Number Theory 2, Homework 1

April 26, 2010

The homework is due Monday, May 3, 2010 in class. You may **NOT** consult with your classmates while working on this assignement.

1) Consider $x, y, z \in \mathbb{Q}_p$. Show that if x, y, z are not collinear than the triangle with vertices x, y, z is isoceles.

2) Suppose p > 2 is a prime integer. Show that the group $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$ is finite and has 4 elements.

3) Let (K, v) be a complete discrete valued field and $\{a_n\}_{n \in \mathbb{N}}$ with $a_n \in K$ for all $n \in \mathbb{N}$.

a) Show that $\{a_n\}_n$ is a Cauchy sequence if and only if $\lim_{n \to \infty} v(a_{n+1} - a_n) = \infty$.

b) Show that the series $\sum_{n=0}^{\infty} a_n$ is convergent in K if and only if $\lim_{n \to \infty} v(a_n) = \infty$.

c) Decide if the following sequences converge in \mathbb{Q}_p and if they do find their limit: i) $a_n = n!$, ii) $a_n = n$, iii) $a_n = p^n$, iv) $a_n = (1+p)^{p^n}$.

d) Define the norm $| |_p : \mathbb{Q}_p \longrightarrow \mathbb{R}_>$ by the formula: $|x|_p := p^{-v_p(x)}$. Show that if $\{a_n\}_n$ is a sequence of elements in \mathbb{Q}_p such that the series $\sum_{n=0}^{\infty} |a_n|_p$ converges in \mathbb{R} , then the series $\sum_{n=0}^{\infty} a_n$ converges in \mathbb{Q}_p .

4) Let $f(X) = \sum_{n=0}^{\infty} a_n X^n = a_0 + a_1 X + a_2 X^2 + \dots \in \mathbb{Q}_p[[X]]$ such that: $f(X) \neq 0$ and $\lim_{n \to \infty} a_n = 0.$

a) Show that for all $\alpha \in \mathbb{Z}_p$, the series $f(\alpha)$ converges in \mathbb{Q}_p .

b) Show that there is an $N \in \mathbb{N}$ such that: $v(a_N) = \inf_{n \in \mathbb{N}} v(a_n)$ and $v(a_n) > v(a_N)$ for all n > N.

c) Suppose that N found at b) above is 0. Show that for all $\alpha \in \mathbb{Z}_p$, $f(\alpha) \neq 0$.

d) Suppose this time that N found at b) is 1 and that $\alpha \in \mathbb{Z}_p$ is such that $f(\alpha) = 0$.

i) Show that there is a series $g(X) = b_0 + b_1 X + b_2 X^2 + ... \in \mathbb{Q}_p[[X]]$ such that: $f(X) = (X - \alpha)g(X)$ and $\lim_{n \to \infty} b_n = 0$.

ii) Calculate N of b) above for g(X) and deduce that f(X) has at most one zero in Z_p .

e) In general, show that f(X) as in the statement has at most N zeroes in Z_p .

f) Let $f(X), g(X) \in \mathbb{Q}_p[[X]]$ be two power series which converge on \mathbb{Z}_p . Show that if $f(\alpha) = g(\alpha)$ for infinitely many elements $\alpha \in \mathbb{Z}_p$ then f(X) = g(X).

5) Use 2-adic analysis in \mathbb{Q}_2 to show that for all M > 0, $M \in \mathbb{Z}$ there is $n \in \mathbb{N}$ such that 2^M divides $2 + 2^2/2 + 2^3/3 + 2^4/4 + \ldots + 2^n/n$.

6) Use exercise 4) to count the number of zeroes of the series $\log(1-X) = \sum_{n=1}^{\infty} X^n/n$ in \mathbb{Q}_p .

7) Let p > 2 be an integer.

i) Show that if $x \in 1 + p\mathbb{Z}_p$ is such that $x^p = 1$ then x = 1.

ii) Show that the only *p*-th root of 1 in \mathbb{Q}_p is 1.