T v

is the formal completion of Ts along T v. The composition T v ∼= Cv −→ C

makes the formal schemesWv andWv,s wide open enlargements of Cv and of C such that
Wv
∼=Wv,s × B as formal schemes over B.

Remark 3.20. In the notations of proposition 3.18 where now s = 0, the following
diagram commutes

Wv −→ XB
modπL−→ C × A1

k

β ↓ ↓
Wv,0 −→ YL

modπL−→ C
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Proof. The commutativity of the diagram follows from the fact that if we denote by
ι0 : YL −→ XB the map induced by the the embedding of Y into X as its fiber at 0, the
following diagram commutes

XB −→ C × A1
k

ι0 ↑ ↓
YL −→ C

Remark 3.21. Let B be as in Proposition 3.18. Then we have,

HB
∼= H1

dR(XB/B,
(
EX×|XB

)
(log Y )).

3.3 Isocrystals

Our main references for F-isocrystals are [O], [Fa3], [Fa2], [B] and [Sh1]. Let us briefly
recall the definitions, in the cases in which we need them. Suppose that Z is a scheme
over k and fix L a finite, totally ramified (possibly trivial) extension of K0 and let OL
denote its ring of integers. Let us recall that if L = K0, OL = W and if L = K then
OL = V .

We begin by recalling the category of OL-enlargements of Z, on which the F-isocrystals
take their values. First if T is a p-adic formal scheme over OL we denote by T0 the reduced
closed sub-scheme of the closed sub-scheme of T defined by the ideal pOT .

Definition 3.22. A OL-enlargement of Z is a pair (T , zT ) consisting of a flat p-adic
formal OL-scheme T (i.e., each open affine is isomorphic to SpfR where R is a quotient
of OL〈X1, . . . , Xn〉 for some n) together with a OL-morphism zT : T0 −→ Z. A morphism
of OL-enlargements (T ′, zT ′) −→ (T , zT ) is an OL-morphism g : T ′ −→ T such that
zT ◦ g0 = zT ′.

Let, more generally, T be a locally noethering formal scheme over OL. We denote by T0
the reduced sub-scheme of the closed sub-scheme defined by an ideal of definition of T .
Let as above Z be a scheme over k.

Definition 3.23. By a wide open OL-enlargement of Z, we mean a pair (T , zT )
where T is a formal scheme such that the affine open sets are isomorphic to SpfR where
R is a quotient of OL〈X1, . . . , Xm〉[[V1, . . . , Vn]] for some m and n and zY : T0 −→ Z is
a morphism of OL-schemes. The morphism of wide open enlargements is defined as in
definition 3.22.

As in section 3.1 one can attach a rigid analytic space over L, T rig, to a formal OL-scheme
as in the definition 3.23. It satisfies the following universal property: if T is an affine
formal scheme, say T = SpfR, there is a unique pair (ιT , T rig) which is the final element
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in the category of pairs (h,X) where X is rigid space over OL and h is a continuous OL-
homomorphism from R into H0(X,OX). A morphism in this category (X, h)→ (Y, g) is
a morphism f : X → Y such that h = f ∗ ◦ g. See Proposition 0.2.3 of [B] for a discussion
of this when n = 0. The tubes of Berthelot (see ibid.) are examples of these spaces.

Examples i) Let X,S,Xn be as in section 3.2. Fix n ≥ 1. As t generates the nilradical of
Rn/pRn, we have that (Xn)0 is the closed sub-scheme of Xn defined by the ideal generated
by p and t. As a consequence we have a natural W -morphism zn : (Xn)0 −→ C. Therefore
the pairs (Xn, zn) are W -enlargements of C for all n ≥ 1 and the morphisms Xn+1 −→ Xn

induce morphisms of W -enlargements of C.

ii) On the other hand (S, zS) is a wide open enlargement of Spec(k), where zS : S0 =
Spec(W [[t]]/tW [[t]]) ∼= Spec(k).

iii) As π generates the nilradical of V/pV , C0 is the closed sub-scheme of C corresponding
to the ideal πOC . As a consequence we have a natural isomorphism zC : C0

∼= C, which
makes (C, zC) into a W -enlargement of C.

iv) We can make the fibered product of two wide open enlargements (S, s) and (T , t) of
Z, S×̂T . It equals (U, u) where U is the completion of S × T along (s, t)∗∆(Z) and u is
the composition

U0 = (s, t)∗∆(Z)→ S0 × T0
π1−→ S0

s−→ Z.

The existence of this fibered product is the main reason we consider wide open enlarge-
ments.

Definition 3.24. An isocrystal E on Z/OL is the following set of data:

(i) For every OL-enlargement (T , zT ) of Z a coherent sheaf of L⊗OL
OT -modules E(T ,zT ).

In general and if there is no ambiguity this module will be denoted by ET .

(ii) For every OL-morphism of enlargements of Z, g : (T ′, zT ′) −→ (T , zT ) an isomor-
phism of L ⊗OL

OT -modules: θg : g
∗ET −→ ET ′. The collection of isomorphisms {θg} is

required to satisfy the cocycle condition.

A morphism of isocrystals α : E ′ −→ E is a collection of homomorphisms αT : E ′T −→ ET
compatible with the isomorphisms θg, for all g.

For example, there is a natural isocrystal on Z/W denoted OZ/K0 whose value on an en-
largement (T , zT ) is OT ⊗WK0. We call a direct sum of such isocrystals a free isocrystal
on Z/W . Because every enlargement of Spec k factors through SpfW , every isocrystal on
a point is free.

Because the rigid space attached to a wide open enlargement may be admissibly covered
by the rigid spaces attached to enlargements, the cocycle condition allows us to evaluate
an isocrystal on a wide open enlargements (T , zT ) to get a coherent sheaf E(T ,zT ) on T rig.
(See Remark 2.3.4 of [B] for a discussion of this in the case of tubes.)
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We’ll now define F-isocrystals.

Definition 3.25. An F-isocrystal on Z/W is an isocrystal E on Z/W together with an
isomorphism of isocrystals F : F

∗E −→ E.

Let us recall what F
∗

means (see [O]). First we will recall a familiar notation, if M −→
Spf(W ) is a formal scheme and τ : W −→ W is an automorphism we define α(τ) : M τ −→
M by the Cartesian diagram

M τ α(τ)−→ M
↓ ↓

Spf(W )
τ−→ Spf(W ).

where we also use τ to denote the corresponding endomorphism of SpecW . If f : M −→
M ′ is a morphism of formal schemes over Spf(W ) we also define f τ : M τ −→ (M ′)τ by
functoriality.

Let now σ : W −→ W be the Frobenius automorphism and F : Z −→ Zσ be the absolute
Frobenius. For every enlargement (T , zT ) of Z, (T , F ◦ zT ) is an enlargement of Zσ and
(T σ−1

, (F ◦zT )σ
−1

) is again an enlargement of Z. Then F
∗
(E) is the isocrystal on Z whose

value on (T , zT ) is α(σ)∗E(T σ−1 ,(F◦zT )σ−1 ).

Remark 3.26. (a) Clearly the map of sections, a ⊗ α → aασ, defines an F -isocrystal
structure on OZ/K0.

(b) If f : U → Z is a morphism of schemes over k and E is an F -isocrystal on Z/W ,
there is a natural F -isocrystal on U/W , f ∗E, whose value on an enlargement (T , zT ) is
E(T ,f◦zT ).

(c) In [O] and [Fa3] the object defined in definition 5.4 is called “convergent isocrystal”
and the object defined in definition 3.25 is called “convergent F-isocrystal”.

(d) In section 2.1 we have used a filtered F-isocrystal E on Z. As we don’t need to prove
anything about the filtration in this paper we will not define this notion here. For the
appropriate definition see [Fa3] or [IS].

(e) Let E be an F-isocrystal on C/W . For each n ≥ 0, EXn can be seen as a sheaf on
the nilpotent site of Xn, or what is the same thing, as a K0 ⊗W OXn-module with an
integrable, convergent connection Dn. The F -structure gives, for each open affine formal
sub-scheme U of Xn with a lift of Frobenius φU, a horizontal Frobenius Φn(φU) : φ∗Dn →
Dn on Urig. Moreover the morphisms of W -enlargements (Xn+1, zn+1) −→ (Xn, zn) induce
isomorphisms θn : (EXn+1 , Dn+1) ∼= (En, Dn), therefore we obtain in the limit a coherent
sheaf of OX-modules EX, together with an integrable connection DX/K0 : EX −→ EX⊗Ω1

X/K0
,

which is compatible with Frobenii associated to local lifts of Frobenius. We will denote by
the same symbol the composition

DX/K0 : EX −→ EX ⊗ Ω1
X/K0

−→ EX ⊗ Ω1
X/K0

(log Y ).
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We also get a relative connection by composing

DX/S : EX

DX/K0−→ EX ⊗ Ω1
X/K0

(log Y ) −→ EX ⊗ Ω1
X/S(log Y ).

If E = OZ/K0, we will denote DX/K0 and DX/S by dX/K0 and dX/S respectively.

(f) EC, by the same arguments as above can be thought of as a coherent sheaf of OCK
-

modules with a convergent, in the sense of [O], integrable connection D. Moreover, the
closed immersion g : C −→ X identifying C with the fiber at π of X and which is a
morphism of enlargements, induces an isomorphism θg : g

∗EX
∼= EC. 2.2.)

Because every isocrystal on a point is free we have,

Proposition 3.27. Let E be an isocrystal on C. Then (EX ,DX/K0) has the property that
for every residue class M = red−1

X (x), with x ∈ C, of X, the OM -module with connection
(EX|M ,DX/K0) has a basis of horizontal sections.

Lemma 2.2 of section 2.2 follows.

3.4 Cohomology of an F -isocrystal

We will recall here some constructions from [B] and [Sh1],[Sh2] and [Sh3] which will be
used later.

3.4.1 Let Z be a smooth, proper scheme of finite type over k and E an isocrystal on Z/W .
We will recall the definition of H i

cris(Z/W, E), for i ≥ 0.

We choose an affine open covering {Ui}1≤i≤s of Z, and for each Ui a closed immersion into
a smooth affine formal W -scheme Ti. For each subset J of {1, 2, ..., s} we denote by TJ the
completion of the fiber product of the Tj’s for j ∈ J along ∩j∈JUj. For each J consider the
de Rham complex H0(T rig

J , ETJ
⊗Ω•

T rig
J /K0

) and connect them by the Čech differentials to

make a double complex. We define H i
cris(Z/W, E) to be the i-th cohomology group of this

double complex. To show that this is independent of the choices of a covering {Ui}i and
the formal schemes {Ti}i, we take another pair of such {U ′k}1≤k≤t and closed immersions of
the U ′k into smooth, affine formalW -schemes T ′k. To compare the constructions for the two
choices consider the third, {U ′′i,k := Ui×ZU ′k}i,k and T ′′i,k := Ti×T ′k. If, say J ⊂ {1, 2, ..., s}
and K ⊂ {1, 2, ..., t} we have smooth morphisms of formal W -schemes u : T ′′J×K −→ TJ
and v : T ′′J×K −→ T ′K and by the Poincaré lemma recorded in section 3.1, the pairs of
de Rham complexes of sheaves DR(TJ , E)• := ETJ

⊗ Ω•T rig/K0
, and urig

∗ DR(T ′′J×K , E)• and

DR(T ′K , E)• := ET ′K⊗Ω•(T ′K)rig/K0
and vrig

∗ DR(T ′′J×K , E)• are quasi-isomorphic and so finally

the cohomology of the double complexes constructed from them are all quasi-isomorphic.

3.4.2 We will now recall the definition of log crystalline cohomology over a (certain) base.
Let S× denote the formal scheme Spf(W [[t]]) with the log structure given by the smooth
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divisor t = 0. Let Spec(k)× be the scheme Spec(k) with the inverse image log structure
under the map induced by the natural morphism W [[t]] −→ k sending t to 0. Let Z× be
a fine, log smooth, log proper scheme over Spec(k)×, which we’ll regard as a log smooth
scheme over S×. Let E be an F-isocrystal on Z/W (without log structure). We’ll recall
the definition of H i

cris(Z
×/S×, E). It is a sheaf of OS-modules on S, where let us recall

S = Srig. In fact H i
cris(Z

×/Spec(k)×, E) is an F-isocrystal on Spec(k) and H i
cris(Z

×/S×, E)
is its evaluation on the wide open enlargement S of Spec(k).

Let now {Ui}1≤i≤s be an affine covering of Z such that U×i is a log smooth, fine, log affine
scheme over Spec(k)×, where the log-structures are the induced ones. For each 1 ≤ i ≤ s
choose closed S×-immersions U×i −→ Ti into log smooth, fine, log affine formal schemes
over S×. For each J ⊂ {1, 2, ..., s} let TJ denote the log-formal scheme which is the log-
completion along UJ := ∩j∈JU×j of the fibered product over S× of the T×j ’s, j ∈ J . For

every admissible affinoid B ⊂ S, let DR(T rig
J ×S B, E)• denote the relative (to S×) log-de

Rham complex of sheaves on T rig
J ×S B with coefficients in ETJ

. We define the log rigid
(or analytic) cohomology H i

cris(Z
×/S×, E) to be the sheaf on S associated to the pre-sheaf

B −→ H i((U•)Zar, red∗DR(T rig
• ×S B, E)•).

It is shown in [Sh1] and [Sh2] (using proposition 3.6) that the definition is independent
of choices.

Let us now assume that Z× has a log smooth, exact global lifting X× over S× and we
write as usually X := Xrig, S := Srig.

Lemma 3.28. We have a natural isomorphism of sheaves on S, H i
cris(Z

×/S×, E) ∼=
H i

dR(X×/S×, EX). Here EX is the evaluation of E at the enlargement X of Z, seen as
a coherent sheaf on X := Xrig with an integrable connection.

Proof. Let {Ui}1≤i≤s be an affine open covering of Z, let Ti be the open log-formal sub-
schemes of X× whose underlying topological space is the same as Ui. For each J ⊂
{1, 2, ..., s} define UJ and TJ as above. We also define T ′J to be the open log formal sub-
scheme of X× with underlying topological space UJ . The diagonal induces a log-smooth
morphism ∆J : T ′J −→ TJ compatible with the embeddings of UJ and for each admissible
affinoid open B ⊂ S, we get quasi-isomorphisms for the relative, log de Rham complexes
of sheaves

red∗DR(T rig
J ×S B, E) −→ red∗DR((T ′J)

rig ×S B, E).
The Čech complex of the latter complex computes H i

dR(X×/S×, EX)(B), as H i
dR(X/S, EX)

is a coherent sheaf and B is affinoid. Therefore the association

B −→ H i((U•)Zar, red∗DR(T rig
J ×S B, E))

is already a coherent sheaf and we have an isomorphismH i
dR(X×/S×, EX) ∼= H i

cris(Z
×/S×, E).

3.4.3 In the assumptions of lemma 3.28 and for i = 1 let us give an explicit description of
the inverse of the isomorphism α : H1

cris(Z
×/S×, E) ∼= H1

dR(X×/S×, EX) in that lemma in
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terms of hyper-cocycles. Let, as in the proof of lemma 3.28, {Ui}1≤i≤s be an affine cover
of Z and let B ⊂ S be an admissible affinoid open. An element x of H1

dR(X×/S×, E)(B) is
then represented by a 1-hypercocycle (ωi, fij) where ωi ∈ H0((T ′i )

rig×SB, ET ′i⊗Ω1
(T ′i )

rig/S×)

for 1 ≤ i ≤ s and fij ∈ H0((T ′ij)
rig ×S B, EX) for 1 ≤ i < j ≤ s such that ∇(ωi) = 0

for all 1 ≤ i ≤ s, ωi|(T ′ij)rig − ωj|(T ′ij)rig = ∇(fij) and for all 1 ≤ i < j < k ≤ s we have

fij|(T ′ijk)rig + fjk|(T ′ijk)rig − fik|(T ′ijk)rig = 0.

Let as in the proof of lemma 3.28, for every 1 ≤ i ≤ s, Ti = T ′i and Tij := (T ′i ×S× T ′j)/Uij

i.e. Tij is the formal completion of T ′i ×S× T ′j along Uij.

We have a natural commutative diagram

(T ′ij)
rig ∆−→ T rig

ij

↓ πi ↓
(T ′i )

rig = T rig
i

and a similar one replacing i by j. Here πi is induced by the natural projection T ′i ×S×
T ′j −→ T ′i = Ti which factors naturally through the formal completion of T ′i ×S× T ′j along
Uij.

Lemma 3.29. In the notations above, for each 1 ≤ i < j ≤ s there is a unique hij ∈
H0(T rig

ij ×S B, ETij
) such that

a) ∆∗(hij) = 0

and

b) π∗i (ωi|(T ′ij)rig)− π
∗
j (ωi|(T ′ij)rig) = ∇ij(hij). Here ∇ij is the connection on ETij

.

Proof. As ∆ is log-smooth we may apply proposition 3.6. Namely, let η := π∗i (ωi|(T ′ij)rig)−
π∗j (ωi|(T ′ij)rig). Then ∇ij(η) = 0 and moreover the above commutative diagram implies

that ∆∗(η) = 0. Therefore, locally on T rig
ij , there exist aij’s sections of ETij

such that
∇ij(aij) = η. As 0 = ∆∗(∇ij(aij)) = ∇(∆∗(aij)), aij can be chosen such that ∆∗(aij) = 0.
For example replace aij by aij−π∗1(∆∗(aij)). The conditions ∇ij(aij) = η and ∆∗(aij) = 0
determine the aij’s uniquely, so they glue to give a section hij of ETij

over T rig
ij satisfying

the right properties.

Now back to our original problem: to explicitly describe the isomorphismH1
dR(X×/S×, EX) −→

H1
cris(Z

×/S×, E). We have started with an element x of the first group represented by the
1-hyper-cocycle (ωi, fij)(i,i<j). For each 1 ≤ i < j ≤ s we determined the sections hij as
in lemma 3.29. Let us remark that for each i < j we have the following calculation:

π∗i (ωi)− π∗j (ωj) = π∗i (ωi)− π∗j (ωi|(T ′ij)rig) + π∗j (ωi|(T ′ij)rig)− πj(ωj) = ∇ij(hij) + π∗j (∇(fij).

Moveover, for 1 ≤ i < j < k ≤ s the section hijk ∈ H0(T rig
ijk, ETijk

) defined by hijk :=
π∗ij(hij)+π∗jk(hjk)−π∗ik(hik) satisfies: ∆∗(hijk) = 0 and ∇ijk(hijk) = 0. Therefore hijk = 0
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and so finally (ωi, hij+πj(fij))(i,i<j) is a 1-hyper-cocycle for the complex DR(T•, E)• whose
image in H1

cris(Z
×/S×, E) is α−1(x).

3.4.4 In the notations and assumptions at §3.4.3 above let us assume that for each 1 ≤
i ≤ s we have a lifting of Frobenius on Ui, Fi : Ti −→ Ti compatible with the lifting
of Frobenius FS : S −→ S. FS is defined as the arithmetic Frobenius σ on W and by
FS(t) = tp. Since Ti is affine and log smooth such liftings Fi always exist. Let us now
assume that E is an F-isocrystal on Z/W . Then one defines a natural homomorphism,
Frobenius,

Φ : F ∗SH
i
cris(Z

×/S×, E) −→ H i
cris(Z

×/S×, E),
which is independent of all the choices. Let i = 1 and assume that Z× has a log-smooth
global lifting X×/S×. We’ll describe Φ on H1

dR(X×/S×, EX) under the identification α :
H1

cris(Z
×/S×, E) ∼= H1

dR(X×/S×, EX). Let B ⊂ S be the affinoid disk centered at 0 of
radius r and let B′ = FS(B) ⊂ S be the affinoid of radius rp. x ∈ H1

dR(X×/S×, EX)(B′),
then we’d like to express Φ(x) := α(Φ(α−1(x))) ∈ H1

dR(X×/S×, EX)(B). Suppose we fix
an affine cover {Ui}1≤i≤s of Z and use all the notations at b) above. If x is represented
by the hypercocycle (ωi, fij)(i,i<j) corresponding to B′ let hij be as in lemma 3.29. Then
Φ(x) is represented by the hypercocycle

((F rig
i )∗(ωi), (F

rig
j )∗(fij) + ∆∗(F rig

ij )∗(hij))

corresponding to B.

3.4.5 Finally, let us recall the notations of section 3.2. We have the morphism of formal
schemes f : X −→ S and we denote by Y = X×S Spf(W ), where the map Spf(W ) −→ S
is induced by the W -algebra homomorphism W [[t]] −→ W sending t to 0. In other words
Y is the fiber of f at the point ”0” of S. Given the description of f in section 3.2, Y is a
divisor of X with normal crossings (the irreducible components of Y are smooth and the
singular points defined over W ). Let us fix on X the log structure corresponding to the
divisor Y and denote this log formal W -scheme X×. Let us endow Y with the pull-back
log structure and denote it Y×. Let us remark that C is a divisor with normal crossings

of C, endow C with the log structure defined by this divisor and by C
×

the log scheme
C with the inverse image log structure.

Then: f is a log smooth morphism X× −→ S×, which is a log smooth lifting of C
×

over

S× as at 2) b) above. Finally Y× is a log smooth lifting of C
×

over Spf(W )× (this last log
structure is given by the smooth divisor p = 0). Therefore, 1) and 2) above imply that if
E is an F-isocrystal on Z then we have natural isomorphisms

H1
cris(Z

×/Spec(k)×, E) ∼= H1
cris(Y×/Spf(W )×, E) ∼= H1

dR(Y ×/K0, EY).

and
H1

cris(Z
×/S×, E) ∼= H1

dR(X×/S×, EX) = H1
dR(X/S, EX(log(Y )).

Moreover if we give ourselves local filtings of Frobenius as in 2) c) above all the isomor-
phisms are compatible with the Frobenii.
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3.5 Hypercocycles and Mayer-Vietoris exact sequences

In this section we collect a number of technical results showing how to relate Mayer-
Vietoris exact sequences and representatives of de Rham cohomology classes for different
admissible coverings.

3.5.1 Coverings and Graphs

Let T be a rigid analytic space over K and let D = {Uα}α∈I be an admissible covering of
T . We will suppose that all our coverings satisfy the assumption:

(∗) Uα ∩ Uβ ∩ Uγ is void for all α 6= β 6= γ 6= α ∈ I.

We attach to D a graph G = G(D) whose vertices v(G) are the elements of D and whose
oriented edges ε(G) correspond to triples e = (U, V,W ) where U 6= V ∈ D and Ae := W
is a connected component of U ∩ V . If v is a vertex of G we denote Uv the element of D
corresponding to it and also if e = (U, V,W ) is an edge then its origin a(e) is U and its
end b(e) is V . If U ∩ V is connected we denote the edge e by [a(e), b(e)].

We denote τ : ε(G) −→ ε(G) by τ(e = (U, V,W )) = (V, U,W ) and we choose once for all
a system of representatives e(G) of the quotient set ε(G)/τ .

Let G be a graph. A local system F on G is the following collection of data:

a) for each vertex v ∈ v(G), an abelian group Fv,

b) for each oriented edge e ∈ e(G), an abelain group Fe,

c) if e ∈ e(G), group homomorphisms ϕa(e) : Fa(e) −→ Fe and ϕb(e) : Fb(e) −→ Fe.

To a local system F on the graph G we associate the complex of abelian groups

C•(G,F ) : C0(G,F ) = ⊕v∈v(G)Fv
d−→ C1(G,F ) = ⊕e∈e(G)Fe,

where (d(xv)v∈v(G))e := ϕa(e)(xa(e)) − ϕb(e)(xb(e)) for e ∈ e(G). Let H i
Betti(G,F ) :=

H i(C•(G,F )) for i ≥ 0.

Let us now suppose that the graph G is the graph associated to an admissible cover D of
the rigid space T and that (F ,∇) is a pair consisting of a coherent sheaf F of OT -modules
with an integrable connection ∇, then we have a natural family of local systems Fj on G
and Betti cohomology groups H i,j(D, (F ,∇)), for i ≥ 0, j ≥ 0, as follows:

a) for v ∈ v(G) set Fj,v := Hj
dR(Uv,F|Uv),

b) for e ∈ e(G) set Fj,e := Hj
dR(Ae,F|Ae),
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c) for e ∈ e(G) ϕa(e), ϕb(e) are pull-backs induced by the open immersions Ae ⊂ Ua(e) and
Ae ⊂ Ub(e).

Then H i,j(D, (F ,∇)) := H i
Betti(G,Fj).

Remark 3.30. We have the following variant of the definitions above. Suppose that
T × := (T ,M) is a log formal scheme over Spf(V )× such that T rig ∼= T as rigid spaces over
K. Suppose that (G,∇log) is a pair consisting of a coherent sheaf G of OT -modules and a
logarithmic integrable connection ∇log on it. Then one denotes F = Grig,∇ = (∇log)

rig and
one has, for each i ≥ 0 the local systems Fi,log obtained by taking the logarithmic de Rham
cohomology with coefficients in (F ,∇) and the Betti cohomology groups H i,j(D,F) :=
H i

Betti(G,Fi,log).

Remark 3.31. If the assumption (∗) is not satisfied by the covering D but the covering
is finite (i.e. the index set I is finite) one may attach to it a finite dimensional simplex,
local systems on the simplex and the corresponding Betti cohomology groups.

3.5.2 Hypercocycles and Mayer-Vietoris exact sequences attached to a covering

Let T be a rigid analytic space over K and D := {Uα}α∈I an admissible covering of it
which satisfies the assumption (∗) above. Let (F ,∇) be a pair consisting of a coherent
sheaf F of OT -modules which is locally free and an integrable connection ∇ on it.

Consider the diagram of rigid spaces and maps:

Tv(G) = qv∈v(G)Uv
f−→ T

g←− Te(G) := qe∈e(G)Ae.

We have then an exact sequence of sheaves on T :

0 −→ F −→ f∗f
∗F −→ g∗g

∗F −→ 0.

If for v ∈ v(G) and e ∈ e(G) we denote by Fv := F|Uv respectively F e := F|Ae then the
exact sequence above becomes

0 −→ F −→ f∗
(
⊕v∈v(G)Fv

)
−→ g∗

(
⊕e∈e(G)F e

)
−→ 0.

This induces an exact sequence of de Rham complexes and therefore an exact sequence
of cohomology groups (the Mayer-Vietoris exact sequence):

0 −→ H0
dR(T,F) −→ ⊕v∈v(G)H

0
dR(Uv,F) −→ ⊕e∈e(G)H

0
dR(Ae,F) −→

−→ H1
dR(T,F) −→ ⊕v∈v(G)H

1
dR(Uv,F) −→ ⊕e∈e(G)H

1
dR(Ae,F) −→ ...

Using the graph and Betti cohomology notations in §3.5.1 we can re-write the Mayer-
Vietoris exact sequence as the following short exact sequence

0 −→ H1,0(D,F) −→ H1
dR(T,F) −→ H0,1(D,F) −→ 0.
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Let us keep the notations T,D, (F ,∇) as at the beginning of this section. In order
to explicitly calculate the cohomology groups H i

dR(T,F) we use the following double
complex:

⊕e∈e(G)Fe
∇−→ ⊕e∈e(G)Fe ⊗ Ω1

Ae

∇−→ ⊕e∈e(G)Fe ⊗ Ω2
Ae

∇−→
C•,• : ↑ δ ↑ δ ↑ δ

⊕v∈v(G)Fv
∇−→ ⊕v∈v(G)Fv ⊗ Ω1

Uv

∇−→ ⊕v∈v(G)Fv ⊗ Ω2
Uv

∇−→

where Fe, respectively Fv denote H0(Ae,F) respectively H0(Uv,F) for e ∈ e(G) and v ∈
v(G). Moreover the Čech differentials δ are defined by: δ((xv)v∈v(G))e = xa(e)|Ae−xb(e)|Ae ,
for e ∈ e(G). The single complex

K•(T, (F ,∇)) : K0 D0−→ K1 D1−→ K2 D2−→ ...

attached to the double complex C•,• is defined by: K0 := ⊕v∈v(G)Fv, K1 :=
(
⊕v∈v(G)Fv⊗

Ω1
Uv

)
⊕

(
⊕e∈e(G)Fe

)
and K2 :=

(
⊕v∈v(G)Fv ⊗ Ω2

Uv

)
⊕

(
⊕e∈e(G)Fe ⊗ Ω1

Ae

)
etc. and

D0((xv)v∈v(G) =
(
(∇(xv))v∈v(G), (xa(e)|Ae − xb(e)|Ae)e∈e(G)

)
D1

(
(ωv)v∈v(G), (fe)e∈e(G)

)
=

(
(∇(ωv))v∈v(G), (ωa(e)|Ae − ωb(e)|Ae −∇(fe))e∈e(G)

)
D2

(
(ηv)v∈v(G), (ωe)e∈e(G)

)
=

(
(∇(ηv))v∈v(G), (ηa(e)|Ae − ηb(e)|Ae −∇(ωe))e∈e(G)

)
.

Then we have H i
dR(T,F) = Ker(Di)/Im(Di−1), for i ≥ 0, where we set K−1 = 0, D−1 = 0.

In particular, cohomology classes in H1
dR(T,F) are represented by 1-hypercocycles, i.e.

families of elements
(
(ωv)v∈v(G), (fe)e∈e(G)

)
where ωv ∈ Fv⊗Ω1

Uv
, fv ∈ Fe, for v ∈ v(G), e ∈

e(G), which satisfy ∇(ωv) = 0 for all v and ωa(e)|Ae − ωb(e)|Ae = ∇(fe) for all e.

Remark 3.32. With the notations above, let us assume that the open sets Uα and Ae are
acyclic for coherent sheaf cohomology. Then the maps f : H1,0(D,F) −→ H1

dR(Z,F) and
g : H1

dR(Z,F) −→ H0,1(D,F) defining the Mayer-Vietoris sequence are given in terms of
hypercocycles as follows.

a) If the cocycle (xe)e∈e(G) ∈ ⊕e∈e(G)H
0
dR(Ae,F) represents the cohomology class x ∈

H1,0(D,F), let us remark that by the assumptions above the xe ∈ Fe such that ∇(xe) = 0.
Therefore f(x) is the class of the 1-hypercocycle

(
(0v)v∈v(G), (xe)e∈e(G)

)
.

b) If
(
(ωv)v∈v(G), (fe)e∈e(G)

)
is a 1-hypercocycle representing the class y in H1

dR(Z,F)
then g(y) is the image of (ωv)v∈v(G) in the group ⊕v∈v(G)H

1
dR(Uv,F), which is actually

in H0,1(D,F).

Remark 3.33. We have variants of these constructions for the logarithmic situation
described in remark 3.30. We need only replace the sheaves and modules of differentials
Ωi
Uv
,Ωi

Ae
by the sheaves and modules of logarithmic differentials.

3.5.3 Examples of coverings in our setting

3.5.3.1 First example
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Let us now recall our geometric situation from §3.2. Let red : X −→ C and for all
s ∈ S − {0}, reds : Xs = X ×S s −→ C denote the reduction maps. Let C (and for
every s ∈ S − {0}, Cs) denote the admissible covering of X (respectively of Xs) de-
fined by C := {red−1(Z) where Z is an irreducible component of C} (respectively Cs :=
{red−1

s (Z) where Z is an irreducible component of C}). Then we have G := G(C) =
G(Cs) for all s ∈ S − {0}. We fix once for all a choice of a system of representatives
e(G) of ε(G)/τ , see §3.5.1. Let us also remark that as C is a semi-stable curve C and
Cs satisfy the condition (∗) of section §3.5.1. We use the following notations: for all
v ∈ v(G) we denote by Uv ⊂ X the corresponding open set of C and for every s by
Uv,s = Uv ×S s = Uv ∩ Xs ⊂ Xs the respective open set of Cs. Similarly, if e ∈ ε(G) we
denote by Ae = Ua(e) ∩Ub(e) and for every s ∈ S−{0} we let Ae,s := Ae×S s = Ae ∩Xs =
Ua(e),s∩Ub(e),s. We’d like to recall that these coverings have already been defined in section
3.2 and although the language of graphs was not used there, the definitions are the same.

3.5.3.2 Second example

We keep the notations of section §3.5.3.1. For each v ∈ v(G) let as in section §3.2,

Zv := Uv −
⋃
w
w 6=v

Uw.

Now, for each v ∈ v(G) consider a strict neighbourhood Tv of Zv in Uv, which is wide
open and such that Tv∩Tw = φ if v 6= w. Let us recall that Tv is a ”strict neighbourhood”
of Zv in Uv means that the pair {Tv, Uv − Zv} is an admissible cover of Uv.

Such T ’s exist and let C ′ := {Tv, Ae}v,e where v ranges over v(G) and e over e(G). Then
C ′ is an admissible covering of X by wide open sets. This cover is a refinement of C and is
appropriate for computing de Rham cohomology as the open sets are acyclic for coherent
sheaf cohomology. We denote G(C ′) by G′ and let us remark that: v(G′) = v(G) q e(G)
and ε(G′) = ε(G) q ε(G). We choose e(G′) = e(G) q e(G) as follows. If e ∈ e(G) then
(a(e), e) and (e, b(e)) belong to e(G′).

Moreover, as in section §3.5.3.1 if s ∈ S (here smay be 0) we denote by C ′s := {Tv,s, Ae,s}v,e,
where Tv,s := Tv ×S s = Tv ∩Xs for all v ∈ v(G). Then C ′s is an admissible covering of Xs

and G(Cs) = G(C) = G′.

3.5.3.3 Third example

Let L be a totally ramified, non-trivial extension of K, as in section §3.2 and let B = BL ⊂
S denote the affinoid disk of centre 0 and radius |πL| as in lemma 3.17. By proposition
3.18, for every v ∈ v(G) there exists a wide open neighbourhood Wv of Zv,B := Zv ×S B
in Uv,B := Uv ×S B and for all s ∈ S an isomorphism over B:

αv,s : Wv
∼= Wv,s ×B.

Set C ′′B := {Wv, Ae,B}v,e, where v and e run over v(G) and e(G) respectively and Ae,B :=
Ae ×S B. Then C ′′B is an admissible covering of XB and if s ∈ S, C ′′s := {Wv,s, Ae,s}v,e is
an admissible covering of Xs. Then G(C ′′B) = G(C ′′s ) = G′.
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3.5.4 Changing coverings

Let us fix E a W -isocrystal on C. Let us also fix a closed point s ∈ S − {0} defined
over the finite extension F of K0. Then one can see s as a W -algebra homomorphism
W [[t]] −→ OF . If we denote by Xs := X ×S s and by Xs := X×Spf(W [[t]]

s, then Xs is the

generic fiber of Xs. We denote by (Es, Ds) the evaluation of E at the enlargement Xs of
C, seen as a coherent sheaf Es on Xs with an integrable connection Ds. Fix the coverings
Cs := {Uv,s}v as in section §3.5.3.1 and C ′s := {Tv,s, Ae,s}v,e as in section §3.5.3.2 of graphs
G and G′ respectively. To simplify, for the next lemma we omit s from the notation i.e.
we will use Uv, Ae, Tv to denote Uv,s, Ae,s, Tv,s. For i ≥ 0, let Ei, E ′i denote the local systems
on G respectively G′ associated as in section §3.5.1 to (Es, Ds). We define the maps of
abelian groups

f 0
i : C0(G, Ei) −→ C0(G′, E ′i)
f 1
i : C1(G, Ei) −→ C1(G′, E ′i)

by f 0
i (((xv)v) =

(
(xv|Tv)v, (

xa(e)|Ae + xb(e)|Ae

2
)e

)
and f 1

i ((ye)e) =
(ye|Ta(e)∩Ae

2
,
ye|Tb(e)∩Ae

2

)
e
,

where everywhere v and e run over v(G) and respectively e(G).

Lemma 3.34. a) f 0
i , f

1
i define morphisms of complexes f •i : C•(G, Ei) −→ C•(G′, E ′i).

b) For i = 0, 1 f •i induce isomorphisms H1,0(Cs, Es) ∼= H1,0(C ′s, Es) and H0,1(Cs, Es) ∼=
H0,1(C ′s, Es) (the notations being as in section §3.5.1).

c) If
(
(ωv)v, (fe)e

)
is a 1-hypercocycle for the complex Es⊗OXs

Ω•Xs/F
corresponding to the

covering Cs, then the co-chain
(
(ωv|Tv)v,

(ωa(e)|Ae + ωb(e)|Ae

2

)
e
,
(fe|Ta(e)∩Ae

2
,
fe|Tb(e)∩Ae

2

)
e

)
is

a 1-hypercocycle for the same complex associated to the covering C ′s, which represents the
same cohomology class in H1

dR(Xs/F, Es).

d) The isomorphisms at b) make the following diagram of Mayer-Vietoris sequences com-
mute.

0 −→ H1,0(Cs, Es) −→ H1
dR(Xs/F, Es) −→ H0,1(Cs, Es) −→ 0

↓ || ↓
0 −→ H1,0(C ′s, Es) −→ H1

dR(Xs/F, Es) −→ H0,1(C ′s, Es) −→ 0

Proof. We’ll only sketch the prove of the fact that the morphism of complexes f •1 in-
duces an isomorphism f : H0,1(Cs, Es) ∼= H0,1(C ′s, Es). The main observation is that
as Uv,Tv,Ae are wide opens, they are acyclic for coherent sheaf cohomology and so
H i
dR(Uv, Es|Uv), H

i
dR(Tv, Es|Tv), H

i
dR(Ae, Es|Ae) can be calculated as hypercohomology of the

de Rham complex relative to the admissible covering {Uv} respectively {Tv}, respectively
{Ae}. Moreover the first groups could also be calculated relative to the admissible covering
{Tv, Uv − Tv = qe∈e(G),v=a(e),v=b(e)Ae} of Uv.

Let us show the injectivity of f . Suppose that (xv)v ∈ C0(G, E1) = ⊕vH1
dR(Uv, Es|Uv) is

such that
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a) d((xv)v) = 0

and

b) f((xv)v) = 0 in C0(G′, E ′1).

Let ωv ∈ H0(Uv, Es ⊗ Ω1
Uv/F

) be a representative of xv ∈ H1
dR(Uv, Es|Uv). Condition a)

implies that for all e ∈ e(G) there is a section ue ∈ H0(Ae, Es|Ae) such that ωa(e)|Ae −
ωb(e)|Ae = D(ue). From condition b) we deduce there exist sections uv ∈ H0(Tv, Es), we ∈
H0(Ae, Es) such that Ds(uv) = ωv|Tv , Ds(we) = ωa(e)|Ae + ωb(e)|Ae , for all v ∈ v(G), e ∈
e(G). This implies that the hypercochain(

Ds(uv), Ds((we + ue)/2), Ds((ue − we)/2), (uv|Ae∩Ta(e)
− ((we + ue)/2)|Ae∩Ta(e)

),

(ue − we)/2)|Ae∩Ta(e)
− uv|Ae∩Ta(e)

)
e∈e(G),e=a(e),e=b(e)

is a hypercocycle for the covering {Tv,qe∈e(G),v=a(e),v=b(e)Ae} of Uv representing the class
xv. Therefore xv = 0 for all v ∈ v(G).

For the surjectivity of f one makes similar calculations which we leave, together with the
rest of the proof, to the reader.

Let us now fix L,B as in section §3.5.3.3. Let us also fix an isocrystal E on C and denote
EB its evaluation on the enlargement XB (for notations see the section §3.2). Let us recall
(see ibid.) that we have an absolute connection, DB and a relative one DXB/B on EB. For
i ≥ 0 let us denote by Ei

abs (respectively Ei
rel) the local system on G′ defined by:

a) if v ∈ v(G) then Ei
abs;v := H i

dR(Wv/L, EB|Wv(log(Y ∩ Wv))) and if e ∈ e(G) then
Ei

abs;e := H i
dR(Ae,B/L, EB|Ae,B

(log(Y ∩ Ae,B))),

b) if e ∈ e(G) then Ei
abs;a(e),e := H i

dR(Wa(e) ∩ Ae,B/L, EB(log(Y ∩ Wa(e) ∩ Ae,B))) and

Eabs;e,b(e) := H i
dR(Wb(e) ∩ Ae,B/L, EB(log(Y ∩Wb(e) ∩ Ae,B))).

c) the maps are induced by the obvious restrictions.

We have similar definitions, using relative de Rham comology over B, for the local system
Ei

rel.

We denote the the cohomology groups Hj,i(C ′′B, E∗) := Hj
Betti(G

′, Ei
∗), for ∗ ∈ {abs, rel}

and remark that H i,j(C ′′B, Erel) are OB-modules.

Proposition 3.35. a) H i,j(C ′′B, Erel) are free OB-modules of finite rank for all 0 ≤ i, j ≤ 1,
i 6= j. Moreover if s ∈ B then we have H i,j(C ′′B, Erel) ∼= H i,j(C ′′s , Es)⊗LOB for i, j as above.

b) Let us denote by ∇i,j the natural connection over K0 of the modules H i,j(C ′′B, Erel)
whose space of horizontal sections is H i,j(C ′′0 , E0) for 0 ≤ i, j ≤ 1, i 6= j. Then for
every s ∈ B − {0} we have parallel transport isomorphisms H i,j(Cs, Es) ∼= H i,j(C ′′s , Es) ∼=
H i,j(C ′′0 , E0)⊗K0 Fs, where Fs is the residue field of s and i, j are as above.
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c) The natural morphisms in the ”relative Mayer-Vietoris” exact sequence

0 −→ H1,0(C ′′B, Erel) −→ H1
dR(XB/B, EB(log(Y ))) −→ H1,0(C ′′B, Erel) −→ 0

are horizontal. Here the connection ∇B on the HB = H1
dR(XB/B, EB(log(Y ))) is the

Gauss-Manin connection.

Proof. a) Fix s ∈ B. Let us recall from lemma 3.19 that the rigid spaces Wv,Wv,s have
canonical formal models Wv,Wv,s with an isomorphism Wv

∼= Wv,s × B and natural
morphisms

Cv −→ Wv −→ XB

|| ∪ ∪
Cv −→ Wv,s −→ Xs

The first vertical maps are closed immersions and the last two vertical maps are the
natural inclusions into Wv and XB of their fibers at s. Thus Wv and Wv,s are wide
open enlargements of C. As E is a W -isocrystal on C, we may evaluate it at Wv and
Wv,s to obtain pairs (Ev, Dv) and (Es, Ds) consisting of coherent sheaves of OWv -modules,
respectively OWv,s-modules, with convergent integrable connections. From the diagram
above and its image under the functor ”rig” we obtain: (Ev, Dv) ∼= (EB, DB)|Wv and
(Es, Ds) ∼= (EXs , DXs)|Wv,s .

Moreover, if we denote by β : Wv −→ Wv,s the natural projection, the commutative
diagram in remark 3.20 implies that β∗(Es, Ds) ∼= (Ev, Dv). Thus for all connected affinoid
B′ ⊂ B we have H i

dR(Wv/B, Ev)(B′) ∼= H i
dR(Wv,s, Es) ⊗L OB′ for i = 0, 1. Since for all

e ∈ e(G) Ae,B is contained in a residue class, Ee := EB|Ae,B
has a basis of horizontal sections

for the absolute connection DB. Hence similarly, for all connected affinoid B′ ⊂ B we
have H i

dR(Ae,B/B, Ee)(B′) ∼= H i
dR(Ae,s, Es)⊗OB′ , for i = 0, 1. Finally as Ae,B ∩Wa(e) and

Ae,B∩Wb(e) are contained in Ae,B the same result holds for the cohomology of these spaces
with values in Ee. We deduce that H i,j(C ′′B, Erel) ∼= H i,j(C ′′s , Es) ⊗ OB for 0 ≤ i, j ≤ 1,
i 6= j.

b) is now clear and in order to prove c) let us first recall the definition of the Gauss-Manin
connection in our setting.

We have a natural exact sequence of de Rham complexes of sheaves on XB

0 −→ f ∗(Ω1
B/L(log 0)⊗ΩXB/B(log Y )•−1⊗EB −→ Ω•XB/K0

(log Y )⊗EB −→ Ω•XB/B
(log Y )⊗EB −→ 0

where we have denoted f : XB −→ B the structure morphism. Then the Gauss-Manin
connection ∇B : H1

dR(XB/B, EB(log(Y ))) −→ H1
dR(XB/B, EB(log(Y ))) ⊗ Ω1

B/L(log 0) is
the connecting homomorphism in the long exact sequence for hypercohomology.

Let us calculate the connection explicitly in terms of hypercocycles. For this let t denote
a parameter of B at 0 and let x ∈ H1(dR)(XB/B, EB(log(Y )))(B). Let us suppose that x
is represented by the following hypercocycle for the covering C ′′B:

(
(ωv)v, (ωe)e, (fe, f e)e

)
,

where v runs over v(G) and e over e(G). Here ωv ∈ H0(Wv,ΩWv/B(logWv,0)⊗ EB), ωe ∈
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H0(Ae,B,ΩAe,B/B(logAe,0)⊗EB), fe ∈ H0(Ae,B ∩Wa(e), EB) and f e ∈ H0(Ae,B ∩Wb(e), EB)
satisfying the relations:

a) DXB/B(ωv) = DXB/B(ωe) = 0 for all v, e.

b) ωa(e)|Wa(e)∩Ae,B
−ωe|Wa(e)∩Ae.B

= DXB/B(fe) and ωe|Wb(e)∩Ae,B
−ωb(e)|Wb(e)∩Ae.B

= DXB/B(f e)
for all e.

Now we choose lifts of ωv and ωe to absolute forms, i.e. we choose ω̃v ∈ H0(Wv,Ω
1
Wv/K0

(logWv,0)⊗
EB) and respectively ω̃e ∈ H0(Ae,B,Ω

1
Ae/K0

(log(Ae,0)⊗EB) which project to ωv and respec-

tively ωe and define the sections ηv ∈ H0(Wv,Ω
1
Wv/B

(logWv,0)⊗EB), ηe ∈ H0(Ae,B,Ω
1
Ae,B/B

(logAe,0)⊗
EB), ge ∈ H0(Wa(e) ∩ Ae,B, EB), ge ∈ H0(Wb(e) ∩ Ae,B, EB) by the relations.

i) DB(ω̃v) = ηv ∧ dy/y, DB(ω̃e) = ηe ∧ dy/y for all v, e. Here y is a parameter at 0 on B.

ii) ω̃a(e)|Wa(e)∩Ae,B
− ω̃e|Wa(e)∩Ae,B

−DB(fe) = gedy/y for all e.

iii) ω̃e|Wb(e)∩Ae,B
− ω̃b(e)|Wb(e)∩Ae,B

−DB(f e) = gedy/y for all e.

Then the hyper-cochain
(
(ηv)v, (ηe)e, (ge, ge)e

)
is a hypercocycle and its cohomology class

⊗dy/y represents ∇B(x).

Using this the proof of c) is a simple calculation which we leave to the reader.

We have the following easy consequence of proposition 3.35.

Lemma 3.36. Suppose we have two choices {Wv}v∈v(G) and {W ′
v}v∈v(G) as in proposition

3.18. Let C := {Wv, Ae,B}v,e and C ′ := {W ′
v, Ae,B}v,e, where v, e run over v(G) and

respectively e(G), be the corresponding admissible covers of XB. Then we have natural
isomorphisms of OB-modules:

H i,j(C, Erel) ∼= H i,j(C ′, Erel) for 0 ≤ i, j ≤ 1, i 6= j.

Proof. Let 0 6= s ∈ B. Then we have natural isomorphisms of OB-modules.

H i,j(C, Erel) ∼= H i,j(Cs, Es)⊗OB and H i,j(C ′, Erel) ∼= H i,j(C ′s, Es)⊗OB,
for 0 ≤ i, j ≤ 1, i 6= j.

Therefore it is enough to compare the groups H i,j(Cs, Es) and H i,j(C ′s, Es) and we may
suppose that W ′

v,s ⊂ Wv,s for all v (if not take the intersections).

For the rest of the proof, in order to ease the notations we’ll drop s from the notations ev-
erywhere, i.e. rename E = Es,Wv = Wv,s,W

′
v = W ′

v,s, Ae = Ae,s, C = Cs, C ′ = C ′s, D = Ds

etc. The natural inclusions W ′
v ⊂ Wv induce by pull-bacl maps H i,j(C, E) −→ H i,j(C ′, E)

which make the following diagram commutative.

0 −→ H1,0(C, E) −→ H1
dR(Xs, E) −→ H0,1(C, E) −→ 0

α ↓ || ↓ γ
0 −→ H1,0(C ′, E) −→ H1

dR(Xs, E) −→ H0,1(C ′, E) −→ 0
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So it is enough to prove that α is an isomorphism. Let us remark that as W ′
v is a strict

neighbourhood of Zv in Uv (recall that we suppressed ”s” from the notation), the set
{W ′

v,qv=a(e),v=b(e)Ae} is an admissible covering of Uv. As Wv is an admissible open of Uv,
the set {W ′

v,qv=a(e),v=b(e)Ae ∩Wv} is an admissible covering of Wv. But E has a basis of
horizontal sections on Ae ∩Wv for all e ∈ e(G), therefore the restriction H0(Wv, E)D −→
H0(W ′

v, E)D is an isomorphism for all v ∈ v(G). It follows that α is an isomorphism.

Let us fix a collection {Wv}v∈v(G) as in proposition 3.18 and let s ∈ B (s may be 0). We
consider again the admissible coverings C ′′B of XB and C ′′s and the respective Meier-Vietoris
exact sequences. Pull back by the closed immersion Xs −→ XB provide vertical maps in
the following diagram:

0 −→ H1,0(C ′′B/B, E) −→ H1
dR(XB/B, EB(log(Y ))) −→ H0,1(C ′′B/B, E) −→ 0

↓ ↓ ↓
0 −→ H1,0(C ′′s , Es) −→ H1

dR(Xs, Es(log(Y ∩Xs))) −→ H0,1(C ′′s , Es) −→ 0

If s 6= 0 the log structure on Xs is trivial.

Lemma 3.37. The above diagram of Mayer-Vietoris exact sequences is commutative.

Proof. The proof follows immediately from the definitions and we leave it to the reader.

4 The Monodromy Operators

4.1 The global residue

Let us fix the covering C ′ = {Tv, Ae}v∈v(G(X)),e∈e(G(X)) as in section §3.5.3.2, G′ denote
the graph of this cover and assume that E is an isocrystal on C i.e we assume that
P and hence the log structure induced by it is trivial in this chapter (notations as in
section §1.) We denote (EX, DX/K0) its evaluation on the wide open enlargement X and
by DX/S the associated relative connection. Let us also recall that we defined on X the
log structure given by the normal crossing divisor Y := X0, on Y itself the inverse image
log structure defined by the closed immersion Y = X0 −→ X, and on S the log structure
given by the divisor t = 0. The log schemes thus defined are denoted X××,Y××,S×.
We denote Ωi

X××/S× := (Ωi
X××/S×)rig = Ωi

X/S(log(Y )) and Ωi
Y ××/K0

:= (Ωi
Y××/W×)rig =

Ωi
Y××/W× ⊗W K0, for i ≥ 0.

Let us first fix e ∈ e(G) and recall that the sheaf EX|Ae has a basis of horizontal sections
for DX/S. We denote such a basis by {ε1, ..., εα}. Then using lemma 3.16 every element
ω ∈ H0(Ae, EX ⊗ Ω1

X/S(log(Y ))) can be written
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ω =
( α∑
i=1

εi ⊗
∑
n,m≥0

ai,n,mx
n
ex

m
τ(e)

)dX/Sxe
xe

,

where ai,n,m ∈ K0 are such that the power series converge on Ae. We recall that the
variables xe, xτ(e), defined in lemma 3.16 satisfy xexτ(e) = t. Thus we define

Rese(ωe) :=
(1

2
(
α∑
i=1

εi|Ta(e)∩Ae

∑
n≥0

ai,n,nt
n)),

1

2
(
α∑
i=1

εi|Tb(e)∩Ae

∑
n≥0

ai,n,nt
n))

)
∈

∈ H0
dR((Ta(e) ∩ Ae)/S, EX)⊕H0

dR((Tb(e) ∩ Ae)/S, EX).

Therefore, for every e ∈ e(G), Rese can be seen as an OS-linear homomorphism

H1
dR(Ae/S, EX(log(Y ))) −→ H0

dR((Ae ∩ Ta(e))/S, EX)⊕H0
dR(Ae ∩ Tb(e)/S, EX).

Similarly, let C ′0 = {Tv,0, Ae,0} be the intersection of the covering C ′ with Y . It is an
admissible cover of Y by acyclic wide opens. Let us fix e ∈ e(G) and x, y be the restrictions
of xe and xτ(e) to Ae,0 respectively. Denote by E0 the evaluation of E at Y and let
ω ∈ H0(Ae,0, E0 ⊗ Ω1

Y ××/K0
). Then

ω =
α∑
a=1

ε0a ⊗
(
(
∑
n≥0

αa,nx
n)
dx

x
+ (

∑
n≥0

βa,ny
n)
dy

y

)
,

where {ε0a}1≤a≤s is a basis of horizontal sections of E0|Ae,0 . As xy = 0 on Ae,0, dx/x =
−dy/y and we define

Rese(ω) =
(1

2

s∑
a=1

ε0a(αa,0 − βa,0)|Ae,0∩Ta(e),0
,
1

2

s∑
a=1

ε0a(αa,0 − βa,0)|Ae,0∩Tb(e),0

)
∈

∈ H0
dR(Ae,0 ∩ Ta(e),0/K0, E0)⊕H0

dR(Ae,0 ∩ Tb(e),0/K0, E0).

Thus we defined a K0-linear homomorphism

Rese : H1
dR(A××e,0 /K0, E0) −→ H0

dR(Ae,0 ∩ Ta(e)/K0, E0)⊕H0
dR(Ae,0 ∩ Tb(e),0/K0, E0)

for every e ∈ e(G).

Now we define residue maps Res and respectively Res(0) by the compositions:

H = H1
dR(X/S, EX(log(Y ))) −→ ⊕e∈e(G)

(
H1
dR(Ae/S, EX(log(Y ∩Ae)))

⊕eRese−→ H1,0(C ′, Erel),

and

H1(Y, E) := H1
dR(Y ××/K0, E0) −→ ⊕e∈e(G)H

1
dR(A××e,0 /K0, E0)

⊕eRese−→ H1,0(C ′0, E0).

In the above sequences, the first arrows are restrictions.
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Remark 4.1. Let L,B be as in section §3.2. Then we immediately obtain an OB-linear
residue map ResB := Res⊗OS

OB : HB −→ H1,0(C ′′B, Erel).

Remark 4.2. Let (
(ωv)v, (ωe)e, (fe, f e)e

)
(2)

be a hypercocycle for the complex of sheaves EX⊗Ω•X/S(log(Y )) with respect to the covering

C ′, representing a cohomology class x ∈ H. Here ωv ∈ EX(Tv) ⊗ Ω1
Tv/S

, ωe ∈ EX(Ae) ⊗
Ω1
Ae/S

(log Y ), fe ∈ EX(Ta(e) ∩ Ae) and f e ∈ EX(Tb(e) ∩ Ae) and they satisfy the cocycle
conditions.

We may express Res defined above explicitly in terms of cocycles as follows: Res(x) is the
image in H1,0(C ′, Erel) of the cocycle (Rese(ωe))e∈e(G).

Next we would like to describe the fibers of Res. Let s ∈ S − {0} and C ′s the covering
of the fiber Xs obtained by intersecting the open sets of C ′ with Xs. Let also Cs be
the intersection of the covering C (defined in section 3.5.3.1) with Xs. Both C ′s, Cs are
admissible covers of Xs by acyclic wide open subsets and C ′s is a refinement of Cs. Let us
consider the graphs associated to these covers, i.e., G′ and G resepctively. We have (see
remark 2.5)

Lemma 4.3. Let s ∈ S − {0}. Then under the identification between H1,0(Cs, Es) and
H1,0(C ′s, Es) in lemma 3.34 (Res)s = Res(s), where (Res)s is the fiber of Res at s and for
the notation Res(s) see remark 2.5.

Proof. This follows from the definitions and the explicit description of the isomorphism
in lemma 3.34 and we leave the details to the reader.

Now let us concentrate on describing the fiber (Res)0 of Res at s = 0. Let us first remark
that from the definition of an isocrystal and the definitions of the log structures on X,Y ,S
we have natural isomorphisms(

EX ⊗OX
Ωi
X××/S×

)
⊗OX

OY ∼= E0 ⊗OY
Ωi
Y ××/K0

,

for i ≥ 0. Let j : Y ⊂ X be the natural inclusion.

Lemma 4.4. (Res)0(x) = Res(0)(j∗x) for all x section of H.

Proof. The inclusion j induces an isomorphism H/tH
j∗∼= H1(Y, E) therefore it is enough

to prove: if x ∈ H then we have j∗(Res(x)) = Res(0)(j∗x). Let x be represented by a
hypercocycle as in formula (2) above. Then for each e ∈ e(G) we have

ωe =
α∑
i=1

ε
(e)
i ⊗

( ∑
n,m≥0

a
(e)
i,n,mx

n
ex

m
τ(e)

)dX/S(xe)

xe
,
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where {ε(e)i } is a basis of horizontal sections of EX|Ae for all e and a
(e)
i,n,m ∈ K0 are

such that the power series converge on Ae. With these notations we have Rese(ωe) =

(1
2

∑α
i=1 ε

(e)
i |Ta(e)∩Ae

∑
n≥0 ai,n,nt

n, 1
2

∑α
i=1 ε

(e)
i |Tb(e)∩Ae

∑
n≥0 ai,n,nt

n). Now

j∗(Res(ω)) = Image(Rese(ωe))e∈e(G(X))(mod tH1,0(C ′, Erel))

= (
1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Ta(e),0

a
(e)
i,0,0,

1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Tb(e),0

a
(e)
i,0,0)e.

On the other hand, j∗(x) is represented by the hypercocycle {(j∗(ωv))v, (j∗(ωe))e, (j∗(fe), j∗(f e)e}.
In particular, for every e ∈ e(G) let us denote by ye, yτ(e) the images j∗(xe) and respec-
tively j∗(xτ(e)). With these notations yeyτ(e) = 0 and we have

j∗(ωe) =
α∑
i=1

j∗(ε
(e)
i )⊗

(
a

(e)
i,0,0 +

∑
n≥1

a
(e)
i,n,0y

n
e +

∑
m≥1

a
(e)
i,0,my

m
τ(e)

)d(ye)
ye

,

so

Res(0)
e (j∗(x)) = (

1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Ta(e),0

a
(e)
i,0,0,

1

2
(
α∑
i=1

j∗(ε
(e)
i )|Ae,0∩Tb(e),0

a
(e)
i,0,0) = j∗(Rese(ωe)).

Let us define by N0 : H1(Y, E) −→ H1(Y, E) the composition (Res)0 ◦ ι0 where

ι0 : H1,0(C ′0, E0) −→ H1(Y, E)

is the map induced from the Mayer-Vietoris exact sequence for Y and the covering C ′0.

We have the following

Proposition 4.5. The OS-linear map Res is horizontal with respect to the connections,
i.e. Res : (H,∇) −→ (H1,0(C ′, Erel)),∇1,0) satisfies Res ◦ ∇1,0 = ∇ ◦ Res.

Proof. Let x ∈ H be represented by a hypercocycle as in formula (2). We have ∇(x) =
y⊗dlog(t), where y is represented by a hypercocycle

(
(ηv)v, (ηe)e, (ge, ge)e

)
as in the proof

of proposition 3.35. To calculate Res(y) we only need to look at the ηe’s. To start with,
we may write

ωe =
α∑
i=1

εi ⊗ ri(t)
dX/S(xe)

xe
+DX/S(Ge),

where {εi}i=1,α is as before a basis of horizontal sections of EX over Ae, ri(t) ∈ OS(S) and
Ge ∈ EX(Ae). Then, let us denote by

ω̃e : =
α∑
i=1

εi ⊗ ri(t)
dX/K0(xe)

xe
+DX/K0(Ge).
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It is a lift of ωe to “absolute differentials”, i.e., to EX(Ae)⊗ Ω1
Ae/K0

(log Y ). Then ηe may
be chosen such that

ηe ∧ dlog(t) = DX/K0(ω̃e) =
α∑
i=1

εi ⊗ tr′i(t)
dX/K0(xe)

xe
∧ dlog(t),

therefore

Rese(ηe) = (
1

2

α∑
i=1

εi|Ae∩Ta(e)
tr′i(t),

1

2

α∑
i=1

εi|Ae∩Tb(e)
tr′i(t)).

On the other hand

∇(ι ◦ Res(ω)) = ∇[
(
(0v)v, (0e)e, (

1

2

α∑
i=1

εi|Ae∩Ta(e)
⊗ ri(t),

1

2

α∑
i=1

εi|Ae∩Tb(e)
⊗ ri(t))e

)
] =

[
(
(0v)v, (0e)e, (

1

2

α∑
1

εi|Ae∩Ta(e)
⊗ tr′i(t),

1

2

α∑
i=1

εi|Ae∩Tb(e)
⊗ tr′i(t))e

)
]⊗ dlog(t).

This proves the proposition.

Proposition 4.6. Under the parallel transport isomorphism of Theorem 2.6, N0⊗ idK is
identified with Nint.

Proof. Let N : H −→ H be the composition H Res−→ H1,0(C ′, Erel) −→ H where the second
morphism is the one coming from the Mayer-Vietoris sequence (see section §3.5.2). Then
by proposition 4.5 N is horizonatal and hence it induces a homomorphism N : (Hlog)

∇ −→
(Hlog)

∇. By lemma 4.3 and lemma 4.4 the following diagram is commutative

H1(Y, E) ∼= (Hlog)
∇ −→ H1(CK , Eπ)

N0 ↓ N ↓ Nint ↓
H1(Y, E) ∼= (Hlog)

∇ −→ H1(CK , Eπ)

4.2 The proof of the equality of the monodromy operators

The main result of this section is

Theorem 4.7. Under the notations of section §4.1 we have N0 = Ndeg.

Proof. We will extend scalars to a finite, non-trivial, totally ramified extension L of K0

and let B = BL ⊂ S be the affinoid disk as in lemma 3.17. Recall proposition 3.18 i.e., for
all v ∈ v(G) there is a wide open neighbourhood Wv of Zv,B in Uv,B and an isomorphism
over B

αv = αv,0 : Wv
∼= B ×Wv,0,
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where Wv,0 = Wv ∩ Y . Let pri, i = 1, 2 be the i-th projection composed with αv, i.e.,
pr1 : Wv → B, pr2 : Wv → Wv,0. As αv is an isomorphism over B, pr1 is the structure
morphism of Wv over B. Let us now fix v and let U = α−1

v (U0 × B) where U0 ⊂ Wv ∩ Y
is any admissible open subset. We have

Lemma 4.8. a) The canonical isomorphism

Ω1
U∗/L

∼= pr∗1Ω
1
B∗/L ⊕ pr∗2Ω

1
U0/L

,

where U∗ = U − U0 and B∗ = B − 0, induces an isomorphism of sheaves on U :

Ω1
U/L(log Y ) ∼= pr∗1Ω

1
B/L(log 0)⊕ pr∗2Ω

1
U0/L

.

b) The isomorphism at a) induces an isomorphism of sheaves:

Ω1
U/B(log Y ) ∼= pr∗2Ω

1
U0/L

,

and an isomorphism of OB(B)-modules

Ω1
U/B(log Y )(U) ∼= OB(B)⊗̂Ω1

U0/L
(U0)

where ⊗̂ denotes completed tensor product.

Proof. For a) it is enough to see that we have an isomorphism of ”pairs”

(U,U0) ∼= (B, {0})× (U0, φ),

where φ is the void set, i.e., that U ∼= B × U0 and under the above isomorphism U0
∼=

({0} × U0) ∪ (B × φ).

For b) let us notice that we have an isomorphism of sheaves on U :

Ω1
U/B(log Y ) ∼= Ω1

U/L(log Y )/pr∗1Ω
1
B(log 0) ∼= pr∗2ΩU0/L(log Y ).

Now the lemma follows easily.

Let us recall from section §3.5.3.3 that the set C ′′B := {Wv, Ae,B}v∈v(G),e∈e(G) is an admissi-
ble cover of XB := X ×S B. From lemma 4.8 it follows that for all v ∈ v(G) and U ⊂ Wv

as above, the canonical projection:

Ω1
Wv/L(log Y )(U) −→ Ω1

Wv/B(log Y )(U)

has a natural section, call it sv with the property that its image is a submodule of
Ω1
Wv/L

(U). Therefore for every section ω of Ω1
Wv/B

(log Y ) we have a lift of it sv(ω) to
absolute 1-forms, which is a regular absolute one-form by the remark above.

Moreover, if say e ∈ e(G) then we also have a natural choice of a lift to absolute forms as
follows. Let us recall that we have OB(B) = L〈y〉 with the restriction OS(S) −→ OB(B)
given by: t −→ πLy. Let c := |πL| < 1.
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Lemma 4.9. Let ω ∈ Ω1
Ae,B/B

(log Y )(Ae,B), then we can write ω = r(y)
dX/S(xe)

xe
+

dX/S(ue) where r(y) is a global section of OB and ue ∈ OXB
(Ae,B).

Proof. For this proof let us denote U := Ae,B and A(U) := OXB
(U), x = xe and z = xτ(e).

By lemma 3.16, the natural functions x, z ∈ A(U) satisfy xz = πLy and if f ∈ A(U) then
f may be written

f =
∞∑
n=0

anx
n +

∞∑
m=1

bmz
m,

with an, bm ∈ OB(B) and such that, for every r such that c < r < 1 the sequences
|an|Brn −→ 0 and |bn|B(c/r)n −→ 0 as n −→∞.

Therefore ω = fdU/B(x)/x = dU/B(g) + a0dU/B(x)/x, where

g =
∞∑
n=1

an
n
xn +

∞∑
m=1

bm
m
zm ∈ A(U).

This proves the lemma.

A lift to absolute 1-forms of ω as in lemma 4.9 is then defined by:

ω̃e : = r(y)
dX/K0(xe)

xe
+ dX/K0(ue).

Proof of Theorem 4.7. Let x ∈ HB be represented by the hypercocycle
(
(ωv)v, (ωe)e, (fe, f)e

)
with respect to C ′′B (as in in formula 3.3.2). Let us recall that v runs over v(G) and e over
e(G). Then ωe can be written as

ωe =
α∑
i=1

εi ⊗ (re,i(y))
dX/S(xe)

xe
+DX/S(Ei)) = −

α∑
i=1

εi ⊗ (re,i(y))
dX/S(xτ(e)
xτ(e)

+DX/S(Ei)),

where {εi}1≤i≤α is a horizontal basis of EB|Ae,B
, Ei ∈ EB(Ae,B) for all i and re,i(y) are

global sections of OB. The variables xe and xτ(e) have been defined in lemma 3.16 and
their restrictions to Ae,B satisfy xexτ(e) = πLy.

We want to calculate ∇(x) and its residue. ∇(x) is represented by the hypercocycle(
(ηv)v, (ηe)e, (ge, ge)e

)
, where

DX/K0(sv(ω)v) = ηv ∧ dlog(y) and DX/S(ω̃e) = ηe ∧ dlog(y),

for v ∈ v(G) and e ∈ e(G). Also

sa(e)(ωa(e))|Ae,B∩Wa(e)
− ω̃e|Ae,B∩Wa(e)

−DX/S(fe) = gedlog(y),
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and
ω̃e|Ae,B∩Wb(e)

− sb(e)(ωb(e))|Ae,B∩Wb(e)
−DX/S(f e) = gedlog(y).

Let us recall that sv(ωv) is always a regular 1-form. Also,

ω̃e|Ae,B∩Wa(e)
:= r(y)

dX/K0(xe)

xe
+ dX/K0(ue)

is also regular as xe is invertible on Ae,B ∩Wa(e). On the other hand we have

ω̃e|Ae,B∩Wb(e)
= r(y)

dX/K0(xe)

xe
+ dX/K0(ue) = r(y)

d(y)

y
− r(y)

dX/K0(xτ(e))

xτ(e)
+ dX/K0(ue),

and the form −r(y)dX/K0
(xτ(e))

xτ(e)
+ dX/K0(ue) is regular on Wb(e) ∩Ae,B because the function

xτ(e) is invertible on this open set.

Therefore we have: Resy=0(ηv) = Resy=0(ηe) = 0 for all v ∈ v(G), e ∈ e(G), Resy=0(ge) = 0
and Resy=0(ge) =

∑α
i=1 re,i(0)εi|Ae,B∩Wb(e)

for e ∈ e(G). Thus, we have that Resy=0(∇(x))
is represented by the hypercocycle

(
(0v)v, (0e)e, (0e,

α∑
i=1

re,i(0)εi|Ae,B∩Wb(e)
)e

)
whose cohomology class in H1(Y, E)⊗K0 L is the same as the class of

(
(0v)v, (0e)e, (

1

2

α∑
i=1

re,i(0)εi|Ae,B∩Wa(e)
,
1

2

α∑
i=1

re,i(0)εi|Ae,B∩Wb(e)
)e

)
which is

Res(x) (mod yHB).

This proves that Ndeg⊗K0 idL = N0⊗K0 idL. As Ndeg and N0 are both endomorphisms over
K0 of the finite dimensional K0 vector space H1(Y, E), and as they become equal after
base change to the extension L of K0, they are equal. This ends the proof of Theorem
4.7.

5 The Frobenius Operators

5.1 Frobenius and K0-structures on H i,j(Cs, Es)

In this section we supply a number of details needed in section §2.2. We continue to
assume that the horizontal log structures, i.e. that the divisor P and hence the log
structure induced by it are trivial. Namely let us resume the notations of section §3.2. Let
X −→ S be our family of curves, C = {Uv}v∈v(G) be the admissible covering of X defined
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there. Fix s ∈ S a point such that s 6= 0 and for an object M over S Ms will be the fiber of
M over s. Let Cs := {Uv,s}v∈v(G) and if e = [u, v] ∈ e(G) then Ae,s = Ae×S s = Uu,s∩Uv,s.
Let us also denote by s the image under red : S −→ S = Spf(W [[t]]) of the point s ∈ S
and by Xs := X ⊗S s. In particular if s = π, then Xs = CK and Xs = C in section
§2.2. Let E denote an F -isocrystal on C and let Es denote the evaluation of E on the
enlargement Xs.

We will define the canonical K0-structures and Frobenii on H1,0(Cs, Es) and H1,0(Cs, Es)
needed in section §2.2.

For the rest of this section we fix s and denote Uv,s, Ae,s simply by Uv, Ae.

Lemma 5.1. Suppose that the residue field of s is L. For every e ∈ e(G) we have a
canonical isomorphism of L-vector spaces

H0
cris(e/W, E)⊗K0 L

∼= H0
dR(Ae, Es|Ae),

where above e denotes the singular point of C corresponding to the edge e.

Proof. As mentioned before, Ae is a wide open enlargement of e ∈ C, i.e. let us consider
the formal completion of Xs along e, (Xs)/e. It is a formal scheme such that (Xs)

rig
/e
∼= Ae.

Therefore Es|Ae
∼= E(Xs)/e

and H0
cris(e/W, E)⊗K0 L

∼= H0
dR(Ae, Es|Ae).

Let us remark that the isomorphism of lemma 5.1 endows H0
dR(Ae, Es|Ae) with a canonical

K0-structure and a Frobenius, namely H0
cris(e/W, E) with its Frobenius, φ0

e.

Let us fix v ∈ v(G) and Cv the component of C corresponding to v. Let us denote by

C
××
v the log scheme Cv with log structure given by the smooth divisor of the singular

points in C belonging to Cv.

Lemma 5.2. In this lemma s may be 0. For i = 0, 1 we have natural isomorphisms of
L-vector spaces

H i
cris(C

××
v /W, E)⊗K0 L

∼= H i
dR(Uv, Es|Uv).

Proof. Let red : Xs −→ C denote the reduction map and let Zv = red−1(C
0

v), where C
0

v

is the complement in Cv of the singular points in C. Then Zv is an underlying affinoid of

Uv with good reduction (its reduction is C
0

v). Let us denote by Singv := Cv −C
0

v. As Cv

is a smooth proper curve over k, there exists a pair (C ′, Q) consisting of a smooth proper
curve C ′ over OL and an étale divisor Q on C ′ such that the special fiber of (C ′, Q) is

(Cv, Singv). Let us denote Ĉ ′ := C ′
/Cv

the formal completion of C ′ along its special fiber,

let C ′L := (Ĉ ′)rig and red : C ′L −→ Cv be the reduction map. If we denote Z ′v := red−1(C
0

v)
then Zv ∼= Z ′v and we’ll identify the two. We claim that we may choose the pair (C ′, Q)
such that the isomorphism Zv ∼= Z ′v extends to an open immersion Uv ↪→ C ′L. This can
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be seen as follows: let us ”add the affinoid disks to Uv to close the holes”. We obtain
a smooth proper rigid curve with a smooth proper formal model whose special fiber is
Cv. This formal model is algebrizable, i.e. it is the formal completion along reduction
of a smooth proper curve over OL, which may be taken to be C ′. In any case, the open
immersion Uv ↪→ C ′L has the property that its complement is a disjoint union of affinoid
disks, containing Q and each contained in the residue class of the points e ∈ Singv.

We have the natural morphisms of formal schemes over OL:

C ←↩ Cv ↪→ Ĉ ′,

which make Ĉ ′ an enlargement of C. Let us denote by EC′ the evaluation of E on this
enlargement. It is a coherent sheaf with connection on C ′L.

Claim 1 EC′|Uv is isomorphic to Es|Uv as coherent sheaves with connections.

To see this let us first recall that we have open immersions Uv ↪→ Xs and Uv ↪→ C ′L
and Xs, C

′
L have formal models Xs, Ĉ

′ respectively. Moreover, by the description of the
embedding Uv ↪→ C ′L given above the following diagram commutes

Uv ↪→ Xs
red−→ C

|| ∪
Uv ↪→ C ′L

red−→ Cv

Let now V ⊂ Uv be an admissible open. By applying lemma 3.1 we obtain canonical
formal models V ′ −→ Ĉ ′ and V −→ Xs and by the diagram above and section 3.1.2 we
obtain a natural morphism V ′ −→ V inducing the identity on generic fibers and such that
the following diagram of special fibers commutes

V ′ −→ V
↓ ↓
Cv ↪→ C

Thus we obtain a diagram of enlargements

(V ′ ↪→ V ′) −→ (V ↪→ V)
↓ ↓

(Cv ↪→ Ĉ ′) (C ↪→ Xs)

which shows that EC′ and Es coincide on V . This proves the claim.

Let C
××
v and Ĉ ′×× denote the scheme Cv, respectively formal scheme Ĉ ′ with log struc-

tures given by the divisor Singv, respectively by the divisor Q. Now let us see that we
have natural morphisms

H i
cris(C

××
v /W, E)⊗K0 L

∼= H i
cris(C

××
v /OL, E) ∼= H i

dR(C ′L, EC′(log(Q)) −→ H i
dR(Uv, Es|Uv),

the first two being naturally isomorphisms.
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In order to prove the lemma let us remark that we have natural isomorphisms of L-vector
spaces H i

dR(C ′L −Q, EC′|C′L−Q) ∼= H i
dR(C ′L, EC′(log(Q))) for i = 0, 1. We will prove

Claim 2 Restrictions induce isomorphisms betweenH i
dR(C ′L−Q, EC′|C′L−Q) ∼= H i

dR(Uv, Es|Uv)
for all i ≥ 0.

For i = 0 the statement of the claim is clear. The proof of the claim for i = 1 is by an
excision argument presented in theorem 4.2 of [C4] for the case of trivial E . The main
idea is for a rigid analytic space M to find good definitions of ”closed subsets” and their
”admissible open neighbourhoods” and to use the Gysin long exact sequence as in [G1].

We say that a subset Z of M is closed if it is the complement in M of an admissible open
subset. Given such a Z, we say that U is an admissible neighbourhood of Z if U is a
strict neighbourhood of Z in M . Let us recall that this means Z ⊂ U , U is an admissible
open of M and the family {U,M − Z} is an admissible covering of M .

Now if F is a sheaf of abelian groups onM we define ΓZ(M,F) to be the sections s ∈ F(U)
supported in Z for any strict neighbourhood U of Z. The functor F −→ ΓZ(M,F) is left
exact and therefore if F• is a complex of sheaves on M we define the hypercohomology
groups with supports, Hi

Z(M,F•) to be the hyper-right derived functors of ΓZ(M, −).
By corollary 1.9 of [G1] if F• is a complex of sheaves on M we have a long exact sequence
(the Gysin sequence):

0 −→ H0
Z(M,F•) −→ H0(M,F•) −→ H0(X − Z,F•) −→ H1

Z(M,F•) −→ ...

Moreover, if U is a strict neighbourhood of Z in M we have excision, i.e. canonical
isomorphisms

Hi
Z(M,F•) ∼= Hi

Z(U,F•) for all i ≥ 0.

Let us now apply this theory to: M = C ′L − Q, Z = (C ′L − Uv) − Q. Let us remark
that C ′L − Uv is a disjoint union of closed disks contained each in the residue class of one
point of Singv and containing exactly one point of Q. So in fact Z = M − Uv is closed in
M . Let us denote by (E,D) = (EC′|M , D|M) the restriction to M of the coherent sheaf
with connection (EC′ , D) and let F• := E ⊗OM

Ω•M/L. The interesting part of the Gysin
sequence reads:

H1
Z(M,R⊗OM

Ω•M/L) −→ H1
dR(C ′L −Q,E) −→ H1

dR(Uv, E|Uv) −→ H2
Z(M,E ⊗OM

Ω•M/L).

Let us now explicitly calculate Hi
Z(M,E ⊗OM

Ω•M/L). Let U ′ denote a disjoint union of
wide open disks in C ′L containing C ′L−Uv and contained in the union of the residue disks
of the points of Singv. Then U ′ − Q is a strict neighbourhood of Z in M and excision
implies

Hi
Z(M,E ⊗OM

Ω•M/L) ∼= Hi
Z(U ′ −Q,E|(U ′−Q) ⊗O(U′−Q)

Ω•(U ′−Q)/L) for all i ≥ 0.

The Gysin sequence for the pair (U ′−Q,Z) and the restriction of E to U ′−Q which we
denote by E ′ gives

0 −→ H0
Z(U ′ −Q,E ′ ⊗ Ω•(U ′−Q)/L) −→ H0

dR(U ′ −Q,E ′) −→ H0
dR(U ′ − Z,E ′) −→
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−→ H1
Z(U ′ −Q,E ′ ⊗ Ω•(U ′−Q)/L) −→ H1

dR(U ′ −Q,E ′) −→ H1
dR(U ′ − Z,E ′)...

First let us remark that as U ′ is contained in a union of residue classes, (E|U ′ , D|U ′) has a
basis of horizontal sections. Let us denote by ED := H0

dR(U ′, EU ′). Second let is remark
that U ′ − Q is a disjoint union of punctured disks containing the disjoint union of wide
open annuli U ′ − Z. Therefore we have the following commutative diagram where the
horizontal arrows are induced by restrictions and the last vertical ones are residue maps.

H1
dR(U ′ −Q,E ′) −→ H1

dR(U ′ − Z,E ′)
↓∼= ↓∼=

H1
dR(U ′ −Q)⊗L ED −→ H1

dR(U ′ − Z)⊗L ED

↓ ↓
H0
dR(U ′ −Q,E ′) = ED = H0

dR(U ′ − Z,E ′)

As the residue maps for punctured disks and annuli are isomorphisms the first horizontal
arrow is an isomorphism and the Gysin sequence for (U ′ − Q,Z) above implies that
Hi
Z(M,E ⊗OM

Ω•M/L) = 0 for all i ≥ 0. This proves the claim.

Claim 3 We claim that for i = 0, 1 the composed isomorphism

H i
cris(C

××
v /OL, E) ∼= H1

dR(Uv, Es|Uv)

is independent of the choice of C ′ and the choice of embedding Uv ↪→ C ′L.

The proof of this claim is standard: suppose (C ′′, Q′′) is another such pair defined over

OL, with an embedding Uv ↪→ C ′′L. We let Ĉ1 to be the formal completion along Cv of
the fiber product C ′ × C ′′. By the Poincaré lemma we have isomorphisms

H i
dR(C ′L, EC′ log(Q)) −→ H i

dR((C1)
rig, EC1(log(Q ∪Q′′))←− H i

dR(C ′′L, EC′′(log(Q′′)),

compatible with the homomorphisms from H i
dR(Uv, Es|Uv) induced by the immersions

Uv ↪→ C ′L, Uv ↪→ C ′′L and the diagonal immersion Uv ↪→ (C1)
rig.

As before the isomorphisms in lemma 5.2 endow the L-vector spaces H i
dR(Uv, Es|Uv) with

natural K0-structures with Frobenii, namely H i
cris(C

××
v , E) for i = 0, 1 with their Frobenii.

For e ∈ e(G) let us denote by Ee := Es|Ae and let us now concentrate on the L-vector
space H1

dR(Ae, Ee). These spaces do not have an interpretation as crystalline cohomology
groups, nevertheless we have residue isomorphisms

Rese : H1
dR(Ae, Ee) ∼= H0(Ae, Ee),

and may define the K0-structure of the domain to be the inverse image of the K0-structure
of the target, i.e. to be Res−1(H0

cris(e/W, E)). Moreover let us endow this K0-structure
with a Frobenius φ1

e defined by φ1
e = pRes−1

e ◦ φ0
e ◦ Rese. We have
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Lemma 5.3. Let e ∈ e(G) and suppose the vertex v ∈ v(G) is the origin or the end of
e. Then, for i = 0, 1 the natural restriction maps: H i

dR(Uv, Es|Uv) −→ H i
dR(Ae, Ee) respect

the K0-structures and the Frobenii.

Proof. For i = 0 this follows from the commutativity of the diagram

H0
dR(Uv, Es|Uv) −→ H0

dR(Ae, Ee)
↓∼= ↓∼=

H0
cris(C

××
v /W, E)⊗K0 L −→ H0

cris(e/W, E)⊗K0 L

where the lower horizontal map is the restriction H0
cris(C

××
v /W, E) −→ H0

cris(e/W, E) ten-
sored with L over K0.

For i = 1 we’ll use residues. First we have a natural residue map Res which makes the
following sequence exact:

0 −→ H1
cris(Cv/W, E) −→ H1

cris(C
××
v /W, E) Res−→ ⊕e∈SingvH

0
cris(e/W, E)(1).

Here the twist by 1 refers to a twist as filtered, Frobenius modules. Moreover, the following
diagram of L-vector spaces with exact rows is commutative

0 −→ H1
cris(Cv/OL, E) −→ H1

cris(C
××
v /OL, E)

Res−→ ⊕e∈SingvH
0
cris(e/OL, E)

↓∼= ↓∼= ↓∼=
0 −→ H1

dR(C ′L, EC′) −→ H1
dR(C ′L, EC′(log(Q)))

Res−→ ⊕P∈Q(EC′)P
↓∼= ↓∼= ↓∼=

0 −→ H1
dR(Cv/OL, EC′) −→ H1

dR(Uv, Es|Uv)
Res−→ ⊕e∈SingvH

0
dR(Ae, Es|Ae)

where:

• The map Res : H1
dR(Uv, Es|Uv) −→ ⊕e∈Singv

H0
dR(Ae, Ee) in that diagram is the composi-

tion of the restriction H1
dR(Uv, Es|Uv) −→ ⊕e∈Singv

H1
dR(Ae, Ee) and the direct sum of the

residue maps Rese : H1
dR(Ae, Ee) −→ H0

dR(Ae, Ee).

and

• If we denote by φ0, φ1 the natural Frobenii on H0
cris(e/W, E) and H1

cris(C
××
v /W, E) respec-

tively and by Rese : H1
cris(C

××
v /W, E) −→ H0

cris(e/W, E) then we have: Reseφ
1 = pφ0Rese.

These facts prove the lemma for i = 1.

5.2 Convergent F-isocrystals

Let us go back to our notations of section 5.1: X −→ S is our family of curves over the
wide open unit disk, s ∈ S − {0} is a point defined over L, Xs the fiber of X over s, Xs

the canonical formal model of Xs over OL (defined in section 5.1) and C the special fiber
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of Xs. For v ∈ v(G) let Cv denote the component of C corresponding to v and C
0

v the
complement in Cv of the singular points of C.

Then the composition Cv ↪→ C ↪→ Xs is a closed immersion of formal schemes over OL
and C

0

v ↪→ Cv is an affine open, therefore we denote U = Uv = red−1(Cv) =
(
Xs)/Cv

)rig

and Z = Zv = red−1(C
0

v). Then U is a one-dimensional wide open of Xs and Z ⊂ U is
an underlying affinoid with good reduction.

Let U −→ U ×Spm(L) U be the diagonal embedding. It is locally a closed immersion so
let us denote by ∆U the formal neighbourhood of the diagonal i.e. the completion of
U ×Spm(L) U along the diagonal morphism. Let π1, π2 : U ×Spm(L) U −→ U denote the two
projections.

If M is a locally free, coherent sheaf of OU -modules on U with an integrable connection
D there is a unique horizontal isomorphism

h : π∗1M |∆U
→ π∗2M∆U

which restricts to the identity on U . Locally on U we may assume that Ω1
U/L is a free

OU -module generated by dt, let ∂ denote the derivation dual to dt and also by ∂ = D∂ :
M −→ M the induced morphism. Let us denote by u = π∗1(t) − π∗2(t) seen as a rigid
function on ∆U . With these notations, h is given (locally) by formulae

h(π∗1m) =
∞∑
n=0

un

n!
π∗2(∂

nm),

for m (local) section of M .

Now let us look at the sequence of morphisms:

Cv
∆−→ Cv ×Spec(k) Cv ↪→ X2

s := Xs ×Spf(OL) Xs.

The composition is a closed immersion so let us define

∆̃U :=]Cv[X2
s
=

(
(X2

s)/Cv

)rig
.

Let us remark that ∆̃U is a tubular neighbourhood of the image under diagonal of U in
Xs ×Spm(L) Xs.

Definition 5.4. We say the pair (M,D) is a convergent isocrystal on (U,Z) if h

extends to ∆̃U (the extension is unique if it exists).

Remark 5.5. We would like o point out that our terminology convergent isocrystal in
definition 5.4 is different from the one in [BO], where the term overconvergent isocrys-
tal is used instead.
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Here are a few easy but very useful consequences of the definition. Suppose that (M,D)
is a convergent isocrystal on (U,Z). If f, g : T → U are two morphisms from a rigid space

T into U such that (f, g)(T × T ) ⊆ ∆̃U , let χf ,g = (f, g)∗h : f ∗M → g∗M . As h is an
isomorphism χf ,g is an isomorphism of sheaves.

Lemma 5.6. The restriction of (M,D) to any residue class of (W,X) is trivial.

Proof. Let A be a residue class of (W,X). If there exists a point P ∈ A(K), let f, g : A→
W be the morphisms, the identity and x → P , respectively. Then f ∗M = M |A, g∗M is
trivial and χf g is an isomorphism.

In general, base change to a Galois extension L of K such that A(L) 6= ∅, proceed as
above for each irreducible component of AL and then take invariants.

Let us recall that C
0

v is a smooth affine curve over k contained in the smooth projective
curve Cv; therefore there is a smooth affine scheme of finite type over OL, Spec(A) lifting

C
0

v. The πL-adic completion of A is isomorphic (non-canonically) to the ring of rigid
functions on Z bounded by 1. Fix such an isomorphism and identify the two. Via this
identification, proposition 3.14 (where Rk is been replaced by OL) gives

Spm(A† ⊗OL
L) = lim

→,T
H0(T,OU)

where let us recall Spm denotes the maximal spectrum of a ring and T ranges over all
strict affinoid neighbourhoods of Z in U . We have natural restriction maps OU(U) −→
H0(T,OU) which induce an OL-algebra homomorphism OU(U) −→ A† ⊗OL

L.

Therefore if (M,D) is a locally free coherent sheaf of OU -modules on U with an integrable
connection we denote

M † := H0(U,M)⊗OU
(A† ⊗ L).

It is a projective A† ⊗ L-module with an integrable connection

D† : M † −→M † ⊗A†⊗L Ω1
(A†⊗L)/L,

induced by D. We have a description of Ω1
(A†⊗L)/L

as lim
→,T

H0(T,Ω1
T/L), where T runs over

the strict affinoid neighbourhoods of Z in U (see [B], section §2.5.)

Let u0 : C
0

v −→ C
0

v be a morphism of schemes over k, let A,A′ be smooth OL-algebras of

finite type such that Spec(A) and Spec(A′) lift C
0

v and let u : A† −→ A
′† be a OL-algebra

homomorphism lifting the k-algebra homomorphism corresponding to u0 (see for example
theorem 3.7.)

Define the category MicA†⊗L to be the category of finitely generated projective A† ⊗ L-
modules with integrable convergent connections. Then theOL-algebra morphism u defines
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a functor u∗ : MicA′†⊗L −→ MicA†⊗L which is an equivalence of categories if u0 is a
isomorphism.

In particular for u0 = id
C

0
v
, we see that all the categories MicA†⊗L, for varrious liftings A,

are canonically equivalent.

Also, let us first fix σ : OL −→ OL an automorphism which lifts Frobenius of k. Let

f := [k : Fp] and denote by F = Frobf : Cv −→ Cv. Then F (C
0

v) ⊂ C
0

v and let
φ : A† −→ A† be a lift of F over σ.

Definition 5.7. A convergent F -isocrystal on (U,Z) is the following family of data

• A convergent isocrystal (M,D) on (U,Z)

and

• a horizontal isomorphism Fφ : φ∗(M †, D†) −→ (M †, D†) for every morphism φ : A† −→
A† which is a lifting of F .

In the above definition by φ∗(M †, D†) we mean the pair:
(
φ∗(M †), φ∗(D†)

)
, where φ∗(M †) :=

M † ⊗A†,φ A† and φ∗(D†)(m⊗ a) = D†(m)⊗ a+m⊗ d(a), for m ∈M †, a ∈ A†.

Let us remark that if φ1, φ2 are two liftings as in definition 5.7 we have Fφ2 = Fφ1 ◦χφ1 ,φ2 .

Let now E be an F -isocrystal on C. Let us recall that the formal completion of Xs along
the closed sub-scheme Cv, Uv := (Xs)/Cv

is a smooth formal scheme over OL such that

Urig
v = Uv = U . Let us denote by (Ev, Dv) the evaluation of E on Uv, which is a wide open

enlargement of C. Here (Ev, Dv) is a pair consisting of a locally free, coherent OU -module
with integral convergent connection Dv (convergence follows from [B] 2.2.2 and 2.3.4.)
Moreover by definition 3.4 it follows that if φv : Uv −→ Uv is a lifting of F then we have
an isomorphism Fφv : φ∗v(Ev, Dv) −→ (Ev, Dv).

We therefore clearly have

Lemma 5.8. The pair (Ev, Dv) is a convergent F-isocrystal on (U,Z).

In fact by [B] corollary 2.5.8 the data of the F -isocrystal (Ev, Dv) is equivalent to the
data: (M,D) where M is a finitely generated projective A† ⊗ L-module, D : M −→
M ⊗A†⊗L Ω1

(A†⊗L)/L
is an integrable connection such that if φ : A† −→ A† is a lifting of F ,

there is a horizontal isomorphism Φ : φ∗M −→ M. The convergence of the connection is
a consequence of the existence of Φ.

We need to consider one example of a relative convergent isocrystal. Let as above Z be
our affinoid over L and f ∈ OZ(Z)∗, |f | < 1. Let An be the rigid analytic space over L in
Z × B1

L whose Cp-points are {(z, b) : |f(z)| < |b| < 1}. This is a family of annuli over Z.
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Let T be the rigid function on An defined by T (z, b) = b and ∆̃An/Z be the neighbourhood
of the relative diagonal ∆An/Z in An×Z An over Z whose points are

{(x, y) ∈ An×Z An : |T (x)

T (y)
− 1| < 1}.

The diagonal morphism An −→ An×ZAn is a closed immersion. We denote by ∆̂An/Z the
formal completion of An×Z An along its image. Let π1, π2 denote the natural projection
from An ×Z An to An. Suppose M is a coherent sheaf of OAn-modules, D : M −→
M⊗OAn

Ω1
An/Z a (relative) integrable connection over Z and such that the formal horizontal

isomorphism h : π∗1M |b∆An/Z
→ π∗2M |b∆An/Z

which is the identity when restricted to ∆An/Z

extends to ∆̃An/Z (i.e. (M,D) is a convergent isocrystal.)

Then we have

Lemma 5.9. Suppose that (M,D) is a locally free sheaf of OAn-modules on An with a
relative, integrable convergent connection D as above. We use h to identify π∗1M and
π∗2M on ∆̃An/Z. Let ω be a section of M ⊗OAn

Ω1
An/Z . Then there is a unique section ε of

π∗1(M) on ∆̃An/Z such that

π∗1D(ε) = π∗1(ω)|∆̃An/Z
− π∗2(ω)|∆̃An/Z

,

and such that ε|∆An/Z
= 0.

Proof. For simplicity let us denote for this proof U := ∆̃An/Z . We claim that we have a
natural isomorphism φ : U ∼= An×Sp(L) SL as rigid spaces over Z, where let us recall SL is
the wide open unit disk over L. The isomorphism and its inverse ψ : An×Sp(L) SL −→ U
are defined as follows

φ
(
(z, b), (z, b′)

)
:=

(
(z, b), b′b−1

)
and ψ

(
(z, b), a

)
=

(
z, b), (z, (1 + a)b

)
.

This implies (see lemma 3.5 in section §3.1.3) that for any admissible affinoid open V of
An the morphism of complexes

(M ⊗ Ω•An/Z)(V ) −→ (π∗1(M)⊗ Ω•U/Z)(π−1
1 (V ) ∩ U)

is a quasi isomorphism and hence pull-back by the diagonal immersion

∆∗ : (π∗1(M)⊗ Ω•U/Z)(π−1
1 (V ) ∩ U) −→ (M ⊗ Ω1

An/Z)(V )

is a quasi-isomorphism. In degree 0, 1 this implies that for any section η ∈ (π∗1(M) ⊗
Ω1
U/Z)(π−1

1 (V ) ∩ U) such that D(η) = 0 and ∆∗(η) = 0, there exists a unique section

ε ∈ π∗1(M)(π−1
1 (V ) ∩ U) such that D(ε) = η and ∆∗(ε) = 0. Now we apply this to the

case π−1
1 (V )∩U = π−1

2 (V )∩U and η = π∗1(ω)−π∗2(ω) for a section ω ∈ (M ⊗Ω1
An/Z)(V ).
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Remark 5.10. In the notations of lemma 5.9 M has a basis of horizontal sections on
An.

Proof. Let L′ be a finite Galois extension of L such there exists a section s : ZL′ −→ AnL′
of the structure morphism g : AnL′ −→ ZL′ (the subscript L′ denotes extension of scalars
to L′). For example, suppose there is a b0 ∈ B1

L(L′) such that |f | < |b0| < 1. We may
define s by s(z) = (z, b0) and thus we have a morphism u =: (idAn, s) : An = An×ZZ −→
U . Then u∗h gives a horizontal isomorphism of ML′ to the module with trivial relative
connection g∗s∗ML′ , defined over L′. Now take Gal(L′/L) invariants to get a basis of
horizontal sections of M .

Let us also notice that remark 5.10 implies that in lemma 5.9 one could reduce to the
case where (M,D) is trivial and then prove the lemma by elementary calculations.

5.3 Lifts of Frobenius

Recall X −→ S is a family of curves over the wide open unit disk and E is an F-isocrystal
on C. We have defined a Frobenius ϕ : S −→ S over the absolute Frobenius σ on Spec(K0)
in section 2.1 and E comes equipped with an isomorphism of isocrystals on C

F : F
∗
(E) −→ E

where F is the Frobenius on C over the absolute Frobenius σ on Spf(W ).

Using F we have defined a Frobenius operator Φ1 : ϕ∗H1 −→ H1 in section 2.1. Let
f := [k : Fp]. We will give an explicit description of the ”linearized Frobenius”, Φf

1 using
“local lifts of Frobenius” to X.

Recall, from section 3.2, the admissible cover of X, C ′ = {Tv, Ae}v∈v(G),e∈e(G). We intend
to construct local lifts of F , so we will need to refine this cover in two ways. First let L be
a finite, non-trivial, totally ramified extension of K0 and B1 = BL the affinoid disk around
0 of radius |πL|, where πL is some uniformizer of L. Let B2 be the affinoid disk around

0 of radius |πp
f

L |, where f = [k : F]. Then ψ = ϕf⊗K0 idL, maps B1 to B2. Similarly, let
F
∗
k(E) denote the isocrystal on C defined by: F

∗
k(E)(T,zT ) = E(T,Fk◦zT ), where let us recall

that F k = F
f

is the Frobenius endomorphism over k of C, and by Fk : (F k)
∗(E) −→ E

the f -iterate of F .

For the rest of this chapter we use the following notations: for every v ∈ v(G), i = 1, 2 let
Zi
v := Zv ×S Bi, UBi,v := Uv ×S Bi, Aie := Ae ×S Bi.

We have

Proposition 5.11. a) For every v ∈ v(G) there exist wide open strict neighbourhoods
U i
v ⊂ UBi,v of Zi

v over Bi and a rigid morphism φv : U1
v −→ U2

v over ψ, i.e. such that the
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following diagram commutes

U1
v

φv−→ U2
v

↓ ↓
B1 ψ−→ B2

b) The morphism φv at a) is a lift of Frobenius i.e. the following diagram commutes

U1
v ↪→ X

red−→ C

φv ↓ F
f ↓

U2
v ↪→ X

red−→ C

Proof. For i = 1, 2 let W i
v denote wide open strict neighbourhoods of Zi

v in UBi,v such
that there exist isomorphisms of rigid spaces over Bi (see proposition 3.18)

αiv : W i
v
∼= W i

v,0 ×Bi,

whereW i
v,0 is the fiber at s = 0 ∈ Bi ofW i

v. ThenW i
v,0 is a wide open strict neighbourhood

of Zv,0 in Uv,0. As Zv,0 =]C
0

v[X0 , as in the discussion after the proof of lemma 5.6 let A be a

smooth OL-algebra of finite type such that Spec(A) is a lifting of C
0

v. We identify A† with
a sub OL-algebra of the ring of rigid functions on Zv,0 and let Φv : A† −→ A† be a lifting

of F
f

: Cv −→ Cv. We may choose strict affinoid neighbourhoods T i of Zv,0 in W i
v,0 such

that Φv(T
1) ⊂ T 2

v . As in the proof of proposition 3.18 define wide open neighbourhoods
U i
v,0 of Zi

v,0 in W i
v,0 over Bi such that Φv(U

1
v,0) ⊂ U2

v,0. For later use let us remark that
we may choose U2

v,0 such that U2
v,0−Zv,0 is a disjoint union of wide open annuli. Let now

U i
v := (αiv)

−1(U i
v,0 ×Bi) and φv : U1

v −→ U2
v the morphism φv = α2

v ◦ (Φv, ψ) ◦ (α1
v)
−1. By

definition we have the commutative diagram

U1
v

φv−→ U2
v

α1 ↓ ↓ α2

U1
v,0 ×B1 (Φv ,ψ)−→ U2

v,0 ×B2

compatible with the projections to B1 respectively B2. The conclusion follows.

We now give a general definition of a ”lifting of Frobenius” and some of its properties.

(1) For two admissible opens U i ⊂ XBi , i = 1, 2, we say that an L-morphism φ : U1 −→ U2

is a lifting of Frobenius over ψ : B1 −→ B2 if the following two natural diagrams commute

U1 φ−→ U2

↓ ↓
B1 ψ−→ B2
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and
U1 ↪→ XB1

red−→ (XB1)1 = C × A1
k

φ ↓ F f ↓
U2 ↪→ XB2

red−→ (XB2)1 = C × A1
k

Let us recall that in the second diagram Bi denote the natural formal models of Bi defined
in section §3.1.2 and (XBi)1 the closed sub-schemes of XBi defined by the ideals πLOXBi

,

for i = 1, 2. F denotes the absolute Frobenius of C × A1
k.

The commutativity of the above two diagrams is equivalent to the commutativity of the
diagram:

U1 ↪→ X
red−→ C

φ ↓ F
f ↓

U2 ↪→ X
red−→ C

(2) For any lifting of Frobenius φ : U1 −→ U2, we have a canonical horizontal isomorphism
Fφ : φ∗(EX|U1) ∼= EX|U2 . Here EX denotes the evaluation of the F -isocrystal E on the (wide
open) enlargement X of C.

Proof. First let us assume that U1, U2 are affinoids. Let U1,U2 be the canonical formal
models of U1, U2 constructed as in lemma 3.1 using the p-adic formal models XB1 ,XB2 over
OL. Moreover the commutative diagram in (1) above and the remarks after the proof of
lemma 3.1 provide a morphism ϕ : U1 −→ U2 whose generic fiber is φ and which induces

F
f

in the special fiber. Now EX|U1 , φ∗(EX|U2) are in fact isomorphic to the evaluations of

E , respectively of (F
f
)∗(E) on the enlargement U1. Now the definition of the F -isocrystal

E provides the Fφ.

In general, choose an admissible affinoid covering of U2 and an admissible affinoid covering
of U1 which refines the inverse image under φ of the covering of U2. The functorially of
the construction in lemma 3.1 imply that the local Fφ’s glue.

(3) If φ, φ′ : U1 −→ U2 are two liftings of Frobenius there is a canonical horizontal
isomorphism χφ ,φ′ : φ∗(EX|U2) −→ φ

′∗(EX|U2) compatible with Fφ, Fφ′ . For three liftings,
they satisfy the cocycle condition.

Proof. This follows from the fact that φ∗(EX|U2) is canonically isomorphic to the evaluation

of (F
f
)∗(E) on the enlargement U1 defined in the proof of (2) above and again from the

properties of F -isocrystals.

Let U i
v, i = 1, 2, v ∈ v(G) denote admissible open subsets of XBi over Bi whose prop-

erties were proved in proposition 5.11. In fact we will choose the U i
v’s as in the proof of

proposition 5.11 i.e. such that for every v ∈ v(G), i = 1, 2 there are isomorphisms of rigid
spaces over Bi: αiv : U i

v
∼= U i

v,0 × Bi where U i
v,0 are the fibers of U i

v at s = 0 and they are
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wide open strict neighbourhoods of Zv,0 in W i
v,0. Moreover, U2

v,0 −Zv,0 is a disjoint union
of wide open annuli.

Let us note that Ci = {U i
v, A

i
e}v∈v(G),e∈e(G) where i = 1, 2 are admissible covers of XBi by

acyclic, admissible open subsets. For every e ∈ e(G) we have morphisms φe : A1
e −→ A2

e,

over ψ : B1 −→ B2 defined by φe(xe) = xp
f

e and φe(xτ(e)) = xp
f

τ(e).

Let Fv, Fe denote the Frobenii provided by (2) above.

Fv : φ∗v(EX |U2
v
) −→ EX |U1

v
for all v

and respectively
Fe : φ∗e(EX |A2

e
) −→ EX |A1

e
for all e.

The description of the Frobenius Φf
1 : ψ∗HB2 −→ HB1

We can now give the description of the Frobenius operator. Let Ci = {U i
v, A

i
e}v∈v(G),e∈e(G)

be the respective open covers of XBi .

Recall, E is an F-isocrystal on C and let Fv, Fe be as above. Let

ω ∈ HB2 = H1
dR(XB2/B2, EX(log(Y )))

be represented by the hypercocycle with respect to C2:(
(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (f e)e∈e(G)

)
.

Now we define a hypercocycle of the relative de Rham complex of EX with respect to C1

whose cohomology class in HB1 represents Φf
1(ψ

∗ω).

Let us remark that for e ∈ e(G) we have (see the proof of proposition 5.11)

U2
a(e) ∩ A2

e = (U2
v,0 ∩ A2

e,0)×B2 = {|a| < |xe,0| < 1} ×B2,

where xe,0 is the restriction of xe to Ae,0 and a ∈ L is such that |πp
f

L | < |a| < 1. Thus
the rigid space An := U2

a(e) ∩ A2
e is a family of annuli over the affinoid Z = B2 and

we may apply lemma 5.9 to the sheaf with relative connection (EX|An, DXB2/B2). We let

∆̃(U2
a(e)
∩A2

e)/B2 denote the neighbourhood of the relative diagonal in An×B2 An defined in

that lemma. There exists a unique section εe ∈ EX(∆̃(U2
a(e)
∩A2

e)/B2) such that

π∗1DXB2/B2(εe) = π∗1(ωa(e)|∆̃
U2

a(e)
∩A2

e/B2
)− π∗2(ωa(e)|∆̃

U2
a(e)

∩A2
e/B2

),

and whose restriction to the diagonal vanishes.
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Let us define

νv = Fv(φ
∗
v(ωv)), νe = Fe(φ

∗
e(ωe)) he = ∆∗(Fa(e) ◦ φ∗a(e), Fe ◦ φ∗e)(εe) + Fe(φ

∗
e(fe)),

he := ∆∗(Fb(e) ◦ φ∗b(e), Fe ◦ φ∗e)(εe) + Fe(φ
∗
e(f e)).

Then the collection
(
(νv)v∈v(G), (νe)e∈e(G), (he)e∈e(G), (he)e∈e(G)

)
is a hypercocycle for the

relative logarithmic de Rham complex of EX on XB1/B1 with respect to the covering C1.
Its cohomology class depends only on ω and is equal to Φf

1(ω).

To see this let us recall the notations and results of section 3.4.3. Namely let us recall
that we denoted X×× the formal scheme X with log structure given by the divisor Y ,
let S× denote the formal scheme S = Spf(W [[t]]) with log structure given by the divisor

t = 0 and let C
××

denote the scheme C with inverse image log structure from X××. If
for e ∈ e(G) we denote also by e the singular point of C corresponding to the edge e we

have
(
(X××)/e

)rig
= Ae and(

(X×× ×S× X××)/e
)rig ×S B2 ∼= ∆̃(U2

a(e)
∩A2

e)/B2 .

Clearly, under the identification of

H1
dR(X/S, EX(log(Y )) ∼= H1

cris(C
××
/S×, E),

in section 3.4.3, after restricting to B1, B2 respectively, the image of the linearized crys-
talline Frobenius Φf is exactly the one defined above in terms of hypercocycles.

Remark 5.12. Let us recall from section 2.1 that Φ induces Φdeg on H1(Y, E) and that
it is horizontal with respect to the connection, i.e. we have

(Φ ◦ ϕ∗) ◦ ∇ = ∇ ◦ Φ.

Here we have dropped the index (respectively upper index) 1 from the notation. Therefore
we also have

(Φf ◦ φ∗) ◦ ∇ = ∇ ◦ Φf .

5.4 Integration

The theory of p-adic integration of convergent F-isocrystals on curves is the generalization
of that developed by the first author in [C1] (see also [C4].) For the convenience of
the reader we will briefly review the theory in what follows and prove the necessary
generalizations.

Let us go back to the notations of section §5.2, i.e. let s ∈ S, Xs is the fiber of X
over s defined over L and let us fix v ∈ v(G). Let us consider the pair (U,Z), where
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U = Uv,s, Z = Zv,s. Let us recall that Z is an affinoid over L with good reduction and
U is a wide open neighbourhood of Z in Xs such that U − Z is a disjoint union of wide
open annuli.

Let (M,D) be a convergent F -isocrystal on (U,Z). An admissible open subset T of U will
be called a residue class of (U,Z) if T is a residue class of Z or a connected component of
U−Z. Lemma 5.6 implies that the restriction of (M,D) to every residue class of (U,Z) is
trivial. We now define the sheaf Mflog with connection Dflog on U , as follows: we choose
a branch log of the p-adic logarithm on L∗ and define for an admissible open V of U

Mflog(V ) =
∏
T

M(VT )⊗OVT
OU(VT )[log(f)]f∈OU (VT )×

where T runs over the residue classes of (U,Z) and VT = V ∩ T . Here, for every V
and T as above OU(VT )[log(f)]f∈OU (VT )× is the sub-ring of the ring of locally analytic
functions on VT generated by OU(VT ) and the functions log(f) for f ∈ OU(V )×. The
connection extends naturally to this sheaf. Let Ω•U(M◦) be the naturally induced de
Rham complex of sheaves on U , where ◦ = nothing or flog. Here we have denoted by
Ωi
U(M◦) := Ωi

U ⊗OU
M◦ for i = 0, 1. Let (M◦)† denote the pullback of M◦ to Z† and

let H i(M◦, D) := Hi(Ω•U((M◦)†)). Suppose φ is a lifting of Frobenius to Z† as in section
5.2. Then as explained in [C1, §7] φ induces endomorphisms (ϕi)◦ of H i(M◦, D) (morally,
(φi)◦ = Fφ ◦ φ∗).

Note that H1(Mflog, Dflog) = 0. We have

Theorem 5.13. Let ω ∈ Ω1
U(M)(U). We denote by [ω] its image in H1(M,D). Suppose

that there is a polynomial G(t) with coefficients in L such that
(a) G(φ1)([ω]) = 0 and (b) G((φ0)flog) is an isomorphism.
Then there exists a section u of Mflog(U), unique up to a horizontal section of M on U
such that
i) D(u) = ω
ii) G(Fφ ◦ φ∗)(u|X†) is overconvergent on X.
Moreover, u does not depend on the choice of φ or G(t).

The existence and uniqueness is, up to notation, Theorem 7.4 of [C1] (the notion of
regular singular annuli is subsumed by Lemma 5.1). The independence follows from the
fact that the map (φi)◦ does not depend on the choice of φ and we may choose for G(t) the
minimal polynomial of φ1 acting on the finite dimensional space spanned by the classes
of the images of ω, Fφ ◦ φ∗ω, (Fφ ◦ φ∗)2ω, . . . in H1(M,D).

5.5 The proof of the equality of the Frobenius operators

Definition 5.14. We say that the F-isocrystal E on C is regular if for every vertex

v ∈ v(G) the characteristic polynomials of Frobenius on H0
cris(x, E) and H1

cris(C
××
v , E) are
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relatively prime for all closed points ix : x −→ Cv. We have denoted, as in section §5.1
by Cv the irreducible component of C corresponding to v and by C

××
v the log scheme Cv

with log structures given by the divisor Singv

We have

Lemma 5.15. Let C be the curve over V with semi-stable reduction introduced in section
§1, let g : T −→ C be a smooth proper morphism and let us consider the F -isocrystal on
C, Hi := Rig∗,cris(OT ). Then Symj(Hi) is a regular F -isocrystal for i, j ≥ 0.

Proof. Let T̄ denote the special fiber of T and let T̄v be the pull back of T̄ −→ C by
Cv ⊂ C.

The Leray spectral sequence for log crystalline cohomology for the relative situation gv :
T̄v −→ Cv with log structures on Cv given by Singv and on T̄v given by the fiber above
Singv, reads

Ei,j
2 = H i

cris(C
××
v , Rjgv,cris,∗(OT̄v

)) =⇒ H i+j
cris (T̄ ××v ,Qp).

Let us first remark that Hj
v = Rjgv,cris,∗(OT̄v

) is the pull back of Hj by the inclusion
Cv ↪→ C.

As Cv is a smooth proper curve over k let us also remark that Ei,j
2 = 0 unless 0 ≤ i ≤ 2.

This implies that the differential d2 : E1,j
2 −→ E3,j−1

2 vanishes as well as the differential
d2 whose target is E1,j

2 for all j ≥ 0. Therefore E1,j
3 = E1,j

2 for all j ≥ 0 and the spectral
sequence collapses at E3. Therefore, for n ≥ 0 the K0-vector space with Frobenius
Hn+1 = Hn+1

cris (T̄ ××v ,Qp) has a filtration 0 ⊂ F 1 ⊂ F 2 ⊂ Hn+1 where F 1, F 2 have the

property that F 2/F 1 ∼= E1,n
3 . By the comment above it follows that H1

cris(C
××
v ,Hn) is a

quotient, as K0-vector space with Frobenius, of a subspace, F 2 of Hn+1.

By the main result of [L-T] Hn+1
cris (Z

××
v ,Qp) ∼= Hn+1

rig (Zv − Singv,Qp) and by [Ch] the
weights of Frobenius on the last K0-vector space are larger or equal to (n+1)/2. It follows

that the weights of Frobenius on H1
cris(C

××
v ,Hn)) are also larger or equal to (n+ 1)/2.

On the other hand, for any point x of Cv, using the Riemann hypothesis on the smooth
scheme Zx := g−1

v (x), the weights of Frobenius on H0
cris(x, i

∗
xHn) ∼= Hn

cris(Zx,Qp) are all

equal to n/2. Thus the characteristic polynomials of Frobenius on H1
cris(C

××
v ,Hn)) and

H0
cris(x,Hn) are relatively prime for all closed points x of C. The statement for Symj(Hi)

follows by the same type of arguments.

For the rest of this chapter we assume E is regular. Let us now, as in the previous
section, extend scalars to a finite, non-trivial, totally ramified extension L of K and let
B = BL ⊂ S be the affinoid disk of lemma 3.17. Let us recall proposition 3.18 which
asserts that for all v ∈ v(G) there is a wide open neighbourhood Wv of Zv,B in Uv,B over
B and an isomorphism over B

αv,0 : Wv −→ B ×Wv,0,
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where Wv,0 is the fiber of Wv at 0 ∈ B. Let us denote by fB : XB −→ B the restriction
of our family of curves to B. Let us now fix v and denote α := αv,0, W0 := Wv,0. Let
β : Wv −→ W0 be π2 ◦ α and j : W0 −→ Wv be defined by j(w) = α−1(0, w). Let EX

and EY , denote the evaluations of E on X and Y respectively, where let us recall that
Y := X×S Spf(W ) and the morphism Spf(W ) −→ S is given by t −→ 0. EX and EY are
coherent sheaves with connections on X = Xrig and respectively Y = Yrig. Denote also by
(Ev, Dv), (E0, D0) the restrictions of the sheaves with connections (EX, DX/S) and (EY , DY )
to Wv and respectively W0. The isomorphism α induces the vertical isomorphisms in the
following commutative diagram

Ev
Dv−→ Ev ⊗OWv

Ω1
Wv/B

↓∼= ↓∼=
E0 ⊗L OB

D0⊗idB−→ E0 ⊗OW0
Ω1
W0/L

This implies

Lemma 5.16. a) The L-vector space H1
dR(W0/L, E0) is finitely generated.

b) We have a natural isomorphism of sheaves on B induced by α: H1
dR(Wv/B, Ev) ∼=

H1
dR(W0/L, E0)⊗L OB.

Proof. a) is a consequence of lemma 5.2 and b) follows from the above commutative
diagram.

Let us fix ω1, ω2, ..., ωn global sections of E0⊗OW0
Ω1
W0/L

whose cohomology classes [ω1], ..., [ωn]

form an L-basis of H1
dR(W0/L, E0). Let now ω be a global section of Ev ⊗OWv

Ω1
Wv/B

and

denote by [ω] ∈ H1
dR(Wv/B, Ev)(B) its cohomology class. Then [ω] =

∑n
i=1 ai[ωi] for

ai ∈ OB(B), i = 1, n and therefore we have

ω =
n∑
i=1

aiωi +Dv(f) for some f ∈ Ev(Wv).

Let us fix λ1, λ2, ..., λn ∈ Eflog
0 (W0) p-adic integrals of ω1, ..., ωn (see section 5.4.)

We denote by λω :=
∑n

i=1 aiλi + f ∈ (Eflog
0 ⊗L OB)(Wv) and call it a p-adic integral of ω.

It is well defined up to an element of Ev(Wv)
Dv .

We have the following,

Lemma 5.17. a) With the notations above, λω is a family of p-adic integrals of ω, i.e.

i) Dv(λω) = ω

and
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ii) for every s ∈ B, λω|Wv,s is a p-adic integral of ω|Wv,s.
b) If ω is the natural lift of ω to Ev ⊗OWv

Ω1
Wv/L

(log(W0)) defined in section 4.2, and η is

defined by the equality DWv/L(ω) = η ∧ dy, then

ω −DWv/L(λω) = ληdy.

Proof. a) is clear and for b) let us write

ω =
n∑
i=1

ai(y)ωi +Dv(f),

where ai(y) ∈ OB(B), f ∈ Ev(Wv) and the ωi’s have been defined above. Then we have

ω =
n∑
i=1

ai(y)ωi +DWv/L(f)

and therefore η = −
∑n

i=1 a
′
i(y)ωi and

ω −DWv/L(λω) = −(
n∑
i=1

a′i(y)λi)dy = ληdy.

Let us choose now for the rest of this section the branch of the logarithm on C×p such that
log(πL) = 0.

We will give a general definition: let Z be a rigid space over L and let α : M −→ OZ be
an integral log structure, where M is a sheaf of monoids.

Then if W ⊂ Z is an admissible open subspace which is Stein we define OZ(W )log to be
the polynomial ring OZ(W )[`(m)]m∈M(W ), where `(m) are independent variables, divided
by the relations: `(m1m2) = `(m1) + `(m2) and `(m) = log(α(m)) if α(m) ∈ OZ(W )×.

The natural derivation d : OZ(W ) −→ Ω1
W/L extends canonically to a derivation d :

OZ(W )log −→ Ω1
W/L(log(M)) by defining d(`(m)) = d(α(m))/α(m) for m ∈M(W ).

In particular, let us consider the log structure on B given by the divisor 0 ∈ B and choose
a parameter y ∈ OB(B) at 0. Then it is easy to see that OB(B)log = OB(B)[`(y)] and we
have d(`(y)) = dy/y.

Let e ∈ e(G) and we denote in this section by Ae := Ae,B and by A0 := Ae,0 the fiber
of Ae at 0 ∈ B. If we consider on Ae the log structure given by the divisor over B
with normal crossings A0, we see that OAe(Ae)log = OAe(Ae)[`(xe), `(xτ(e))] with unique
relation `(xe)+`(xτ(e)) = `(y). We have dAe/B(`(xe)) = dAe/B(xe)/xe and dAe/B(`(xτ(e))) =
dAe/B(xτ(e))/xτ(e).
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We also denote by (Ee, De) the restriction of the sheaf with connection (EX, DX/S) to Ae.
Let ω be a global section of the sheaf Ee ⊗OAe

Ω1
Ae/B

(logA0)) and denote by ε1, ..., εα a

basis of horizontal sections of (Ee, De). Then using lemma 4.8 we can write

(∗) ω =
α∑
i=1

εi ⊗ ri(y)
dAe/B(xe)

xe
+De(ue),

where ri(y) ∈ OB(B) and ue ∈ Ee(Ae).

We set

λω :=
α∑
i=1

εi ⊗ ri(y)`(xe) + ue ∈ Ee,log := Ee(Ae)⊗OAe (Ae) OAe(Ae)log.

Lemma 5.18. We have:
a) With the notations above λω is a family of p-adic integrals of ω in the sense that

i) De(λω) = ω

and

ii) λω is an element of Ee,log well defined up to an element of of Ee(Ae)De [`(y)] := E(Ae)De⊗OB(B)

OB(B)[`(y)].
b) Let ω̃ denote the lift of ω to absolute one-forms as in section 4.2 and let η be defined
by the equality DAe/L(ω̃) = η ∧ dy. Then ω̃ −DAe/L(λω) = ληdy.

Proof. Part i) of a) is clear and for part ii) let us remark that (Ee,log)De = E(Ae)De [`(y)].
For b) let us notice that

DAe/L(ω̃) = −
α∑
i=1

εi ⊗ r′i(y)
dAe/L(xe)

xe
∧ dy,

and clearly

ω̃ −DAe/L(λω) = −(
α∑
i=1

εi ⊗ r′(y)`(xe))dy = ληdy.

Now we will use the p-adic integration discussed above in order to describe the Frobenius
operator on HB. Let us remark that the collection C ′′B = {Wv, Ae}v∈v(G),e∈e(G) is an
admissible cover of XB by admissible, acyclic, wide open subsets over B. We will define
an OB-linear map,

sB : HB −→ H1,0(C ′′B, E)log := H1,0(C ′′B, E)⊗OB(B) OB(B)[`(y)]
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as follows: let ω ∈ HB be represented by the hypercocycle with respect to the covering
C ′′B (

(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (f e)e∈e(G)

)
.

where let us recall: ωv ∈ (Ev ⊗OWv
Ω1
Wv/B

)(Wv), ωe ∈ (Ee ⊗OAe
Ω1
Ae/B

(log(A0))(Ae),

fe ∈ Ee(Wa(e) ∩ Ae) and f e ∈ Ee(Wb(e) ∩ Ae) satisfying the usual cocycle conditions.

For every e ∈ e(G), let sB(ω)e be the section:

fe − (λωa(e)
|Wa(e)∩Ae − λωe|Wa(e)∩Ae),

and similarly let (sB(ω))e be the section

f e − (λωb(e)
|Wb(e)∩Ae − λωe|Wb(e)∩Ae).

Lemma 5.19. For every e ∈ e(G) and ω ∈ HB,
(
sB(ω)e, (sB(ω))e

)
∈ EDe

e (Wa(e) ∩
Ae)[`(y)]⊕ EDe

e (Wb(e) ∩ Ae)[`(y)].

Proof. We will only prove that sB(ω) ∈ EDe(Wa(e) ∩ Ae)[`(y)], and leave the remaining
similar argument to the reader. The isomorphism αa(e),0 induces an isomorphism

α : Wa(e) ∩ Ae ∼= B × U0,

where U0 is the annulus Wa(e),0 ∩ Ae,0. Let πi for i = 1, 2 be the projections of B × U0

composed with α and denote by x0 := π∗2(xe|Wa(e)∩Ae). Then x0 is a parameter of U0 (see
the beginning of section 4.) If we write ωe as in formula (∗) before lemma 5.18 and use
the isomorphism α above, we may integrate ωe|Wa(e)∩Ae by the recipe outlined in lemma
5.17. Let us denote this integral by λ. We have

sB(ω)e = fe − (λωa(e)
|Wa(e)∩Ae − λ+ λ− λωe|Wa(e)∩Ae).

First let us first remark that x0 ∈ OU0(U0)
× therefore `(x0) = log(x0) and that

OU0 [log(f)]f∈O×U0

= OU0 [log(x0)].

Indeed every element f ∈ OU0(U0)
× can be written f = axn0g, with a ∈ L×, n ∈ Z and

g ∈ OU0(U0) is such that |g−1| < 1. Therefore log(f) = log(a)+n log(x0)+log(g), where
log(g) ∈ OU0(U0).

As Wa(e)∩Ae is contained in the residue class Ae of XB, (Ee, De) has a basis of horizontal
sections on Wa(e) ∩ Ae and so we have(

Ee((Wa(e) ∩ Ae))[log(x0)]
)De

= Ee((Wa(e) ∩ Ae))De .

This implies that fe − λωa(e)
|Wa(e)∩Ae + λ ∈ EAe(Wa(e) ∩ Ae)[`(y)].

Let us remark that x0 = uxe, where u ∈ OAe(Wa(e) ∩Ae)∗ such that log(u) is an analytic
function on Wa(e) ∩ Ae. Therefore lemma 5.18 shows that λ − λωe|Wa(e)∩Ae ∈ Ee(Wa(e) ∩
Ae)[`(y)]. Now the fact that De(sB(ω)e) = 0 implies the lemma.
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For every ω ∈ HB denote by sB(ω) the class of the cocycle (sB(ω)e, sB(ω)e)e∈e(G) in
H1,0(C ′′B, E)log and by sB : HB −→ H1,0(C ′′B, E)log the respective OB-linear homomorphism.
Composing sB with the inclusion H1,0(C ′′B, E)log −→ HB,log obtained from (2), we may
think of sB as an OB-linear map from HB to HB,log. We have,

Theorem 5.20. a) sB : HB −→ H1,0(C ′′B, E)log is a section of the inclusion of H1,0(C ′′B, E)log

into HB,log..
b) For every u ∈ B∗ = B−{0}, the fiber sB,u of sB at u coincides with the map su defined
in section 2.2.
c) We have (sB ⊗ 1) ◦ ∇ = ∇ ◦ sB.
d) Let B1 and B2 as in section 5.3. We have Φf ◦ sB1 = sB2 ◦ Φf .

Proof. a) Let x ∈ H1,0(C ′′B, E) be represented by the cocycle
(
(fe), (f e)

)
e∈e(G)

. Then the

image of x in HB is the class of the hypercocycle:
(
(0v)v∈v(G), (0e)e∈e(G), (fe)e∈e(G), (f e)e∈e(G)

)
and clearly the image of this class under sB is x.

For b) if u ∈ B∗ we denote C ′′u = {Wv,u, Ae,u} the intersection of the cover C ′′B with the
fiber Xu. Let Cu = {Uv,u}v∈v(G) denote the wide open cover of Xu described in section 2.2.
We denote by Eu the restriction of EX to the fiber Xu. We have the following diagram

H1
dR(Xu, Eu)

sB,u−→ H1,0(C ′′u, Eu)
|| ↓∼=

H1
dR(Xu, Eu)

su−→ H1,0(Cu, Eu)

where the right vertical isomorphism is the one defined in section §3.5.4. Lemma 3.34
implies that the diagram is commutative and this proves b).

Let us now prove c). Let ω ∈ HB and let(
(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (f e)e∈e(G)

)
be a hypercocycle with respect to the covering C ′′B representing the class ω. Let ωv and
ω̃e be the lifts of ωv and ωe respectively to absolute one-forms defined in section §4.2. Let
DXB/Lωv = ηv ∧ dy, DXB/Lω̃e = ηe ∧ dy, ωa(e)|Wa(e)∩Ae − ω̃e|Wa(e)∩Ae − DXB/L(fe) = gedy

and ωb(e)|Wb(e)∩Ae − ω̃e|Wb(e)−Ae) − DXB/L(f e) = gedy for ηv, ηe, ge and ge global sections

of Ev ⊗ Ω1
Wv/B

(logW0), Ee ⊗ Ω1
Ae/B

(logA0), Ea(e)|Wa(e)∩Ae Eb(e)|Wb(e)∩Ae respectively. Then

(sB ⊗ 1)(∇ω), as an element of HB,log ⊗ dy, is represented by the hypercocycle(
(0v)v∈v(G), (0e)e∈e(G), (ge − (ληa(e)

|Wa(e)∩Ae − ληe|Wa(e)∩Ae))e∈e(G),

(ge − (ληb(e)
|Wb(e)∩Ae − ληe|Wb(e)∩Ae))e∈e(G)

)
⊗ dy.

On the other hand ∇(sB(ω)) is represented by the hypercocycle(
(0v)v∈v(G), (0e)e∈e(G), (−DXB/L(fe) +DXB/Lλωa(e)

|Wa(e)∩Ae −DXB/Lλωe|Wa(e)∩Ae)e∈e(G),
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(−DXB/L(f e) +DXB/Lλωb(e)
|Wb(e)∩Ae −DXB/Lλωe|Wb(e)∩Ae)e∈e(G)

)
⊗ dy.

A calculation using the lemmas 5.17 and 5.18 shows that the two hypercocycles are co-
homologous.

Now we prove d). For this let us recall the notations B1, B2 and the expression of Φf at
the end of section 5.3. Let U i

v, i = 1, 2 and v ∈ v(G) denote admissible wide open subsets
of XBi satisfying the properties of proposition 5.10 and the additional property that there
are isomorphisms αv,i : U i

v
∼= U i

v,0 × Bi. As in section §5.3 we consider the admissible
covers Ci = {U i

v, A
i
e} of XBi . Let the class ω ∈ HB2 be represented by the hypercocycle

for the covering C2 (
(ωv)v∈v(G), (ωe)e∈e(G), (fe)e∈e(G), (f e)e∈e(G)

)
.

Then sB2(ω) is represented by the hypercocycle(
(0v)v∈v(G), (0e)e∈e(G), (ge)e∈e(G), (ge)e∈e(G)

)
where ge = fe − (λωa(e)

|U2
a(e)
∩A2

e
− λωe|U2

a(e)
∩A2

e
) and ge = f e − (λωb(e)

|U2
b(e)
∩A2

e
− λωe|U2

b(e)
∩A2

e
).

Then Φf (sB2(ω)) is represented by(
(0v)v∈v(G), (0e)e∈e(G), (Fe(φ

∗
e(ge)))e∈e(G), (Fe(φ

∗
e(ge)))e∈e(G)

)
.

Let us recall from the end of the section §5.3 that Φf (ω) is represented by the hypercocycle(
(νv)v∈v(G), (νe)e∈e(G), (he)e∈e(G), (he)e∈e(G)

)
where νv, νe, he, he are defined there.

Therefore, sB1(Φf (ω)) is represented by(
(0v)v∈v(G), (0e)e∈e(G), (xe)e∈e(G), (xe)e∈e(G)

)
with (see the end of section §5.3)

xe = he − (λνa(e)
|U1

a(e)
∩A1

e
− λνe|U1

a(e)
∩A1

e
) =

= ∆∗(Fa(e)◦φ∗a(e), Fe◦φe)(εe)+Fe(φ∗e(fe))−(Fa(e)(φ
∗
a(e)(λωa(e)

))|U1
a(e)
∩A1

e
−Fe(φ∗e(λωe))|U1

a(e)
∩A1

e
).

Now we use the fact that εe = π∗1(λωa(e)
|U2

a(e)
∩A2

e
)− π∗2(λωe|U2

a(e)
∩Ae

) and obtain

xe = Fe(φ
∗
e(fe − λωa(e)

|U2
a(e)
∩A2

e
+ λωe|U2

a(e)
∩A2

e
)).

Similarly
xe = ge − (λνb(e)

|U1
b(e)
∩A1

e
− λνe|U1

b(e)
∩A1

e
) =

= Fe(φ
∗
e(f e − λωb(e)

|U2
b(e)
∩A2

e
+ λωe|U2

b(e)
∩A2

e
)).

This ends the proof of Theorem 5.20.

69



Now we can finish the proof of Theorem 2.6 i.e. we prove that Φdeg and Φint get
identified by parallel transport. We have exact sequences

0 −→ H1,0(C)⊗K0 L −→ H1(C, E)⊗K L −→ H0,1(C)⊗K0 L −→ 0

and
0 −→ H1,0(C ′′0 , E0) −→ H1(Y, E0) −→ H0,1(C ′′0 , E0) −→ 0.

Proposition 3.35 implies that under the parallel transport isomorphism H1(Y, E0)⊗K0L
∼=

H1(C, E)⊗K L, H1,0(C) gets identified with H1,0(C ′′0 , E0) and H0,1(C) gets identified with
H0,1(C ′′0 , E0). Moreover these last two isomorphisms commute with the respective Frobenii.
We’ll first show that (Φdeg)f corresponds to (Φint)f . Let us parallel transport (Φdeg)f to
H1(C, E)⊗K0 L and let us denote by Φπ

deg this endomorphism, i.e., if ω ∈ (Hlog)
∇, we have

seen that (Φf (ω))0 = (Φdeg)f (ω0) and as Φ(ω) ∈ (Hlog)
∇ we set Φπ

deg(ωπ) = (Φf (ω))π. We

have to show that Φπ
deg = (Φint)f and so far we know that (Φint)f and Φπ

deg coincide both

on the image of H1,0(C) and on the quotient H0,1(C) and sπ ◦ (Φint)f = F f
0,cris ◦ sπ. Using

Theorem 5.20 we have

sπ ◦ Φπ
deg = (sB2 ◦ Φf )π = (Φf ◦ sB1)π = F f

0,cris ◦ sπ.

This proves that Φπ
deg = (Φint)f . Moreover, since E is regular it follows that the char-

acteristic polynomials of F0,cris on H0,1(C) and of F1,cris on H1,0(C) are relatively prime.
Thus both exact sequences above have natural Frobenii equivariant splittings and as
Φπ

deg = (Φint)f , the splittings coincide under parallel transport. But the splitting pro-

duced by (Φint)f is sπ, therefore we immediately deduce that H1(C, E)int and H1(Y, E0)
become identified by parallel transport and the same is true for Φint and Φdeg. This
completes the proof of Theorem 2.6.

6 Logarithmic F-isocrystals

We start by defining the main objects of this section, the log F-isocrystals.

Let C be our semi-stable curve over V , let P be a finite set of smooth sections of C
and C× the corresponding log scheme. Let P be the special fiber of P . Then P is a

smooth divisor of C and we denote, to the end of this section, by C
×

the corresponding
log scheme.

Definition 6.1. A logarithmic enlargement of C
×

is a pair (T×, zT ) consisting of a formal

log scheme T× and a morphism of log schemes zT : T×0 → C
×
. If (U×, zU) and (T×, zT ) are

two log enlargements of C
×

then a morphism of log enlargements g : (U×, zU)→ (T×, zT )
is a morphism of formal log schemes g : U× → T× such that zT ◦ g0 = zU .
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Definition 6.2. A log isocrystal E on C
×

is the following set of data

i) for every log enlargement (T×, zT ) of C
×

a coherent K0⊗W OT -module E(T×,zT ) (some-
times in what follows we will use the shorthand notation ET×.)

ii) for every morphism of enlargements g = (f, h) : (U×, zU) −→ (T×, zT ) an isomorphism
of K0 ⊗U OW -modules θg : f−1ET −→ EU . The collection {θg} is required to satisfy the
cocycle condition.

Remark 6.3. If E is a log isocrystal on C
×

and (T×, zT ) is a log enlargement of C
×

such
that the formal scheme T is locally Noetherian then one may interpret ET× as a coherent
sheaf on T rig, the rigid analytic space associated to T . Moreover, applying the results in
§6 of [Ka] one sees that ET is endowed with an integrable connection

DT : ET× −→ E×T ⊗OT
ωT×/W× ,

where T× = (T,MT×) and W× is the formal scheme Spf(W ) with the trivial log structure.

Let now k× denote the scheme Spec(k) with trivial log-structure and let W× be the
formal log scheme Spf(W ) with trivial log structure. We denote by σ be the absolute
Frobenius on k× and on W×, respectively. Let us recall that σ is the absolute Frobenius
on the respective schemes and multiplication by p on the respective monoids. Let now
f : A× −→ B× be a morphism of fine log schemes (or fine formal log schemes), where
B× is either k× or W×. We’ll denote by (A×)σ the fiber product in the category of log
schemes of the diagram

A×

↓
B×

σ−→ B×.

Let now B× be k×, then we denote by F = F(A×,k×) : A
× −→ (A×)σ the morphism induced

by the pair of maps: f : A× −→ k× and the map form A× to itself which is the identity
on the underlying topological space, is s→ sp on OA and is multiplication by p on MA. If

now, (T×, zT ) is a log enlargement of C
×

then (T×, F ◦ zT ) is a log enlargement of (C
×
)σ

and ((T×)σ
−1
, (F ◦ zT )σ

−1
) is again a log enlargement of C

×
. If E is a log isocrystal on C

×

then we will denote by F
∗E the log isocrystal on C

×
such that

F
∗E(T×,zT ) = E((T×)σ−1 ,(F◦zT )σ−1 ).

Definition 6.4. A log F-isocrystal on C
×

is a log isocrystal on C
×
, E, together with an

isomorphism of log isocrystals
F : F

∗E −→ E .

Let C be a curve over V as in section 2.1 and let P denote a finite collection of smooth
sections of C over V , such that their image in C is the collection P . By deformation
theory the pair (C,P ) may be regarded as the fiber at the point π of the formal model of
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the open unit disk S over W , of a pair (X,P) consisting of a family of curves X → S as
in section 2.1 and a smooth divisor P of X. We have a natural morphism of log schemes

zX : (X×P)0 → (C×P )0 = C
×

so may regard (X×, zX) (and any of its fibers above points

of S) as a log enlargement of C
×
. Let now E be a log F-isocrystal on C

×
. Denote by

X = Xrig the rigid analytic space attached to X and by PX the intersection of the divisor
P with X. Let us denote by EX× the evaluation of the log F-isocrystal E on (X×PX

, zX). It
is a coherent sheaf of OX-modules with an integrable connection

DX/K0 : EX× −→ EX× ⊗OX
Ω1
X/K0

(logPX).

Composing DX/K0 with the natural projections

EX×⊗OX
Ω1
X/K0

(logPX) −→ EX×⊗OX
Ω1
X/K0

(log(PX∪Y )) −→ EX×⊗OX
Ω1
X/S(log(PX∪Y ))

we get a relative integrable connection over S

DX/S : EX× −→ EX× ⊗OX
Ω1
X/S(log(PX ∪ Y )).

Remark 6.5. PX ∪ Y is a divisor of X with normal crossings and PX ∩ Y is a finite set
of smooth points of Y .

Let us consider now, as in section 2.1, Hi
P = H i

dR(X/S, EX×(log(PX ∪ Y ))), for i = 0, 1, 2
with its logarithmic connection

∇i : Hi
P −→ Hi

P ⊗OS
Ω1
S(log 0),

and its Frobenius Φi : ϕ
∗Hi

P → Hi
P . For every point s ∈ S let us denote by Ps the fiber

of PX above s and by Es = EX×|Xs . Then we have

a) if s ∈ S − {0} then H i(Cs, Ps, E) := Hi
P,s
∼= H i

dR(Xs, Es(log(Ps)))

b) if s = 0 then H i(Y, P0, E) := Hi
P,0
∼= H i

dR(Y ××/K0, E0), where let us recall Y ×× is
the log rigid space Y with inverse image log structure from the one on X induced by the
divisor PX ∪ Y .

Lemma 6.6. Let E be a log isocrystal on C
×
. Then (EX× ,DX/K0) has the property that for

every residue class M = red−1(x), with x ∈ C−P , of X, the OM -module with connection
(EX×|M ,DX/K0) has a basis of horizontal sections.

Definition 6.7. Let E be a log F-isocrystal on C
×
, and P a smooth divisor on C. We

say E is regular outside of P if for every vertex v ∈ v(G) and for every closed point

x ∈ Cv−P the characteristic polynomials of Frobenii on H0
cris(x, E) and H1

cris(C
××
v , E) are

relatively prime. Here Cv is the irreducible component of C corresponding to v and the

log structure on C
××
v is the one induced by the divisor (P ∩ Cv) ∪ Singv.

We have, similarly to lemma 5.15,
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Lemma 6.8. Let g : Z× −→ C× be a log smooth, flat and proper morphism, where the log
structure on Z× is given by the fibers of g at the points in P . If Hi := Rig∗,log−cris(OZ×),
the log F-isocrystal Symj(Hi) is regular outside of P , for i, j ≥ 0.

Proof. The proof is very similar to the proof of lemma 5.15.

6.1 Convergent log F-isocrystals

Fix a smooth divisor P of C. Suppose from now on that the log F-isocrystal E on C
×

is regular outside of P . We define FFM-modules H i
deg(E) via degeneration, as in section

2.1 and H i
int(E) via integration as in section 2.2, for i = 0, 1, 2. We only need to explain

how the ”integration splitting” s : H1(C,P, E) −→ H1(C,P, E) is defined. Recall that
this splitting is defined in section 2.2 in the case P is the void set.

We first need the notion of a convergent log F-isocrystal on a pair (U,Z) consisting of a one
dimensional wide open rigid space and an underlying affinoid with good reduction. We fix
s ∈ S − {0} with residue field L as in section §5.1 and 5.2, and let U = Uv,s, Z = Zv,s be
the admissible open subsets of Xs defined in those sections for some v ∈ v(G). Let U×, Z×

denote the log rigid spaces with log structures induced by Ps∩U and respectively Ps∩Z.
Let us denote by ∆U× = U××Spm(L) U

× the product in the category of log spaces and let
πi : ∆U× −→ U×, i = 1, 2 be the natural projections. Let (M,D) be a pair consisting of a
coherent sheaf of OU -modules M and an integrable connection D : M −→M ⊗OU

Ω1
U×/L.

We say that (M,D) is a convergent log isocrystal on U× if the natural isomorphism
π∗1(M) ∼= π∗2(M) over the diagonal of U× extends to an isomorphism over a tube of the
diagonal of the reduction of U× in ∆U× (see definition 5.4 for the case when P is void.)

A convergent log F isocrystal on (U×, Z×) is a convergent log isocrystal (M,D) on
U× with the assignment of a horizontal isomorphism Fφ : φ∗(M |Z†) −→ M |Z† for every
morphism of log spaces φ : Z×,† −→ X×,† which is a lift of Frobenius over k (see also
definition 5.6 for the case when P is void.) For two such lifts the respective isomorphisms
should satisfy the cocycle relation.

Lemma 6.9. Let v be a vertex of G and (U×, Z×) be the pair fixed above. Then Es|U is
a convergent log F-isocrystal on (U×, Z×).

Proof. The proof is similar to the proof of lemma 5.8.

Let us denote by R = reds
−1(P ) ∩ U .

Lemma 6.10. Let the notations be as in lemma 6.9 and denote by (E,D) the convergent
log F-isocrystal on (U×, Z×) defined there. Then the restriction of (E,D) to (U−R,Z−R)
is a convergent F-isocrystal in the usual sense.
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Proof. Let us first notice that U −R and Z −R are admissible open subsets of U and Z
respectively. Z − R is actually an affinoid. We may endow both Z − R and U − R with
the induced log structures from U× and denote by (Z −R)×, (U −R)× the respective log
spaces. Then we have

1) The restriction of (E,D) to ((U −R)×, (Z −R)×) is a convergent log F-isocrystal Let
us remark that U − R is not a wide-open subset of Xs, but the pair (U − R,Z − R)
functions as a wide open and an underlying affinoid, i.e. (U −R)− (Z −R) is a disjoint
union of annuli, each contained in a residue class of Xs. Therefore the definition of a
convergent log F-isocrystal given above can be extended to the notion of a convergent log
F-isocrystal on ((U −R)×, (Z −R)×).

2) The log structures on U −R and Z −R induced by U× are trivial.

3) A convergent log F-isocrystal on a pair (U×, Z×), where the log structures on U× and
Z× are trivial is a (usual) convergent F-isocrystal on (U,Z).

The combination of 1), 2) and 3) above proves the lemma.

Let (E,D) be the convergent log F-isocrystal on the pair (U×, Z×) as in the lemma 6.10,
then the theorem 5.13 of section 5.4 applies to the convergent F-isocrystal (E,D) on
(U − R,Z − R) (here, as we have mentioned above, U − R is not a wide-open anymore
but the theorem works the same way.) More precisely, let ω ∈ Ω1

U×/L(E)(U) and denote

by [ω] its image in H1(E,D). Using the notations of theorem 5.13 we have:

There exists a section α of Eflog(U −R), unique up to a global section of (E|U−R)D, such
that
i) D(α) = ω
ii) G(ϕ)(α) ∈ E(U −R).

Having said this let us go back to the splitting s : H1(C,P, E) −→ H1(C,P, E) and let
us recall how it is defined: we take a cohomology class in H1(C,P, E) and a hypercocycle
representing it ((ωv)v, (fe)e) as in section 2.2. Then the image of this class under s is
obtained by integrating the differential forms ωv on Uv − Rv, for every v ∈ v(G), and
taking differences on their restrictions to Ae’s for e ∈ e(G). Such integrals by the above
are defined a priori up to horizontal sections of Eπ on Uv − Rv (recall that C is the fiber
of the family X −→ S at the point s = π and Eπ = EC× = EX×|CK

.) According to the
definiton in section 2.2 we need to show that such a section extends to a horizontal section
of Eπ on Uv. In other words, we need

Proposition 6.11. Let E be a log F-isocrystal on C
×

and fix a vertex v ∈ v(G). Then
the natural map (restriction) H0

cris(Cv, E) −→ H0
cris(Cv − P , E) is surjective.

Proof. Now let again for this proof denote U = Uv and Z = Zv and let (E†, D†) be the
overconvergent F-isocrystal on U − R defined by Eπ|U . Let (E,D) be the underlying
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convergent F-isocrystal. It follows that ED is finite dimensional and preserved by Fφ for
any lifting φ of Frobenius. Let

M = (ED ⊗L OU−R, 1⊗ d) and M † = (ED ⊗L O†U−R, 1⊗ d).

Then M † has a natural structure of an overconvergent F-isocrystal on U − R and M is
its associated convergent F-isocrystal. It follows from the main theorem of [Ke3] that the
natural map HomF−iso(M

†, E†) −→ HomF−iso(M,E) is a bijection. Therefore the natural
inclusion M ↪→ E extends uniquely to a morphism M † −→ E†, i.e. every section of ED

is overconvergent.

Suppose Q is an absolutely irreducible point of P . Let T be the corresponding residue
disk and Q = T ∩ P . Then Q is a regular singular point for the connection D and is the
unique singular point for D in T . In fact, the log-monodromy matrix for (E|T , D) at Q is
nilpotent. Moreover (E|T , D) has a Frobenius structure. Let t be a parameter on T which
vanishes at Q. The main result of [C] implies that (E|T , D) has a basis BT of horizontal
sections over OU(T )log = OU(T )[`(t)] (for the notations see section §5.5, the discussion
after the proof of lemma 5.16.)

Lemma 6.12. Let W be any annulus in T centred at Q. As the restriction of t to W is a
unit of OU(W ), the restriction of `(t) to W is log(t|W ). Then log(t|W ) is transcendental
over OU(W ).

Proof. Let u = t|W . Suppose F (X) =
∑n

i=1 ai(u)X
i is a polynomial of minimal degree

over OU(W ) so that F (log(u)) = 0. We may suppose n > 0 and (a0, a1, ..., an) = 1. We
use the equation F (log(u)) = 0 and

n∑
i=1

a′i(u) log(u)i +
∑
i=1n

iai(u) log(u)i−1/u = 0

and cancel the terms containing log(u)n. We must have

aia
′
n − (i+ 1)ai+1an/u− a′ian = 0.

It follows that an is a unit which may be supposed to be 1. Thus a′n−1 = −n/u which is
impossible.

Lemma 6.13. Let W be any annulus in T centered at Q. Then if f(X) ∈ OU(W )[X],
f(log(t|W )) does not vanish on any non-empty open set of W unless f = 0.

Corollary 6.14. With notations as above (BT )|W is a basis for the horizontal sections of
(E|W , D) over OU(W )log.
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We can now finish the proof of proposition 6.11. Suppose g is a horizontal section of
(E,D) over U −R. We know that g is overconvergent i.e. it extends into U by the above.
Thus it restricts to a horizontal section of D on W for an annulus W in T close to the
boundary. By the above corollary it must be a linear combination of BT |W . Since it is
analytic on W the above lemma implies it extends to a horizontal section across T . We
can base extend and assume that P is a union of such points and see that g extends across
U .

Now we need to compare the FFM-modules H i
deg(E) and H i

int(E) for i = 0, 1, 2. Let us
remark that the same arguments as in section 2.1 show that ∇i is the trivial connection
on Hi

P , for i = 0, 2. For i = 1, as H1
P is a locally free coherent sheaf of OS-modules

(see [Fa2]), with a connection, whose only singularity (at 0) is regular, and a Frobenius
endomorphism Φdeg

1 , the main result of [C] referred to above applies. This, combined with
arguments similar to those used in section 2.1, implies that the connection ∇1 extended
to (H1

P )log is trivial.

Theorem 6.15. Suppose the filtered, log F-isocrystal E on C
×

is regular then the parallel
transport isomorphism between (Hi

P )0 ⊗K0 K and (Hi
P )π yields an isomorphism of FFM-

modules
H i(E)deg

∼= H i(E)int for i = 0, 1, 2.

The proof follows using arguments similar to those in the proof of Theorem 2.6.

7 Applications

7.1 The proof of Theorem 1.1

We will apply the results of the previous sections to the following situation: LetK,V, k, π,K0,W
be as in section 1. Let C be a proper curve over V with smooth generic fiber CK and
semi-stable special fiber C over k. Let g : Z −→ C be a flat proper morphism and P a
reduced flat sub-scheme of C of dimension 0 over V such that P̄ ∩ Sing = ∅. Let C× be
the log formal scheme over V associated to the pair (C,P ) (i.e., the formal completion
of C along the special fiber together with the log structure associated to P as in section

6.) Let C
×

be the log scheme over k which is the special fiber of C× and denote by
DP := g−1(P ). Then DP is a divisor of Z and we will suppose from now on that it is
a reduced divisor with simple normal crossings and that the restriction of g induces a
smooth proper map (Z − DP ) −→ (C − P ). Let Z× denote the log formal scheme over
V associated to the pair (Z,DP ) and we’ll denote by g : Z× −→ C× the morphism of

log formal schemes induced by g and also by g : Z
× −→ C

×
its special fiber. From the

assumptions made it follows that g and g are log smooth maps of fine formal log schemes
over V (with trivial log structure.)
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Some important examples to keep in mind are:

0) Z = C, g the identity and P = ∅.

1) C is the complete modular curve classifying semi-stable elliptic curves with suitable
level structure as in section 1, P is the set of cusps, Z is the generalized universal elliptic
curve.

2) C is the Shimura curve classifying abelian surfaces with quaternionic multiplication
and full level structure, P is any finite set of sections which reduce to distinct, smooth
points of C (P may be void), and Z is the universal abelian scheme.

We have the following,

Theorem 7.1. For i ≥ 0 there exists a log F-isocrystal E i := K0 ⊗W Rigcris,∗OZ×/C× on

C
×

whose evaluation on (C×, zcan), E iC×, is

K ⊗V Rig∗Ω
•
Z×/C× = H i

dR(ZK/CK ,Ω
•
ZK/CK

(logDP )),

and the connection is the Gauss-Manin connection. Here zcan is the canonical morphism

(C×)0 −→ C
×
.

In case (0) above, E0
C×
∼= OC .

Proof. The log crystalline site on C
×
, log crystals and the higher direct images of gcris are

defined in [Ka], section 6. These objects satisfy enough of the formal properties of the
corresponding classical objects (i.e., without log structures) so that the proof follows the
proof in [O], section 3, formally. We will content ourselves to point out the main steps. In
order to simplify the notations for the rest of this proof we’ll drop the × from the symbols
denoting log schemes.

1) If T is a log formal scheme over Spf(W ) and let us denote by T1 the closed log sub-
schemes of T of ideal pOT . Let z′T : T1 −→ C be a morphism of log schemes then we have
the following Cartesian diagram

ZT1 −→ Z
gT ↓ g ↓
T1

z′T−→ C

As T1 and C are log schemes in characteristic p and the ideal pOT has natural divided
powers, we define

ET := K0 ⊗W R1gT,cris,∗OZT1
/T1
.
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2) Now we’ll define Frobenius. Let F denote the absolute Frobenius of the log-scheme C
over the absolute Frobenius σ of k, as in section 6. Consider the Cartesian diagram

Z
′ −→ Z

g′ ↓ g ↓
C

FC−→ C

and one can see that the evaluation of the pullback by Frobenius F
∗E on (T, z′T ) is given

by
(F
∗E)(T,z′T ) := E(T,FC◦z′T )

∼= K0 ⊗ g′T,cris,∗OZ′T1
/T1
.

The relative Frobenius FZ/T1
: Z −→ Z

′
induces an isomorphism

FZ/T1
: (F

∗E)(T,z′T ) = K0 ⊗W Rig′T,cris,∗OZ′T1
/T1

∼= K0 ⊗W RigT,cris,∗OZT1
= E(T,z′T ).

3) Now we will use 1) and 2) above to define the evaluation of E on log enlargements. Let
(T, zT ) be a log enlargement of C, i.e., T is a log formal scheme and zT : T0 −→ C, where
T0 is the closed reduced sub-scheme of T1. Let ιT : T0 −→ T1 be the canonical morphism.
For n >> 0 we have a natural morphism ρ(n) : T1 −→ T0 such that ιT ◦ ρ(n) = F n

T1
and

ρ(n) ◦ ιT = F n
T0
. Then we define

E(T,zT ) := E(T,zT ◦ρ(n)),

where the right-hand side was defined at 1). If n′ > n, say n′ = n+ d we have

E(T,zT ◦ρ(n′)) = ((F d
Z/T1

)∗E)(T,zT ◦ρ(n))
∼= E(T,zT ◦ρ(n)),

so the definition is independent of n.

4) Now, if we consider (C, zcan) as a log enlargement of C as g : Z −→ C is a lift of
g : Z −→ C, the evaluation of E on it is the relative de Rham cohomology of ZK/CK ,
with its Gauss-Manin connection.

We will leave it to the reader to check the various compatibilities required in the definition
of a log F-isocrystal.

Now, let j ≥ 0 be an integer and let Ej :=SymjE , where E is the log-F-isocrystal defined
in the above mentioned theorem. Let Lj := Symj(Rig∗Qp)(j+1) be the p-adic étale local
system on C − P associated by the theory in [Fa2] to Ej.

Then theorem 3.2 of [Fa3] and theorem 6.15 of the present article imply:

Theorem 7.2. Let C, Ej be as at the beginning of the section. Then we have that the
FFM-modules Dst(H

1
et((C − P )K ,Lj)) and H1

int(C, Ej) are naturally isomorphic.
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Applying this to example (0) above gives a new proof of the main result in [CI] and
applying it to the example in the introduction (i.e. C = X(N, p) etc.) we get,

Corollary 7.3. If f is a weight j+2, where j ≥ 0 is an even integer, cuspidal eigenform
for X(N, p) with (N, p) = 1 (see section 1) which is split multiplicative at p then all the
L-invariants attached to f are equal whenever they are defined. (See section 1 for a brief
discussion of these L-invariants.)

Corollary 7.4. Let C = X(N, p), with (N, p) = 1 and for every j ≥ 0 let Ej be the log F-

isocrystal on C
×

as in the introduction. The the rank of Ndeg
1 acting on H1

cris(C
×
, Ej)p−new

equals
1

2
dimK0H

1
cris(C

×
, Ej)p−new.

Proof. It is enough to calculate the rank over K of N int
1 ⊗ 1K on H1

cris(C
×
, Ej)p−new and

this follows from the study of the residue map on H1
dR(CK , Ej)p−new in [C1].

As Hint(C, Ej) has an explicit description, theorem 7.2 gives an explicit description of
H1

et((C − P )K ,Lj) as a Galois representation. In particular if C is a modular curve or
Shimura curve, we get explicit descriptions of the restriction of the Galois representation
attached to a weight j + 2 eigenforms F to a decomposition group at p. Corollary 7.4
implies

Corollary 7.5. If f is a cuspidal eigenform of weight j+2 ≥ 2 on X(N, p) which is p-new,
the p-adic local Galois representation Vf attached to it is semi-stable but not crystalline.

7.2 Gysin sequences

Finally, we have another application to our theory, namely the compatibility of the com-
parison maps with respect to the p-adic étale, respectively crystalline Gysin sequences.
More precisely, let the notations be as at the beginning of this section with the difference
that K = K0 is unramified over Qp. Moreover let L be an étale local system and E a
regular filtered, F-isocrystal on C, which are associated as in [Fa2]. Then we have

Proposition 7.6. The comparison isomorphisms determine a commutative diagram of
FFM-modules with GK-action

0 −→ H1
et(CK ,L)⊗Bst −→ H1

et((C − P )K ,L)⊗Bst −→ ⊕x∈PLx(−1)⊗Qp Bst

↓ ↓ ↓
0 −→ H1

int(E)⊗Bst −→ H1
int(P, E)⊗Bst −→ ⊕x∈PK

EC,x[1]⊗K Bst

Proof. Let us first notice that we have an exact sequence of FFM-modules

0 −→ H1
int(E) −→ H1

int(P, E)
ResP−→ ⊕x∈PK

EC,x[1],
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where ResP is the residue map with respect to the points in PK (let us recall from the
section 2.2 that H1

int(P, E) = H1
dR(CK , EC(log(PK)) as K-vector spaces.) This follows from

the fact that the following diagram commutes

H1,0(G, E) = H1,0(G, E)
u ↑ v ↑

0 −→ H1
dR(CK , EC) −→ H1

dR(CK , EC(log(PK))
ResP−→ ⊕x∈PK

EC,x[1]

where u, v are either the residues with respect to the family of annuli {Ae}e∈e(G) or the
integration splittings.

The proposition will follow from the following two facts:

a) We have a commutative diagram of FFM-modules with exact rows (notations as in
section 2)

0 −→ H1
deg(E) −→ H1

deg(P, E) −→ ⊕y∈P0EY,y[1]
↓ ↓ ↓

0 −→ H1
int(E) −→ H1

int(P, E) −→ ⊕x∈PEC,x[1]

and

b) We have a commutative diagram of FFM-modules with GK-action

0 −→ H1
et(CK ,L)⊗Bst −→ H1

et((C − P )K ,L)⊗Bst −→ ⊕x∈PLx(−1)⊗Qp Bst

↓ ↓ ↓
0 −→ H1

deg(E)⊗Bst −→ H1
deg(P, E)⊗Bst −→ ⊕y∈P0EY,y[1]⊗K Bst

To prove a) above let us recall the notations of section 2, i.e. let X be our family of curves
over S, PX the divisor corresponding to P and H1,H1

P the respective cohomology sheaves.
Then we have a horizontal exact sequence of OS-modules which is Frobenius equivariant:

(1) 0 −→ H1 −→ H1
P

ResPX−→ E(PX ,zcan)[1],

where let us recall zcan is the map identifying the reduction of PX with P . As (PX , zcan)
is a log-enlargement of P , the crystal E(PX ,zcan) is trivial. Therefore after adjoining `(t),
we get parallel isomorphisms between the fibers at 0 and π of the exact sequence (1) (let’s
recall that H1 is free over OS) i.e. we get a).

For b) let us first notice that the left square is commutative as it arises from the embedding
U := C − P ⊂ C. Let us prove that the right square is commutative (this is more or less
explicitly contained in Faltings’ papers [Fa3], [Fa2], [Fa1]). U = C − P is an affine curve
over V . Let us fix a geometric generic point η of C and let G denote the quotient of the
Galois group of the maximal cover of C étale over UK , for which the inertia at the points in
P is p-adic. Let ∆ ⊂ G denote the geometric Galois group. Then H1

et(UK ,L) ∼= H1(∆,Lη)
and the Gysin map H1

et(UK ,L) −→ ⊕x∈PLx(−1) is the specialization map:

H1(∆,Lη) −→ ⊕x∈PH1(Ix,Lx) ∼= ⊕x∈PLx(−1),
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where Ix ∼= Zp(1) is the inertia at x. Now under the comparison map relating the étale
cohomology of UK with values in L to the de Rham cohomology of UK with values in E , the
specialization to inertia at the points in P corresponds to the residue of the logarithmic
differentials at the points with the same reduction in P0 (see [Fa1]).
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[I] L. Illusie, , Autour du théorème de monodromie locale, Asterisque 223, 9-59,
(1994).

82



[IS] A. Iovita and M. Spiess, The p-adic Abel-Jacobi map of Heegner cycles, Invent.
Math. 154, No 2, 333-384, (2003).
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