Homework 2; due Wednesday 27/05/09

p-Adic Integration

May 13, 2009

1) (Krasner's lemma) Let (K, v) be a complete valued field and E a finite Galois extension of K. This means that $v: K^{\times} \longrightarrow \mathbb{Q}$ is the valuation of K and let $w: E^{\times} \longrightarrow \mathbb{Q}$ be the valuation of E such that $\left.w\right|_{K^{\times}}=v$.

Let $x \in E$ and denote $x_{1}=x, x_{2}, \ldots, x_{n}$ the conjugates of x over K. Let $y \in E$ be such that $w(y-x)>w\left(y-x_{i}\right)$ for all $i=2, \ldots, n$. Show that $x \in K(y)$.
2) Let (K, v) be a complete valued field and $f(X) \in K[X]$ an irreducible and separable polynomial of degree n and let L be the degree n extension of K defined by $f(X)$. If $h(X) \in K[X]$ is a polynomial of degree n such that $v(f(X)-h(X))$ is "large enough" then $h(X)$ is irreducible and the extension of K defined by $h(X)$ is isomorphic (over K) with L.

Here if $g(X)=a_{n} X^{n}+\ldots+a_{0} \in K[X], a_{n} \neq 0$ we define $v(g(X)):=\min \left\{v\left(a_{i}\right) \quad \mid \quad 0 \leq i \leq\right.$ $n\}$.
3) Let now $\overline{\mathbb{Q}}_{p}$ be a fixed algebraic closure of \mathbb{Q}_{p} and let \mathbb{C}_{p} be its completion with respect to the unique valuation v on $\overline{\mathbb{Q}}_{p}$. Then v extends uniquely to a valuation on \mathbb{C}_{p}.
a) Let $\mathbb{Q}_{p} \subset K \subset \overline{\mathbb{Q}}_{p}$ be a subfield with the valuation $\left.v\right|_{K^{\times}}$. Let \widehat{K} be the completion of K with respect to this valuation.
i) Show that \widehat{K} is a subfield of \mathbb{C}_{p}.
ii) Use Krasner's lemma above to show that $\widehat{K} \cap \overline{\mathbb{Q}}_{p}=K$.
b) Consider the following:

Theorem 0.1 (J. Ax). Let $\mathbb{Q}_{p} \subset K \subset \overline{\mathbb{Q}}_{p}$ be a subfield and $a \in \overline{\mathbb{Q}}_{p}$. Then there exists $\alpha \in K$ such that

$$
v(a-\alpha)+c_{0} \geq \inf _{\sigma \in G_{K}}\{v(\sigma(a)-a)\},
$$

where $c_{0}=p /(p-1)$.
Let now $\mathbb{Q}_{p} \subset L \subset \mathbb{C}_{p}$ be a complete subfield and let $K=L \cap \overline{\mathbb{Q}}_{p}$. Use Ax's theorem above to prove that $L=\widehat{K}$ as follows:
i) Show that $\widehat{K} \subset L$.
ii) Let $z \in \mathcal{O}_{L}$ and $\epsilon>0$ a (large) real number. Let $\alpha \in \overline{\mathbb{Q}}_{p}$ be an element such that $v(z-\alpha)>\epsilon$ (Why does such an element exist?) and let $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{n}$ be the conjugates of α over K. Show that $\alpha_{1}-z, \alpha_{2}-z, \ldots, \alpha_{n}-z$ are the conjugates of $\alpha-z$ over L.
iii) Use Ax's theorem above to show that there is $x_{\epsilon} \in K$ such that $v\left(z-x_{\epsilon}\right) \geq \epsilon-c_{0}$. Deduce that $z \in \widehat{K}$ and that $L=\widehat{K}$.
4) important Let us use the notations of Problem 3) above and consider $\mathbb{Q}_{p} \subset K \subset \overline{\mathbb{Q}}_{p}$ a subfield and let $G_{K}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / K\right)$. Show that $\mathbb{C}_{p}^{G_{K}}=\widehat{K}$ as follows:
i) Let $L:=\mathbb{C}_{p}^{G_{K}}$. Show that L is a complete subfield of \mathbb{C}_{p} and that $\widehat{K} \subset L$.
ii) Show that $L \cap \overline{\mathbb{Q}}_{p}=\widehat{K} \cap \overline{\mathbb{Q}}_{p}=K$.
iii) Use Problem 3) above to conclude that $\widehat{K}=L$.
5) important In the notations of Problem 3) let $\mathbb{Q}_{p} \subset K \subset L \subset \overline{\mathbb{Q}}_{p}$ be subfields such that $\left[L: \mathbb{Q}_{p}\right]<\infty$.
a) Let $T: L \longrightarrow \operatorname{Hom}_{K}(L, K)$ denote the map $T(x)(y):=\operatorname{Tr}_{L / K}(x y)$ for $x, y \in L$. Show that T is an isomorphism.
b) Let $\mathcal{D}_{L / K} \subset \mathcal{O}_{L}$ denote the different ideal of L over K. Show that the restriction of T defines an \mathcal{O}_{K}-linear map:

$$
T: \mathcal{D}_{L / K}^{-1} \longrightarrow \operatorname{Hom}_{\mathcal{O}_{K}}\left(\mathcal{O}_{L}, \mathcal{O}_{K}\right)
$$

which is an isomorphism.
c) Let $R \subset S$ be commutative rings such that S is a finite projective R-module. Show that, if M, N are R-modules we have a canonical isomorphism of S-modules

$$
\operatorname{Hom}_{R}(M, N) \otimes_{R} S \cong \operatorname{Hom}_{S}\left(M \otimes_{R} S, N \otimes_{R} S\right)
$$

d) i) Use 5) c) to deduce that $T \otimes_{K} \operatorname{Id}_{L}: L \otimes_{K} L \longrightarrow \operatorname{Hom}_{L}\left(L \otimes_{K} L, L\right)$ is an L-linear isomorphism.
ii) Let $m: L \otimes_{K} L \longrightarrow L$ be the map $m(x \otimes y)=x y$ and let $e \in L \otimes_{K} L$ be the element such that $\left(T \otimes_{K} \operatorname{Id}_{L}\right)(e)=m$. Show that $e^{2}=e(e$ is an idempotent) and is the unique element of $L \otimes_{K} L$ satisfying: if we write $e=\sum_{i=1}^{n} a_{i} \otimes b_{i}, a_{i}, b_{i} \in L$, then for all $x, y \in L$

$$
(*) \quad x y=\sum_{i=1}^{n} y b_{i} \operatorname{Tr}_{L / K}\left(x a_{i}\right) .
$$

iii) Use 5) c) and 5) b) to show that the exact annihilator in \mathcal{O}_{L} of the \mathcal{O}_{L}-module

$$
\operatorname{Coker}\left(\left(T \otimes_{\mathcal{O}_{K}} \operatorname{Id}_{\mathcal{O}_{L}}\right): \mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L} \longrightarrow \operatorname{Hom}_{\mathcal{O}_{L}}\left(\mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}, \mathcal{O}_{L}\right)\right)
$$

is exactly $\mathcal{D}_{L / K}$.
e) Deduce from 5) d) that if α is a generator of the ideal $\mathcal{D}_{L / K}$ then $(1 \otimes \alpha) e \in \mathcal{O}_{L} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L}$.
f) If we write $(1 \otimes \alpha) e=\sum_{i=1}^{n} a_{i} \otimes b_{i}$, with $a_{i}, b_{i} \in \mathcal{O}_{L}$ then we have $\alpha=\sum_{i=1}^{n} b_{i} \operatorname{Tr}_{L / K}\left(a_{i}\right)$.
g) Apply $\mathrm{N}_{L / K}$ to 5) f) and deduce that there is an element $\beta \in \mathcal{O}_{K}$ such that $\beta \in T\left(\mathcal{O}_{L}\right)$ and $v(\beta)=v(\alpha)[L: K]$.

