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1 Introduction

Let p > 0 denote a prime integer and K a complete discrete valuation field of characteristic 0
and perfect residue field k of characteristic p. This article proposes a new point of view on the
problem of comparison isomorphisms for algebraic varieties over K which allows the extension
of the results to smooth p-adic formal schemes over the ring of integers of K.

More precisely, we suppose throughout the introduction that K is absolutely unramified i. e.,
that the prime p is a uniformizer of K, denote by K a fixed algebraic closure of it with ring of
integers O and by Aeis and B the period rings defined by J.-M. Fontaine in [Fo] (see section
§1.2 for a review of the construction). We set G = Gal(K/K).

The “comparison isomorphism problem” was first alluded to by Grothendieck as the existence
of a mysterious functor associating, for a given algebraic variety over K, the étale cohomology
groups of the variety over K to the respective de Rham cohomology groups. This was precisely
formulated by J.-M. Fontaine in [Fo] as the crystalline comparison conjecture. Let X be a
smooth proper scheme over O. If R is an Og-algebra we denote by Xy the base change
Xp=X X Spec(ox) Spec(R). In particular we’ll denote by X the special fiber X of X.

Conjecture 1.1 ([Fo]). In the notations above for every i > 0 there is a canonical and functorial
isomorphism commuting with all the additional structures (namely filtrations, Gk —actions and
Frobenii) . o

HZ(X%’ @P> ®Qp Bcris = Héris<X/OK) ®OK Bcris-

The first case of the conjecture was proved by Fontaine himself in [Fo] for abelian schemes.
There followed other proofs of the conjecture for abelian varieties and curves over K with good
or semi-stable reduction in preprints of Fontaine-Messing (unpublished), [Cz], [CC].

The first general result was proved by Bloch and Kato in [BK] for proper and smooth schemes
with ordinary reduction. The next breakthrough was due to Fontaine and Messing in [FM].
They noticed that the ring A.;i has a geometric interpretation as global sections of a certain
sheaf on the crystalline site of X and thus the syntomic cohomology on X calculates the right
hand side of the isomorphism in the conjecture 1.1. The fact that the syntomic cohomology can
be related to the left hand side (i. e., to étale cohomology of X7 ) is more complicated and the
conjecture was proved in [FM] under the assumption that 1 + 2dim(Xg) < p.

G. Faltings fully proved the conjecture in [F2], in fact he proved more: one can drop the
assumption that K is absolutely unramified and he allowed certain non-trivial coefficients, more
precisely Q,—adic local systems L. on X for which there exist “associated F-isocrystals” £ on
X (see [F2]). Faltings’s strategy was to define a new cohomology theory associated to X and to
prove that it calculated both the left hand side (via the theory of almost étale extensions) and
the right hand side of conjecture 1.1. Let us be more precise: we suppose that X is geometrically
connected and denote by 7 = Spec(K) a geometric generic point of X7. Let X, — X be an étale
hyper-covering of X by “small affine schemes over Og”. If X; = Spec(R;) (i is a multi-index)
let R; be the maximal normal extension of R; in K such that R; [pil} is the union of finite and
étale extensions of R; [p‘l}. By Bcvris(ﬁi) we denote the relative Fontaine ring B..;s constructed
using the pair (R;, R;) (in [F2] this ring is denoted Bais(Ry)). If A; = m(X;%,n) consider
the double complex K**(L) := C*(A,, L, ® BY,.(R.)), where C*(A, —) is the standard chain

complex computing continuous group cohomology of A. The new cohomology with coefficients



in IL defined by Faltings is the cohomology of the total complex K**(L) (or rather the limit of
such over all hyper-coverings.)

Faltings’ cohomology theory seemes easier to handle than the syntomic cohomology but there are
two inconveniences related to it. One is conceptual: the association U = Spec(R) — BY; (R)
is not a sheaf and no geometric interpretation of the above defined cohomology theory is given in
terms of sheaf cohomology. The second inconvenience is that in order to prove the isomorphism
of the new cohomology theory of I with the crystalline cohomology of the associated F-isocrystal
tensored with B,s one had to prove that this new cohomology theory satisfied Poincaré duality
compatible with the known Poincaré dualities on the two sides of 1.1. This complicates the
proof of the crystalline comparison conjecture and limits the applications of these ideas to
proper schemes, or complements of a normal crossing divisor in a proper scheme.

To finish our history of “comparison isomorphisms”, K. Kato in [Ka] adapted the proof in [FM] to
schemes over K with semi-stable reduction by the systematic use of log structures (using results
in [HK]) and proved the “semi-stable conjecture” for trivial coefficients and under the assumption
that 142dim(Xk) is less than p. Finally T. Tsuji was able to circumvent the technical difficulties
related to syntomic and log syntomic cohomology and proved both the crystalline and semi-stable
conjectures for trivial coefficients in [T]. Next, Faltings extended his results to open varieties
over K with semi-stable reduction in [F3] and W. Niziol re-proved in [N] the crystalline and semi-
stable conjectures for trivial coefficients using a new idea namely a comparison isomorphism in
K-theory. Recently Go Yamashita gave a new proof of the comparison isomorphism for open
varieties over K with semi-stable reduction and trivial coefficients using syntomic methods (see
[Y]).

The new point of view introduced in the present article is the systematic use of a topos which
we call “Faltings’s topos” associated to X and of certain new (“ind-continuous”) sheaves of
rings BY,, and B in it. Faltings’s topos is the category of sheaves on a certain site which we
denote X (for a more precise definition see the sections 1.1 and 2.1). Despite the suggestion of
the notations, the sections of BY, are not the rings BY..(R) used by Faltings (for the precise
relationship between the two see the next section.) If L is a Q,-local system on Xk then L may
be viewed as a sheaf on X and we have:

a) HY(X,L ®q, BY,;,) is Faltings’ cohomology associated to L as above. Thus the present
theory gives a geometric interpretation of Faltings’s construction.

b) In this setting one may attach to L in a geometric way a sheaf on X with a connection
and thus define crystalline local systems on X and their associated F-isocrystals.

¢) We also provide a new idea of the proof of the comparison isomorphism. The main reason
the comparison isomorphism in the algebraic setting over K fails to follow the classical pattern

over the complex numbers is because the de Rham complex of sheaves of X

Ox 25 Q0 5 Q% 0, -+
is not exact (i.e. there is no algebraic Poincaré lemma). Let us just mention that even if we
replace X (or Xg) by the rigid analytic variety X" associated to X its de Rham complex is
still not exact. But if we now pass to the finer topology X and remark that the sheaf B is a
sheaf of Ox-modules with a connection V such that BY,, is its sheaf of horizontal sections we
have an exact sequence of sheaves on X:

v Vv 1 v 2 \
0 > B ? IBcris ” Bcris ®OX QX/(’)K > IBcris ®0X QX/OK >

cris
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In other words working on the site X and after tensoring with the sheaf of periods B the de
Rham complex of X becomes exact and a resolution of the sheaf BY,.. Now an acyclicity property
of this resolution (for a more precise formulation see the next section) permits the calculation
of the cohomology on X of the sheaf L. ® BY,, as the hyper-cohomology of the de Rham complex
on X of the associated F-isocrystal without any use of Poincaré duality. Therefore these results
extend to p-adic formal schemes. In the next sub-section we present a more precise description

of the article.

1.1 Description of the paper

Let X denote either a smooth scheme over Ok or a smooth p-adic formal scheme over O with
special fiber denoted X. If X is a scheme we denote its generic fiber by X and if X is a formal
scheme we denote its rigid analytic generic fiber X", also by Xx-.

Let us define (in the algebraic setting) the category Ex_ whose objects are pairs (U, VW) where
U — X is an étale morphism, W — Uz is a finite étale morphism and the morphisms between
two pairs are pairs of morphisms satisfying natural compatibilities. G. Faltings defined in [F3]
a certain topology on Ex_ but as recently noticed by A. Abbes a fundamental error occurred
in that construction namely to put is as directly as possible, the topos defined in [F3] is not the
category of sheaves on the topology he defines there (see section 2.1 for a counterexample.) A
salvage was suggested in a letter of P. Deligne to L. Illusie in 1995 raising a series of questions
related to section 3.4 in [I]. He pointed out that the correct definition of Faltings’s topos should
be as a certain “topos fleché”. The general theory of these topoi was further developed by
O. Gabber, L. Illusie, F. Orgogozo and was implemented in the case of interest to us by A.
Abbes. We chose not to follow this direction and fix the problem in an equivalent way here (see
also [Err]) by defining a different pre-topology, which we call PTx_ on the category Ex_. See
section 2.1 for the precise statements and the definition in the formal context.

There is a fundamental operation on sheaves and continuous sheaves of abelian groups on
PTx_ called localization and defined as follows. Suppose that F is a continuous sheaf on
PTx. (let us recall that such an object is a projective system {F,},, of p-power torsion sheaves
on X) and let U = Spec(Ry) be an affine connected object of X (by which we mean the étale
site on X'). We fix a geometric generic point n = Spec(K) and denote by

F(Ry) = lim F,(Ry) with F,(Ry) = linéfn(u, Spec(95)),

where in the inductive limit .S runs over all R;;®o, K-sub algebras of K which are finite and étale.
Let us remark that F(Ry,) is a continuous representation of the fundamental group @'%(Uy, ).

We have natural functors v: X — X, u: X — X% defined (in the algebraic setting) as
follows: v(U) = (U,U5) and respectively u(U,W) = W. The functors v* and u, allow us to
view sheaves on X and respectively on X%t as sheaves on X. The functor v, is left exact and
its right derived functors are central to our theory. We have the following result proved in [Al]
describing these functors in terms of localizations.

Theorem 1.2 ([AI], theorem 6.12). Let F be a continuous sheaf on X satisfying certain
conditions (Assumptions 6.10 in [AI]). Then for all i > 0, R'v,F are the sheaves associated to
the pre-sheaves on X

U = Spec(Ry) — H!

cont

(1 Use, ), F(Ruy))-



This theorem reduces via the Leray spectral sequence the calculation of the sheaf coho-
mology groups H'(X, F) to local calculations of fundamental group cohomology with values in
localizations and sheaf cohomology on X°t.

We now pass to the description of the sheaves BY,, and B announced at the beginning
of this introduction. We call these “Fontaine sheaves” and prove that they enjoy the following
properties.

a) Both are ind-continuous sheavgs of Bcris—algehras on X such that for a “small” affine & =
Spec(Ry) the localizations BY, (Ry) and Beis(Ry) are respectively isomorphic to the rings
BY. .(Ry) and Bes(Ry) defined in [F2] and [Bril.

b) BY.. is endowed with a filtration Fil*(BY.

i ois) by sub-sheaves and a Frobenius endomorphism.
¢) Beis is a sheaf of Ox ®p,. Beis-algebras, is endowed with a filtration Fil®(B.s) by sub-sheaves,
a Frobenius endomorphism and a quasi-nilpotent and integrable connection V such that

i) V satisfies the Griffith transversality property.

ii) BZiS is exactly the sub-sheaf of B, of horizontal sections for V.

d) For i > 1 we have R, B = 0.

We remark that property d) above is a deep result stating that the sheaf B is acyclic for the
functor v,. It is a consequence of theorem 1.2 and the results in [AB]. As we now have Fontaine
sheaves on X we can start developing a Fontaine theory with sheaves. To start let I denote a
locally constant Q,-sheaf on X§ which, let us recall, we view via base change and u, as a sheaf

on PTx_. We define DEC(L) := vu(L ® Beys). It is a sheaf of Ox, @k Beis-modules on X§

endowed with a filtration, Frobenius endomorphism, quasi-nilpotent and integrable connection
and a continuous Gg-action. Here Oy, denotes the sheaf Ox[p~!] on X. We set D, (L) :=

(Dgeo (L)) Gk ' o

cris

Definition 1.3. We say that L is a crystalline sheaf on X§¢ if
e D2 (L) is a coherent sheaf of Ox,.-modules on X§ .

e The natural morphism D2 (L) ®0 Beris — L ®q, Beris is an isomorphism.

cris

The definition 1.3 is the sheaf theoretic analogue of the usual definition of crystalline rep-
resentations in p-adic Hodge theory. We prove that it coincides with the notions of “locally
crystalline representations” in the relative setting due to [Bri] and with that of “associated
sheaves” due to Faltings. If X is a formal scheme as at the beginning of this section and L is a
crystalline sheaf on X ¢ then D2, (L) is a filtered convergent F-isocrystal on X§ in the sense of
[B3] and D&Y (L) = D2, (L)® g Beyis. We remark that in the recent preprint [T1] T. Tsuji devel-
oped systematically a theory of crystalline étale local systems on schemes Xy in the case where
X is the complement of a divisor with normal crossings in a proper formal scheme over Ok with
semi-stable special fiber and such that the horizontal divisor has normal crossings also with the
special fiber. The paper uses different methods and does not contain comparison isomorphisms.
If X is a smooth formal scheme (and the horizontal divisor is trivial) our notion of a crystalline
étale local system on X coincides with the one in [T1].

We can now list the main result of this paper.

Theorem 1.4. Suppose that X is a smooth p-adic formal scheme over Ok and let L be a
crystalline sheaf on X§¢. For every i > 0 we have a natural isomorphism of d—functors with



values in Beis-modules respecting the filtrations, Frobenii and the G g-actions

H(X,LeBY,) = H

cris cris

(X, DE(L)).

cris

The theorem 1.4 has two main applications, one which is the comparison isomorphism for smooth
proper schemes over Ok (theorem 1.5 below) and the other which is an application to modular
forms, more precisely an overconvergent Eichler-Shimura isomorphism (see [AIS]).

Theorem 1.5. Suppose that X is a smooth proper scheme over Ok and 1L is a crystalline
sheaf on X§t. For every i > 0 we have a canonical isomorphism of 0—functors with values in
Beis-modules, which respects the filtrations, the Frobenii and the Gk -actions

Hi(X%ta L) ®Qp Bcris = HZ (Ya ]Dar (IL')) ®K Bcris‘

cris cris

The theorem 1.5 is a consequence of theorem 1.4 and of the following two results:

e If X is a smooth, proper formal scheme over O then we have an isomorphism of filtered,
Frobenius modules: HZ, (X, D&3 (L)) = H. (X, D% (L)) @k Beyis-

and

e The natural morphism of sheaves on X, L — L ® BY,, induces for every i > 0 canonical

isomorphisms as B.s-modules respecting all the structure Hi(X%t, L) ®q, Beris & H' (%,L ®z,
]Bz“is) .

This last isomorphism which is also proved in [F'3] as being one of the central and deep results
of that paper is in our theory an elementary consequence of theorem 1.4 and of the criterion for
“admisibility” of filtered, Frobenius modules in [CF].

Let us remark that in lemma 3.14 we prove that L is a crystalline sheaf on X§ if and only
if L and D, (L) are associated in Faltings’s sense. This and the fact that H' (%,L ® ]B%zis) is
naturally isomorphic to the i-th cohomology group defined by Faltings shows that the comparison
isomorphism of theorem 1.5 is the same as the one defined by Faltings, and hence it is the same
as all the other period maps defined in the literature.

Finally, in a future work we are planning to show how to produce examples of crystalline sheaves
and how to explicitly calculate their D3... More precisely let X and Y denote smooth p-adic

formal schemes over Ok and suppose that f: X — Y is a smooth proper morphism which is
algebrizable Zariski locally on Y. We believe that we would be able to prove:

Theorem 1.6. Let us suppose that M is a crystalline sheaf on X$ and for every i > 0 let us
denote by L; := R'fe .M. Then L; is a crystalline sheaf on Y and we have an isomorphism

Sey (i) = R fos s (D x(M) ® Q%)y) of d-functors with values in the category of filtered
convergent F'-isocrystals on Y.

The reader will remark throughout the paper the presence of an auxiliary field M which is an
extension of K contained in K and which indexes all the objects appearing: ¥, Acvris,m Acris m
etc. If M is a finite extension of K, this allows us to prove the theorems above also for the
base change of X to the ring of integers of M. Equivalently the above results are valid without



assuming that K is absolutely unramified but under the hypothesis that X (and the morphism
f: X — Y in 1.6) is defined over W(k). Since the notations become more complicated and
possibly obscure some of the simple ideas present in the proofs we have chosen to sketch these
ideas in the introduction in the simplified assumption that K is unramified.

We would also like to point out that the methods presented here seem suitable for pursuing
further inquiries into this problem. Namely we have already worked out the comparison theorems
for schemes and formal schemes over the ring of integers of a finite extension K of Q, (hence
removing the “unramified-ness” assumption present in this paper) with semi-stable special fibers
and hope to be able to report on these results soon. Moreover we think that for smooth schemes
over Ok one may replace the locally constant Q,-sheaf L on X§ by a constructible Q,-sheaf and
obtain interesting comparison isomorphisms. We also believe that we should be able to derive
integral comparison isomorphisms which would work better than the existing ones.

Acknowledgements We thank Ahmed Abbes for pointing out the error in [F3] (see the section
2.1) and for many helpful discussions and email exchanges on this subject and Luc Illusie for
kindly providing us with copies of his correspondence with Deligne on Faltings’ topology. We
are grateful to the two referees for the careful reading of the paper and for pointing out some
mistakes and suggesting ways to remedy them. Some of their remarks have been incorporated
in the article (e.g. see remark 2.12.) Finally, part of the work on this article was done while
both authors were guests of L’Institut Henri Poincaré, Paris during the Galois semester 2010.
We thank this institution for its hospitality.

1.2 Notations

Let p > 0 be a prime integer, Ok a complete discrete valuation ring with fraction field K and
perfect residue field k. Fix an algebraic closure K C K, let k denote its residue field and O the
normalization of Ok in K. Write Gk for the Galois group of K over K. Fix a field extension
K c M C K. We write My C M for the maximal absolutely unramified subfield of M and O Mo
for its ring of integers.

The following notations will be used throughout the paper (some of the objects denoted here
will be defined in this very section and the rest in the next sections):

e Rings:
Wn = (O?/po ) A;;f = Ajr_lf(o )7 A Alﬂf<0 )7 ACTiS,H = ACFiS,H(O?)ﬂ A/crlsn =
A:ZI“IS H(OK)a Acris = ACI‘IS(O ) crls( ) BCI‘IS = BCI‘IS(O )

e Sheaves on Xj,:
Wi o= Wn(OxM/pOxM)v W, = Wn,?? Ai—;f,M = {WN,M}H’ Aing 1= {Wn}n

We recall a few facts regarding the properties and (one of) the constructions of A needed
in the sequel. For details we refer to [Fo, §1&§2]. Choose a compatible sequence of roots
(p/?" " "),=1 in O (compatible means that (p'/?")? = p!/?"~" for all n > 1). For every n € N we
have a ring homomorphism 6,,: W,, := W, (0% /pOr) — Ox/p"Of given by (sq,...,Sp_1)

n—1—1

Yo 01 p'st where §; € Ox/p"Of is a lift of s; for every i. Write ¢ for Frobenius on W,,.
Denote by p,, := [pl/p 1} e W, the Telchmuller lift of p/7" ™" € O w/PO%. Let &, :==pp,—p € W,

7



then &, generates Ker(6,,). Denote by Acisn the W(k)-DP-envelope of W,, with respect to the
ideal Ker(6,,) (where W(k)-DP-envelope means that the divided powers are compatible with the
standard divided powers on pW, (k)). Note that A is naturally endowed with an action of G .
Denote by Ker(6,,)PY the PD-ideal on Ays,. Note that o(&,) = o(p,—p) = (P, —p*) + (p* —p).
Since pP — p? € Ker(6,,) and p admits divided powers in A n, also ¢(&,) does. Thus Frobenius
on W,, extends to an operator called Frobenius and denoted by ¢, on Aeis n.

Let R(O%) = lim O%/pOx where the inverse limit is taken with respect to Frobenius. Put

At = W(R(Of)) = lim W, where the latter inverse limit is taken with respect to the map

inf 7
Upi1: Wye1 — W, defined by the natural projection composed with Frobenius. Remark that
the maps #,, are compatible i. e., 6,, = 0,11 0u, 1, that the sequence £ := {&,}, is compatible i.e.,
Unt1(&np1) = &, for all n > 0, and that Ker(#) is generated by £. Denote by Aeis := lm Ay n.

It is the p-adic completion of the W(k)-DP-envelope of A!. with respect to the ideal Ker(#).
We then have

ACriS = Al—;f <5>} = Ai—ir_lf{(soa 517 e }/(p50 - Spap(sm-&-l - 551)77120

where §; = v**1(€) and 7 is the application on the kernel of § on A given by z — (p — 1)!2P);
cf. [Bri, Prop. 6.1.2]. Note that W,(R(Og)) = Al;/p"Al; since Af; = W(R(Og)) and

R(O5%) = lim O /pOy; is a perfect ring by construction.

Lemma 1.7. The kernel of the ring homomorphism q,: W, (R(Og)) — W, (Ox/pOF) in-
duced by G, is the ideal generated by {[p|P", V([p*"), V2([p]’"), ..., V" Y[p]*")}. In particular

Acris/pnAcris = Wn [507 517 e ] /(p(SO - £§+1>p5m+1 - 527,)7,120

via the map which sends 6; — 6; and induces on W, (K(Of)) the morphism q,: W, (E(Og)) —
W, associated to q,,.

Proof. We prove the first claim. We have p" = (£ + p)*" = &" mod p"Al; and & =

1

The kernel of the projection g,,: R(Ox) = lim O /pOx — Ox/pOx%

on the n + 1-th factor of the limit is generated by pP". This proves the lemma for n = 1. The
general case follows by induction on n using the exact sequence

n—1

PO = 0mod pr AT

inf "

0 — W, 1 (R(Og)) — Wa(R(Og)) — W:(R(Ok)) — 0.

Now let us recall that [P]P" = 0 in Agis/p" Aeis and similarly, for every 0 < i < n — 1 we have
Vi([pIP") = p![p]P" " = 0 in Agis/p" Aais- Then the second claim follows. O

In particular Agis/p" Auis is the W(k)-DP envelope of W, with respect to &, 1 W,, = Ker(&no
gp). We then get a surjective map of DP algebras

dn: Acris/pnAcris — Acris,n
sending §T[f]+1 — &[11'} and inducing Frobenius on W,,. We also have a map

. n
Up, : Acris,n+1 ? Acris/p Acris

8



sending ﬁﬂrl — ST[ZLI and inducing the natural projection W, 1 — W,,.

We introduce the following ideal T C Ags. Let {(, }nen be a compatible system of primitive
p"—th roots of unity: (» # 1 and (), = (,. It defines an element € = (1,(, (s, ...) € R(Ox).
Let [¢] € A", be its Teichmiiller lift. Let I be the ideal generated by {p"([g]) — 1},en and the
Teichmiiller lifts [z] of elements x = (x¢, x1,...) € R(Ox) such that z lies in the maximal ideal
of Ox/pOx. It is proven in [Bri, Lem. 6.3.1] that I? = T mod p" Auss. Since 6([e] — 1) = 0, the
element [¢] — 1 admits divided powers. In Ay we have the following important element

(e 9]

t:=log([e]) = (n—1)!(e] - 1)™.

n=1

We have ¢(t) = pt and for o € Gk, o(t) = x(0)t where x: gk — Z is the cyclotomic character
defined by o((,) = Cﬁf(g) for every n € N. Put Bs := Auis[1/t]. Since ¢ lies in Ker(@)_, it admits
divided powers in A so that P = pltlPl and p is invertible in Bes. Then B, is a W(k)-algebra,
endowed with an action of Gk, a Frobenius operator ¢ and a separated and exhaustive filtration
Fil" Beyis := limpey Fil' 7" Agis - t" for every r € Z.

2 Fontaine sheaves

Let X denote a smooth scheme over O or a smooth p-adic formal scheme topologically of finite
type, over Q. In this section we introduce several sites describing their underlying categories
and giving pre-topology structures i. e., for each object, we describe the covering families. The
topologies underlying the sites will be the topologies generated by the given pre-topologies. See
[SGAIV, §IL.1] for details.

2.1 Faltings’ topos; the algebraic setting

Let us first treat the case when X is a scheme of finite type over Or. We denote by X the
small étale site on X and by X! the finite étale site of Xj;. Then Sh(X®) and Sh(XI) will
denote the categories of sheaves of abelian groups on these sites, respectively.

Definition 2.1. Let Ex,, be the category defined as follows

i) the objects consist of pairs (g: U— X, f: W — UM) such that ¢ is an étale morphism
of finite type and f is a finite étale morphism. We will usually denote by (U, W) this object to
shorten notations;

ii) a morphism (U’',W') — (U, W) in FEx,, consists of a pair («a, 3), where a: U’ — U is
a morphism over X and 3: W/ — W is a morphism commuting with a ®¢,. Id;.

Let us remark that the pair (X, Xj/) is a final object of Ex,,. Moreover, finite projective
limits are representable in Fx,, and, in particular, fibre products exist: the fibre product of the
objects (U',W’) and (U",W") over (U,W) is (U’ xy U", W' xyw W"). See [Err].



Faltings defined in [F3, p. 214] a pre-topology on FEx,, by defining a family of morphisms
{(U;, W;) — (U, W)}ier to be a covering family if {U; — U}, is a covering in X and
{W; — W}ics is a covering family in X', He then defined the presheaf Ox on Ey,, by

Ox(U,W) := the normalization of T'(U, Oy) in T'(W, Ow)

and stated that this was a sheaf. However, this is not true in general due to point b) of the
following example. Moreover point ¢) below shows that even if one sheafified the presheaf Ox
on Faltings’ site the theory of “localizations” of sheaves, as developed later in this paper, would
not work. It should be noticed, though, that even if the definition of the topology is not correct,
the topos of sheaves described by Faltings coincides with the one defined in this paper.

Example 2.2. Assume that M = K. Let p > 2 be a prime and let us denote by A =

1
Z,,[X and B = ZP[X’Y’X2—+p]/(Y2 — X? —p). Fori = 1,2 we define B; :=

and let f; denote the composition of the natural Z,-algebra morphisms A —

;]
"X24p

Bl (—1)iX]
B — B;. We denote U := Spec(A), V := Spec(B), U; :== Spec(B;) and W = W; := Spec(Bg).
Fiz i € {1,2}, then we have

a) The pairs (U, W) and (U;, W;) are objects of Ey_ and if we denote by F; : (U,W) —
(Ui, W;) the morphism induced by the pair (f;, Id), then this morphism is a coverings in Faltings’
sense.

b) For the covering above the presheaf Ox does not satisfy the sheaf property.

c) Let us denote by F the sheaf associated to Ox on the topology defined by Faltings and by
G the sheaf F/pF. Then the natural map: Ox(U,W)/pOx(U, W) — G(U, W) is the zero map.

Proof. a) Let us observe that
B:=B/pB2F,[X,1/X]/(X +Y)(X —Y)) 2F,[X,1/X] x F,[X,1/X],

and we let V := Spec(B) = V][V, where we have denoted by V; = Spec(F,[X,1/X]) for
i = 1,2 the components of V.

Then let us remark that U; =2V —V,. As V — U is étale and surjective it follows that the
morphisms induced by f;, U; — U are étale and surjective. Moreover the natural Z,-algebra
morphisms B — B; for i = 1,2 induce isomorphisms as K-algebras B =2 B, % = Byx. Now
a) follows.

b) We fix i € {1,2} as in the statement and we have the following commutative diagram

0 — Ox(U,W) 5 0x(U, W) 2 Ox(U; xu Ui, Wy xw W)
! ! !
0 — By —  Bx — Bix @ Bix

The vertical arrows in the diagram are inclusions therefore they are injective. Moreover ~ is
defined by: () :=b®1—-1®0b =0 for all b € B, % in view of the remarks above, therefore
~v = 0 which implies that g; = 0. If Oy were a sheaf then the top sequence would be exact, i.e.
h; would be an isomorphism. Thus all elements of B; C Ox(U;, W;) would be integral over A. In
particular as B; is a finitely generated A-algebra, B; would be finite over A. Since U = Spec(A)
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is connected the degree of B; as an A-module would be constant. But A/pA — B;/pB; is an
isomorphism while B;  is a free Az-module of rank 2. Therefore Ox is not a sheaf.

c) As F is a sheaf, for each i = 1,2 we have a commutative diagram with the bottom row
exact

0 — Ox(UW) 5% 0xU, W) 25 Ox(U; xp Us, Wi xy Wi)

| | !
0 — FUW) =5 FUW,) =5 FU xy U, W; xw W;)

The arguments at b) above show that the map g; = 0 therefore the image of the natural
map Ox(U;, W;) — F(U;,W;) is contained in the image of u;. More precisely the natural
map: ¢ : Ox(UW) — F(U,W) has the property that ¢ = w; o h; for i = 1,2, where
w; : Ox(Uy, W) — F(U, W) is the map defined by the above diagram.

We remark that Ox(U,W) = B as B is integral over A and being smooth it is normal,
similarly Ox(U;, W;) = B;, for i = 1,2. Moreover we have h; = f; for i = 1,2. As F is the
sheaf associated to the presheaf O the natural map Ox(U, W) /pOx(U, W) — G(U, W) is the
composition Ox(U, W) /pOx(U,W) — F(U,W)/pF(U,W) — G(U,W). But the map

% : Ox(UW)/pOx(UW) = B =B, x By — F(UW)/pF(U,W)

induced by ¢ has the property that it factors through f,, for i = 1,2 and f; : B — B; is the
natural projection on the ¢ — th factor. We deduce that @ = 0. O

Faltings’ site PTx,,. Let X be a scheme of finite type over Ok and let M be an algebraic
extension of K. We denote by E,, the category defined in definition 2.1.

Definition 2.3. Let{(U;, W;) — (U, W)}.cs be a family of morphisms in Ex,,. We say that it
is of type «a respectively g3 if:

a) {U; — U}yer is a covering in X and W; 2 W xy U; for every i € I. Here the morphism
W — U used in the fibre product is the composition W — U, — U.

or
B) U; 2 U for all i € I and {W; — W },cs is a covering in X

We endow Ex,, with the topology Tx,, generated by the families of type o and [ described
in definition 2.3 and denote by X, the associated site. We call Tx,, Faltings’ topology and X,
Faltings’ site associated to (X, M). Note that Tx,, can be described differently as follows.

Definition 2.4. A family {(U;;, W;;) — (U, W)}ier jes of morphisms in Ex, is called a strict
covering family if

a) For each ¢ € I there exists an étale morphism U; — X such that we have isomorphisms
U; =2 U;; over X for every j € J.

b) {U; — U}er is a covering in X'

c) For every i € I the family {W;; — W xy U, },cs is a covering in X'

To simplify notations we will henceforth denote a strict covering family {(U;;, Wi;) —
(U W)}ierjes by {(Ui, Wig) — (U, W) }ierjes-
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Remark 2.5. The families of type o and ( in definition 2.3 are examples of strict coverings.
Conversely a strict covering family {(U;, W;;) — (U, W) }ier jes can be obtained as a composite
of the covering {(U;, Wxy,U;) — (U, W)}ier jes, which is of type a) and for every i € I
the covering {(U;, Wi;) — (Ui, W xy U;)}jey, which is of type 3). In particular the topology
generated by the strict coverings coincides with Ty, .

Remark 2.6. The morphisms (U;, W;) — (U, W), for i = 1,2 in example 2.2 are not coverings
in the sense of 2.3. In fact, it follows from 2.11 and 2.2 Faltings’ topology associated to (X, K)
is coarser than the one originally introduced by Faltings.

Remark 2.7. The category Ex,, with the strict covering families do not form a pre-topology.
Indeed, since finite projective limits exist in Ex,, the strict covering families satisty PT0, PT1
and PT3 of [SGAIV, Def II 1.3] but contrary to what was written in [Al] and as was pointed
out to us by A. Abbes, they do not satisfy PT2. However, one may define tautologically the
generated pre-topology PTy,, by considering as covering families the composite of finitely many
strict coverings (or of finitely many families of type «) and [3) of definition 2.3). The associated
topology is Tx,,.

Remark 2.8. It follows from [SGAIV, Cor. II 2.3] or by a direct check using the definitions
that a pre-sheaf on El,, is a sheaf if and only if it satisfies the usual exactness property for the
strict covering families.

The next lemma and [SGAIV, Remark II 3.3] show that it is enough to use strict covering
families in order to sheafify a presheaf on Ex,,, as done in [AI].

Lemma 2.9. Let (U, W) be an object of Ex,,. Then the strict covering families are cofinal in
the collection of all covering families of (U,W) in PTx,,.

Proof. See [Err]. O
Definition 2.10. We define the pre-sheaf of Ojs-algebras on F,,, denoted Oyx,,, by

Ox,,(U,W) := the normalization of I'(U, Oy) in I'(W, Ow).

We also define the sub pre-sheaf of Oy, -algebras OY: of Ox,, whose sections over (U, W) € Ex,,
consist of elements x € Ox,, (U, W) for which there exist a finite unramified extension K C L, a
finite étale morphism U’ — U ®p,. Op and a morphism W — U}, @ M over Uy, such that z,
viewed in I'(W, Oy ), lies in the image of I'(U’, Oyr).

We have
Proposition 2.11. The pre-sheaves Ox,, and O, are sheaves.

Proof. We first prove that Ox,, is a sheaf. Let {(Ua, W,:) — (U, W)}a: be a strict covering
family. We set Uyg := Uy xpUg and Wog;j := Wo i Xw W j. We have the following commutative
diagram

f
0 — OXM(va) - Hi,anM(UOMWa,i) — H(a,i),(,@,j)OXM(UQ@WQBU)

! !
0 — IW.0w) — JL.TWaisOw.,) — 1w sl Wasis: Oapi)
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Since the {U, — U}, is a covering in X" and for every a, {W,; — W xy U, }; is a covering
in (W xy Uaar)™ it follows that {W,; — W4, is a covering in Xt In particular the bottom
row of the above diagram is exact. Moreover the vertical maps are all inclusions therefore
f is injective, i.e. Ox,, is a separable pre-sheaf. Let z € Ker(g). Then xz € I'(W,Op) N

HOXNI(UQ,WOL,Z»). We are left to prove that z is integral over I'(U,Op). Without loss of
generality we may assume that W is connected and that U, = Spec(A,) is affine for every a.
Note that there exists a finite extension K C L in M and a finite and étale morphism W' — Uy,
so that its base change via L — M is W — Uy and o € T'(W', Oy~ ). Let us denote by z, the
image of z in F(W’ Xy Uy, OW/XUUQ). Because the family {W,, — W xy U,}; is a covering
family in (W xy U%M)fet and the image x,; of zo in I'(W,;, Ow, ) is in fact in Ox,, (Us, Wa,),
hence integral over A,, it follows that z, is integral over A,. Let P,(X) € A,[X] be the
(monic) characteristic polynomial of z, over A, with respect to the finite and étale extension
W' xy Uy — Uqi (see remark 2.12 below.) Then Po(X)|v,, = Ps(X)|y,, for all o and 3
and, therefore, there is a monic polynomial P(X) € I'(U, Op) such that P(X)|y, = Pa(X). As
P(x)|u, = P.(xs) = 0 for every « it follows that P(x) = 0, i.e. that x is integral over I'(U, Oy).

Since 0%, C Og,, by construction, it follows that O%) is a separated pre-sheaf. Using
the previous notations, it suffices to show that given W connected and U,’s affine and given
z € [[; o O%, (Ua; Wai), whose image in [[; , Ox,, (Ua, Wa,) lies in Ker(g), then z € OF (U, W).
As before for every a let z,, be the image of x in I'(W,, Oy, ). By replacing the U,’s by a finite
subcover, we may assume that we have only finitely many a’s. By definition there is a finite
unramified extension K C L’ such that each z, is defined over a finite and étale cover of
Uy ®o, Op. Possibly after enlarging L, we may assume that L' C L. Let W/ (resp. Z.) be
the spectrum of the normalization of the sub-algebra A, ®e, L[z,] (resp. Ay ®o, Op[z.]) in
F(W Xy Ua,OWXUUa). By construction Z/, is finite and étale over U ®p, O and we have
morphisms W/, — Z/ ; @1 L over U,y. Moreover, z, € F(WQ,OWA) is in the image of
F(Z&,OZ&). Note that W, xy, Uss = Wj Xy, Uap so that the various W, glue to a finite
and étale morphism W' — Uy and there is a morphism W — W’ as schemes over U such
that = € F(W’ , (’)W/). Moreover, also the various Z!, glue to a scheme Z’ finite and étale over
U ®oy Op and we have a morphism W’ — Z'®¢,, L. Then x is in the image of F(Z’7 (’)Z/) and
we conclude that » € OF: (U, W) as claimed. O

The following argument was offered by the referee of the paper.

Remark 2.12. Let A be a noetherian normal domain and let B be the integral closure of A in
a finite étale extension of A[1/p|. Let « € B[1/p| be an element and let Q(X) € A[1/p][X] be
the characteristic polynomial of x (it exists as B[1/p] is a finitely generated projective A[l/p]-
module.) Then = € B if and only if Q(X) € A[X].

Proof. The sufficiency is clear and to prove necessity, as A is a noetherian normal domain, it is
enough to prove that Q(X) € A, for all p prime ideal of height 1 of A which contains p. Hence
we may assume that A is a DVR and in this case B is a free A-module of finite rank and Q(X)
is the characteristic polynomial of the matrix associated to the endomorphism B — B;b — xb
with respect to a basis of B over A. Therefore Q(X) € A[X]. O
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2.2 Faltings’ topos; the formal setting

Let now X denote a formal scheme. Denote by X the étale site on X and by Sh(X®) the
category of sheaves of abelian groups on X°. Of particular importance will be the so called
small affine opens of X. These are objects U such that U = Spf(Ry) is affine and connected
and there are parameters T3, Ty, ..., Ty € R} such that the map Ry := Ox{T{™,... ., T7'} C Ry
is formally étale.

The site Xprer. For every finite extension K C L in M let X be the site of étale and
quasi—compact morphisms W — X of L-rigid analytic spaces. Here Xk denotes the K-rigid
analytic space associated to X and X is its base change to L. We refer to [dJvdP, §3.1&3.2]
for generalities about étale morphisms of rigid analytic spaces. Given extensions L C L’ of K
contained in M the base change from L to L' provides a morphism of sites X, ot — Xp/er. We
then get a fibred site X, o, over the category of finite extensions of K contained in M in the
sense of [SGAIV, §VI.7.2.1]. We let X be the site defined by the projective limit of the fibred
site X et; see [SGAIV, Def. VI.8.2.5].

We can give the following explicit description. The objects in Xj; ¢ consist of pairs (W, L)
where L is a finite extension of K contained in M and W — X ® L is an étale and quasi—compact
map of L-rigid analytic spaces. Given (W, L) and (W', L') define Homy,, , (W', L), (W, L))
as the direct limit liin Hom (W’ QL' Wer L") over all finite extensions L” C M, containing

both L and L', of the morphism W' @, L — W ® L" as rigid analytic spaces over X @ L".
The coverings of a pair (W), L) in X ¢ are finite families of pairs {(W,, L) }o over (W, L) such
that L C L, for every a and there exists a finite extension of K, contained in M and containing
L, for every « such that the induced map U W, ®, L' = W ®p, L' is surjective.

The site Ups ger- Let U — X be an étale map topologically of finite type of p-adic formal schemes.
Define U*** to be the following site fibred over the category of finite extensions K C L contained
in M. For very such L write " to be the category of finite étale covers W — U, as L-rigid
analytic spaces. Given extensions L — L' we consider the base change map untet _ yr'er,
Define U et as the projective limit site. For notational purposes we write (W, L), or simply W,
for an object of Uprser. In the first notation we implicitly assume that W € ULt We refer to
[AI, §4.1] for an explicit description. Note that the fiber product of two pairs over a given one
exists in Uy rey and, if those are defined in U g, for some L, it coincides with the image of the
fibre product in Uy ge.

Let Uy — U; be a map of formal schemes over X. Assume that they are étale over X. We
then have a functor U . et — Ua . set, Of sites fibred over the category of finite extensions K C L
contained in M. We let

Puts it - Un wget — U wget

be the induced morphisms of projective limits. It is given on objects by

(W,L) —> (W XULK Z/[QJ(, L) .

The category Ex,, and Faltings’ topology Tx,,. Define Ex,, to be the category of pairs (U, W)
where Y/ — X is an étale map of formal schemes and W is an object of Uy fet. A morphism of
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pairs (U, W') — (U, V) is defined to be a morphism U" — U as formal schemes over X and a
map W' — W Xy, Uge in U .

We define strict covering families exactly as in definition 2.4 and Faltings’ topology Tx,, to
be the topology generated by the strict covering families. We call the associated site the locally
Galois site attached to the data (X, M) and denote it by X ;.

We define the pre-sheaves Ox,, and O] on Ex,, as in definition 2.10. The analogue of
proposition 2.11 holds in our formal context i.e., Ox,, and OY} are sheaves.

2.3 Continuous functors. Localization functors

We define:

La if X is a scheme over Ok, we have ux y: Xy — Xprer With ux p (U, W) := W;
Lb if X is a p-adic formal scheme over Ok, let ux ar: Xy — Xaser be ux m (Z/l, W, L)) =
(W, L);

IL.a if X is a scheme of finite type over Ok, let vx pr: Xet — X be given by vx p(U) :=

IL.b if X is a formal scheme locally topologically of finite type over O, we have vx pr: Xey —
X given by vx py(U) = (U,L{K);

Let K € M; C M, C K be field extensions. Define

T Baryoaay: Xary, — X, by Banyoan, (U, W) = (U,W Q1 ]\/[1) (resp. Ban . (U, V) equal to
(U, W) viewed in X)) in the algebraic (resp. formal) setting.

It is clear that the above functors send covering families to covering families and commute with
fiber products. In particular they define continuous functors of sites by [SGAIV, Prop. II1.1.6].
They also send final objects to final objects so that they induce morphisms of the associated
topoi of sheaves.

Following [Err] we define a geometric point of X to be a pair (z,y) where x is a geometric
point of X and y is a geometric point of Xy specializing to x i.e., a geometric point of the
henselization of X at x. In loc. cit., we define the stalk F, ,y of a sheaf F on X to be the direct
limit lim F(U, W) over all pairs ((U,2'), (W,y')) where 2’ is a point of U mapping to = and ¢’ is
a point of W specializing to 2/ and mapping to y. We proved in loc. cit. that there are enough
geometric point in X i.e., that a sequence of sheaves is exact if an only if the induced sequence
on stalks is exact for all geometric points.

Lemma 2.13. Both in the algebraic and in the formal setting we have an isomorphism of sheaves
U;(,M(OX) = O&rjlw on .’fM

Proof. Let @ be the pre-sheaf on X defined by Q(U, W) :=T'(U, Oy) it W # ¢ and Q(U, ¢) = 0.
It is a separated pre-sheaf. Note that if W # ¢, (U, Uk) is the initial object in the category
of all pairs (U’,W’) admitting a morphism (U, W) — (U’,W’) in X. Thus, v}, (Ox) is the
sheaf on X associated to the pre-sheaf ). Note also that we have a natural map @ — OY, . Let

15



a € OF (U, W) and view it in I'(W, Oy ). By definition there exists a finite extension K C L in
M and a finite and étale morphism U’ — U ®p,. Oy, so that we have a map W — Uy @, M
over Uy and a is in the image of I'(U’, Oy/) in I'(W, Oy ). Note that U’ is a direct factor of
U' ®0, Or so that a is in the image of Q(U’, W) in I'(W, Oy/) as wanted. This proves that the
natural morphism @ — OY is surjective. To prove injectivity let (U, W) be such that U is
connected and W # ¢. Since the composition

QU,W) — O% (U W) C I'(W,Ow)

is injective we deduce that the first map is injective. It follows that the induced morphism from
the sheaf associated to @ to OY is injective. O

The localization functors. For this section we suppose that X is either a smooth scheme
or a smooth formal scheme over Ok. Let U be a connected affine open in the étale site of X
with underlying algebra R;,. Write Ry ®o, M = H?Zl Ry ; with Spec (Ru,i) connected. Fix a
geometric generic point 77, = Spec(Cyy ;) of Spec(Ruvi) and denote by Ry ; the union of all finite
normal Ry, sub-algebras of Cp;, which are finite and étale over Ry ; after inverting p. We let
Gu,,.i be the Galois group of Ry, C RW ®o, K. Eventually, let Ry := I, EW and let

n
QUM = H gUM,i'
i=1

Let Rep (GUM) (resp. Rep(QuM)N) be the category of discrete abelian groups (resp. the category
of inverse systems of finite abelian groups indexed by N) with continuous action of G,,. We
have natural functors, which we’ll call localization functors

Sh(Xy) — Rep(Guy,,)  and  Sh(Xy)" — Rep(Gu,,)"

defined as follows (we only define the functor in the case X is a scheme over Ok as above and
leave it to the reader to fill in the details for the other cases): if G € Sh(X)) is a sheaf of

abelian groups, its localization is g(}_%u) = EB?:IQ(}_%LM) where Q(TZLM) = limg(u, Spec(S)),

for S running over all [, ; sub-algebras of }_%Z/l,i®OKK which are finite and étale. It is a set with
the discrete topology and it is endowed with a continuous action of Gy,,. The objects (U, W)
of Xy, with W = Spec(S) and Ry; — S C Ry ;®0, K, correspond to finite index sub-groups
Gw C Gu,, - For any such, we can recover G(U, W) from the localization of G by the formula
gu,w) = g(ﬁu,i)GW. This allows to recover G(U, W) for every W — Uy, finite and étale
(see [AI, Lemma 4.5.3]).

Lemma 2.14. Let G be a sheaf on Xyy,. Let My C My be a Galois field extension. Then
i. the sheaf By, 1, (G) coincides with the pre-sheaf 51\_411,1\42(9);

it. for every object (U, W) of Xr, the group Bapy s (B, a1,(G)) (U, W) is endowed with an
action of Gal(My/My) and G(U, W) = (5M1’M2’* (ﬁfwl,Mg(g)) (U’W>)Gal(M2/M1).
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iti. take U = SpflRy) to be a connected affine open in the étale site of X. Then

— My:Mi]

Butntoe (Bity 1, (9)) (Ree) = G (Ru) ™™,

Proof. We prove the statements in the formal case, leaving the algebraic case to the reader.
(i) Given an object (U, W) of Xy, the group 3,/ . (G)(U, W) is l%rll G(U,W') where the

direct limit is taken over all objects (U, W') € X, and all morphisms from (U, W) to (U, W')
in Xs,. Note that W is finite and étale over Uy, for some finite extension K C L contained
in Ms. In particular it is a finite and étale over Uy, for L' := M; N L. Thus the direct limit
admits as final object the group G(U, W) with (U,V) viewed as an object of X,;,. The first
claim follows; see also [AI, Pf. Prop. 4.4.2(4)].

(ii) Take an object (U, W) of Xj;. Assume that W is finite and étale over Uy with L C
M. Then Bug, s (B3,0,(G)) (U, W) coincides with the direct limit G(U, W) over all finite
extensions L C L' C M, where Wy, is considered as an étale covering of Uy for L” := L' N M.
The Galois group Gal(My/M;) acts on this set and the invariants under Gal(L'M,/M,) are
exactly G(U, ). The claim follows.

(iii) It follows from (ii) and the fact that Ry[p~'|®a, My = Ry[p~!]M2:Mil, O

2.4 The sheaf A;Irlf’M.

Let us recall the following definitions from §5 of [AI]. Denote by @xM the inverse system of
sheaves of Oy-algebras {Ox,, /p"Ox,, }, € Sh(Xm)".

For every s € N define W, 3 := W,(Ox,,/pOx,,); it is the sheaf ((’)xM/p(’)xM)s with ring
operations defined by Witt polynomials and the transition maps in the inverse system defined by
Frobenius. Let Af¢\ in Sh(Xy)" be the inverse system of sheaves of W(k)-algebras {W,, ar},
where the transition maps are defined as the composite of the natural projection W, 1 —
W, a and Frobenius on W, 5s. Note that Af¢ ) is endowed with a Frobenius operator, denoted
by ¢, and is a sheaf of O, —algebras.

If My C M, is a field extension, it follows from 2.14 that we have a natural isomorphism
Biny vy ((”)le) = Ox,,,- In particular we have a natural map

57\41,]\42 (W&Ml) B W57M2

which is an isomorphism since (3}, 5., is exact. In particular we have natural isomorphisms of

: * %) ~ 7 * + ~ AT+
inverse systems of sheaves 33, <(935M1) = Oz, and Sy, (Amf’Ml) = A,

Proposition 2.15. Let U be a small affine object of the site X°; see §2.2 for the definition.
Then the natural maps

a) Ry — lim (Ox,, /p"Ox,,) (Ru) =: Ox,,(Ru),

are 1somorphisms.
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We’ll only prove the result in the formal case and leave it to the reader to repeat the arguments
in the algebraic case. First of all we prove

Lemma 2.16. For every n € N the pre-sheaf Ox,, /p"Ox,, is separated i. e., if (U, W) —
(U, W) is a covering, the natural map

OxM (Z/{? W)/pnOXM (Z’{v W) - O3€M (ulv W/)/pnOxM (Z/{/v Wl)

1S injective.

Proof. The lemma is a direct consequence of [A] Miscellany (1.8), (iv) or in this particular case
one may reason as follows. We write Ox,, (U, W) = U;S; (resp. Ox,, (U, W') = U;S)) as the
union of normal and finite Ry—algebras (resp. Rys—algebras), étale after inverting p such that
for every 7 there exists j; so that S; is contained in 57 and the map Spec(S’,) — Spec(S;) is
surjective on prime ideals containing p. Let z € S; N p"S} . Let P C S; be a prime ideal over p
and let P’ C S} be a height one prime ideal over it. Then z € S;p Np"S 5. Hence z € p"S; p.

Thus z lies in the intersection of all height one prime ideals of .S; so that x € S;. We conclude
that the map S;/p"S; — S5 /p"S], is injective. The claim follows. ]

The lemma implies that we have an injective map
Ry/p"Ru = O, (Ru) /p" Oxys (But) — (Ox,, /9" O, ) (Rur).-
The proposition follows then from the following
Lemma 2.17. 1) The cokernel of Ry /p" Ry — (Ox,,/p"Ox,,) (Ru) is annihilated by the maz-

imal ideal of Of.
2) The image of the map (Ox,,/p" ™ Ox,,)(Ru) — (Ox,,/p"Ox,,) (Ru) factors via

Ru/p"Ruy C (Ox,,/p"Ox,,) (Ru).

3) The image of Frobenius on (Ox,, /pOx,,)(Ru) factors via Ry /pRy C (Ox,,/pOx,, ) (Ru)-

Proof. 1t follows from 2.16 that the value of the sheaf Ox,, /p"Ox,, on (U, W) is given by
the direct limit, over all coverings (U',W') of (U, W) with U’ affine, of the elements b in
Ox,, U W) /" Ox,, (U, W') such that the image of b in Ox,, (U, W")/p"Ox,, (U, W") is 0,
where (U”, W") is the fiber product of (U, W') with itself over (U,W). Hence

(O%]M /pnOxM) (FZ,{) = ISHII} Kersm”

where the notation is as follows. The direct limit is taken over all normal [ ., sub-algebras S
of Ry, finite and étale after inverting p over Ry [1/p], all affine covers U’ — U and all normal

extensions Ry -®r,S — T, finite, étale and Galois after inverting p. Eventually, we put
U" = Spf(Ry») to be the fiber product of U’ with itself over U i. e., Ryr = Ry ®p, Ry

—~—

We let Kergr, = Ker (T/ T = T/Eés_'/T/ p"TTé?T), where T"®g T is the normalization of
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T ®sT. Write Tg for the normalization of T ®g,, TN T. We have a natural morphism

e~

T®RsT — fg of Ry ~o—algebras. Let
Kery p,, := Ker (T/p"T = fs/p”fg) .

Then B
(O%M /pnOxM) (Rz,{) - lér%l KertSET,n'

Study of Kerfgj’n. For every S and T as above, write G g7 for the Galois group of T®¢, K

over S @y, .. B oo ®oy K. Then fg is simply the product ] T. Hence we have

9€Gs T

Ker,, = Ker | T/p"T =[] = (T/p"T)%s7,
9€Gs,T

T

where the two maps in the display are a — (a,--- ,a) and a — (g(a))geGST.

Study of Coker(S/p"S — Kersr,). For the rest of this proof we make the following
notations: if B is a normal Ry .-algebra we denote by B’ := B @Ry 0o 1,00 = B @py, Ry, also
B" .= B R, o Bureo = B' ®g,, Ry» (the second equalities above follow from [AI, Lemma
6.19]). Note that B’ and B” are normal. Indeed, B = UB; is the union of finite and normal
Ryy—algebras B;. Since Ry is an excellent ring by [Val, it follows from [EGAIV, §7.8.3(ii)] that
each B; is excellent. Thanks to [EGAIV, §7.8.3(v)] we conclude that B;®p,, Ry is normal since
it is the p-adic completion of an étale B;-algebra of finite type. Thus, B’ :== B®g, Ry is normal
as well. Similarly one shows that B” is normal.

We then get a commutative diagram

O — S/an SN S//pTLS/ j S///an//
l la s
0 — Kersr, — T/p"T = TsT/p"T®sT

l | l

0 — Kergy, — T/p"T = Ts/p"Ts.

The top row is exact by étale descent and the middle and bottom rows are exact by construction.
Since S’ C T and S” C T" are finite extensions of normal rings, the maps a and 3 are injective.
Let us remark that the image of S'/p™S’ in fg/pnfs =T ®eT/p"T ®s T is 0, therefore the
image of a factors via Ker ., = (T/p"T)“".

Define Z as Coker (S'/p" S’ — (T'/p"T)%s7) C Coker(a) and Y as Coker(S/p"S — Kergr,).
Since Kergr,, is Ggr-invariant, the image of Y in Coker(a) is contained in Z. Since a and
are injective, the map Y — Z is injective. Consider the exact sequence

0 — §'/p"S' = TOs7 Jp"TCsr — (T/p"T) ™" — HY(Gsr,T).

Then Y C Z C H'(Gsyz,T). Since Ryroo — T is almost étale, the group H'(Ggr,T) is
annihilated by any element of the maximal ideal of O; see [F1, Thm. 1.2.4(ii)]. This implies
the first claim of lemma 2.17.
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Study of the projection Ker'sp, ., — Ker'gp,. It is induced by the natural projection
T/p"™'T — T/p"T. Consider the commutative diagram

n+1

0 — T "= T — T/p"'T —0

pl I |

n

0 — T X T — T/p'T —0.

Taking Ggr—invariants we get the following commutative diagram:

0 — S//pn—i-lS/ N (T/pn+1T) Gs,T B < (GS,Ta T)
L-p
0o — S/pns — (T/p”T)GS’T — HY(Gs7z,T).
Since multiplication by p annihilates H* (GS,T, T), we conclude that the projection Ker'smn b
Kergr,, factors via S/p"S. Hence the image of (Oxy, /0" Ox,, ) (Ru) — (Ox,,/p"Ox,,) (Ru)
factors via Ry /p"Ry C (Ox,,/p"Ox,,)(Ry). This proves the second claim of the lemma.

Consider the map of sets T//pT — T/p*T sending an element a to the p-th power @ of a lift
aof ain T/p*T. Tt is well defined since it does not depend on the choice of the lift @. It induces a

map p: (T/pT) Gsr _, (T/pZT) “ST  Frobenius on (T/pT) 95T factors as the composite of p and
the projection (T/p*T) Gsr _, (T/pT) “ST Tt follows from the above discussion that Frobenius
Kerls ., — Ker's , factors via S/pS. Hence the image of Frobenius on (Ox,, /pOx,,) (Ry) factors

via Ry /pRy C (O};M / pOxM) (Ry). This proves the last claim of the lemma and the proposition
2.15. 0

The map 0y;. We define a morphism 6y Al — Ox,, of objects of Sh(X )N as follows.

We work in the formal setting. Fix a non-negative integer n. Let (U , W) be an object of Xj;.
Let S = Ox,, (U, W) and consider the diagram of sets and maps

(S/p"s)r =~ S/p"S

L b
(S/pS)"
n—1
. n—1—1
where a,,(S0, $1,. -, 8n-1) = Zplsf and b, is the natural projection. Remark that there is

1=0
a unique map of sets, ¢,: (S/pS)" — S/p™S which makes the diagram commutative, i.e. such
that ¢, o b, = a,. Moreover, ¢, induces a ring homomorphism ¢, @ wy: W, (S/pS) — S/p"S
functorial in (U, W) i.e. a morphism of presheaves W,, y; — Ox,,/p"Ox,,. Denote by 0y, the
induced morphism on the associated sheaves.

Lemma 2.18. a) The following diagram of sheaves and morphisms commutes for varying n € N:

0M,n+1 1
WTL‘H,M 035M /pn+ O%AJ
L ug L vn
O, n

Wn,M — O:{]M /pnOxM
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where u,, is the composition of the natural projection and Frobenius and v, is the natural pro-
jection.

b) For U = Spf(Ry) connected open affine in X, the localization of
Onr = {00} Ayt — Oz,

is the map Oy = Alg \(Ry) — ﬁu of [Bri, Prop. 5.1.1].

Proof. a) It is enough to prove that the diagram commutes at the level of pre-sheaves, so let as
before (U, W) be an object of X, and let S = Ox,, (U, W). We are reduced to checking that
the following diagram of sets and maps commutes

(S/pS)n+1 CLJrl) S/anrlS
L un L on

(S/pS)" = S/p"S

where u,, (8o, $1,-..,5,) = (sh,s],...,sL_;). This is a simple calculation which we leave to the
reader.
b) Using the proposition 2.15, the map (6, )y is induced by hI)r/lv Cn,u,w) and therefore

coincides with the map defined in [Bri, Prop. 5.1.1]. O
Fix an object (U, W) of X;. Write S = Ox,, (U, V).

Lemma 2.19. Assume that p*/?""" € S. Then &, = [p"/?""'] — p (see section 1.2) is a well
defined element of W,,(S/pS) and it generates the kernel of c¢,: W,(S/pS) — S/p"S.

Proof. Let us first remark that ¢,(&,) = (p"/?" " )P""" — p = 0, therefore &, € Ker(c,,).
We show that if x € Ker(c,) then = € £, W, (S/pS). We'll prove this statement by induction on
n. Forn=1,¢ =1Id and & =0 € W,(S/pS) = S/pS. Let now n > 1 and suppose that our
statement is true for n — 1. Let a € Ker(c,).

Claim 1 There are € W, (S/pS) and v € W,,_1(S/pS) such that a = &,5 + V(v), where
V: W, 1(S/pS) — W,,(S/pS) is Vershiebung, i.e. V(sg, $1,...,8,-2) = (0, S0, 81, .., Sn_2), for
(0,815 8n—2) € W,_1(5/pS).

. _on—1—1

n—1
To prove this claim let us write a = (ag, aq,...,a,-1) and so 0 = ¢,(«a) = Zp’&f ,
1=0

where if z € S/pS, then Z denotes any lift of x to S/p"S. Therefore &8n_1 = pc for some ¢ € S.
Let Ry C S'(C S) be a finite and normal extension containing both &g and p'/?""". For every
height one prime ideal p of S” we have &g"‘l/p = ¢ which lies in S} so that ao/p/P" " e Sy, since
the latter is a dvr. We conclude that o /p'/ P""" lies in the intersection of the localizations of S at
every height one prime ideal so that, since S’ is noetherian, we must have ag/p*/ P € §'. Denote
by Gy the image of ao/p*/?" " in S/pS. Then oy = p'/*" "By in S/pS. Let §:= (3,0,...,0) €
W,.(S/pS) and let us compute: a—&,- 5 =a—p,-B+pf = (o, a1, ..., @, 1) — (,0,...,0)+
(0,45,0,...,0) € V(W,_(S/pS)).

Let v € W,,_1(S/pS) be such that a — &,6 = V(7). Then ¢,(V(v)) = ¢,(a — &,6) = 0 and
cn(V(y)) = wnlcn_1(7)), where w, is the isomorphism w,: S/p"~'S = pS/p"S. Therefore
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¢n-1(7) = 0 and by the inductive hypothesis there is 6 € W,,_1(S/pS) such that v = §,,_16. The
lemma now follows from

Claim 2 V(§,-10) = &, V(0). This is a simple calculation with Witt vectors. Write § =
((50, 51, ce 76n72)7 then

En10 = (P7"7°0,...,0) - (80,01, ..., Opa) — pd =

= (pl/pnizé())pl/pnig)é‘la e apl/pén—Z) - p5

Therefore
V(£n_10) = (0,p7" 6o, . .., pP0,_s) — V(pd).

On the other hand,
&V () = & (0,00,01, -, 8na) = (0, 60, ..., p" /P8, 5) = p(VO),

which proves the second claim and the lemma because V is an additive map. O

Note that if (U, W) is an object of X5 then O C S and p, € W,,(S/pS). In particular ¢ is
naturally a section of the sheaf A .(Ox) over (U, ). We deduce from 2.19:

inf
Corollary 2.20. We have Ker ((9?: Ay — 6x?) =& At as sheaves in Sh(X7w)N.

p=1

+---+[e]7 € Af,. Then

inf*

3=

Let U be a small affine as in §2.2. Write ¢/ := = =1 + [¢]

T
e]P -1

Lemma 2.21. (_]) For every positive integer r the Frobenius morphism ¢ induces an isomor-
phism W, (Ry/pRu) /¢~ (¢')Wa(Ru/pRu) = W (Ru/pRu) /¢~ (¢ ) Wa(Ru/pRu);
(2) for every n € N the W,,—module W,,(Ry /pRy) is flat;

(3) assume that we are in the formal case. The sequence 0 — Z/p"Z — W,,(Ry /pRy) L
W, (Ry/pRy) — 0 is exact where Z/p™7Z is the constant group over Spec(Ru Q0 M)

Proof. (1) We proceed by induction on n. The kernel of the reduction Wnﬂ(ﬁu /pfiu) —
W, (ﬁu / pﬁu) is VPW,, 11 (}_%u / pﬁu), where V is the Vershiebung. The latter is isomorphic to
Ry /pRy as an abelian group with structure of W,, (Eu / pﬁu)—module via the map W, ;4 (Eu / pﬁu) —

(2

}_%U/pﬁl/h (GO; e ,an) — ag .
Let A,, be the assertion that ¢ induces an isomorphism

Woo(Ru/Ru) /o™ (¢ ) Wi (Bu/Ru) — Wo(Ru/Ru)/ ¢~ (¢ )Wa(Ru/Ru).-

Let B, , be the following assertion: the sheaf
V"W i1 (Ru/pRu) /¢ (¢') V" Wi1 (Ru/pRu),
which is isomorphic to Ry /((1+ ¢+ - - gil)ﬂ%",p)ﬁu, injects in
W1 (Bu/pRu) /¢ (¢')Waia (Ru/pRu).
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We prove by induction on r and n that the claims A, ,, and B, , hold. For n =1 and any r
the fact that the map ¢ is injective follows from the fact that Ry, is normal, cf. proof of 2.16. It
is surjective by [Bri, Prop. 2.0.1]. Thus A,; holds. Since 1+ (3 + - -- 5_1 has p-adic valuation
1 assertion B, , holds for every n € N and every » > n. It then follows by descending induction
onr < n and from A,; that B, , implies B, ,. Thus B, , holds for every r and n. Proceeding
by induction on n one then proves that A, , and B, together with A, ; imply A, 4.

(2) It suffices to prove that the map J®yw, W, (Eu / pﬁu) — W, (ﬁu /pﬁu) is injective for
every finitely generated ideal J C W,,. We proceed by induction on n € N. Let n = 1. Since
O is the union of discrete valuation rings and J is finitely generated we have J = p’Ox/pOz%
for some 0 < ¢ < 1 i. e, J =~ Ox/p 0% and the inclusions J C Oz/pOz is given by
multiplication by -p°: O« /p1 0% — O%/pOz%. Then J®@fRu/pRu = Ry/p'~ 5Ru and the
map J®ofRu/pRu — Ry /pRy is the map Ry /p*°Ry — Ry/pRy given by s +— p’s. Since Ry
is normal, this map is injective as well.

Assume that the claim holds for ideals of W,, for n < N. Let J C Wy, be an ideal.
Let mn: Wy41 — Wy be the natural projection. Its kernel is V¥NWy,, which is isomorphic
to Ox/pOx. Let Jxy be the image of J via my and put J' := J N Ker(my) which we view as
an ideal of Ox/pOz via the identification above. Since Frobenius is surjective on Ry /pRy,
and hence on Wy, (Ru / pﬁu), and multiplication by p is Vo ¢, we have VW 4 (Eu / pﬁu) =
pW i1 (}_?u/p}_%u). Then J' @wy,, Wap (ﬁu/pﬁu) = J' R0 /p0x Ry /pRy which is isomorphic
to J' ®o._po. Bu/ (¢~ (¢'), p) Ry since multiplication by ¢~ V*!(¢) is multiplication by p = 0
on J’. Moreover the map from .J’ ®O?/pof§u/( N“( ) )Ru to Wy 1 (Ru/pRu) factors via
Ry /pRy = VVNWy (Eu / pﬁu) and via these identifications it is the map a ® b — ab?" . This
is proven to be injective as in the proof of the n = 1 case.

We have an exact sequence 0 — J' — J — Jy — 0 of Wyyi;-modules. The induced
map J' Qwy.,, WN+1(Ru/pRu) — VVWyiq (Ru/pRu) has been proven to be injective. Note
that Jy @wy,, W1 (Ru/pRu) = JnQwy Wy (Ru/pRu) since the kernel VNW (Ru/pRu)
VN WNH(Ru/pRu) = p"Wniq (Ru/pRu) and p" = 0 € Wy. Furthermore, the map IN@wy
W (Ru/pRu) — Wy (Ry/pRuy) is injective by inductive hypothesis. Consider the following
commutative diagram

J @ Wy (Ru/pRy) — J Wy (Ru/pRy) — JIn © Wiy (Ru/pRu)

0 — V¥Wxy (Ru/pRu) — Wy (Ru/pRu) — W (Ru/pRu),

where in the first row the tensor products are over the ring Wy.;. The rows are exact and
we have proven that the left and right vertical maps are injective. Therefore the map J @, ,
Wi (}_%u/pﬁu) — Wyt (}_%u/p}_%u) is injective as well.

(3) Proceeding by induction on n it suffices to prove the claim for n = 1 i. e., that the
sequence 0 — F, — Ry / PRy L Ry / pRy — 0 is exact. Since Ry is p-adically complete
every finite extensions of Ry, is also p-adically complete and by Hensel’s lemma the connected
components of the associated spectrum are in bijection with the connected components of its
reduction modulo p. In particular the scheme Spec (Eu / pﬁu) has as many connected components
as Spec (}_%u Rox OM) has. By construction these coincide with the connected components of
SpeC(Ru Ko, M ) The exactness on the left and in the middle follow from Artin—Schreier theory.
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The cokernel of ¢ — 1 on Ry /pRy is contained in H* (Fu / pﬁu,]Fp) by Artin—Schreier theory.
Let Z — Spec(Ry/pRy) be an F,—torsor. It can be lifted to an F,-torsor Z — Spec(S) over a
finite and normal extension Ry C S, étale after inverting p. In particular Z = Spec(7) is affine
with 7' normal so that Z(R;) admits a section by definition of ;. Then Z admits a section as
well and thus it is the trivial torsor. Therefore H(Ry,/pRy,F,) = 0 and the claim follows.

[

Corollary 2.22. For every n the sheaf W, & is a sheaf of flat W,-modules. Furthermore, ¢
induces an isomorphism an/([g]ﬁ — 1)an — Wn?/([g}p# - 1)an for every r € N.

In the formal case the sequence 0 — Z, — W, % L W, & — 0 is ezact.

Proof. Tt suffices to show the claims for the pre-sheaf Wn((’)xf / pox?) and further after passing
to its localizations at every small affine 4 C X. The claims follow from lemma 2.21. O

2.5 The sheaf AZiS’M.

We start with a formal definition. A W(k)—divided power (W (k)-DP) sheaf of algebras in Sh(X /)
or Sh(X,,)Y is a triple (F,Z,~) consisting of (1) a sheaf of W(k)—algebras F € Sh(Xy;) (resp. an
inverse system of sheaves of W(k)-algebras {F,} € Sh(Xy)Y), (2) a sheaf of ideals T C F
(resp. an inverse system of sheaves of ideals {Z,, C F,}), (3) maps v;: Z — Z for i € N such
that for every object (U, W) the triple (F(U, W), Z(U, W), Yuw)) (resp. for every n the triple
(Fuld, W), Z,(U, W), Y w)) ) is a DP algebra compatible with the standard DP structure on the
ideal pW (k) in the sense of [BO, Ch. 3]. Given a sheaf of W(k)-algebras G and an ideal J C G
(resp. an inverse system of sheaves of W(k)-algebras G and ideals J C G) the W(k)—divided
power envelope of G with respect to J is a W(k)-DP sheaf of algebras (F,Z,~) and a morphism
G — F of sheaves (or inverse systems of sheaves) of W(k)-algebras, such that J maps to Z,
which is universal for morphisms as sheaves (or inverse systems of sheaves) of W(k)-algebras
from G to W(k)-DP sheaves of algebras F’ such that J maps to the sheaf of ideals of F’ on
which the divided power structure is defined.

We'd like to consider the W(k)-DP envelope of the sheaf Afl;\; € Sh(Xy) with respect to the
sheaf of ideals Ker(#,,). One could use the general machinery of [B1, Thm. 1.2.4.1] to guarantee
that it exists but we prefer to provide a different more explicit description. We start with:

Lemma 2.23. Let G be a sheaf of W(k)—-algebras and let J C G be an ideal. Assume that the
W(k)-divided power envelope (F,Z,~) of G with respect to T exists. Then for everyU € X° the
restriction of (F,Z,7y) to Yy is the W(k)—divided power (DP) envelope of G|y,, with respect to
I|5JM'

Proof. Let j: Xp — 4y be the continuous morphism of sites sending (V, W) — (V, W) Xz x.)
(U,Uk). Let ji: Sh(ihyp) — Sh(Xys) be the functor of extension by zero. It is the right adjoint of
the functor j*: Sh(X,;) — Sh(ly,) which is the restriction functor from X,; to the subcategory
Uy C Xypy; see [Err]. Let f: Gly,, — F’ be a morphism of sheaves such that (F',Z',7') is a
W(k)-DP sheaf of algebras on iy, and f(J) C Z'. Then (ji(F'), #(Z'), ji(7)) is a W(k)-DP
sheaf of algebras and by adjointness of j; we get a morphism j(f): G — 5i(F’). The latter
extends uniquely to a morphism F — 7(F’) of W(k)-DP sheaves of algebras by the universal
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property of F. Restricting to Uy, we get a morphism Flge — F’ of W(k)-DP sheaves of algebras
extending f. Using the adjointness of j; and the universal property of F one proves that such a
morphism is unique. The claim follows. O

By lemma 2.14 for every object (U, W) € X, we have a natural identification W,, (U, W) =
Buz. (Wi, W) &l K/M) - We used the fact that ﬁ;j’?(WmM)(L{,W) = W, (U, W). Define
AV

cris,n,M

to be the sheaf on X;; associated to the pre-sheaf given by

UW) = (Acisn @w,, (W, (U, W)))Gal .
Let Orm: Afignn — Ox,,/P"Ox,, be the map of sheaves induced by the map of pre-sheaves

Gal(K /M)

(Acion @w, (Wa@, 1)) — (O, /1"Ox,,) (U W),

given by 0,, ® 0,, s. Here using again lemma 2.14 we have identified

(Brr e (O /9" O ) U, W) 4

with (Ox,, /p"Ox,, ) (U, W). We get from lemma 2.19 that Ker(fy,)(U, W) coincides with the
Gal(K /M)-invariants of the ideal of Auisn ®w, W, (Ox,, (U, W)/pOx (U, WV)) generated by

Ker(6,,)P". Such an ideal has W(k)-DP structure thanks to corollary 2.22. In particular the sheaf
Ker(6,,,1) is endowed with W(k)-DP structure as well. Using the identification W,, 5/ (U, V) =

(W,,(U, W))Gal(ﬁ/ M) we also have a natural map

hM,n: WnM —>A

cris,n,M*

Since Op,, is a sheaf of O)/—algebras, W,, 5, is a sheaf of O, —algebras. Consider the map
Tona1: W, — W, defined by the natural projection composed with Frobenius. Now we tensor
with Aeisni1 over W,. Since &, is the image of &, via r,;1, taking Gal(K /M )-invariants, we
get a natural map rani1: Al v — Adisnn- Denote by AY y the sheaf in Sh(X7)" defined
by the family {AY » with the transition maps {rasn+1}n-

CrlS

cris,n,M

Proposition 2.24. 1) The sheaf of rings A , v, with the sheaf of ideals Ker(0,,ar) and the nat-
ural map b ar: Wiar — Ay 18 the W(k) ~DP envelope of W, with respect to Ker(6,,1).
2) The system of sheaves of rings AYy . with the sheaf of ideals {Ker(Onr)}n and the
natural map har = {hnarkn: Mgy — Aoy 18 the W(k)-DP envelope of Afe\ with respect
to {Ker(On.ar) }n-
8) The Frobenius map ¢: Wy s — Wy defines a map = Afy g — Ad

cris,n,M*
A in Sh(Xa)Y;

5) If My C My is a Galois field extension we have a natural isomorphism By, ., (AXIS N Ml) =
AY. o, Of W(k)-DP sheaves of algebras, compatible with Frobenius and the natural structures
of W,, ar, —sheaves of modules;

6) We have a natural isomorphism By, 1, (ACVHS M1) AY.. M of W(k)-DP sheaves of alge-
bras, compatible with Frobenius and the natural structures of Amf’M —sheaves of modules.

4) For varying n the maps {¢n}n define a morphism ¢: A¥\ — A,
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Proof. (1) Let G be a W(k)-DP sheaf of algebras and let f: W, ,; — G be a morphism

sending Ker(6,,) to the DP ideal of G. Due to 2.14, for every (U, W) € Xy, we have
Gal(K/M)

gu,w) = (5;?(9)(0{,1/\/)) . Since B&%(Wn,M)(Z/{,W) is equal to W, (U, W), the

map ﬂ;jK( f) extends uniquely to a map Auisn @w, W,(U,W) — i K(Q)(L{ W). Taking

Gal(K /M)-invariants and using the definition of A\, we get a unique map A%\ — G as
W(k)-DP sheaves of algebras extending f. This proves the universal property of ACHS an- Claim
(2) follows from claim (1). Recall that Frobenius on W,, extends to an operator ¢ on Acis .
Claims (3) and (4) follow. (5) The existence of a natural map 83, v, (Adinn,) — Avisnn
compatible with Frobenius and the structure of W,, p;,-modules follows from the definition of
AYi - To check that it is an isomorphism it suffices to prove it for the stalks. The stalk of
ﬁMl vy (Wans ) at apoint z € X is W, (OxM 2/POx),, «); see [AL Prop. 4.4]. The latter is a W,,—
algebra. It then follows from 2.19 that the stalk AYj v, 15 Aerisn @w, Wy, (Ole ,x/pOxMQ,m)-

Since Oz, .« = Oxy,, «» the claim follows. Claim (6) follows from (5) O

The next step is to study the localization ACHSM over small affines. In analogy with the
classical case of A recalled in §1.2 we provide a second essentially equivalent definition of
AYin via the system AY. \/p"AYy y for varying n € N. Let AC“SHM be the sheaf on X,
associated to the pre-sheaf given by

n Gal(K /M
(u7W) = ((Acris/p Acris) ®Wn W (Z/[ W)) / )

Let 034” ACZSHM — Ox,,/p"Ox,, be the map Oy, © (¢,®p) (we refer to §1.2 for the
map ¢n: Acris/P" Acris — Aecrisn). Denote by ACHSM the sheaf in Sh(X,,)Y defined by the family
{A;Z&HVM} with the transition maps 7, A::Zs,n M A;ZS’HM induced by rp,41: W, g —
W, . For every n € N define the map of sheaves

associated to the map of pre-sheaves inducing ¢,: Acis/P"Aais — Aeisn and Frobenius on
W, (U, ). Consider the map of sheaves

cris,n+1, cris,n,M

associated to the map of pre-sheaves which induces u,,: Aqisnt1 — Aeris/P" Aais (see 1.2) and
the natural projection W,y pr (U, W) — W, p (U, V).

Proposition 2.25. 1) The sheaf of rings ACHS wm With the sheaf of ideals Ker(0), 5,) and the natu-
ral map hy, yr: Wo pp — Acm w18 the W(k)—-DP envelope of W,y with respect to Ker (0, ar00).

2) The system of sheaves of rings A’CZSM, with the sheaf of ideals {Ker(0, /) }n and the
natural map hyy = {h}, yrhn: Ay — ACHSM is the W(k)-DP envelope of Afl¢\, with respect

to {Ker(0,a 0 @)}n

3) Frobenius on W, y; defines maps ¢, : ACZWM — A/CZS%M which are compatible for vary-

ing n and give a morphism ¢ = {¢}: AN\ — ALY

cris, M cris,M *
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— Y
4) For every n € N we have qurpn © U, = Tarnt1 ONd Uprp © Qurns1 = "Ml Furthermore,
the following diagrams commute

v Un, M v qn,M v
Acris,n+1,M Acris,n,M Acris,n,M
/
l Pn+1 J,Spn l%pn
v Un, M v qn,M v
Acris,n+1,M Acris,n,M Acris,n,M
and
©
Wn+1,M ? Wn,M ? Wn,M
!/
lhn—l-l,M lhn,M lhn,M
Un, M Av4 dn,M \v4
cris,n+1,M cris,n,M cris,n,M
/
9n+1,M n,M len,M
n+1 n _ n
OxM /p O:{M O:{]V[ /p O}:J\l - O:{JVI /p OXM'

5) If My C My is a Galois field extension we have a natural isomorphism By, ., (A,v )=

cris,n, My ) —
A;ZS,H,MQ of W(k)—-DP sheaves of algebras, compatible with Frobenius and the natural structures

of W,, rr, —sheaves of modules;

6) We have a natural isomorphism By, g, (Aot ) = A;ES’MQ of W(k)-DP sheaves of alge-

bras, compatible with Frobenius and the natural structures of A;ﬁMQ —sheaves of modules.

3 R . AV v A . AV v
Write am = {qnyM}” Acris,M - Acris,M and Up = {un,M}n . Acris,M - Acris,M‘

Lemma 2.26. a) For every n we have an exact sequence

'V a v v
0 Acris,n,M Acris,n—i—l,M Ay ,1,M 0’

— ! / / : . .
where b =14y 001y \y 0Ty gy and a is the map of sheaves associated to the Vershiebung

V:Wonr — Wi i
b) We have A’CZSJR = Ox,_/pOx,_ (00,01, . ] /(6%)”120.
c) We have A;V. UW) = (Acis /D" Actis) Ow,, (W, zU,W)) for every (U, W) € X In

ris,n, K
particular the sequence in (a) is exact also as sequence of presheaves for M = K.

Proof. a) Certainly boa = 0. To check exactness we study the stalks. Since for any sheaf G

on Xy we have §} 2(G), = G, by [Al, Prop. 4.4] and since 3} (A nn) = /CE&HR v

proposition 2.25 it suffices to prove the claim for M = K. The kernel H of the natural projection
5: Wy — W, = (935?/ p(’)ggf is identified with W,, via Vershiebung. It is a W, ;-module via
the projection W, — W, composed with Frobenius on W,, and the structure of W,—module
of W,,. Hence

(Acris/pn+1Acris) ® H = (Acris/anrlAcris) ® WTIJ

where ® stands for ®yy, ,,. Since s(§)_,) = pz%” we have

(Acris/anrlAcris) ®Wn+1 Wl = O%?/pp% OXK [507 517 .. :| /(5%)71120
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Recall from 2.22 that Frobenius to the n—th power ¢" gives an isomorphism Ox?/ pt/P" Ox. —
Ox./pPOx,.. Hence

(Acris/pn+1Acris) OW, 41 (anf/pox?> = 036?/29(936? [50, 01, .. ] /(6%)77120'
The composite of s with ¢™ is rgo---or,or, 1: W,,; — (’)x? / p(’)xf. This proves the exactness
of the sequence displayed in Claim a) with the exception of the exactness on the left. We prove
the left exactness on stalks. Let x be a point of X. Note that ¢ = []3] — p. Since the ideal

generated by p admits W(k)-DP in Ay, the W(k)-DP envelope of £ in A coincides with the
W(k)-DP envelope of []3] in Aeis 1. €.,

Acris/pnAcris = Wn <ﬁn+1> = Wn [507 517 .- ] /(P50 - ﬁ;+1ap6m+1 - 5%)7”20-
Define B :=W,, ((’)x?,z/p(’)x?@) [50, 01, .. } /(POms1 — 5&)m>0. Similarly, denote by
C:= Wn+1 (Oxf,x/poae?,ﬂ [507 51) e ] /(p5m+1 - 551),”20

and write D := Ox_./pOx_.[00, 61, .. ']/((Spm)m>o' Note that B/(pdy — ph,,)B is the stalk

A;Zs,n,Kx of A;Z&HR at x, C/(pdo — ph,5)C' is A;ZsKnH,x and D/ph,D = A;ZS,LKX' We have
the following commutative diagram:
0 — B LIS B2 D — 0
l(p(So - ﬁﬁﬂ) l(p&o - YA?ZH) i - 132+2
0 — B e =5 D — 0.

Here, a, sends d; — ¢; and induces Vershiebung W,, ((935?793 / p(’)xf@) — W41 (Ox?ﬂ; / pOxe).
Since B (resp. C) is a free W, (Ox?@/p(’)x?@)fmodule (resp. W, 11 (Ox?@/p(’)x?@)fmodule)
with basis given by the monomials in the §;’s and Vershiebung is injective the map a, is injective.
The map s, is the natural projection. Since also D is a free (935?7,; / pOfomodule with basis
given by the monomials in the ¢;’s the rows in the displayed diagram are exact. The sequence of
cokernels B/(pdy — Db, 1)B — C/(pdy — Pl 5)C is the map on stalks associated to a. Note that
Pnt1 = Dby = pY?" in Ox/pO% and the kernel of multiplication by p'/?" on D is pp~'/?"D =

ppT?lD = ﬁflth. Choose y € D and let x € C be the lift defined taking the Teichmtiller lifts
of the coefficients of z with respect to the Ox_./pOx, .~basis of D given by the monomials in

the 6;’s. In particular p,,y = py = 0. Put z := S22 pip? " 'y. Then
p"—1 pr—1
(pdo — D)z = Y S5 P B T = > Py = 05 Py — Phaay =0
i=0 i=0

and s,(z) = pppi;ly. This proves that the kernel of multiplication by pdy — pl ., on C surjects
onto the kernel of multiplication by pl ., on D. The claimed left exactness follows from this

using the snake lemma in the displayed diagram.
b) follows using that Aeis/pAcis = Ox/pOx 00,01, ...]/(68,) _ s see 1.2.

m>0’
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¢) We prove the claim by induction on n. For n = 1 it follows from (b) since A Y V 1K 8 a

direct sum of copies of Ox?/ pOx,.. Suppose the claim proved for n. Write Al for the presheaf
UW) = (Acis/P" Acris) Qw, (Wn(u : W)) Consider the following commutative diagram:

Al’n o Ailﬂ - Af
0 — AY _UW) - AY _UW) = AV _UW)

cris,n,K cris,n+1,K cris,1,K

— 0

The bottom row is exact due to (a). The top one is exact as well (see the proof of (a)). This
fact together with the inductive hypothesis and a diagram chase imply the claim. O]

To conclude the comparison between AV, u and AY.  we prove the following:

CI'lS n CI‘lS n,

Lemma 2.27. For positive integers m > n the map Up pr © Tppap © =+ O Ty s - AcvrismM N
A 'V

2
crisaM (nduces an isomorphism AY. /P AY. oM AY

cris,n,M *

Proof. As in the proof of lemma 2.26(b) it suffices to prove the lemma for M = K. We can write
multiplication by p™ on W, as the composite of V" o™ with V =Vershiebung and ¢ =Frobenius.
Since ¢ is surjective on Ox_/pOx_ by [Al, Lemma 4.3(v)] we deduce that W, /p"W,, = W,
where the map is the natural projection. Via this identification the map w, o r, 1 0+ o0
Tm: W, — W, is ¢™ " ! and, hence, sends &, — &,,1. Note that p,, = &, +p. Since p and &,
admit DP in Aeiem(Ox) also p,, admits DP. We compute V*(5,,)" = (¢*(V*(5,)))" =

(psﬁm)pn_s = ps”n_sﬁ,’:_s = pSpn_sp"*S!ﬁiﬁniﬂ. This is 0 in Acyigm/P" Aeris,m sinice sp™ *+n—s > n.
The element PP generates the kernel of ™ "1 on Ox/pOx; see the proof of 2.26. Hence

(VS (ﬁm)p n) o<scy, Senerates the kernel of o™ =1 on W,. Similarly W,,/p"W,,) = W, and
(VS (ﬁm)p n) 0<s<n is the kernel of @™ "1 on W,. Hence Acrism/P" Acris,m 18 the DP envelope

of W, with respect to " HE,) = Enyn . e. it coincides with A /p™ Aais. We conclude that

7 V 3 \V4 [Av4 .
= 7 O 70+ 0 s
p Acris, b contains the kernel of the map Uy KO Thi1 K Tm&" Acri& 5 ACHS It s

also clearly contained in this kernel. The claim follows. O]

Let U = Spf(Ry) be an object in X°*. Assume it is small in the sense of §2.2. As in §2.3
fix a geometric generic point and define Ry as in loc. cit. Following [Bri, §6] define AY,. (Ry)
as the p-adic completion of the W(k)-DP envelope of W(R(Ry)) with respect to the ker-
nel of the map ¥ defined as follows. For every n let 9,, be the composite of the projection
W(R(Ru)) — W, (R(Eu)), of the map W,, (R(R,,)) — W, (Eu/pﬁu) associated to the pro-
jection R(Ry) = lim Ry /pRy — Ry /pRy on the n—th component and of 6,,: W, (Eu / pﬁu) —

Ry /p"Ry. Let 9: W(R(Ry)) — ﬁu be the map z +— lim 9, (x). It is proven in loc. cit. that

Ker(¥) is a principal ideal generated by ¢ and that Frobenius on W(R(Ry)) induces Frobe-
nius ¢ on Ay (Ry). For every n let g, be the composite of the projection W(R(Ry)) —
W, (R(Ru)) and of the map v,: W, (R(Ry)) — W, (Ry/Ruy) associated to the projection
R(Ry) = hm Ry /pRy — Ry/pRy on the n 4 1-th component. We get that

Adis(Ry) /0" A%is(Ru) = W, (R(Ru)) 60, 61, - - 1/ (pdo — 7, pdisa — 07 )izo.
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Since g,(£) = an, we have a map g¢,: AV (Ry)/p"AY:.(Ry) — A/CZSHK(RU) Note that
A an(Ry) = (ACZS an) (Ry) by 2.14 and the latter coincides with ACHS . K(RU) thanks

to proposition 2. 25 We then get a map garn: ASs(Ru)/p" AV (Ru) — A (Ru).-

Cris Cris

Proposition 2.28. 1) The map AN, \(Ru) — A n(Ru) defined by qur is an isomorphism.
2) For every n € N the map gnr: AV (Ruy)/p AV (Ry) — AcrlsnM(Ru) is injective,

Cris

commutes with the Frobenius maps and its cokernel is annihilated by any element of 1.

3) The induced map A
nius.

V. (Ry) — Agis,M(}_%u) is an isomorphism and commutes with Frobe-

Proof. (1) It follows from proposition 2.25(3) that 7, defines an inverse. Claims (2) and (3)
follow from the next lemma. O]

Lemma 2.29. For every n € N the map AY,.(Ry)/p" AV (Ry) — ACZSKH(E ) is injective, its
(Ru) = AT .. (Bu)

cokernel is annihilated by any element of I and the transition map A’V i Bon

factors via AY. (Ry)/p"AY.(Ry).

Cris

cris, K ,n+1

Proof. Since Ry is a normal ring and Frobenius is surjective on Ry /pRy by [Bri, Prop. 2.0.1],
the kernel of the projection R(Ry) = hm Ry/pRy — Ry/pRy on the n + 1-factor is pP".

Since £ = p — p and both p and & have DP in AY..(Ry), also p admits DP. As in the proof of

lemma 2.27 it follows that Vs([ﬁ]) =0in AY, (Ry)/p"AY..(Ry). These elements generate the
kernel of v,,. Hence

CI‘IS( )/pnAcvrls( ) Wn (Eu/pﬁu) [507 617 s ]/(p50 - €p7p5i+1 - 6?)1'20

where the isomorphism induces the map g,,: W, (R(}_%u)) —- W, (}_%u / pﬁu).

We prove the lemma by induction on n. It follows from what we have just seen 2.26 and 2.17
that the map AY. (Ry)/pAY..(Ry) — ACZS . K<RU) is injective and that its cokernel is annihilated
by any element of I.

Since AY..(Ry) has no p-torsion by [Bri, Prop. 6.1.4] we have an exact sequence

0 — AL (Ru) /0" Adis(Ru) == Afis(Ru) /™ Ay (Ru) — Adi(Ru) [pAS(Ru) — 0.

Cris Cris

One checks that it is compatible with the exact sequence obtained by taking the localizations of

the sequence in 2.26(b). Due to 2.26(b) the map AC“S .y K(Ru) ACZS . K(Ru) is the map

Acris
pnAcris

Acris
pAcris

Qw,, (Wn(ﬁu)> - QO /pOs <an/p(9x(ﬁu)>

which by construction induces the map W, (Ry) — (Ox_/pOx_) (Ry) given by the natural
projection and Frobenius to the n — 1-th power. In particular since n > 2 this map factors via
Ry /pRy by 2.17. The inductive step follows from this using the inductive hypothesis. O]
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2.6 The sheaf A .

In this section we assume that Ox = W(k) is absolutely unramified. Write Oy, for the ring
of integers of the maximal unramified extension M, of K in M. Recall that in lemma 2.13
we have described vy ,,(Ox) as the subsheaf O} of Ox,, introduced in 2.10. It is a sheaf of
Ong-algebras. For every n > 1 let us define the sheaf Wx ,, pr := W,,(Ox,, /pOx,,) ®o,,, OF,, of
O\, —algebras and the morphism of sheaves of O%} ~algebras 0x ,11: Wxnu — Oz, /p"Ox,,
associated to the following map of pre-sheaves. Let (U,W) be an object of X); such that
U = Spf(Ry) is affine, let R* := OF) (U, W)) and let S = Ox,,(U,W). Then S contains R
and we define

Onuwy: Wn(S/pS) ®oy,, Ry — S/p"S by (x @ 1) — cp(@)r.

Let Tx, m denote the sheaf of ideals Ker(6x , ). Due to [B1, Thm. 1.2.4.1] one knows that
the W(k)-DP envelope Acpisnn of Wy, ar with respect to Zx ,, as exists. The main point of this
section is an explicit description of Agsn v in theorem 2.31 which will be used in the sequel.

Let U = Spf(Ry) denote a small affine open as in 2.1 with parameters T, T5,...,T; € Ry;.
For every n > 0 define Ry, = Ru[Cn,Tll/pn,...,T;/pn], where Ryo = Ry, (, is a primi-
tive p"-th root of 1 such that ¢} ; = (, and Til/pn is a fixed p"-th root of T} in Ry such
that (Til/pnﬂ)p = Til/pn. We consider the category i, 5, consisting of objects (V, W) and
a morphism to (U,Spf(Rum)@oK]\/[ ) The morphisms are the morphisms as objects over
(Z/l , Spf (Ru,n) QoM ) The covering families of an object (V, W) are the covering families as an
object of Xj;. There is a morphism of sites ¢: Xy — U, ar sending (V, W) to (V, W) X(x x,)
(U, Spf(Run)®0, M). Given a sheaf on X, we write Fly, ,, for ¢*(F).

Let (W, W) € i, p with V = Spf(Ry) affine and put S := Ox,,(V,W). Note that T/ €
Ry C S for all 1 <7 <d. Denote by

T, = ([T [T7), -+ (17", +) € lim W, (Ryu/pRun).

(3 3

where the inverse limit is taken with respect to W, (Ru,n+1 /pRu,nH) — W, (Ru,n/pRu,n)
the natural projection W,, (Ru’n+1/pRu,n+1) —- W, (Ru’n+1/pRu,n+1) and the map induced by
Frobenius Ry ;+1/pRun+1 — Run/PRun. The image of i in W,, (Ru,n / pRum) is the Teichmiiller
lift (7,/7",0,...,0) of T}/"". Write

X, =1x1T,— YN} ®1eWw, (Ru,n/pRu,n) ®ox Ru
for i =1,...,d. They are naturally elements of W, (S/pS) Ro, Ry.

Lemma 2.30. The kernel of the map 0, v w): WH(S/pS) R0y, Y — S/p™S s the ideal
generated by (fn, Xq,... ,Xd).

Proof. The kernel of the ring homomorphism Ry /p" Ry® Ro/p" Ry — Ry /p" Ry defined by x®y —
zyistheideal ] = (11®@1-1®1Ty, ..., T,®1-1®Ty). Since Ry/p" Ry — Ry /p" Ry — Ry /p" R}
are étale morphisms, then I generates the kernel of RY'/p"R\ @ R\ /p"Ry* — RYW/p" R}
Base changing via R\/p"R\* — S/p"S we conclude that I generates the kernel of S/p"S ®
Ry /p" Ry — S/p"S. By lemma 2.19 the kernel of ¢,,: W,,(S/pS) — S/p"S is generated by &,.

The conclusion follows. O
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For every (V,W) € s let AY (VW) (X1, ..., Xg) be the DP envelope of the polyno-
mial algebra AY \i,(V,W)[X1,.. Xd] with respect to the ideal (X7i,...,X,). As explained

in [Bri, §6], we have
AV VWX, Xa) = Al a (VW) X0, Xt - - Jicica/ 0Xime1 — XE ) 1<icam=o

where X;; = 471(X;) and v: z — (p — 1)1zl In particular it is a free A, (V,W)-module
with bases given by the monomials in the variables X, o, X1, ... for 1 <7 < d in which each vari-
able X; ; appears with degree < p—1. We conclude that (V, W) — AY M(V, WH(X1, ..., Xq) is
a sheaf and that the ideal generated by Ker(,,a1)(C AY ) and (le -+, Xaj)jen has W(k)—
DP structure. Write Ay, ,, for the sheaf Acvris,n,M|iLn,M (X1,....Xg). Let Oty s Aeris sty —
Oz, /0" Ox,y s, e the map sending X;; — 0 and coinciding with 0, ar]s, ,, on A¥y 1wl -
For every (V, W) € 4, s with V := Spf(Ry) affine, define the map

RO - W(k){Tlil Til} - ACI’IS nM(Va W)<X17 s 7Xd>

of W(k)-algebras setting T; — T,®14+1®X; for every 1 < i < d. As T} is a unit in
Ry, then T} is a unit in W,,(S/pS) where § := = Ox,,(V,W). Since X! = pX[p] is nilpotent
in A (W, W)Xy, ..., Xq), also T, ®1+1® X; is a unit and hence the displayed ring
homomorphism is well defined. Let us now look at the following diagram of W(k)-algebras

9 M
AT VWX, X)) =Y (O, 07O, ) (VW)
T T
RO — R%n

The diagram is commutative since g, ,, T21+19X,) = GLLR’M(T}) = (Til/pn)pn = T;. The
kernel of by, ,,(V, W) is the DP ideal generated by Ker (6, 1)U, W) and by (X1, ... ’dej)jeN
so that it is nilpotent. As Ry is étale over Ry and Ry étale over Ry there exists a unique
homomorphism

Run _ AV

cris,n,M

(VIW(X, ..., Xg) (1)

of Rg—algebras making both triangles in the above diagram commutative. We thus get a map
W (VW) @0, OF:, (W, W) — A m(V,W)(X0, ..., Xg). Passing to the associated sheaves
we get a map of sheaves

Pstyn s Wxtnna s, = Aeris st -
It follows from 2.30 that the image of Zx  arlu, ,, is contained in the ideal generated by Ker (6, ar)
and (X1, , Xq;)jeny which has W(k)-DP structure.

Theorem 2.31. (1) The W(k)-DP envelope Acisnm of Wx e with respect to Iy, exists.

(2) For every small affine U of X the sheaf Acis g, , with the ideal Ker(by, ,,) endowed with
its W(k)-DP structure, is the W(k)-DP envelope of Wx a1, ,, with respect to Ix n s, o, - In
particular the restriction of Aqisnn 10 Un s 18 Acris s, o

(8) Let My C My be a Galois extension. The morphism By, u, (WXli Doy Oun ) —

Xy
Wxn s Row O3€M induces an isomorphism By (Acris,n,Ml) = Acrisan, 0f W(k)-DP sheaves
of algebras.
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Proof. (1) The existence is a formal consequence of [B1, Thm. 1.2.4.1].

(2) Consider a W(k)-DP sheaf of algebras G and a morphism f: W, als, ,, — G sending
Txnls, ,, to the DP ideal of G. Due to 2.24 and 2.23 the induced map W, yls, ,, — G
extends uniquely to a morphism AY; , vls, ., — G of W(k)-DP sheaves of algebras. Since the
section X; = 1QT; — ﬁ ® 1 of Wx p, as lies in Ker (eun,M) we can uniquely extend such map to
a morphism AY; | wls, (X1, ..., Xg) — G. This proves the first part of the claim. The second
part follows from the first and lemma 2.23.

(3) Via the morphism By, <Wn,M1 Doy oy ) — W, s, oy 5‘5% one checks that

Xy
B, (QX%Ml) and €x » ar, are compatible so that 33/, v/, (Zxn,ar, ) is sent to Zx , ar,- Due to the
universal property of Acisnn, We get a map 53y, (Acrisnmy) — AcrisnM,- By construction it
induces the isomorphism 33, 1, (A¥ienn,) — Adisn, Of Proposition 2.24. It follows from (2)
that the restriction to i, p;, sends X; — X; for every small affine ¢/ and in particular it is an

isomorphism. This implies the claim.
m

Let U = Spf(Ry) denote a small affine open in X°*. Choose T1,...T; € R}, parameters and
let Fy;: Ry — Ry be the unique map inducing Frobenius on O and sending 7; — T7. Denote
by Fy: Oy — Oy the induced map of sheaves on U, Taking vy 1t provides a morphism Fy
on OF |g,,. Let

Oityrnt Wxnmlin, = Wy nin — Wynrn = Wx sy,

be the map of sheaves associated to the map of pre-sheaves ¢y, @Fr: Wy, 10 0 R0, i
WH,U,M ®OJVIO &r;/[

Corollary 2.32. 1) The morphism @g,, , on Wx , mly,, ertends uniquely to an operator vy, »
on AcrisnMlsy,» called Frobenius, compatible with Frobenius on Ay, vlw, defined in proposition
2.24.

2) Via the identification given in theorem 2.31 the restriction @y, ,, of iy to Un s is
uniquely determined by requiring that it induces Frobenius on AYs , vls, ,, ond sends X; —

1QTP —TP @1 =X, (X0 TP ") fori=1,....d.
3) The isomorphism By, (Acri&n,Mlli) = Acris,n,Mg’ilMQ of W(k)-DP sheaves of algebras
1s compatible with Frobenius.

Proof. The fact that Frobenius on Wx , ar]y,, extends to AY , wlu, follows from proposition
2.24.

(2) Fori =1,...,d we compute that ¢y, ,,(X;) = 19T/ ~TY®1 = X;(30_) T'TP™") so that
@, (X;) admits divided powers. This implies that ¢y, ,, (Zen,0r) admits divided powers so that
by the universal property of Acris |y, 5, (€€ 2.31) the morphism ¢y, ,, extends to Acisnm|si, ;-

(1) Since @y, ,, (Iu,n,M) admits divided powers in A nmst, ,, Dy (2) then also gy, (Iu,n,M)
admits divided powers in Aqisnmly,, - By the universal property of Acisnwmly,,, which follows
from 2.31 and 2.23, the morphism ¢y ,, extends to A s oM sty -

(3) It suffices to prove the claim after restricting to L, ps,. In this case it follows from (1)
and theorem 2.31. O
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Let rxni1,m 0 Whoptm ®o,,, OF), = Wi m ®o,,, OF,, be the morphism which is the identity
on (’);?M and is reduction composed with Frobenius on W,y 5y — W, 5;. Then we have an in-
clusion rx 41,1 (Ker(@XmH)) C Ker(0x.,,). Hence rx ny1.0 defines a map Acpisn 1M — Acrisn M-
Let Acisn denote the sheaf in Sh(ffM)N defined by the family {Acysnm}n with the transition
functions rx . It is the W(k)-DP envelope of {W,, y/ ® 0, O%,, }n with respect to the ideals
{Ker(@Xﬂ) tn. For every small affine U and parameters 71, . .., Ty denote by g0 Acris v — Acris M
the map in Sh(4$,)" defined by {y.n}n.-

Lemma 2.33. For every m' > m > n the maps rxm/m © - .. 0 Tx mi1.0m: Aerism/' M — Aeris,m M
induce an z'somorphism Acris,m’,M/pnAcris,m’,M - Acris,m,M/pnAcris,m,M-

With the notations of 2.31, for every smallU of X the restriction of this sheaf to L, pr is
isomorphic to ANy nlstyn (X0 - Xa)-

Proof. 1t suffices to prove the two claims restricting to &, 5 for every small object . They
follow from theorem 2.31 and lemma 2.27. O

Denote by ACUSHM the sheaf Acismm/P"Aciismy for m > n introduced in 2.33. It is the
W(k)-DP envelope of Wx ,, s with respect to the kernel of the map 0% ,,: W,, vy ®0,, O%), —
Oz, /P"Ox,, induced by 0] ,, on W,, 3y and the natural projection O, — Ox,,/p"Ox,,. For
every small affine ¢/ and parameters Tl, .., Ty denote by ¢y 0 Alisyynm = Acrisynm the map
defined by p,®@Fy on W, arlg, \, @0y, - Let Al = {Acm n M} be the associated system
of sheaves, where the transition maps 'y, 1 pr: Al ni1m — Alisnv @ induced by the transition
maps {7xm.m}m- By construction we have a natural morphlsm qxnt Alpisom — Acrisnm for
every n € N and hence a map qx = {qxn}, : Aliom — Aaism. For every small affine ¢ and
parameters 71, ..., 7T, denote by ¢, = {g@uﬂ}n.

Following [Bri] define Agisnm(Ry) as the p-adic completion of the W(k)-DP envelope of
W(R(Ru)) ®o, Ry with respect to the kernel of the map W(R(}_%u)) ®o, Ry — Ry given by
r®y — Y(x)y. Furthermore, it is proved that the operator p®Fy; on W(’R(Eu)) ®o, Ry defines

an operator ¢ on Aeisn(Ry). It is shown in [Bri, Prop. 6.1.8] that Auism(Ry) is the p-adic
completion of the algebra AY. (Ry)(X1, ..., Xq). Hence

ACriS(RU>/pnACriS<EU) - ( CI‘IS( )/pnAcvrls(EU» <X17 s 7Xd>‘

This and 2.33 provide a natural map g, : Awis(Ry) /p" Aris(Ryg) — Al (Ry) and hence a

cris,n,M
map
qu ‘= llm Jun- Acns(RU) B Acms M(RZ/{)

Proposition 2.34. 1) The map Al \((Ry) — Acism(Ruy) induced by qx is an isomorphism.
2) The map gy is an isomorphism and commutes with the two Frobenii.

Proof. The first claim follows from 2.33 and 2.28. The second statement follows from the next
lemma. ]

Lemma 2.35. For every n € N the map gy 15 injective, its cokernel is annihilated by any
element of 1, it commutes with Frobenii and the transition map Al 1 v(Ru) — Al (Ru)

factors via Aeis(Ry) /D™ Acris(Ryy).
Proof. 1t follows from lemma 2.33 and lemma 2.29. O
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2.7 Further properties of AY v and Agig .

CI‘IS

Let us recall that we write AY; \; both for the system of sheaves {AY;, , \i}n and for {AC“S Montn:
Similarly, we write Agism both for {AaismM}n and for {AL | yha- We specify which system
is used when needed. Whenever A\ appears we implicitly assume, as in the previous sec-
tion, that Ox = W(k). Consider the filtration {Fil" (AY; ;) }ren defined by {Ker(6,)"},
(resp. {Ker(6), ,,)"},). Analogously define the filtration {Fil" (Acism)}ren given by the sub-
sheaves {Ker(0x,an)" }n (vesp. {Ker(6' 1,,,)" ).

Let U be a small affine of X and choose parameters T, ..., T, in R};. Then Acysm] Ypnr =
AY il (X0, Xa)} by 2.31 and Fil” (Acion) Jgi, ,, i ZFﬂsO (A ) XP - X B over
all sg,...,sq € Nsuch that sg+ -+ sq4 > 7.

We remark that the element ¢ is an element of Fil' (A.) and, hence, of Fil' (Acs) (Ry)
as well. Write BY,(Ru) = A% (Ru) [1] and Beis(Ry) = Aais(Ru) [§]. Note that since t lies
in Ker(#), it admits divided powers in Aqis(Ry) so that t? = pltPl and p is invertible in Bes(Ry).
In particular the definition given here agrees with the one given in [Bri, Def. 6.1.11]. In [Bri,
§6.2.1] decreasing filtrations {Fil" BY..(Ry)}rez on BY..(Ry) and {Fil" Beis(Ry) }rez on Beis(Ry)
are defined. Then

Proposition 2.36. The filtrations {Fil" (AY; \1) bren and {Fil" (Aais ) bren are decreasing, sep-
arated and exhaustive.

Let U be a small affine. Via the identifications Al \(Ru) = AYi(Ry) and Acisn(Ruy)

Cris

1%

Aqis(Ry) given in 2.28 (resp. 2.34), we have for every r € Z the identifications Fil*AY, (Ry) =
Fil®AY, \i(Ry) and Fil* A (Ry) = Fil*Acis m(Ry). In particular,
Fil' By, (Ry) = Y t*Fil"AY, (Ru) [p'] and Fi' Bes(Re) = > PFil Acris na(Bar) [p7'].

a+b>r a+b>r

Proof. The first claim is clear. The filtrations on BY,.(Ry) and Bes(Ry) are defined in loc. cit. as
the pull-back of the natural filtrations on Byr(Ry )Y+ and Byr(Ry)* via the inclusions BY, (Ry) C
Bar(Ry)Y and Beis(Ry) C Bar(Ry). In particular this induces a filtration on AY, (Ry) by re-
striction. It is proved in [Bri, Pf. Prop. 6.2.1] that it coincides with the filtration induced by
Fil*AY;, \ via the identification AY \(Ry) = AYi(Ry). By loc. cit. AY, (Ry) maps to the ring
BdR<RZ/{) BdR(Ru)V+ [[Xl, PN ,Xd]] and due to [BI‘I, PI‘Op 0.2. 5] we have Fil" (BdR(EZ/{>+) =
Zso+...sd:r Fil®° (BdR(Eu)v+)Xfl ce de. Since Acris<EM> = AZUS(RU) {<X1, . ,Xd>}, also the
filtration on A (R ) induced from Bes(Ry) coincides with the filtration associated to Fil*Aciis M
via the identification Acri&M(ﬁu) = Auis(Ry). Since multiplication by ¢ induces a shift by —1
on Fil* BY,.(Ry) and on Fil® B.is(Ry) by [Bri, Prop. 5.2.1] and [Bri, Prop. 5.2.5] and since multi-
plication by p on Bag(Ry) is an isomorphism and preserves the filtration, the claim follows. [

For every i € N let Q% X0k € Sh(X*") be the sheaf of continuous Kéahler differentials on the
étale site of X relative to Ok. Then vy (QX/OK) is a locally free sheaf of v} ,,(Ox) = OY; -
modules over Xj;. The de Rham complex on X defines a de Rham complex v’ ,, (Q% /OK) on Xyy.

For every n we get a complex Wy Man®owm VX (Q% /OK) with W, y/~linear maps V7 Wy, M®ow

Vi (Qxj0,) = Wan oy, “},M(QQL/loK)
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Convention: In order to simplify the notation, for every sheaf of O} -modules £ and any
sheaf of Ox-modules M we write £ ®p, M for £ Row Uy M (M).

Let d be the relative dimension of X over Og. Then we have

Proposition 2.37. The complex Wx ,, ;r @0 QB(/OK extends uniquely to a complex

v! 1 v 2 v d
Acris,M B— Acris,M ®OX QX/OK B— Acris,M ®OX QX/OK — s Acris,M ®OX QX/OK — 0

with the following property: for every (U, W) € Xy, for m, n and i € N and for x €
Ker(Ox.n) (U, W) € AaisanU, W) and w € Y, - we have VT (M @w) = 2" @ Vit (zw).

Furthermore

1. the sequence above is exact;
i. the natural inclusion A¥i\y C Aerist identifies Ker(V') with AYy v

ir. (Griffith’s transversality) we have V (F il" (AcriS,M)) C FiI" ! (Acism) ®oy Q% 0k for ev-
ery r;

. for every r € N the sequence 0 — FilTACVri&
2 3
Qﬁ(/OK v, Filr_gAcris,M R0y Q%c/OK AR , with the convention that Fil®A s m = Acris M

for s <0, is exact;

. vi ar—1
T T
Y Fil Acris,M — Fil Acris,M ®(’)x

. . 1 . . . R
v. the connection V: Agisn — Acis M @0, QX/OK 18 quasi—nilpotent,

vi. LetU be a small affine, choose parameters Tt, ..., Ty € Ry, and let Fy be the induced lift of
absolute Frobenius to Ry. Then Frobenius @y on Acism|u is horizontal with respect to Vi
i. e, Vlgopy = (gou@)dFu) o Vly-

Proof. The uniqueness is clear. We have to prove that the formula defining V? is well defined.
By uniqueness it suffices to show it after passing to the subcategory ,, 5y where U is a small
affine of X, Write Acrismls, v = Adisnmlttn (X1, -, Xg) as in 2.31. Then Ox,, ®o, Q0
restricted to Uy, is a free Oy,,—module with basis dT7, ..., dT, and the element X; € W ,, (&4, r)
satisfies V(X;) = 1®dT;. In particular the complex above extends uniquely to a complex
Acis M|, o @0y /0, characterized by the property that V(X}m]) = Xi[m_l}@)dTi.

Claims (i)—(vi) can be also checked after passing to i, 5. Claims (ii) and (iii) follow from
the formulae given above. Claims (i) and (iv) follow from the formulae and Poincaré’s lemma
for the PD polynomial algebras ([BO, Proof of Thm. 6.12]). Claim (v) follows remarking that
V(9/0T;)? = 0 modulo pA.yis m-

Note that Fy(T;) = TF so that ¢y (X;) = 19TP — TP®1. Hence gou(Xi[m]) = (1&TF -

7

Tf@l)[m]. We compute V(¢ (X™)) = (1017 - ﬁ”@l)[mfl]@V(l@Tf ~TPel) = (1917 -

i

i-]a@l)[m_l}@dﬂp = (90u®dFu)V(X-[m}). This proves (vi). O

)
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We conclude this section with a variant of the constructions above considering Tate twists.
For every integer r define the inverse systems of sheaves of ACHSHM -modules (resp. A/
modules):

cris,n, M~

Acvris,M<T) = {UX1M7* (Zp/pnzp<r))®ZpA::Zs,n,M}n
and

AcrisJ\/I(r) = {UX7M7* (Zp/anP<T))®ZpAZ:ris7n,M}n
For ¢ > 1 define

Viil(r) : Acris’M(r)@)OX QfX/@K - ACFiS,M(T)®0x Ql)?/l(?K

to be induced by the system of morphisms on wux ar. (Zp/p”Zp(r))®ZpAgrisyn7M®@XQ§(/OK —
UX M (Zp/p”Zp(r))®ZpAgriS’n,M®@XQlX/O given by 1 ® V=1, Put V(r) = Vl(r).

We define an exhaustive, separated decreasing filtration on AY \;(r) (resp. on Acsn(r)) by
inverse systems of sub-sheaves by setting

FlllAle M( ) {UX M( p/anp (T’)) ®Z Fﬂl 7n‘Acrls ,n M(u7 W)}

n

and
Fil* ACHS M - {U’X M( P/an ( ))@ZPFIIZ TAi:rls n M(u7 W) }n

for every i > r and setting it to be AY; M( ) (resp. Agsn(r)) for i <.

Recall that p™! = (p — 1)'ﬂ € Agis - t7P. Thus, p~" lies in Agit P and, since it is invariant
under Gy, it is a well defined element of ACZSHM(pr) for every n € N. Define Frobenius
P AcnsM( ) = A,

cris,M

(pr) to be the system of morphisms

u;(,M (Zp/pnzp (T)) ®ZpA:ZZS,H,M - u;(,M (Zp/anP(T» ®ZpA/CZS,n,M7

given by a®b — a®p~"¢(b). Assume that U is a small affine, choose parameters T, ...,T; € R}
and let Fy, be the induced lift of absolute Frobenius to Ry,. Then using the same formula we get
a Frobenius ¢y 1 Al vi(7)|u — Al m(pr)]y which is horizontal with respect to the connection

V(T)u.

Lemma 2.38. The filtrations {Fil' (AY, vism(r)) Fren and {Fil' (Aeis (7)) Yien are decreasing, sep-
arated and exhaustive.
Let U be a small affine of X°. Then

Fil' (AYim(r)) (Ry) = Fil' AL (Ry) -t and Fil' (Asm(r)) (Ru) = Fil' " Aeig(Ry) - 7

Cris

The analogue of claims (1)—(vi) of 2.37 hold for the connection V(r) and the system of sheaves
AXiS’M(r) and Aqis ().

Proof. The first and second statements follow from proposition 2.36. The last statement follows
from the definition and proposition 2.37. O]
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2.8 The ind-sheaves BY.. and B...

CI'1s

Generalities on inductive systems. Let A be an abelian category. We denote by Ind (.A), called
the category of inductive systems of objects of A, the category whose objects are (Ai’%)iez
with A; object of A and ~;: A; — A; 1 morphism in A for every ¢ € Z. Given an integer N € Z
a morphism f: A := (A’“%)iez — B = (Bj,éj)jez of degree N is a system of morphisms
fi Ay — By for i € Z such that 6;, y o f; = fix1 0. Since A is an additive category the set
of morphisms of degree N form an abelian group with the zero map, the sum of two functions
and the inverse of a function defined componentwise. Given a morphism f = (f;)icz: A — B
of degree N we get a morphism of degree N + 1 given by (5i+N o fi)z‘ez‘ This defines a group
homomorphism from the morphisms Hom®™ (A, Q) of degree N to the morphisms Hom™ ™! (A, B )
of degree N + 1. We define the group of morphisms f: (Aiv%)iez — (Bj, 5j>j€Z in Ind .A) to
be the inductive limit limyez Hom™ (A, ﬁ) with respect to the transition maps just defined.

Given any such morphism f we let Ker(f) be the inductive system (Ker( fi))iez with tran-
sition morphisms defined by the 7;’s. We let Coker(f) be the inductive system (Coker(f;— N)ieZ
with transition morphisms induced by the §;’s. One verifies that with these definitions the
category Ind (A) is an abelian category. Note that we have a natural functor

A — Ind (.A)

sending A to the inductive system (A, Id);cz which is exact and fully faithful.

Assume furthermore that A is a tensor category. Given objects A := (Ai77i)iez and B :=
(Bj, (5]-)].62 in Ind(A) we define A®B to be the inductive system (AZ@Bi, %®5i)iez' In this way
Ind (A) is endowed with the structure of a tensor category so that the functor A — Ind (.A) is
a morphism of tensor categories. By abuse of notation given an object B € A we write AQB
for the inductive system AR B with B = (B, Id).

Let B be an abelian category in which direct limits of inductive systems indexed by Z exist.

Consider the induced functor
lim: Ind(B) — B.

Suppose we are given d-functors 7": B — A with n € N. Define

im7™": Ind(A) — B

as the composite of the functor Ind (.A) — Ind (B), given by (A;)inz — (T n(Ai))iez and of the
functor lim.

—

Lemma 2.39. Iflim is left exact then the functors imT™", for varying n € N, define a d-functor.

If (T™)en is universal then also (limT”)neN is universal.

Proof. Due to the universal property of direct limits the functor lim is always right exact. Thus

the assumption is equivalent to the requirement that it is exact. The claim follows. O
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Remark 2.40. One can relax the definition of a morphism in Ind (.A) Consider a non-decreasing
function a: Z — Z. Given objects A := (A“%')iez and B := (B 0; ) g W€ define a morphism
f: A — B of type a to be a collection of morphisms f;: A; — B () such that fi i, 09 =
Ha(i)§j<a(i+1) d; o f;. We denote by Hom* (A, E) the group of homomorphisms of type a. We
say that two morphisms f and g of type « (resp. 3) are equivalent if there exists N € N such
that f; composed with By) — Bmax(a(i),8()+~ and g; composed with Bg)y — Bmax(a(i),8(i)+N
coincide. One checks that this defines an equivalence relation. We define a morphism A — B to
be a class of morphisms with respect to this equivalence relation. The morphisms in the more
restrictive sense given before inject into this new class of morphisms. Since this complicates the
notation we will work mainly with the previous more restrictive notion.

Recall that given an integer r the sheaf AY,  \(r) is characterized by the property that for
every small affine open U € X its localization AY; () (Ry) is the group AY; | \(Ry) with
action of Gy twisted by the r-th power of the Cyclotomlc character. Let t : log[ | € Aeris
(see section 1.2). Fix integers r > s. For every U as above we have a map AY,, , v(s)(Ry) —
A am(r )(Ry) of AglbnM(Ru)—module sending 1 — 1®t"*l. Since they are equivariant with
respect to the action of Gy ar, these maps for varying ¢ arise from a unique morphism

jT‘S AstnM( ) - AZﬂsnM(r)

They are compatible for varying n € N and define a morphism of continuous sheaves j,.,: A \(s) —
AcvnsM(r). Define ¢, 5 := (r — s)!j,s. It follows from the construction that j, s, and hence ¢,
sends Fil"AY \i(s) to Fil"AY, \(r) for every n € Z.

Define B\ in Ind (Sh(X))Y) to be the inductive system of continuous sheaves having
Acvris?M(—r) in degree r with transition maps given by ¢,_;,. Analogously for every n € Z let
Fil"BY, ; in Ind (Sh(X1,)") be the inductive system of continuous sheaves having Fil"AY; ()

in degree r with transition maps induced by ¢,_;,. By construction it is a sub-object of IB%CHS M-

The Frobenius morphisms on ¢: A \i(r) — A \(pr) are compatible for varying r € Z with
ty—1,. Using the more general notion of a morphism of inductive systems given in 2.40 it induces
a morphism ¢: BY, \y — BY,\ in Ind (Sh(X)") sending Fil'BY \y — Fil""PBY, .

Similarly, we define the continuous sheaves Ags (). As before we get the inductive systems
Berism and Fil"Beyis v, for n € Z, in ind (Sh(i{ M)N ) as the inductive system of continuous sheaves
having Acpsn(—r) (resp. Fil"Agism(—7)) in degree . Assume that U is a small affine. Then
Frobenius ¢y : Al v(7)ee — Al (Pr)lu induces, in the more general framework of 2.40, a
morphism @y : Beyis My — Beris My in Ind (Sh(il’ ) )

We remark that the morphisms js,, s for varying s € Z define a morphism j on Fil"BY,, M
IB%CHSM, Fil"Beis v and Beis v such that plj is the identity in the category of inductive systems.
We deduce that multiplication by p is an isomorphism on all the objects above.

For notational convention put Fil"*BY; \, = BY,, and similarly without V. As ex-

plained before, the localization functor on Sh(X,,)N, F +— F(Ry), extends to a functor on
Ind (Sh(Xy)Y). Put Film*BY, (Ry) = BY;(Ru) and similarly without V. Summarizing and

Cris CI‘IS(
using the results of the previous section we get :

Lemma 2.41. (1) Multiplication by p is an isomorphism on Fil"BY BY Fil"Beyis v and

cris,M» ““cris,M’

IBcme,M-
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(2) For every r € Z U {—o0} we have an exact sequence of inductive systems

r T Vi aqr—1 1 V2 r—2 2
0 — Fil ]B%mSM — Fil"'Berism — Fil' ™ Beris m ®0 QX/OK — Fil" "Beism ®oy QX/OK e

Let U be a small affine, choose parameters T1,...,Ty € R}, and let Fy be the induced lift of
absolute Frobenius to Ry. Then,

(3) Frobenius py on Beiswmlu s horizontal with respect to V|y and induces Frobenius on

IB(:Yfis M |U
(4) BYiom(Ru) = BYi(Ry) and Beism(Ru) = Beis(Ry). Furthermore, Fil’ (BYisn1) (Ru) =

Cris

Fil' BY, (Ry) and Fil' (Beism) (Ry) =2 Fil' Bes(Ry) for every i € Z.

Cris

2.9 The fundamental exact sequence

Following [Fo, §5.3.6] put FillAwis = {z € Fil"Acis|p(z) € p'Aaist for every r € N. Let
1—‘7%: Fil) Aeris — Acris be the induced map. Note that p"Fil" Aeys C Fil" Acris C Fil" Aeyis. For every
n and r € N define the sheaf

FilAY = (Fily Acyis/p"Fil) Acris) ©w,, W, .
For r = 0 it coincides with A/CZSDE thanks to lemma 2.26(c). Since W % is flat as a sheaf of
W,,-modules by corollary 2.22, Fil;A;V — defines a subsheaf of FﬂOA v WK = A;ZS i et
ra’'V Av4
p - Fi lpAcrls n,K - Acris,n,ﬁ
be the morphism defined by 1% on Fil) Acis/p"Fil} Aeris and by ¢ on W, . Let Fﬂ;ACZS 2lR

T A 'Y . . n S F4 . n+1 r
F 1lpAcm7]ui be the morphism defined by reduction modulo p™ on FllpAms /D FllpAms and

. o o ar /v . . .
T W g — W, % Put FﬂpAcr'sK to be the associated inverse system of sheaves. Write

. . . /
1% for the induced morphism Fﬂ;Ach 7 ACZS e

Proposition 2.42. Assume we are in the formal case. Then:
(1) The sequence

0 - Z/ant{T} - Fll;ACZS HK p ACZS n, K - 0
15 exact.
(2) The morphism of continuous sheaves Fﬂ;A;ZSK — Fll’"ACZSK s an 1somorphism in
Sh(Xr)q,-
Proof. We start with the proof of (2). It follows from 2.22 and 2.26 that Filr( cris/D Acris) Qw,,
A;ZS R FilTA/VS . s an isomorphism. We then get natural maps p"F 11’”ACrls AR
Fil;A'V. 7 FIITACZS atK inducing morphisms of continuous sheaves

sy

pFIIAY o — FilAY o — Fil'AY .

cris, K~
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This proves (2).
For the proof of (1) we proceed as in the proof of [T, Thm. A3.26]. Following [Fo, §5.3.1]
define I A s = {z € Auis|p™(x) € Fil*Aus Vi € N}, For every m € N write m = g(m)(p —

N
1) 4 r(m) with 0 < r(m) < p — 1. Let tim} = ¢r(m) . (tp ) . It is proven in loc. cit. that

I A is the closure for the p-adic topology of the A -module generated by the elements tlst
for s > r. Furthermore Ae;s/1 5] Aoy is p-torsion free by [Fo, Prop. 5.3.5]. In particular the
decreasing filtration [ (5] A pis N Fil;Acris on Fil;Acris for s € N, has torsion free graded quotients.
Its reduction modulo p™ injects into Filj Ay / p"Fil) Acris and defines a decreasing filtration on the
latter. Since W, % is flat as a sheaf of W;,-modules by 2.22 taking ®w, W, % we get a decreasing

filtration on FilJ)A'Y — which we denote by FilslIA'Y _. We write TMIAY  _if r = 0.

P “cris,n,K cris,n, K" cris,n,K

I[S] AcrismFil:;Acris
[s+1] Acris m:Fi:l;*Acris

Write ¢ := [[‘]5];—_1 =1+ [5]% +-- 4 [5]% It follows from [Fo, §5.3.6] that -
elp—1
is p-torsion free and it is generated as A -module by the element (q’ )T_st{s} for 0 < s < r and

by t{s} for s > r. Since ¢(¢') € pAeis, by [Fo, §5.2.9], the map 1% sends TP A i N Fil) Acris to
I51 A s so that 1 — 1% sends T8 A N Fil} Aeris to 1 5] A.ris. We deduce that the morphism 1 — pﬁ

'

sends Fil;’[s]A;ZS g tol [s] bA::Zs % The conclusion follows from 2.43. O

Lemma 2.43. The morphism 1 — 5“% induces 1somorphisms

anr+1] A’V r41 Av4
Fllp[ ]Acris,n,ﬁ - [[ ]bAcris,n,E
and [s] o'V sl A’V
FllI; Acris,n,ﬁ e bAcris,n,E
: r,[s—l—l]A’V - Jls+H1pA'Y
Fllp cris7n7ﬁ CI‘iS,n,K

for 0 < s <r and an exact sequence

FilplIAY o 1oe IUHATY

0 — Z/an . t{r} _ cris,n,K _ cris,n,K 0
Qe AV +1pA'Y
Fﬂ; v }Acris,n,ﬁ ][T }bACTiS:ILK
Proof. By construction we have Fil;’[TJ’l]A/V_ — = ItIpA’Y 5o that the operator 1 — £ is
cris,K cris,K P

1—p- # which is unipotent and hence an isomorphism. This proves the first assertion.
It follows from [Fo, Prop. 5.1.3 & Rmk. 5.3.2] that I A4 N A, = ([e] — 1)° 4}, and that

inf — n

A/ (] = V)AL — T¥AG /TP Ay, 2 -t

inf

is an isomorphism. In particular this isomorphism induces the isomorphisms
T A e N Tl A
Ai—;f ([E]% . 1)A$f N . cris .pr cris

[[s+ ]Acris N FﬂpAcris

for 0 < s < r and the isomorphism

. T :U(q’)T_St{S}

I[S] Acris N Fllr Acris
Afe/ (el =) Ay — g

_ 7l8] ) [s+1] ) {s}
! Ils+1] Acris N Fﬂ;AcriS =1 ACHS/I ACI‘IS? T +— xt
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for s > r. It follows from [Fo, §5.2.9] that (1 — z%) ((q,yfst{s}) = s} mod I+ A, for every
0 < s < r. We then deduce by base changing via the flat extension W, — W, % that for

0 < s < r the following diagram

W,/ (elF = D)W, 5% W, 2/(e] - )W, z

|

Filia'y 1-% 1EpA'Y
crls ,n, K P cris,n,K

Fil; Lot yre Ils+10pA’Y

crls,n,K cris,n,K

is commutative and that the vertical arrows are isomorphisms. The second claim of the lemma
follows remarking that the top horizontal morphism is the sum of a nilpotent map, given by
multiplication by ¢""~* and the map —¢ which is an isomorphism due to 2.22. Similarly for
s = r the following diagram is commutative with vertical arrows isomorphisms

W2/l - )W,z —5 W,z/(l] - )W, %

i

Fill"a'v 1-% 1A’y

crls n, K p cris,n,K
— LN
Fil, T Ty A
Crls n,K cris,n, K

The last assertion follows remarking that the top horizontal arrow is surjective with kernel Z/p"Z
due to corollary 2.22. O

Define Fﬂ;AZisR(m) as the system {(Z,/p"Z,(r ))®ZPF11’ TAY } . Let Fﬂ;BZisR be the

cris,n,M

inductive system of continuous sheaves FllTAZIS =(m).

Since multiplication by p is an isomorphism on FIITBV % by 2.41 it follows from proposition

2.42 that it coincides with Fil'BY. . The morphism 1 — gp ACHS =(=7)
Y

a morphism of inductive systems 1 — @ ]BcrlsK — IB%CﬂSR. Since multplication by ¢ is an

isomorphism on Bzisﬁ by 3.1 we deduce from proposition 2.42 the exact sequence

/v _ .
— Acris,ﬁ( pr) induces

0 — Q, — Fil’BY, - 5 BY. — —0.

cris,K cris,K

We then get the following commutative diagram with exact rows, called the fundamental diagram
of sheaves:

0 — Q — FﬂOBZmK = Bzis,ﬁ — 0
n n | 2)
0 — (BCVHS K)@:1 - B(Zis,f B) BZ‘is,K — 0.

3 The crystalline comparison isomorphism.

3.1 Crystalline étale sheaves.

In this section we assume that X is defined over O = W(k) so that the sheaf A s\ is defined.
Recall that we have natural morphisms of sites uy: Xy — X§b, given by (U, W) — W, and
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vy X — Xy given by U — (U, U™8). If L is a sheaf on X, to ease the notation we
simply write L for ups.(IL). The aim of this section is to introduce the so called “crystalline
Q,-adic sheaves” on X§;. As explained in proposition 3.7 the definition amounts to a sheaf
theoretic generalization of the usual notion of crystalline representation, due to Fontaine, in the
relative setting. We show in 3.7 that this notion coincides with the notion of “locally crystalline
representations” introduced by [Bri] in the relative setting. We will prove in lemma 3.14 that it is
also equivalent to Faltings’ notion of associated sheaves. Contrary to these alternative definitions
which are checked on small enough open affines the present definition has the advantage of being
purely sheaf theoretic.

Q,-adic sheaves. By a p-adic sheaf L on X§' we mean a system {L,} € Sh(X§)N such
that IL,, is a locally constant and locally free of finite rank étale sheaf of Z/p"Z-modules and L,, =
L,i1/p"Lyyq for every n € N. Given two p-adic sheaves L := {L,} and M := {M,} define
L&z, M = {L,®z/przMp}, and Hom(L, M) := {Hom(L,, M,)},. Put 1 = Z, to be the
sheaf {Z/p"Z}, with Z/p"Z the constant sheaf. This defines a structure of abelian tensor
category on p-adic sheaves on X§i. Define Z,(1) to be the sheaf {{i,»}, of p—power roots of
unity. For every m € N define Z,(m) to be the m-fold tensor product of Z,(1). For m < 0
put Z,(m) := Hom(Z,(—m), Z,). For m € Z and L a p-adic sheaf denote L(m) := L®z, Z,(m).

Define Sh(X§})g, to be the full subcategory of Ind (Sh(X§))Y) (see §2.8) consisting of induc-
tive systems of the form (IL);cz where L is a p-adic étale sheaf and the transition maps L. — L
are given by multiplication by p. It inherits from the category of p-adic sheaves on X§ the
structure of an abelian tensor category.

Let L = {L,} be a p-adic étale sheaf. By definition for every (U,W) € X, we have
UX M« (Ln) U, W) =L,(W). Since L,, is a locally constant sheaf of finite abelian groups there
exists W € Ui et such that for every morphism (U’ WV ) — (Z/l , W) in X, the map L, (W’ ) —
L,(W) is a bijection. In particular wx s . (]Ln) is locally constant on X); and ux . is fully
faithful. Similarly if we extend ux . to inductive systems of inverse systems of sheaves we
get a fully faithful morphism wy,a.: Sh(X§)g, — Ind (Sh(X$))N). We simply write L,, for
UN (Ln) and L for the inverse system of sheaves {u M (]Ln) }n

If U = Spf(Ry) is affine connected then the localization L, (Ry) as defined in 2.2 is given
by a free Z,/p"Z-module with continuous action of Gy,, which we denote by Vy(L,,). Write
V(L) = lim Vi(L,).

The categories Mod(Xr)gy and Mod(Xa)s,,,,- Denote by Mod(Xas)uv  (resp. Mod(Xa)a,,..)
the following category. The objects are systems {M,, },, € Sh(X )" with M,, a sheaf of A/czs,n,M*

: —modules). Given objects M and M’ the morphisms are Hom,v

cris,M,n cris,M (M7 MI)
(resp. Homy,, (M, M’)) i. e. the subset of Homgy, . yw(M, M') which are by definition
compatible systems of homomorphisms {f,: M,, — M. },en commuting with the underlying
structure of Agis’Mfmodules (resp. Acys—modules) i. e. such that f, is a homomorphism of
A/CZS’nvM—modules (resp. Al ,\rmodules) for every n € N.
Define the sheaf Hom,v M(./\/l,/\/l’) (resp. Hom,

cris, cris,M

modules (resp. A

(M, M) in Mod(Xr)sv. (respec-
tivey in Mod(X /) 4,,..) associated to the pre-sheaf whose sections at (U, W) € X, consist of the
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group
{HOIHA/V

cris,n,M

uw) (MTL(Z/{J W)? M;“L(“’ W)) }

n

respectively

cris,n,M

{HomA/ o) (MU W), MU W)) }n .

Define M@,y M’ (resp. M®ay,,,,,M’) to be the sheaf in Mod(X)v  (respectively in

Mod(Xs)a.,..) associated to the pre-sheaf valued {Mn(u, W)&yrs o Mu U W) }n on (U,W) €
(U,W)M;(L{,W)} ). Define 1 to be the element AY

cris,M,n
cris

X (respectively {Mn UWN)R4p

cris,n,M

spectively A.is). With these structures both catego?ies Mod(X ) sy, and Mod(Xar)a
abelian tensor categories. Given any object N we write N (r) to be N ® Agis,MAZis,M(r) (respec-
tively N ®a,,,, v Aerism (7).

Define Mod(Xr)gy,_ (vesp. Mod(Xa)g,,;,) to be the full subcategory of Ind(Mod(%M)Acvm)
(respectively Ind(Mod(Xs)a,,,)) consisting of objects of the form (M(—r)) 7 With M a fixed
object of Mod(Xr) v (resp. Mod(Xas)a,,;.) and the transition morphisms ta,r,s: M(s) — M(r)
are induced by the morphisms ¢, AY \(s) = AYi \(7) (and similarly for Agsn) defined in
§2.8. Remark that this object is simply the tensor product M®AcvrisBcvris (resp. M®a,,; Beis)
defined in §2.8. Given objects M and N we denote by Homgy (M, N) (resp. Hompgy (M, N))
the group of homomorphisms in this category. These categories inherit from Mod(X,,) AY.
and Mod(Xy)a,,,. the structures of tensor categories.

(re-

are

cris

cris

cris

Consider objects M = {M,}sen and N = {N,}aen in Mod(Xy)av. or in Mod(Xp)a.....
Given integers m and n and a morphism f: M(m) — N (m+n) in Mod (X ,,) sy, (respectively
Mod(X)4.,;,) we define a morphism of inductive systems (f;: M(i) — N (i—l—n))iEZ identifying
M(0) = M)y, ASli —m) and N(i+1n) = Nm +n),5_
fi == f ®1d (and similarly if we have objects in Mod(Xy/)a,,..)-

1\/IACVriSM(i —m) and setting

Lemma 3.1. The maps above define group isomorphisms

lim Homyv (M(s),N(r)) — Homgy (M, N).

S,'I’EZ cris,M cris

Here, the direct limits on the left hand side is taken via the maps HomAv_‘M(M(S),N(T)) —
Homyv (M(s"), N (")) given by f + txrpp0 foLnm,e,s for integers s' > s and r > r'. Similarly
we get an isomorphisms

(M(s), N (r)) — Homs,, (M, N).

lim Homy
S,r€Z

cris,M

Let f € Homgy (M,N) (resp. in Homg,_, (M, N)) induced by a morphism f,,: M(m) —
N(n) in Mod(Xnr)ay,  (resp. Mod(Xnr)a,,,) for somem andn € Z. The following are equivalent:

1) f is an isomorphism;

2) there are r and s € N and a map h,s: N(n+1) — M(m — s) such that fp,n(s) 0 hy, s is
INntrn—s: N(n+71) = N(n—s) and hy 50 frnn(+7) i8S tptmirm—sM(m +1) — M(m — s);

cris
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3) there exists N € N such that for every small affine U € X and every a € N the map
M (m)(Ry) — Na(n)(Ry) induced by fr,.n has kernel and cokernel annihilated by t .

Furthermore multiplication by t is an isomorphism in Mod(Xy)gv  (resp. Mod(X ), )-

Proof. The first claim follows from the definitions and is left to the reader. The last claim follows
from 2.41 remarking that any object is of the form F® AXNIB%XE (resp. F®a,,, Beris)-

The equivalence of (1) and (2) is clear. Note that the morphism M (m)(Ry) — N (n)(Ry) is
a morphism of A.s—modules so that (3) makes sense.

(2) = (3) Note that M(h)(Ry) = M(Ry) and N'(h)(Ry) = N(Ry) as Acis(Ry)-modules
for every h € Z (only the Galois action of Gy s is different). Via these identifications the maps
N(n+r)(Ry) — N(n — s)(Ry) and M(m + r)(Ry) — M(m — s)(Ry) are multiplication by
ts-i—r.

(3) = (2) Write M = { M, }aeny and N := {N, }pen. Consider the map tprnionnin: N(n+
2N) — N(n + N). By assumption for every small affine Y € X); and every a € N the image
of the induced map on localizations N (n + 2N)(Ry) — N,(n + N)(Ry) is zero in the cokernel
of fauu(N): My(m + N)(Ry) — Nu(n + N)(Ry) induced by f,,,. Hence it factors via the
image Im(fou(N)) of fou(N). The map Im(fou(N)) — Im(faz) is multiplication by ¢V and
hence factors uniquely via M,(m)(Ry) by assumption. Thus the map AN (n + 2N)(Ry) —
N (n)(Ry) obtained from iy, 12n, by localization factors uniquely via f, i Mo(m)(Ry) —
N (n)(Ry). By uniqueness this factorization is Gy, p—equivariant and compatible for varying U’s
and a’s. In particular it provides a map {h,on0: No(n+2N) — M,(m)}aen with the required
properties. ]

Let U € X be a small affine with ‘Galois group Gy, v- As explained in §2.8 the localization
functor Sh(X)N — Repg, ,, F — F(Ly) extend to a localization functor Ind (Sh(xpm)Y) —

Repg,, ,, which we denote by F +— F (Ry). Restricting it to the categories Mod (X )gv. (respec-
tively Mod(%X/)p,,,. and using 2.41 they define functors

cris

Mod(Xy)py, — Mod — By (Ry) [Gum],  Mod(Xa)s

cris

—— Mod — Bcris(ﬁu) [gZ,{,M]

cris

v

cris

to the categories of B
of Gy .

For later purposes we prove the following property of localizations of tensor products. In
the next lemma we suppose that M is a finite extension of K. Let M be a coherent sheaf of
OXOMO —modules on X*°'. Write M®(OX®<9K OMU)FilTBCﬁ&M for U%,M(M)Q@(O;?}w 90, Onig) F1l Beris M-

(Ry)-modules (resp. Beis(Ry)-modules) endowed with continuous action

Lemma 3.2. Let L be a p-adic sheaf on X§. Fizxr € ZU{—oo}. LetU € X be a small affine.
If M[p~|(U) is a projective Ry ®o, My-module then

(M®(OX®OKOMO)FierS,M) (Ryy) = M(U)@ g, Fil" Busis(Ry)

in Mod — Beis(Ru) [Gu,u]-
Similarly let Vi (IL) be the Gy pr-representation associated to L. Then

(L®ZPFﬂchris,M) (EZ/{> = VU<L)®ZPFi1TBcriS(§U)
in Mod — Bexis(Ry) [Gu,ar)-
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Proof. We prove the first statement. We assume that X = Y. Since M|[p~!] is projective and
coherent it is a direct summand in a free Oy ®¢,. Mp-module. We may then assume that M|[p~!]
is free. The claim follows from 2.41. The second statement follows also from loc. cit. O

Let v53%: Sh(X )" — Sh(X®") be the functor {F,}, — Lm vxar.(F,). As explained in
§2.8 it induces a functor on the category Ind (Sh(X,,)") and hence a functor

UM, - MOd(%M>]B — Sh(Xet) .

cris

Given a p-adic sheaf L on X§} define
]D)cris,M (]L> = UM, x <L®Zp]Bcris,M> .

Recall that by abuse of notation we denoted L the continuous sheaf on X, given by wx as.(L).
Then Deis m(L) is a sheaf of (’)XMO—modules in Sh (X et). Put

Cris Cris

DE(L) := Dy g(L),  Dg(LL) := Deis (L)
whenever M is a fixed finite extension of K.

Lemma 3.3. The sheaf D% (L) is endowed with an action of Gy and Desm(L) = (]D)ge.o (L))GM.

Cris Cris

M,K %
B 7. Due to corollary 2.32 we have ﬁz*wf( eris M) = Ay, i 50 that vig" ( JITI/IK* <L®ZpAcrisR(T))>

coincides with Ucont ( T/[?* o ﬁi} (L@ZpAcris,M(r))). It then follows from lemma 2.14(ii) that

Proof. One has vg'y (JL@ZPACHSK( )) = vj?“j( N (]L@)ZPAcrisﬁ(T))) since Ui, = U O

the module v“’nt (IL@ZPAmSR(r)) is endowed with an action of Gy and that

Gpm
U?\?[rf (L®ZPAcris,M (T)> - Uiont (L®ZPACY15 K (7’)) :

Passing to direct limits on r € Z the lemma follows. O

Let U be a small affine of X°. Then L, (Ry) is a free Z/p"Z-module by assumption and thus

the natural map Ly (Ry)®z, ALy v (Ru) — (Ln®sz' (Ry) is an isomorphism. Then

cris,n,M
AL (anpAgﬂS,mM)(m _ (Lne@szcm) (Ry)%. Then the map L(Fy)®z, Aais(Fu)t" —
lim Ln(ﬁu)@)sz’ms’n(ﬁu)tr is an isomorphism for every r € Z since Auis(Ry) is p-adically

complete and separated and thanks to proposition 2.34. Following [Bri] define

Dernpa (VL)) = (VieL)@z, Be(Br)) "

It then follows that
]D)cris,M (L) (Z/{) L Dcris,M (VZ/{ (L))
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as Ry ®o, Mp-modules and since gu,? acts trivially on ¢ we get
= \HE ~ e
(Ve (W)@, Bess(R) ) ™ = DER L) W)

as Ry®o, Beis-modules. Let M be a finite extension of K. Tt follows that Desn and DS define
functors
Dyt Sh(X3p)a, — Modoyee, M,
and
D&Y Sh(X§)g, — Mod(Ox ®oy Beris);
here Ox®p,. Beis stands for O X®OKAcris [t’l} where O X®@KAcris is the sheaf on X defined by
lim ((OX /p”OX)®OKAcriS). Furthermore we have.

Lemma 3.4. Let M be a finite extension of K. The Ry®o, My—module D}

s (L) (U) is projective,
of finite type and of rank less or equal to the rank of L.

Proof. 1t follows from [Bri, Prop. 8.3.1] and the identification Deys(Vy(L)) = D2

cris

L)WU). O

Crystalline étale sheaves. Let K C M (C K) be a finite extension. Following [O, Def. 1.1]
we denote by Coh(0X®@KM0) to be the full subcategory of sheaves of Ox®p, My-modules
isomorphic to F®e, K for some coherent sheaf F' of Ox®¢p,On,-modules on X. A Q,-adic
sheaf L = {LL, },, on X§} is called crystalline if

i ]:D)&I‘

cris

(L) is in Coh(Ox®o, Mp);

ii. the natural map oisr,: D2

i (L)®(Ox®oKOMO)Bcris,M — L®z,BaisMm 18 an isomorphism
n MOd(:{M)[B

Denote by Sh(X]?/t[)fois the full subcategory of Sh(X73;)g, consisting of crystalline sheaves.

Convention: For any coherent Ox ®o, Op,-module D we write

e *
D ®(OX®OKOMO) BCTiS,M = UX,M(D)®(O§L®OKOMO)]BCTE7M'

Remark 3.5. To make sense of (ii) note that by adjunction we have a morphism

fm (L) : v}k(VM (UM,* (IL’@ZpAcris,M (m)>> ®(O¥;\/l ®OK OMO)Acris,M E— L®ZpAcris7M(m)-

Recall that OF! C Ogx,, is identified with v} ,,(Ox) by lemma 2.13. Using proposition 3.6
we know that for m < N large the Ox ®o, Op,-module D(m) = vy, (L@ZPAcri&M(m)) is
coherent and its image in Coh((’) x®0 MO) is D2r (L) Then sy, is the map in Mod(X )5

cris

induced by the f,, (L) for m < N. Due to proposition 3.6 and since X is noetherian

cris

U;{,M (UM,* (L@ZpAcris,M (m)> ) ®(O§FJI\I ®0 4, Ontg )Acris,M

is also isomorphic as inductive system to D ROx®0, Ouy Beyis v for any coherent Ox ®p, Onr,-
module D such that D®oe,, My = D (IL) as Ox ®p, My-modules.

cris
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Proposition 3.6. Let L be a p-adic sheaf. If D ( ) s in Coh((’)X®OKM0) there exists a

negative integer N such that for every m < N the natural morphism

Hm * UM« <L®ZpAcris,M(m>) chi;ls (L)

is injective and is an isomorphism after inverting p as Ox®o, Mo—modules. For any such
m < N and every small affine U € X the Ry®o, On,-module vcom <L®ZPACHSM(m))(u) 15

finitely generated and p-torsion free.

Proof. Since X is noetherian, K C M is a finite extension and D3, (IL) is in Coh(OX®@KMO)
there exists N € N such that pu,, is surjective after inverting p for every m > N. Since the
natural maps L®z, Acism(r) — L®z, AcisMm(s) are injective and vf\?ﬁf is left exact, pu,, is also
injective. This proves the first statement.

Since D (L) () is a projective and finitely generated Ry®o, Mo-module it is a direct
summand in a finite and free Ry®p, Mo-module Thy,. Let T" be a free Ry ®o, On,-submodule
of T, such that T[p~'] = Ty. Let n € N be large enough so that the image of V(L) in

Der. (IL) (U)Dn1y Beris(Rut) C Ty @ 1o Beris(Ryq) is contained in T - ® Ru®0, O, Acris (Ry). Then

Cris

gy (L@ZpAcris,M(m)) U) is (VM(L)®ZpAcriS(Ru)tm)gu M and thls is contained in the submodule
_ Gu,m
(T : [%®RM®OK Acris(Ru)tm>

Put R = (Acris (ﬁu)tm)gu’M. It is p-adically complete and separated, it contains Ry ®o, O,

and it is contained in (Bess (Eu)tm)gM’M = Ry®o, Oun,[p~'] by [Bri, Prop. 6.2.9]. We claim that
this implies that there exists n € N such that p" R’ is contained in Ry ®p, O, - If Ry were a
complete dvr, the above conditions would imply the claim. In the general case replacing R with
the localization at a prime ideal P over p and Ry with Eu"p we deduce that there exists np € N
such that p"” R’ C Ez,{;p@(:)}( On,. Taking n to be the maximum of all the np’s we deduce that
R' C Ry®0, O, [p~'] and also p"R’' C }A%up@oKOMO. Since Ry®o, O, is normal we deduce
the claim. Since T is free Ry®o, On,-module, we conclude that vy, (L@ZpAcris,M(m))(u) is
contained in T®p, Ou, - pin. In particular it is a finitely generated Ry®e,On,-module as
desired. O]

Let L be a p-adic sheaf on Xf;. Following [Bri] for every small affine & of X we say
that Vi (L) is crystalline if the map Deys (VM(L))QQRMBCﬂS(Ru) — Vu(L)®z, Beris(Ry) is an
isomorphism. Then we have.

Proposition 3.7. The following are equivalent:
1) L is crystalline;
2) for every small affine object U of X° the representation Vi (IL) is crystalline;

3) there is a covering {U;}; of X by small affine objects such that Vi, (L) is crystalline for
every i;

Proof. (1) = (2) Due to 3.2 we have (L@Zchris,M) (Ry) = VM(L)®ZchriS(EM)~ Note that
Dar. (IL) (U) is a projective Ry®p, Mp-module by 3.4 ie. it is a direct summand in a free

module. As a consequence of remark 3.5 and lemma 3.2 it follows that the localization of
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D (L) (U)®(Ry@o,, Orsg) Beris(Ru). The implication

follows applying the localization functor to the isomorphism D2 (L)@(OX@OKOMO)BcriS’M —
L®z,Beris M-
(2) = (3) is clear.

(]L)(X)(@X@OK @MO)IB%mS’M is isomorphic to DT

cris

(3) = (1) For a small affine open U of X and for a negative integer r let g, be the
natural map

Gu,m

Jui,r- (VL{(L)@ZpAcris(Ru)tT) ® Ry Acris(Ru) — V(L) @z, Acis (Ru)t".

It is injective by [Bri, Prop. 8.2.6]. In particular Vj,(L) is crystalline if and only if V,(LL) is in
the image of gy, for some r < 0. We deduce that if V;,(IL) is crystalline then V),(LL) is crystalline
for every open affine V — U.

Fix a small affine & which factors through one of the U;’s. In particular V;,(L) is crystalline.
Assume that V(L) is in the image of gy,. Let V — U be an étale morphism with V affine.
Let D' C DcriS(Vv(]L)) be the image of DcriS(Vu(]L)) — DcriS(Vv(L)). Since Vi (L) = W (L),
then V4,(IL) is in the image of gy, and also V), (L) is crystalline. The extension Ry®e, My —
Beis(Ry) is faithfully flat by [Bri, Thm. 6.3.8] so that the maps

D'®RMRv®(RV®oKMO)Bcris(va) — Deris(VW(L)) @ gy, Bexis(Ry) — V3o(L)®7, Beris (Ry)

are all injective and the composite is surjective. Thus D'®p, Ry = Deyis (VV(L)). This proves
that V — Dcris(VV(]L)) is a coherent Oy, ~module. Since Dcris(Vy(L)) = DeisM (IL) (V) it
follows that Deyis M (L) | is a coherent Ouy,,~module as well. We deduce from [O, Prop. 1.2] that
Deris, M (L) lies in Coh(O Xx®0y MO) i. e., condition (i) in the definition of a crystalline étale sheaf
holds. B G s

We can be more explicit. Take N < 0 as in 3.6. Put D := (Vu(L)(X)ZPACﬂS(Ru)tN) " and
V :=Vy(L). From the proof of 3.6 it follows that D is a finitely generated Ry ®o,. Op,-module
and by construction D' ®,. K = Deyis M (JL) (U). Since X is a noetherian topological space, this
implies that Deyis M (]L) lies in Coh((’) xR0k Mo). Consider the commutative diagram

D®Acris (EZ/{> P_"> D®Acris (}_%L{) — (D/an) ®Acris (EZ/{) — 0
gu,Ni gu,Nl gu,N,nl
0 — V®z, Acis(Ru)tY s V®z, Acis(Ru)tY —  (V/p"V)®@z, Acis(Ru)tY — 0,

where in the first row ® stands for O (Ry®0, Orrg)- Since Acris(ﬁu) is p-torsion free by [Bri,
Prop. 6.1.10] and V is a free Z, module, the bottom row is exact. Recall that g, y is injective.
Since (3) holds there exists N such that V is in the image of gy, 5. Then the cokernel of gy n
is annihilated by ¢t=V. Since for every open affine V € Uy we have V(L) = V(L) we deduce
that also the cokernel of gy x is annihilated by ¢~. Thus the kernel and cokernel of gy ., are
annihilated by ¢,

Write fy for the system of morphisms

fN,n © UM * <L®ZpAériSVH7M(m)> ®(OX®OK OMO)Acris,M E— IL4(8)21,‘(%cris,n,l\/[(Tn)
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given by adjunction. For every = € U the stalk A/ at x contains limv Aais(Ry)/p" Acris(Ry)
xe

cris,n,M,x
where the limit is taken over all affine opens V of x. The cokernel of limv Ais(Ry) /9" Acris(Ry) C
FAS
Al

cris,n,M,x

is annihilated by any element of I by 2.35 and hence also by ¢. Since L, = V(L)
and fy . 18 lir% gy,Nn ON liH‘}D ® Acris(Ry) /p" Aeis(Ry), we conclude that kernel and cokernel
S S

of fyn. is annihilated by ¢~ %1 Since X is a noetherian space and taking a smaller N if
necessary, we may assume that kernel and cokernel of fy, . is annihilated by ¢t=*! for every
x € X. Thus the same applies to fy, and (1) follows from 3.1(3).

O

3.2 The functors D7, and VI, on crystalline sheaves.

Assume as before that O = W(k) and let K C M be a field extension. The goal of this
section is to prove in 3.12 that D2y, defines an exact, fully faithful functor, commuting with
tensor products, duals and Tate twists, from the category of Q,—adic crystalline shaves on X§j
to the category of admissible filtered convergent F'—isocrystals on the special fiber of X relatively
to My. We also construct an inverse V2. on the essential image.

cris

Given a p-adic sheaf . on X§; and r € Z we get a well defined subsheaf
FﬂT]Dcris,M<L) = UM x <L®ZpFﬂchris,M> - IDcriS,M (L)

Put Fil'DEL(L) = FiI'D, x(L) and if K C M is a fixed finite extension, Fil'Di (L) :=

cris cris

Fil" Degio i (IL). Tt follows from 3.3 that Fil'Dege (L) = (Fil'DEL(L)) .

cris
Since the connections V(7): Agism(1) — Acris (1) @0, Q4 /0y ATe compatible for varying r
they induce a connection

V]L : ]D)cris,M (L) — DcriS,M (L)®0X Q_lX/OK .

Given a small affine U of X, write Vj,(IL) for p-adic representation of Gy,, defined by L(Ry)
and put

Gu, M

Fil" Deyis (Vi (L)) = (VM(L)®Z,,F11’“BcriS(Fu))

Due to 2.36 we deduce that via the identification Deys(Vi(L)) = Deism(L)(Ry) we have
Fil" D.is (Vu (]L)) ~ Filr]]])cri&M(L)(ﬁu) for every r € Z. For every r € Z define the filtrations

Fil’ (D?LS(L) ®<ox®oKoM0>Bcris,M> = 3 Fil"D% (L) ®oxeo, 0uy) Fil'Beisar
a+b=r

and Fil” (L@Zchriva) = L®gz, Fil"Beism by sub-objects in the category Ind(Sh(i{M)N) of in-
ductive systems of continuous sheaves. We denote by

GrT‘ (Dgils(]l") ®((9X®OK(’)MO) IB3(:1ris,M>

and Gr" (L®ZpIB%mS,M) the r-th graded quotients of the two filtrations (which are objects in
Ind(Sh(%M)N)).
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We will assume now until the end of this section that L is a crystalline sheaf on X§i. By
construction the isomorphism

Qeris )L - DCHS(L) ®((9X®@K(9MO) IBcriS,M = L®ZPBCriS,M

Cris

has the property that agss. (Fil" (D25 (L) @050, 0y Berisat) ) © Fil” (Lz, Buisr) and thus
it induces a morphism Gr” s, on Gr'.

Lemma 3.8. For every r € Z the natural morphism

f @ Gra]D)?;S OX@OKOM()) GrbBcriS»M — Gr” (L®ZPBcriSvM)

a+b=r
is an isomorphism. In particular Gr'" owys 1, s an isomorphism.

Proof. The surjective morphisms

P FilDE, (L) @(0x 0, 0my) Fil Berisyt — Fil° <D?§15(L) ®(Ox®0, Ongy) BcrisM)
a+b=s

for s = r and r + 1 induce a surjective morphism

P "D (L) @(0x00, 0uy) Cr'Berisy — Gr” (Df;fls(L) D (Ox®0, Onry) BcrisM) :
a+b=r

The map f is the composite of this surjection and Gr'oesr. In particular to deduce that
Gr"agis 1s an isomorphism we are left to prove that f is an isomorphism.

For every integer N define D(N) := vy (L@ZpAcri&M(N )> with the induced filtration. It
follows from 3.6 that @, , GrDi
the inductive system of continuous sheaves P, ,,_, Gr*D(N) ®©0x g0, Oum,) GrPAgisnm(m) and

Gr" (L®Zchris,M) is the inductive system of continuous sheaves L®z Gr" (Acrsn(m)). Further-
more f is induced by the natural morphisms

(L) ®(Ox®0 Onry) Gr'Bes v is, for N sufficiently small

@ GI‘aD(N) ®(@X®OK(9MO) GI’bAcris,M(m) — L@ZPGIT (AcriS,M<N + m)) .
a+b=r

To conclude it would be enough to show that there exists a negative integer N and morphisms

gm: L@ZPGI'T (AHiS’M(m)) — @ Gr“D(N) ®(OX®OK0MO) GrbAcriS,M(m + N)
a+b=r

such that gnim o fin and f,1n © g, induce automorphisms on the two inductive systems.
Consider a small affine U of X°*. Let V(L) = L(}_%u) be the associated representation of Gy,.
It is crystalline in the sense of [Bri] thanks to 3.7 with Deys (Vi4(L)) = D2, (L) (U). It follows from
[Bri, Prop. 8.2.12] that it is de Rham with Dgr (VM(L)) = Dcris<VL{( )) and from [Bri, Prop.
8.3.2] that it is Hodge-Tate with Dyr (VM(L)) = GrDggr (VM (]L)) = GrD, s (VM(L)) i.e. we have

an isomorphism Dgr (VU(L))®(RL{®OKOA{0)BHT(RU) >~ Vy(L)®z, Bur(Ry) as graded modules.
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Using the identifications Byr(Ry) = Gr(Bais(Ry)) (see [Bri, Cor. 5.2.7]) and Gr(Beis(Ruy)) =
lim GrA s v (m) (Ry) (see 2.41) we obtain that in the following diagram the vertical arrows are

isomorphisms:

lim (Grpuv)(U)®(RM®0K0MO)GI~AM,M<m)(§u)) FmF) Vi (L) @z, lim GrA s i (m) (Ry)

- | |

~ =

Dyr (VL{(L))®(RM®OKOMO)BHT(§L{) — Vu(L)®z, Bur(Ry).

In particular since V(L) is a free Z,-module of finite rank there exists a negative integer Q
such that Vi, (IL) is contained in the image of fo(Ry). Since GrD(N)(U)[p~!] = GrD (U) =

Dyr (VM(IL,)) and the latter is a projective Ry®o, Mo-module by [Bri, Prop. 8.3.2], there exists
h € N and a free Ryy®0o,. Op,-module T and maps a: GrD(N)(U) — T and b: T — GrD(N)(U)
such that b o a is multiplication by p”.

We claim that p" annihilates the kernel of the natural map

f: GI”D(N) (Z/{) ®(RM®OKOMO) GrAcris,M(m)(RU) B DHT (VU(IL‘))®(RM®OKOMO)BHT(§U')

To see this let us first remark that as 1" is a free Ry ®p, On,-module, the natural map

T O(Ru®0, Ony) GrAcrism (m)(ﬁu) — T D (Ru®0, Onrg) Byr (}_%U)

is injective. We have the following commutative diagram in which all the tensor products are
over Ry ®@p, On, and we have denoted by Ay the ring Gra s m(m)(Ry).

GrD(N)U) ® Apmyr 2 TR Aymu 225 GrD(N)U) @ Aprmu
fl N l
Dur(Vy(L) @ Bur(Ry) “2% T® Bur(Ry) 22 Dur(Vy(L)) ® Byur(Ry)

Let € Ker(f). Then p"z = (b® 1)(a ® 1(z)) = 0 which proves the claim.
Now we choose the pre-image of basis elements of V;,(IL) in

(GEDN) U 0, 011 Grhheions (@) () -

This determines a map of Z,-modules ¢ : Vyy(L) — GrD(N)(U)®r 00, 0r,) GTAis M(Q) (Ry).
The composite with the projection onto Vi (L)®z, Bur(Ry) is the natural map a — a®1. For
every negative integer m extend Gy as a GrAqism(m)(Ry) linear map

tm(ﬁu)I Vu(L)@ZpGI"ACﬂS,M (m) (}_%u) — GI"D(N) (U)(X)(RM@OK OMO)GrAcriS,M<Q -+ m) (ﬁu)

Then fom(Ry)otm(Ry) is multiplication by p” times the shift by N+ Q. Similarly, replacing ¢y
and t,,(Ry) with p"(; and p"t,,(Ry), the composite t,, 4 n(Ry) o fm(Ry) induces the identity on
GrD(N)(U) so that txym(Ry)o fm(Ry) is also p" times the shift by Q4 N. In particular t,,(Ry)
and f,,(Ry) define inverses one of the other for the two inverse systems defined by varying m.
Recall that the composite of ¢ with the projection onto Vy(IL)®z, Bur(Ry) is the natural
map a — a®1. In particular it is unique with this property and it is G;-equivariant. This implies
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that multiplying it by p" gives a Gy-equivariant map (. Note that (; determines (y for any
small affine U/’ — U and since X can be covered by finitely many small affine opens by taking
N and (@ sufficiently small and h sufficiently large and reducing modulo p™ the morphisms (,
glue and define a morphism

Cn: Ln - GI"D(N) ®(OX®OK(9MO) Gr (A::ris,n,M(Q)) .

/

For every negative integer m we extend it GrA[, , \j(m)-linearly to get morphisms

Immn Ln@ZpGrA/cris,n,M<m> - GI‘D(N) ®(0X®OKOMO) Gr (Aéris,n,M(m + Q)) )

which are compatible for varying m and n. Let U be a small affine. The composite f,,+g..(Ry) o
Gmn(Ry) is multiplication by p" on Vi,(IL)/p"Vy (L) = L, (Ry) and hence it is multiplication by
p" times the shift by Q + N by linearity. Similarly g,  n.n(Ry) © frmn(Ry) is multiplication by
p" on GrD(N)(U) and hence it is multiplication by p” times the shift by N + @Q by linearity.
This implies that fr,10n © Gmn and gn N,n(ﬁu) o ¢ are multiplication by p" times the shift by
N + @. Thus since multiplication by p and shifts define automorphisms of inductive systems,
we conclude that {f,,}n and {gmn}n define automorphisms of inductive systems as claimed.
O

Proposition 3.9. Fiz a finite extension K C M. Assume that L is a crystalline étale sheaf on
X and take N € Z as in 3.6. Then we have

1) for varying r € N the Ox,, ~modules Fil'Dy; (L) define a decreasing, erhaustive and
separated filtration of Fil"D*

ois(L) by locally free Ox,, ~modules having the property that the
quotient Fil'D¥. (L) /Fil" ™ D2 (L) is locally free for every r € N;

2) the connection Vi, on D2, (]L) 18 integrable, quasi—nilpotent and satisfies Griffith’s transver-

sality relatively to the given filtration;

3) the isomorphism oris 1, : Din (L) ®(Ox®0, Onry) Berism = L&z, Beris v preserves the connec-
tion where on the left we consider the composite of the connection Vi, and the connection on
Besis v while on the right we consider the connection induced from the one on Beism which is
trivial on L. Furthermore it induces an isomorphism, in the category Ind(Sh(%M)N) of inductive

systems of continuous sheaves, on filtrations;
4) the map D (L)(/X\)(’)M()Acris — DEY(L) is injective and induces an isomorphism after

(L) @0, Fil Acris = (D5, (L) ®0,,, Acris) N Fil' DEG (L)

cris

inverting t. Furthermore ) ., Fil"Di
for every r € Z.

Proof. 1) follows from [Bri, Prop. 8.3.2].

2) follows from [Bri, Prop. 8.3.4] using 3.6 (which is implicitly assumed in loc. cit.).

3) The assertion regarding the connection is clear. By construction the given morphism pre-
serve the filtrations. Since X is noetherian there exists H € Z such that Fil” D, (L) = D (L).
Due to Lemma 3.1 the fact that oesr is an isomorphism implies that there exists N € N
and morphisms of A;sy-modules 7,1 L&A s v(m) — D (L)®@Acusm(N + m), compatible
for varying m, defining the inverse of auisr. Since 7y, is Agisv-linear and Fil"Aqim(m) =
(Filr_mAcri&M) - Aism(m) the image via =, of Fil” on the left hand side is contained in
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(Filr’mAcri&M) - D2(L)®A s m (N + m) which is D (L)®Fil™ Agism(N + m) and is con-
tained in Fil"™V+ (D2 (L) ®Aism(N +m)). In particular LFil"Bys v is contained in the
image of Fil" N+ (D2 (L) @Beris ) Via Qi L-

We are left to prove that the map induced by a.is 1. 0n the quotient inductive systems Fil" /Fil®
for r < s is injective. Proceeding inductively it suffices to consider the case that » = s + 1 and

this follows from 3.8.
4) Tt follows from (3) that D (L) is v, (]D)ar

cris cris

(L) ®0x®0, Omp) Bcris,M) as filtered module.

Since D, (L) is projective as Ox®o, On,-module it is locally a direct summand in a free

module. To prove the first claim it then suffices to show that for every small affine U, the map
RutgoKAcris(O?) — (Acris (Eu)g”’? is injective and it has kernel annihilated by a fixed power
of t. This is proven in [AB, Cor. 31].
To prove the second statement it suffices to show that the map induced on graded pieces
Y atber Gr“DiﬁiS(L)@JoMO GrlAuis — Gr'DEP(L) is injective for every r. It follows from 3.8
and the fact Gr'D (IL) is a projective Ox ®o, Op,-module that vz, (Gr" (Loz,Beisn) ) is
D= Gr'Di(L) ®0x00, 00y) Vs (GrbBcris,M). The claim follows remarking that Gr’Ag;,
injects in vz, (GrbBcrist).
O

Let U be a small affine and choose parameters Ti,...,T; € Rj;. Write Fy (resp. ¢y)
for the associated Frobenius on U (resp. on Acismlus,). Define a Frobenius ¢, on AY \(r)
(resp. Acrisn(7)]ss,) to be the map p"®¢ on Zy(r)®z, Al y (resp. Zy(r)®@z, Acismlus, ). We
then get [7,~linear maps

oy Dy

cris

(L) I Dziis (]L‘)v Yuy - UM,* (L®Acris,M(N>) E— UM,* (]L®Acris,M(N))-

Proposition 3.10. Assume that IL is a crystalline étale sheaf. Then we have.
1) wy 1s horizontal with respect to the connection Vi |y i.e., Vi|yoplu = (90|M®dFu) oVilu,
2) D2 (L)|y is an étale Fyy—module i. e., @y®1: Di;is(Lﬂu@gZ(’)u — DA

morphism.

(L) |y is an iso-

Proof. (1) follows since ¢y on Acis vy is horizontal by 2.37.
(2) follows since D, (L) is a coherent module D2, (L)(U) = Deys(Vi((L)) and the latter is

étale thanks to [Bri, Prop. 8.3.3]. O

Let F be the residue field of Oy, and write Uy for URp, F. Assume that L is a crystalline
étale sheaf on X§i. It follows from 3.9(2) and from 3.10 that (D (LL)|y, u) is a convergent
F-isocrystal Ug relatively to Oy, in the sense of [B3, Def. 2.3.7].

Lemma 3.11. Suppose we have two choices of parameters Ty, ..., Ty and 11, ..., T} of R};. De-
note by vy and ¢y, the corresponding Frobenius morphisms on D% (]L) lu. Then (]D)‘C";"is (]L) 7 gou)
and (Dg;s (L) |uts gpz’/,) define the same convergent F'-crystals on Uy relatively to Oy, .

Proof. Let Fy; and F], be the Frobenii on Ry, defined by the two choices of parameters. Let py,
p2: U Xo, U — U be the two projections. The convergent connection Vi, on D := D (L) |
defines an isomorphism of Oy, —modules €: pj; (]D) — D] (]D) on the tube of the diagonal U —
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U x U defining the structure of isocrystal on . Consider F' = (Fy, F},): Ux — Uk x Uk.
Then F*(¢) induces an isomorphism F}; (D) — F;(D). The claim amounts to prove that
0, ®1 = pyu®1 o F*(e). Since D is coherent it suffices to verify this on Ux—sections. Write

D :=D(Uy). The map € on U is the map D > m+— > (H?Zl Nl"’) (m)®(1QT; — Ti®1)[ni]
where N; is the endomorphism of D given by Vo 1®% see [BO, Pf. Thm. 4.12]. Thus F*(e) is
the map sending m®1 € D®%Ru t0 Y end (Hfil Nﬁ) (m)®(F,(T;) — Fu(Ti))["i}. Eventually

cu®1 0 F*(€) is the map m — ¥, o fu (Hle N{“’) (m)®(F}(T) — Fu(T))"™. This is the
expression for ¢}, computed in [Bri, Prop. 7.2.3]. ]

In particular the F-isocrystals defined by (]Dar

j (IL) lut, gpu) glue for different choices of U’s and
parameters and define a convergent F—isocrystal (]D)ar

o (L), Vi, L ). Denote by Isoc(Xw/Mo)
the category of filtered convergent F'—isocrystals. It is a tensor category and it is abelian if we con-
sider only convergent F—isocrystals (forgetting the filtrations); see [B3, Rmk. 2.3.3(iii)&§2.3.7].
For every n € Z define 1(n) to be the isocrystal Ox,,, with the connection defined by the usual
derivation, Frobenius given by p™ times the Frobenius on Ox,, and filtration which is 0 for
r>nand is Ox,, for r <n. Given a convergent filtered F-isocrystal £ we put £(n) := E®1(n)
and we call it the n—th Tate twist of £. We get a functor

cris °

D Sh(X57)§" — Isoc(Xp/Mo)

given by
L — (Dgiis (]L) ) V]L, {Fﬂr]Dg;is (]L) }7 SOIL,M) .

Define Isoc(Xg/My)*¥™, the category of admissible filtered convergent F—isocrystals, to be the
essential image of D,

Let £ := ((5, V), {Fil"E},¢z, (ID) be a filtered convergent F'-isocrystal on Xy relative to M.
Due to [B3, Thm. 2.4.2] there exists an Ox®o,. Op,—module (M,V,@) with integrable and
nilpotent connection and non-degenerate Frobenius such that (M8 V' '8) is the Tate
twist (€(n), V,®(n)) for some n € N. By loc. cit. such crystal is unique up to isogeny and

up to Tate twist. Define

)VO’M € Ind (Sh(X)") .

VEL(E) = Fil’ (03 (M)(=n) B0y, 50, 0u, Aerisik

Recall that we have a fully faithful functor uy ar.: Sh(X§5)g, — Ind (Sh(Xy)") and we identify
Sh(X§})g, with its essential image.

Theorem 3.12. The following hold:

1) the sub-category SW(X5)G® of SK(X5;)" is an abelian tensor sub-category, closed under
Tate twists, duals and tensor products;

2) the sub-category Isoc(Xg/My)*™ of admissible filtered convergent F—isocrystals of Isoc(Xg/My)

15 an abelian tensor sub-category, closed under Tate twists, duals and tensor products.
3) the functor D2 is an exact functor of abelian tensor categories, it is fully faithful and

commutes with duals and Tate twists;
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4) the functor Vi, factors via SK(X3)gF and Vi o DYy is equivalent to the identity. In

Cris Cris Cris
particular D2 defines an equivalence of categories

Sh(X31)GE = Tsoc(Xr/Mo)™ ™.

Proof. Claim (2) follows from (1)&(3). By construction D2 is essentially surjective. To ver-
ify (1) and the rest of (3) one reduces to the case that X = U is small affine. To verify that
Sh(X]e\})?Qf;S is closed under tensor product, internal Hom and Tate twists and that D%, commutes
with tensor products, internal Hom and Tate twists one reduces to the case that X = U is a
small affine. Using that D (L)(U) = Deis(Vi(L)) and that D (IL) is coherent, these claims
follow from analogous statements for Des(Vi(LL)) proven in [Bri, Thm. 8.4.2].

It follows from loc. cit. that if LL is crystalline and U is a small affine as in 3.7 one can recover

the Q,-representation V(L) from Dcris(Vu (]L)) by the formula
0 . V=0,p=1
V(L) = Fil® ( Deris (Vi) @y 0rs, BeisBar) )

particular D27, is fully faithful. Being essentially surjective it defines an equivalence of categories.

Cris
[l

This is equal to V25 (D2 (L)) (Ry)[p~"] thanks to 3.2. This allows to recover L up to isogeny. In

It is a difficult question to characterize Isoc(Xw/My)*™ in Isoc(Xr/M). If X = Spf(Ok),
a satisfactory answer is provided in [CF] in terms of the so called weakly admissible modules.
In more generality a complete answer exists for admissible filtered convergent F—isocrystals of
rank 1 thanks to [Bri]. Let £ := ((&,V),{Fil"€},¢z, ®) be a filtered convergent F-isocrystal
on Xy relative to My of rank 11i. e., £ is a locally free O rlg —module of rank 1. Define tg(€) to

be the locally constant function on X ®¢, Oy, locally defined as the largest integer such that
Fil"E = €.

Let U = Spf(Ry) be a small étale open affine of X such that €|y = Oy ®o,. Mye. Since & is
an isocrystal we have ®(e) = aye with ayy € Ry ®o, O, [pil] . For every connected component
U; = Spec(Ry,) of Spec(Ry ®o,. Ou, ), the element p generates a prime ideal of Ry, and we must
have ay; = p™a with oy, a unit in Ry,. Then the integer t5(€)(U;) := n; does not depend on
the choice of e and is locally constant on X ®¢, Opy,. Then we have.

Proposition 3.13. A rank 1, filtered convergent F—isocrystal £ is admissible if and only if is
locally free as Ox ®@o, My for the étale topology on X and we have tg(E) =ty (E).

Proof. 1t follows from 3.7 and [Bri, Prop. 8.6.2]. O

Finally we compare our notion of a crystalline étale sheaf with the notion of “associated
sheaves” given in [F2, p. 67]. Let £ be a filtered convergent F—isocrystal on Xy relative
to My. As explained above we may assume that up to Tate twist it is the generic fiber of
a Ox®0, Oy, module M endowed with an integrable and nilpotent connection and a non-
degenerate Frobenius. We identify M with the associated crystal on Xg/O)y,. Given a small
affine U := Spf(Ry) of X we write & (BY;(Ruy)) for M(AY(Ru))® A, Beris where M (AY, (Ry))

Cris crls Cris

is the value of the crystal M on the PD-thickening 0: AY, (Ry) — Ry. Note that given a mor-
phism o: Ry ®p, Opn, — A Ru) as Oy, —algebras inducing the identity on Ry ®o, O, via

CI‘lS(
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the projection AV, (Ry) — Ry (for example the one sending T; — T;) we get that & (BY:s(Ru)) =
M(Ry)®ry@0, 0um, BY..(Ry) = E(Ru)®rys0, 0r, Bois(Bu). Since M is a crystal the first identi-
fication does not depend on the choice of o. More precisely, given two sections o and ¢’ there is a
canonical isomorphism between M (FRy)®% 0, Ony BY. (Ry) and M(Ru)®"RM®OKOMOB Ry)
whose Taylor expansion is defined using the connection on M. In particular £ ( cr1s<RU))
endowed with an action of Gy 5 and Frobenius and since the connection on £ satisfies Griffith’s
transversality the filtration on €(BY;(Ry)) induced from the filtration on £(Ry) does not de-
pend on o. Let L be a Q,-adic étale sheaf on X,;. Following Faltings one says that L and &
are associated if there is an isomorphism

Pu - g(Bcrls(Ru)) = VL{(L)®ZpB(le(RU)

CI‘IS(

of BY..(Ry)-modules commuting with filtrations action of Gy, s and Frobenius for every small
affine U which is functorial in ¢. Recall that V},(LL) is the Gy p—representation L(Ry,). Then we
have.

Lemma 3.14. The sheaves £ and IL are associated in Faltings” sense if and only if 1L is crys-
talline and D (L) = €.

Cris

Proof. First of all we remark that to be associated in Faltings’ sense it suffices that there is a
covering of X by small affines {{;}; such that we have an isomorphism g, for every i and g, and
pu; are compatible on U; NU;. By 3.7 we have that L is crystalline if and only if there is a cov-
ering of X by small affines such that the natural map g, : D2 (L) (U;)® Ru,®0, Oy Beis(Ry,) &

Vi, (]L)@Zchris(ﬁui) is an isomorphism. By construction g, is an isomorphism of Bes(Ry)-
modules and it commutes with filtrations, action of Gy »r, Frobenius and connections. For every ¢
take the section o;: Ry, ®0, Ony — Ase(Ry,) sending T; — Tj It induces the section of the
inclusion AY, (Ry,) — Acrls(RU) AY (R )(1®T; — Tj@1) ;1.4 sending 10T — T;@1 +— 0.
Therefore it defines a section &; of BY,,(Ry,) — Beis(Ry,) compatible with filtrations, Frobenius
and Gy y—action (considering on Beis( Ry, ) the Galois action twisted via the connection).

If L is crystalline then we get an isomorphism py, := 07 (g, ), compatible with all the sup-
plementary structures and L and D%, (L) are associated. In the other direction, assume that L
and & are associated. Write 5( cr1s(RZ/{i)) for M (Acris (Eu)) ® Ay, Beris where M (Acris (T%u)) is the

value of the crystal M on the PD-thickening A.is(Ry) — Ry. Since M is a crystal by definition
[BO, Def. 6.1] we have canonical isomorphisms & (Bes(Ry,)) = E(U )@ Ry @0, Orry Beris (Ry,) and
E(Bais(Ru,)) = E(BY:(Ry,))® BY,.(Ru,) Bcris(ﬁl/{i) of Bes(Ry,)-—modules. Being canonical they
commute with the Gy p—action and Frobenius. Since the connection on & satisfies Criffith’s
transversality the isomorphisms preserve also the filtrations. Define ¢, to be the extension
of scalars of py, using the second isomorphism. It follows from the first isomorphism that
D2 (L) = & as filtered convergent Frobenius isocrystal. In particular L is crystalline. The claim

Cris

follows. u

3.3 The cohomology of crystalline sheaves.

As before we assume that Ox = W(k) and we fix a finite extension K C M contained in K.
Let X be a smooth p-adic formal scheme over Ok.
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Theorem 3.15. We have canonical isomorphisms of 0-functors from Sh(Xf{})&s to the category
of filtered Be.s-modules endowed with the action of Gy; and Frobenius

H' (Xz, L®BY,

cris, K) Hfﬂ:’t (Xet DS, (L>) )

for L a crystalline Qy,-adic étale sheaf. In fact for every r € Z we have isomorphisms of
Beis-modules which are G yr-equivariant and compatible for varying r’s and compatible with the
previous tsomorphism

H (X, L@ FiI'BY, &) = H' (X, FiI' "D (L) ®oy %0, )-

Cris

The cohomology H' (¥, L ® Fil’"IB%ZiSR) of the inductive system L ® FﬂTBZiS,K is taken as

explained in §2.8 for every r € Z U {—o0}.
The cohomology group H' (X, Fil' "D (L) ®0, Q% 0k ) means the following. Recall that

for every r € Z we have a complex of sheaves on X denoted Fil' *DZ3 (L) ®o, % . and given
by

FIlDER(L) — Fil''DEL(L) Qox o, — FI*DEL(L) @ox B0, —
We denote by H' (X, FilI' *DE% (L) ®o, Q% /OK) the i-th hypercohomology group of the respec-
tive complex.

The filtrations: For r € Z the r-th filtration of Hi (X', D5 (]L)) is by definition the image of

Cris

HY (X, Fil'*DEL (L) ®oy %/0,) While the r-the ﬁltratlon on H' (X, L®z,BY;,) is the image

Cris

Of {I‘IZ (%ﬁ, L@ZPFIITBV )}

Cris

Galois action: The Galois action on Hijp (X, Fil'DEL(IL)) is induced by the Galois action

Cris

on D&Y (L) defined in 3.3. The Galois action on HZ(% 7 L @ Fil'BY. ) arises as follows. Since

Cris

iz 18 exact and sends flasque objects to flasque objects by 2.14 and [AI, Pf. Prop. 4.4(4)]

and since 37, f(IL®F11TACVHS v) = LOFII"AY, ., one can compute H (X7, L ® Fil'AY. ) taking

global sections of the pull-back via (7 of an injective resolution Z*® of IL®F11TAZHSK Since

UK’*< MF(I.)) = Uprs (ﬁK,K’* o BMF(I.)) and By . © By, %(Z*) is endowed with an action of
G, we get the claimed action of Gjy.
Frobenius: The Frobenius on H* (%?, L®z,BY; ) is induced by Frobenius on BY, . Frobenius

Cris Cris*

on Hip (X, D55 (L)) is constructed as follows. Fix a covering of X by small affines f; for
i € I, and for each of them choose parameters T; 1, ..., T; 4 € Rj,. This choice provides a lift of
Frobenius F; on each U; as the unique Og—linear map sending 7; ; — TZp ;- Fix a total ordering
on I. For every non-empty subset J C I put Uy := [[,.,;U; as formal schemes over Ok and
U’ = NiejU;. Note that U/ C Uy is closed in an open U3 C Uy. Let Z/{}DP be the p-adic
completion of the W(k)-divided power envelope of U9 with respect to the ideal deﬁning U Let
Fy:=1l,c; Fi: Uy — U,. It induces a morphism F;: UP" — UPT. Note that UP" and F; define
a complex for varying J.

Put D(L), := D(L)|yeo and let ®;: D(L); — D(L),; be the F;-linear morphism defined by
the non-degenerate Frobenius morphism ® on ID(L). For varying J we get a morphism of double
complexes

Dy .1 D(L)e ® 4y, 0, ®Acris = D(L)e ® U, 0, & Acris.
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We have natural morphisms U7 — UPT of PD thickenings of U} which are compatible for varying
J. It follows from the crystalline Poincaré lemma [BO, Th. 6.14] that the induced morphism

D) ® Qy, 0, — D)y @ Yo o,

is a quasi isomorphism. Thus the cohomology of D(LL), ® Qi,_ﬁK@)Bcﬁs is the cohomology of the
double complex D(IL)[ye @ € .70K®Bcris i.e. of the simple complex D(IL) ® Q}@K@Bcris. Taking
cohomology and using this identification, we get from @, , the Frobenius map

p: H' (Sh(X*)", D(L) ® O 0, ©Beris) — H' (Sh(X*)", D(L) ® O 0, @ Bri) -

Since D& (L) = D(IL)®Beyis we get the claimed Frobenius on Hip (X, DE?(L)).

cris cris

Remark 3.16. By construction H' (¥, L ® AZisK(m)) ~ H (Xz,L® AZiS K) as Agis—modules
and for n < m using this identification the natural morphism H'(Xz, L ® AY. (m)) —
H (Xz,L® Azisi(n)) is simply multiplication by ™" on H' (¥, L ® AZisK)' Thus

H (X%, L@ BY. (m)) =H (Xz, Lo AY. )®a,, Bois.

cris,K cris,K
In particular we can replace the expression on the right in the statements of theorem 3.15.

We show first how to calculate explicitly the sheaves R U%’f: (L®Zp]BcrisK) for a Q,—adic étale
sheaf IL over X%t according to the conventions of §2.8.

Computation of ijjgff via continuous Galois cohomology. Consider an inverse system of
sheaves F = {F,}, € Sh (.'{ M)N. Then for every U connected and étale affine over X consider

the inverse system {F,(Ry)}, € Rep(QuM)N. Recall that we have defined the localization
F(Ry) = lim F,(Ry). Given an abelian category A in [AI, §5.1] general results for the

category of inverse systems AY are recalled. In particular if A admits enough injectives then
also AN has enough injectives. For example one can derive the functor associating to an inverse
systems of discrete Gy,,-modules G := {G,}, the abelian group (limoo&n Gn)g“M and we get
a o-functor H* (Gy,,, G). If the system G is Mittag-LefHler this is shown to coincide with the
usual continuous group cohomology. In particular given F = {F,}, € Sh(.’f M)N we can define
H{,.,(F) to be the sheaf associated to the contravariant functor sending U, a connected and
étale affine over X to H' (Gy,,, {Fn(Ru)}n). We also have the sheaf R"vj.(F) on X obtained

by deriving the functor F + lim vx as«F,. Then we have.

o0—n

Lemma 3.17. For every n € N there is a functorial homomorphism of sheaves
fa(F): HE (F) — RMoaro(F).

Proof. This is a variant of [Err, Lemma 3.5] which is stated and proven for sheaves on X,;.
We provide the main ingredients. Let i), be Faltings’s site associated to &/. We then have a
morphism of sites jy: Xy — Uy sending (V, W) — (V xx U, W xx U). It induces a mor-
phism j;;: Sh(% M)N — Sh(ilM)N which admits an exact left adjoint j;,) given componentwise
by extension by zero. In particular one deduces from this as in [Err, Lemma 3.5] that the
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sheaf T™(F) associated to the pre-sheaf ¢ — H" (U, ji;(F)) is a universal d-functor. Since
HO (8, 37(F)) = H*(U, var(F)), we conclude that T (F) = R"vpz. (F).

Note that H"(Uy,-) is the composite of the localization functor F — {F,(Ry)}, with
H° (Gy,,, -)- The induced spectral sequence provides H® (Gy,,, {Fn(Ru)}n) — H™ (Y, jj;(F)).
Composing this with the morphism to 7" (F)(U) = R™ vy .(F)(U) we get the claimed map. O

In [Err, Lemma 3.5] it is shown that if we work with sheaves on X;;, not with continuous
sheaves, the above map is an isomorphism. This is not true in the general context of continuous
sheaves. Assume that M = K then we have the following:

Proposition 3.18. For every n € N the morphism f,(F) has kernel and cokernel annihi-
lated by any element of 1% where 1 is the ideal introduced in §1.2 in the following cases: (a)
F = {Wm?}n; (b) F = {O:{M/pnOxM}n; (C) f = Acri&ﬁ(m) fOT every m € Z; (d) f =
Gr"A  g(m) for every m and r € Z.

Proof. The proposition follows from [AI, Thm. 6.12] after minor changes if the assumptions of
loc. cit. are satisfied. The statement in loc. cit. provides an isomorphism after inverting [¢] — 1
and working with the pointed site X%.. An inspection of the proof gives our claim. First of all
the proof works for Xz and not only for X% using [Err, Lemma 3.5] which is the analogue of
[AI, Prop 4.4] for X3 instead of X% Secondly the two cohomology groups are related by two
spectral sequences, one in [Al, Formula (19)] and the other in [AI, Prop. 6.15] and the proofs of
[AL, lemma 6.13 & Prop. 6.15] show that each degenerates if we multiply by any element of T’
and not only after inverting [¢] — 1.

We now verify that the assumptions hold. Assumptions (i) and (ii) state the existence of
enough small affines of X. The fact that the other Assumptions hold for {W, %}, and for
F :={Ox,,/P"Ox,, }n is precisely the content of [Al, Thm. 6.16(A)&(B)]. We pass to A_; z(m).
Assumptions (iii)—(vi) concern the behavior of the sheaves F,, restricted to the subsite Uz, of
Xz for n > 0 for every small U of X see 2.6 for the definition of Uz . Since A’ ris,n,ﬁ(m)l e, =

AN (m)|y. (Xi,...,Xq4) by lemma 2.33 this is a sheaf of free AY,

cris,n,K cris,n,K

the other hand A/CZS . R(m) = Auis/ p"Acris®an by lemma 2.26. We conclude since assumptions
(iii)—(vi) hold for the continuous sheaf {W, %},

The statement concerning Gr"A _; z(m) is proven similarly. We have

(m> ’ﬂ?m = Z Fil* (Acris/pnAcris) ®Wn7f‘ﬂ?’" Xl[SI] U X([ZSd]

s0+...+sg=>r—m

(m)|s. —modules. On

Fil"A’

cris,n, K
with X; (= 1®T); — T}@l. In particular
GrTA/cris,anKn S (OxM/p"OxM) |u§,n£[501 . X1[81] .. .Xc[lm]

is a free Ox,, /p"Ox,lu. -module. Since the Assumptions of loc cit. for the inverse system
{Ox,, /7" Ox,, }n are satisfied we are done. O

Denote by H'(m) (resp. H'(Fil",m), resp. H*(Gr", m)) the sheaf associated to the contravari-
ant functor which associates to a small affine open U = Spf(Ry) of X the value

H' (G % Aeris k(M) (Ru)), resp. H (G, %, Fil'A i x(m)(Ru)), resp. H (G x, Gr" Ao g (m) (Ruy)).

The cohomology considered is the continuous Galois cohomology. Then we have.
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Lemma 3.19. For every r € N and m € Z we have morphisms H'(m) — H, (A g (m)),
H{(Gr",m) — Hi,, (Gr"A  g(m)) and H'(FiI",m) — Hy, (Fil"Ax(m)) which are com-
patible with the maps induced by the projection Fil" — Gr" and have kernel and cokernel anni-

hilated by I.

Proof. 1t follows from lemma 2.29 and lemma 2.35 that the inverse system of Gy p-modules
Al riSmR(m) (Ry) is contained in the localization Al ris’ni(m))(}_%u) for every small affine U of X
with cokernel annihilated by any element of I. This provides the first morphism and the claim
regarding its kernel and cokernel. Similarly using the description of Gr"A _; %(m) given in the
proof of 3.18, we deduce that Gr"A  x(Ry) is contained in Gr'A  , x(Ry) with cokernel
annihilated by I. This provides the second map and the subsequent statement. Using induction
on r and the fact that Gr" = Fil"/Fil"*! we deduce that also Fil"A (Ry) is contained in
Fil"A ;s o k(Ry) with cokernel annihilated by I. This gives the last morphism and proves the
assertion concerning its kernel and cokernel. O

cris,n,K

Corollary 3.20. Let M be a coherent Ox, —module such that for every small aﬁﬁne U the
Ry ®0,. K-module M(U)®0, K is projective. We view M as a sheaf on X3 via V3. For every
r € ZU{—o0} we have:

| 0 if 7>1
R0 (FilI'B ... w®pn. M) = ~ _
VR + ( WD eis KYOx ) {Fﬂr Beois@M if j =0

Proof. Note the we have a natural map Fil” By s@M — vcont (FIIT]B K®O§?\4 /\/l> Thus both

cris,
statements are local on X. We may then assume that X = L[ is a small affine so that M®p, K
is a direct summand in a free Ox,-module. Since R7v2™ commutes with direct sums we may
assume that M®e, K is a free module and we are reduced to prove the corollary in the case
that M = Ox. Fix integers m and r € Z with m < N. We start by considering the following
statements:

a) there exists a € N depending on 7 — m such that R/vS™ (Fil"A ;, () is annihilated by
e if § > 1. ’

) there exists ¢ € N, depending on a, such that the kernel of R7v (Fil”AcriSR(m —a)) —
Ripgent (Fllr *A s x(m — a)) is annihilated by p© for every j > 1.

) the map MEFil" Agis — v%‘)f: <Fil” Acris,ﬁ(@@&“M ,/\/l) is an isomorphism for all r.

First of all we remark that these statements imply the corollary in the case that M = Ox.
Indeed together with 3.1 these claims imply all the statements of the corollary except for the
vanishing of R7ve (L®g,FilI'B . g®0, M) for r € Z and j > 1. Note that the image of the

continuous sheaf Fil"A_; z(m) in Fil" A _ g(m —a) is t* - Fil'" “A_j g(m — a). Tt follows from
() that the map

R (Flercns K( )) - Rj (FIITACHS K( - (1))

61



factors via the kernel of the map
RJ,UK * (FllTAcrls K( )) - Rj (Fllr aAcrls K( - CI,))

which is annihilated by p® by (). Since multiplication by p is an isomorphism on Fil"Besm by
2.41, also the vanishing of R/ v%)i‘: (Fil'By, gM) for r € Z and j > 1 follows.

Now we start proving the statements «), 3),7). In view of 2.36 to prove statement () we
need to prove that for every small affine the map Ry®Fil" Agyy — FilTAcriSR(Tgu)gu,? is an
isomorphism. This follows from [AB, Prop. 41].

Recall that Fil"A_ g(m) = Fil'""™A_, g as continuous sheaves on Xz. Thus, we may
also assume that m = 0. Given r» € N, since t" € Fil" A4, the cokernel of the inclusion
Fil"A ;& C Ak s annihilated by ¢". Hence it suffices to prove (a) for r = 0. Recall from
1.2 that t € I since t = (1 — [¢])u with w a unit in A.s by [Fo, §5.2.4&85.2.8(ii)]. Then claim
(a) follows from proposition 3.18, lemma 3.19 and the fact that H'(G, %, A g(Ru)(m)) is
annihilated by (1— [¢])2(@* D12 proven in corollary [AB, Cor. 24]. Here d is the relative dimension
of X over Ok.

We are left to show (3). Proceeding inductively on a it suffices to show that for every r € Z

and every n € N the cokernel of the map R/~ vso™ (FilTA’C . E) — R/t (G "A —) is

cris,K
annihilated by a power of p (independent of n). Consider the commutative dlagram

HIL(Fil", m) — HI7YGr",m)

Ri-1 cont <F11TA/ ) ., Ri-! cont (GI,'I’A/ )

cris, K cris, K

obtained from 3.18 and lemma 3.19. For every small afﬁne U, the map
Hj_l (gM,F7 FﬂrAcris,K(m) (RU)) - Hj_l (gl/{,f’ GrTAcris,K(m) (RU))

has cokernel annihilated by a power of p by [AB, Pf. Lemme 36]. This also applies to the
associated sheaves i.e., to the map H/~1(Fil", m) — H~}(Gr", m). The right vertical morphism
in the diagram has kernel and cokernel annihilated by I2U~D*! by proposition 3.18 and lemma
3.19. We conclude that the same applies to the cokernel of the lower horizontal arrow. The
conclusion follows. m

Proof. (of theorem 3.15) Thanks to lemma 2.41, if L is a p-adic sheaf sheaf, the sequence

(*) 0 - L®ZPFHTIBZ15,K - L®ZpFﬂchris,K L L®ZpFﬂril]Bcris,K ®0X Q_l)(/OK i)

. i’ L@ZPFﬂr_dBcris,K ®OX Q?(/OK —0

is exact for every r € Z. Due to 3.9 the complex L®z,Fil" B g ®oy (%0, 18 isomorphic to
the complex Fil'™* (DER (L) @0x@o,, Awi Beris & Q0x % /OK)‘ This provides an isomorphism

Cris

H' (%fa L® Fﬂchvris’ﬁ) — H’ <%f7 Fil"™* (Dgfl(; (H“) ®0X®0K Acris IBgcris,ﬁ Rox QB(/OK)> :
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Here we view Fil'™*(DEL (L) ®oyeo, Aus Baisk @ox Q% /0,) as the inductive system of com-

plexes of continuous sheaves Fil'~* (D (L) ®o e 0 Acsie Beris £ () @0 0% /OK) and we apply the
construction of definition 2.8 to the continuous hyper-cohomology H*( e ,) of these complexes.
It follows from corollary 3.20 that Fil"~*(Dg; (L) ROy @0, Acxis Beris K Doy 1% /OK) is acyclic for
v, and that its image via vg, is Fil’™ (fof;(L) R0y QB(/OK). Thus, we have an isomorphism

Hi (Xetﬂ Fﬂri.D%ﬁ;(L) ®OX Q;(/OK) — Hi <%?, Fil"™* (fof;(l‘) ®OX®OKAcris IB3cris,ﬁ ®OX ;(/OK)> .

Compatibility with Gyr—action: These are isomorphisms of G y,—modules with G,—structure
given as explained after the theorem resolving L&Fil"AY. - (m) (resp. L@z, Fil' *A  x(m) ®oy
Q%/0, ) with the pull-back via B3} 7 of an injective resolution of LFil"AY; v(m) (vesp. of the
complex L&z, Fil"™*Agis v (m) ®oy Q;(/OK).

Compatibility with Frobenius: Fix a covering of X by small affines Uf;, for ¢ € I and for each
of them choose parameters T;1,...,T;q € Rj,. For every subset J C I let u’ c U3 C Uy be
as in the notation introduced after theorem 3.15. Let ﬂJF be Faltings’ site associated to U7 and
consider the continuous morphism j;: Xz — U4 sending (V, W) to (V, W) X (x,x,) (U7, UF).
The inverse image 77 of a sheaf on X is the restriction of F to il‘]? viewed as a subcategory of
X%
Define AY.

cris,Uy,n

the kernel of

to be the W(k)-DP sheaf of algebras in Sh(UZ) of Ajngy,n With respect to

W (O 10sy) — Oy "0
defined by 6,,. Its existence is proven as in §2.5. Since OL% = O%fh% we have a natural
morphism
Azis,L{J,n - J:; (‘AV )

cris,X,n

and it follows from loc. cit. that such a morphism is an isomorphism. Define A;sz,  as the

W (k)-DP sheaf of Oye—algebras of W, (OM / Poui> Qw,, (%) Vi (Oys) with respect to the kernel
. K K n I

of the morphism of Oys-algebras "

A;;f,],n ®Wn(E) ’UZ[%(OU?) — O%/pn(’)ﬁ%

defined by the Oypq-linear extension of 6.

Lemma 3.21. The sheaf Acisy, n exists and
v
AcriS,L{J,nlLl;{ = AcriS,ZAJ,nlili <Xi717 s ?Xi7d>z'ej )

where X; ;=1 T;; — ﬁ] ® 1 for every i € I and every 1 < j < d. For every h € J one also
has an isomorphism

Acris n = g7 Acris n <Y(h)7 cee 7Y(h)>
Uy, ]J( X, ) i1 i,d iedith

where YZ(Jh), fori € J with i # h and for 1 < j < d are reqular elements generating the ideal

defining the closed immersion U’ C (Uh X0 L{,-)O. In particular Acisy, n 15 a free j5 (Ams,xﬁn)—
module.
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Proof. The existence of the sheaf and the formula for its restriction to U is proven as in §2.6.
A similar argument implies the last formula over 47. A descent argument allows to conclude
that the formula holds also over $/. The last statement follows from the properties of divided
powers: a basis is given by monomials in the elements ~; (Yz(,?) ) forjeN, 1</<dandieJ
but ¢ # h taking 7, to be as in §1.2; see §2.6 for details. m

Let Agis,J,n (resp. Acyis.gn) be 4 (Acvm’w’n) (resp. jJx (Acris7u17n)). Define AZiSJ (resp. Acyis,s)
as the system {A&&Ln}n (resp. {Acrisn},) and BY; ; (resp. Beys ) for the inductive systems

given by multiplication by ¢. We also write Beys s Qo 9, 0K for the inductive system, with re-

spect to multiplication by ¢, associated to the push-forward via j ;. of Agisy ;@0 U F(QZI; /OK) )

We then get a long exact sequence of continuous sheaves

v *
0 IBCI‘iS,J Bcris,J ®OI/{J QUJ/OK 0

The exactness is proven as in proposition 2.37 using the first description given in lemma 3.21.
These complexes are compatible if we vary J. In particular we get a double complex Beyis.e ®o,,
. 0k which is equivalent to the simple complex BY. Since the U;’s cover X the sequence

cris,e*

0 — Ox/POx — Jou <Ou-?/p0u'f> —0

is exact. Using 2.26 we deduce that the sequence

v

IEBcris,o

0 — BY.

cris,K 0

is also exact. Consider the commutative diagram

0 — IL’@ZPBV = T L®Zchris,K®OX Q;(/OK

cris,K
O - L®ZPB(Z“iS,O - L®Zchris,o ®Ou. QZ./OK

Since the rows are exact and the first column is exact it follows that the complex L®z, B g ®oy
0% 10k is quasi-isomorphic to the double complex L&z, Beise @0, QZ,. 0K On the latter the

Frobenius maps F; on U; and Frobenius on A;{lf’ ; define a morphism of complexes
(I)o,*: L®Zchris,o ®Ou. QZZ./(’)K — L®Zchris,o ®OM. QZ{./OK

compatible with Frobenius on H‘®ZPBZisK' Let D(L) be the Frobenius crystal associated to

ar (L) (up to isogeny); see the notation following theorem 3.15. By definition of crystal the
Oyeo-module D(L); := D(L)[,zo together with Frobenius and connection, coincides with the

pull-back of D, (L) via the h-th projection 7, : U7 — U;,. We have

Lemma 3.22. The OU};D@BcriS—module ]D(]L)J(X\)Bms together with Frobenius and connection,

cont (L@ZPBCI&S’J) with the Frobenius and connection induced by those on Beyis .

coincides with v KR
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Proof. By definition of crystal D(IL); coincides with the pull-back of D2 (IL) via the h-th pro-

Cris
jection m,: U7 — Uy. In particular OMJPD = 7y (Ouh) <YZ(1), e ,YI(Z)> compatibly with
i€ Jyi#h
Frobenius and connection; see lemma 3.21 for the notation. Due to the second description in
3.21 we get that vcont (Bcris, J) = OUI;’D ®Bis compatibly with Frobenius and connection. Since

L®z,Beis,s & IL,®ZP 75 (Ecris X)® (B X) ® Beris,s by lemma 3.21 and L is crystalline, we con-

3
clude that vS% of the former coincides with D¢ (L)® O,ep compatibly with Frobenius
XK * cris ™ (Ouh) 7
and connection. This coincides with D(IL) ;® Bes and the claim follows. O

By adjunction we get a morphism of complexes
U}’f (D(]L)o X Qa./OK®Bcris) — L®ZPBCIiS,. ®Ou. Q;{./(’)K

which is compatible with the Frobenius morphisms defined on the two complexes. We deduce
that the morphisms

1 (%, Loz, BY, 1) = H (X7, L&z, Baie Q04 Yoy )
T
HfiR (Xet D?LS(L) ®0X Q}/OK@)BCTiS) L> HfiR (XetJD)(}L). ®Ou. QZ./OK®BCI‘iS)
are compatible with the Frobenius morphisms defined on each cohomology group. By construc-
tion the group Hjg (X, D50 (IL)) is Hig (X, D (L) @ Q% o, ®Beis). The compatibility with

Cris Cris
Frobenius follows. O

3.4 The comparison isomorphism in the proper case

Let us now assume that our formal scheme X — Spf(Ok) is the formal completion along the
special fiber of a proper and smooth scheme X®# — Spec(Of). We have a morphism of sites

Ve X?\}g’et — X ¢ associating U +— U x where U is the p-adic completion of U. Given a sheaf
L € Sh(X &) we write L for u%, (). Define Sh(XjT/l[g’et)fo;S to be the category of Q,—adic sheaves

on X%# whose images via u%; lie in Sh(X§7)gP. Given an object L in Sh(X;}g’et)@s, we abuse

notation and write Dy (L) for the filtered locally free Ox,, ~module with integrable connection

on X Mg associated by rigid analytic GAGA to the isocrystal D (u3,(L)). We also identify, for
i > 0 the de Rham cohomology groups Hjg (X algZar yar (L)> with the rigid cohomology of the

Cris

F—isocrystal D% (u M(L)) to get a Frobenius structure. Then we have.

Theorem 3.23. There is an isomorphism of d—functors from Sh(Xi}g’et)?Qf;S to the category of
filtered Beis—modules endowed with G yr—action and Frobenius:

Hz (Xalg et L) ®Zp Beis = I_IZ (X/M(b D (L)) Qo Beris.

cris Cris

Here H' L)

in the sense of [B3]. It is endowed with Frobenius. As it coincides with Hig (XX;I% , Dar (]L)) =

(X/My, D2 (L)) is the crystalline cohomology of the filtered F—isocrystal D

Cris CrlS(

Cris

Cris

Hir (X;}% , D2 (IL.)), it is endowed also with the Hodge filtration. The theorem implies the

following corollary:
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Corollary 3.24. Let L be a crystalline étale sheaf on X528, Then H' (X%lg’et,]L) is a crystalline
representation of Gy and HY (Xja\}i,]])ar (L)> 18, as filtered My—vector space endowed with

Cris

Frobenius, the classical Doy (Hz (Xalg e ]L)) associated to the Gy —representation H' (X%lg’et, ]L).

We start with the following:

Proposition 3.25. The natural map

Crls(*Xr/]\407]Dar (]L>) ®M0 Bcris e I_IZ (%K,]L & ]BV

cris cris, K)

deduced from the isomorphism D, (L)@, Beris = DE(L) of 3.9 and from the isomorphism
in 8.15, is an isomorphism of 6-functors from Sh(Xet)Cr;S to the category of Beis—modules en-

dowed with filtrations and Galois action of Gy.

Proof. Recall that we have an isomorphism D (IL)®z, Beis = D5 (IL) as filtered as Ox®o sig Beris—
modules endowed with filtrations and Galois action of G ;. Due to 3.15 it suffices to show that
the natural map
7]1 cris (X/M()? D?;ls (L)) ®MO BCTiS - HfiR (Xeta D%fg (]L))

is an isomorphism of B.;s—modules endowed with filtrations and Galois action of G ;. It is clear
that 7]{ is Bes—linear and that it is compatible with Gy;—action. Let D(IL) be a Frobenius crystal
on X whose generic fiber is D2 (L). Then H!; (X /Mo, ]Dg‘fls(l[.,)) He o (Xk/Ow,, D(L)) [p] as
My—vector spaces with filtration and Frobenius. In particular using the definition of the filtration
and of Frobenius on Hij, (X, D& (L)) we deduce that ~{ is compatible also with the filtrations
and with Frobenius.

Since Hip (X, D(L) ® 0% 05 ) = H! (Xet, D(L) ® QB{/0K> is a finite Ox—module and A is

p—torsion free the natural map
L HSR(X,]D)(IL) ® Q% /0, ) ® Aepis — H (X‘“,]D)(L) ® Q% /0, ®Acris)

is an isomorphism. Inverting ¢ and using the fact that H’ (X, ) commutes with direct limits
since X is noetherian gives the morphism ~{ which is an isomorphism. We are left to prove
that pt is strict after inverting p i.e., that it induces an isomorphism on the various steps of the
filtrations.

We first treat the case that i = 2d where d is be the relative dimension of X over O and
L = Z, is the constant sheaf. Then the natural map

HY(Xg, %, ) — H3 (X, %, k)

is an isomorphism with filtration Fil" = everything for n < d and Fil" = 0 for n > d. Via the
trace map we have an identification H** (X, Q4 / x) = K(—d), where K(—d) is K as a K-vector
space with Fil"K(—d) = K for n < d and 0 for n > d.

Since p% is an isomorphism it follows that the map

HY (X, Q% 0, ) ® Aais[p™'] — H* (X, 0% /OK@;ACﬁS) [p']
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is an isomorphism. The quotient of Q% /OK@)FﬂnfdAcriS[—d] — Q% /OK@)FH"*'ACﬂS is a complex of
quasi-coherent sheaves with < d —1 terms so that it has trivial cohomology groups H* for i > 2d.
In particular Fil” on H? (Xet, Q;(/(QK@Acris) is the image of H* <Xet, QSI(/OK@Filn_dAcriS). This

coincides with H? (X , Qg{,(%) ® Fil" %A showing that p% is an isomorphism of filtered As-
modules.

In the general case recall that D(ILY) =2 (L)Y as filtered isocrystals by 3.12 i.e., the pairing
provides on filtrations morphisms Fil"D(L) x Fil"D(LY) — Fil"*"Ox. This and the fact that

p%‘i is an isomorphism of filtered modules provides with pairings of filtered modules

HfiR (Xv D(]L> ® Q;(/OK) @ H(2161£{71 (X7 D(Lv) b2y Q;{/OK) ® Acris — Acris(_d)
oo pi| ||
H (Xet, D(L) ® Q% /0K®Ams> ® H2 (X “DILY) & Qk/oK@@Acris) = Aenis(—d).
By [S, Prop. 2.5.3] Poincaré¢ duality induces an isomorphism of filtered K-vector spaces

pi,: Hig (X, D(L) © Q% 0, ) [p!] — Hom (H3f, (X, D(L) ® Q%0 ), K(—d)) .

Recall that Fil"Hom (Hffé{" (X, D(L) ®Q;(/OK),K(—CI)> consists of the f: H2 (X, D(L) ®

Q% /OK) — K(—d) such that f(Fil") c Fil"*" for every h. In particular the pairings displayed
above give then morphisms of filtered A..s-modules:

— Hom 4

cris

(sz_i ((Xeta D(Lv) ® Q;(/OK@)AcriS) ’AcriS(_d)) [p_l] -
(H(zj%{_l (X’ D(Lv) & Q;(/(’)K) X AcriSa Acris(_d)) [p_l}

such that the composite is p} ® Aeis. In particular it is an isomorphism of filtered A..-modules.
This implies that the first map, which is pf [p™!], is an isomorphism as filtered A.s[p~']-modules
as claimed.

— HOIHA

cris

]

Let us now assume that L is a crystalline étale sheaf on X,;. For i € Z write V; =
H' (X%, L) ®z, Q, and D; := Hjg (X, D3 (IL)). Then V; is a finite dimensional p-adic represen-
tation of G for every ¢ € Z and V; = 0 unless 0 < ¢ < 2d, where d is the dimension of Xp.
Similarly, D; is a finite dimensional filtered p-module over M, for all : € Z and D; = 0 unless

0<i<2d.

Corollary 3.26. We have a canonical commutative diagram with exact rows, referred to as the
diagram (x,), of topological Q,-vector spaces with continuous Gyr-action:

c— Vi 25 Fil%(D; ®up Bais) —5  D; ©pgy Beris —— Vin
lﬁi l%’ ” lﬁi—i—l

Wi =1
i T‘z B Dz ®M0 Bcris — Dz ®Mo Bcris B (Di+1 ®M0 Bcris)so



Proof. Consider the diagram attached to L tensoring (2) with L and taking the long exact
sequence in cohomology. We get a commutative diagram of Q,-modules endowed with continuous
action of GGj; whose rows are exact:

C— WX, L) ®7, @, —  HI(X, LeFI'BY, 1)) —% (X3, LoBY)— -

— (X, (LOBY,) ) —  H(XLeBY) 5 H(X,LoBY) — -
For every i € Z we have canonical isomorphisms H'(X# L)[1/p] = V; as Gj-modules by
[AI, Prop. 4.9]. By theorem 3.15 and proposition 3.25 we have canonical isomorphisms as
filtered ¢-modules, compatible with the Gjs-action, Hi(f{‘?,L ® BY.) = D; ®ny Beris- Put

cris

T, .= H <%‘F (Lo BY, )@:1) Furthermore the image of the map g; from H'(X3., ]L®FiIOIB%ZiSK))

to H'(X3, L ® BZisR)) is Fil” <Hi(f{’f, L® FilOBZiSR)D. To prove the claim it suffices to show
that g; is injective. It follows from the above diagram of long exact sequences that the kernel of
g; is in the image of V;. In particular it is a finite dimensional Q,-vector space. Since Ker(g;)
is a B -module and B,  is an algebra over the maximal unramified extension K" of K, then
Ker(g;) is a K" -vector space. Since Ker(g;) is a finite dimensional Q,-vector space we conclude
that it must be 0 which proves the claim. O

As in corollary 3.26 take LL to be a crystalline sheaf. Then its Z,-dual L" is also a crystalline
sheaf on Xy and D2 (LY) = D2 (L)Y := Homigee(x) (D2 (L), Ox, ) where the isomorphism is
as filtered F-isocrystals on X (or X). Let us denote for every i € Z, V;* := H/(X S, 1LY)[1/p]
and by D} := Hi (X, DX (LY)) the Gp-representations, respectively the filtered p-modules
attached to L. By Poincaré duality for étale cohomology and de Rham cohomology respectively
we have canonical isomorphisms as G y/-representations (respectively as filtered g-modules) V;* =
V,,_; (respectively D = DJ, ..) Let us remark that we have a canonical diagram with exact

rows attached to LY, denoted (*Lv), which involves V*, D} and in which the maps are denoted
ol B

Suppose L is a crystalline sheaf on X§§ and assume all the notations above. The idea of the proof
of Theorem 3.23 is very simple. We prove by induction on j > 0 that Dy,_; is an admissible
filtered p-module and that Veyis(Dag—;) = Vaa—;. Granting this it follows that V54—, is a crystalline
representation of Gy and that Deys(Vag—j) = Dag—; and so we are done.

Let us first recall a criterion of admissibility from [CF]. In our setting M, is a finite unramified
extension of @, and D is a finite dimensional filtered ¢-module over M. Let

D ®M0 Bcris
.,
Fil’(D ®y Beris)

§(D): (D ®pgy Bexis)?™

be the natural map. Put V(D) := Ker(dp)

Proposition 3.27 ([CF]). The filtered p-module D over My is admissible if and only if (a)
Vais(D) is a finite dimensional Q,-vector space and (b) 6(D) is surjective.

Moreover, if V.= V(D) is finite dimensional then it is a crystalline representation of Gy
and Deis(V) € D. This inclusion is an equality if and only if D is admissible.
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Proof. Let us first remark that we are in the situation of [CF], i.e. the natural map

D ®Mo Bcris _ D ®M() BdR
Fil’(D ®sy Beris) Fil’(D ®, Bar)

is an isomorphism for every finite dimensional filtered module D over M, due to the fact that the
natural inclusion B, — Bgr of filtered rings induces isomorphisms on the graded quotients.
It is proven in [CF, Prop. 4.5] that the Q,-vector space Vi,is(D) is finite dimensional if and
only if for every sub-object D' C D we have ty(D’") < tn(D’). Moreover, it also shown in
loc. cit. that in this case Vi,i5(D) is a crystalline representation of G); whose associated filtered
¢-module is contained in D. It coincides with D if and only if dimg, Veris(D) = dimyy, D.
It follows from the proof of of [CF, Prop. 5.7] that, if V(D) is finite dimensional, then
dimg, Vewis(D) = dimyy, D if and only if §(D) is surjective. The claim follows.
n

The proof of Theorem 3.23. Let IL be a crystalline sheaf on X and let us consider the part of
the diagram (xg,) relevant for j = 0:

- Vaa 22 Bil®(Doy @ty Beris) 5 Doq @ty Beris — 0
1 Baa b 724 H
0— (DZd ®M0 Bcris)¢:1 ﬁ) D2d ®Mo Bcris iﬁ) D2d ®Mo Bcris — 0

Let us remark that 6(Dy4) can be seen as the composition
(D2d & My Bcris)¢:1 22, Doy @1y Beris — Coker(7y24)

and also that Ker(d(Dyg)) = Ker((l — ) Fil°(Dag @1y Beris) — Daag @, Bcris). It follows
that ayg induces a surjective Q,-linear map Voq — Ker(§(Daq)) and that §(Dsyg) is surjective.
We deduce from proposition 3.27 that D4 is admissible and that we have a Q,-linear, surjective
homomorphism Vay — Viyis(Dag) which is G p-equivariant.

Now we look at the part near ¢ = 0 of the diagram (xpv), remarking that D} = DJ, by [S,
Prop. 2.5.3] and therefore it is admissible.

0 — Vi B, Fi%Df ®ugy Beris) —% D ®@agy Beris — -+ -
L5 * L [
0 — (D;®um, Bcris)<p:1 =, Dg @ty Beris = Dg ®nty Beris — -+
It follows that V" = Ker(6(Dg)) = Veris(Dj). Therefore we deduce that dimg, (V2q) = dimg, (V;') =
dlmK(DS) = dlmK(DQd) = dime(‘/cris(Dmi)) and hence ‘/Qd = ‘/cris<D2d) and ‘/0* = ‘/cris(DS)'
This proves our statement for j = 0 for L. and j = 2d for LY.

Let us remark at the same time that as gy is injective, €41 = 0. Since Vj° = V,i5(Df) an
easy diagram chase shows that €, = 0 and therefore the map af is injective. Since 77 is injective,
we can continue with j = 1 along exactly the same lines as for 7 = 0. By induction Theorem
3.23 follows.
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