Number Theory 2, Homework 1

April 26, 2010

The homework is due Monday, May 3, 2010 in class. You may NOT consult with your classmates while working on this assignement.

1) Consider $x, y, z \in \mathbb{Q}_{p}$. Show that if x, y, z are not colinear then the triangle with verices x, y, z is isoceles.
2) Suppose $p>2$ is a prime integer. Show that the group $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$ is finite and has 4 elements.
3) Let (K, v) be a complete discrete valued field and $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ with $a_{n} \in K$ for all $n \in \mathbb{N}$.
a) Show that $\left\{a_{n}\right\}_{n}$ is a Cauchy sequence if and only if $\lim _{n \rightarrow \infty} v\left(a_{n+1}-a_{n}\right)=\infty$.
b) Show that the series $\sum_{n=0}^{\infty} a_{n}$ is convergent in K if and only if $\lim _{n \rightarrow \infty} v\left(a_{n}\right)=$ ∞.
c) Decide if the following sequences converge in \mathbb{Q}_{p} and if they do find their limit: i) $a_{n}=n$!, ii) $a_{n}=n$, iii) $a_{n}=p^{n}$, iv) $a_{n}=(1+p)^{p^{n}}$.
d) Define the norm $\left.\left|\left.\right|_{p}: \mathbb{Q}_{p} \longrightarrow \mathbb{R}_{>}\right.$by the formula: $| x\right|_{p}:=p^{-v_{p}(x)}$. Show that if $\left\{a_{n}\right\}_{n}$ is a sequence of elements in \mathbb{Q}_{p} such that the series $\sum_{n=0}^{\infty}\left|a_{n}\right|_{p}$
converges in \mathbb{R}, then the series $\sum_{n=0}^{\infty} a_{n}$ converges in \mathbb{Q}_{p}.
4) Let $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}=a_{0}+a_{1} X+a_{2} X^{2}+\ldots \in \mathbb{Q}_{p}[[X]]$ such that: $f(X) \neq 0$ and $\lim _{n \rightarrow \infty} a_{n}=0$.
a) Show that for all $\alpha \in \mathbb{Z}_{p}$, the series $f(\alpha)$ converges in \mathbb{Q}_{p}.
b) Show that there is an $N \in \mathbb{N}$ such that: $v\left(a_{N}\right)=\inf _{n \in \mathbb{N}} v\left(a_{n}\right)$ and $v\left(a_{n}\right)>$ $v\left(a_{N}\right)$ for all $n>N$.
c) Suppose that N found at b) above is 0 . Show that for all $\alpha \in \mathbb{Z}_{p}, f(\alpha) \neq 0$.
d) Suppose this time that N found at b) is 1 and that $\alpha \in \mathbb{Z}_{p}$ is such that $f(\alpha)=0$.
i) Show that there is a series $g(X)=b_{0}+b_{1} X+b_{2} X^{2}+\ldots \in \mathbb{Q}_{p}[[X]]$ such that: $f(X)=(X-\alpha) g(X)$ and $\lim _{n \rightarrow \infty} b_{n}=0$.
ii) Calculate N of b) above for $g(X)$ and deduce that $f(X)$ has at most one zero in Z_{p}.
e) In general, show that $f(X)$ as in the statement has at most N zeroes in Z_{p}.
f) Let $f(X), g(X) \in \mathbb{Q}_{p}[[X]]$ be two power series which converge on \mathbb{Z}_{p}. Show that if $f(\alpha)=g(\alpha)$ for infinitely many elements $\alpha \in \mathbb{Z}_{p}$ then $f(X)=g(X)$.
5) Use 2-adic analysis in \mathbb{Q}_{2} to show that for all $M>0, M \in \mathbb{Z}$ there is $n \in \mathbb{N}$ such that 2^{M} divides $2+2^{2} / 2+2^{3} / 3+2^{4} / 4+\ldots+2^{n} / n$.
6) Use exercise 4) to count the number of zeroes of the series $\log (1-X)=$ $\sum_{n=1}^{\infty} X^{n} / n$ in \mathbb{Q}_{p}.
7) Let $p>2$ be an integer.
i) Show that if $x \in 1+p \mathbb{Z}_{p}$ is such that $x^{p}=1$ then $x=1$.
ii) Show that the only p-th root of 1 in \mathbb{Q}_{p} is 1 .
