ISM
Final Examination - MAST 699M

Algebraic Geometry

Time: Return the exam no later than Thursday, December 9, 5:00 PM
Directions: May use any documentation but do not discuss the exam with anybody.
Your name and ID:

Instructions: There are 6 problems in this test. Solve any 5 of them. Write the proofs carefully. If you use other exercises in the book give solutions for those exercises also.

1. Let X, Y be varieties, $\varphi: X \longrightarrow Y$ a function. Suppose that $X=\cup_{i=1}^{n} U_{i}, Y=\cup_{i=1}^{n} V_{i}$, where U_{i}, V_{i} are open sub-varieties of X respectively Y for all $1 \leq i \leq n$. Suppose that $\varphi\left(U_{i}\right) \subset V_{i}$ for all i.
a) Show: φ is a morphism if and only if $\left.\varphi\right|_{U_{i}}: U_{i} \longrightarrow V_{i}$ is a morphism for all $1 \leq i \leq n$.
b) Show that if each U_{i}, V_{i} is an affine variety then φ is a morphism if and only if $\widetilde{\varphi}\left(\Gamma\left(V_{i}\right)\right) \subset \Gamma\left(U_{i}\right)$, for all $1 \leq i \leq n$.
2. a) Let $V_{1}, V_{2} \subset \mathbb{P}^{3}$ be the given by: $V_{1}=V(X Y-Z W)$ and $V_{2}=V\left(X^{2}-Y W\right)$. Show that V_{1} and V_{2} are projective varieties but that $V_{1} \cap V_{2}$ is not a variety.
b) Let $C=V\left(X^{2}-Y Z\right)$ and $L=V(Y)$ be algebraic sets in \mathbb{P}^{2}. Show that $C \cap L$ is a projective variety but that $I(C \cap L) \neq I(C)+I(L)$ as ideals in $k[X, Y, Z]$.
3. Let $\varphi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{2}$ be the map: $\varphi([x, y])=\left[x^{2}, x y, y^{2}\right]$.
a) Show that φ is a well defined and it is a morphism.
b) Show that $\varphi\left(\mathbb{P}^{1}\right)=V\left(X Z-Y^{2}\right) \subset \mathbb{P}^{2}$.
c) Show that φ defines an isomorphism between \mathbb{P}^{1} and $V\left(X Z-Y^{2}\right)$.
d) Show that $\widetilde{\varphi}$ does not define an isomorphism between $\Gamma_{h}\left(\mathbb{P}^{1}\right)$ and $\Gamma_{h}(V(X Z-$ $\left.Y^{2}\right)$).

4 Let $\varphi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3}$ be the map $\varphi([x, y])=\left[x^{3}, x^{2} y, x y^{2}, y^{3}\right]$.
a) Show that φ is well defined and it is a morphism.
b) Show that $V:=\varphi\left(\mathbb{P}^{1}\right)$ is a projective sub-variety of \mathbb{P}^{3}. Find $I(V)$.
c) Let $P=[0,0,1,0] \in \mathbb{P}^{3}$ and define $\psi: V \longrightarrow \mathbb{P}^{2}$ by $\psi(Q)=$ the intersection of the projective line containing P, Q with $V(Z)=\mathbb{P}^{2}$.
i) If $Q=[a, b, c, d]$ find $\psi(Q)$ as function of a, b, c, d.
ii) Show that $\psi: V \longrightarrow \mathbb{P}^{2}$ is a morphism of projective varieties and that $\psi(V)$ is a projective sub-variety of \mathbb{P}^{2}.
Note A line in \mathbb{P}^{3} is a projective variety $L=V(F, G)$, where $F, G \in k[X, Y, Z, W]$ are homogeneous of degree one such that $F \neq a G$ for any $a \in k$.

5 a) Find the intersection points of the following curves: $F=\left(X^{2}+Y^{2}\right) Z+X^{3}+Y^{3}$ and $G=X^{3}+Y^{3}-2 X Y Z$.
b) Find the intersection numbers of the intersection points at a)

6 Prove that an irreducible cubic curve, i.e. a curve $C=V(F) \subset \mathbb{P}^{2}$ where $F \in$ $k[X, Y, Z]$ is a homogeneous, irreducible polynomial of degree 3, is either nonsingular or has at most one double point.

