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Abstract

The Main Conjecture of Iwasawa theory for an elliptic curve E over
Q and the anticyclotomic Zp-extension of an imaginary quadratic field
K was studied in [BD2], in the case where p is a prime of ordinary
reduction for E. Analogous results are formulated, and proved, in the
case where p is a prime of supersingular reduction. The foundational
study of supersingular main conjectures carried out by Perrin-Riou
[PR2], [PR4], Pollack [Po1], Kurihara [Ku], Kobayashi [Kob], and
Iovita-Pollack [IP] are required to handle this case in which many of
the simplifying features of the ordinary setting break down.
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1 Introduction

Let E be an elliptic curve over Q of conductor N0, and let K be an imaginary
quadratic field of discriminant prime to N0. Choose a rational prime p and
let K∞ denote the anticyclotomic Zp-extension of K.

To the datum (E, K, p) are associated two kinds of invariants:

1. The twisted special values L(E/K, χ, 1) of the Hasse-Weil L-series of E
over K, as χ ranges over the finite-order characters of G∞ := Gal(K∞/K).
These special values satisfy certain algebraicity and integrality properties.
When p is a prime of ordinary reduction for E, they can be conveniently
packaged into a p-adic L-function Lp(E, K) which belongs to the Iwasawa
algebra Λ := Zp[[G∞]].

2. The Selmer group Sel(K∞, Ep∞) consisting of classes in H1(K∞, Ep∞)
which are in the images of the local Kummer maps at all places of K∞. This
group is a co-finitely generated Λ-module. One of the interesting features
of the anticyclotomic setting is that it need not be Λ-cotorsion in general.
Let C denote the characteristic power series of the Pontryagin dual of the
Selmer group, setting C = 0 if this Pontryagin dual is not torsion over Λ.
The invariant C is well-defined up to multiplication by units of Λ.

It is assumed that the discriminant of K is prime to N := pN0 so that K
determines a factorization

N = pN+N−,

where N+ is divisible only by primes which are split in K and N− by primes
which are inert in K.

Under certain technical assumptions stated in the introduction of [BD2]
which will be recalled below, the article [BD2] proves the following result in
the direction of the anticyclotomic main conjecture of Iwasawa theory in the
ordinary case. (Cf. Theorem 1 of [BD2].)

Theorem 1.1. Assume that N− is the square-free product of an odd number
of primes. Assume also that the prime p is ordinary, and that (E, K, p)
satisfies the technical hypotheses stated in 1.6 below. Then C divides the
p-adic L-function Lp(E, K).
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Remark 1.2. It follows from results of Vatsal [Va] that Lp(E, K) is non-
zero under the hypotheses on N made in Theorem 1.1. In particular, this
theorem implies that the Selmer group of E over K∞ is Λ-co-torsion. By
contrast, when N− is the square-free product of an even number of primes,
then Lp(E, K) vanishes identically. Vatsal’s theorem on the non-triviality of
Heegner points and arguments of Kolyvagin can be used to show that the
Selmer group of E over K∞ has Λ-corank one in this case.

The main goal of the present note is to formulate and prove an analogous
result in the case where p is a prime satisfying

ap := p + 1 − #E(Z/pZ) = 0.

This implies that E is supersingular at p, and is in fact equivalent to this
statement when p ≥ 5, in light of the Hasse bound |ap| ≤ 2

√
p. The foun-

dational study of supersingular main conjectures carried out by Perrin-Riou
[PR2], [PR4], Pollack [Po1], Kurihara [Ku], Kobayashi [Kob], and Iovita-
Pollack [IP] are required to handle this case in which many of the simplifying
features of the ordinary setting break down.

1. The special values L(E/K, χ, 1) cannot be interpolated in an obvious way
by an element of Λ. Section 2 explains how the construction of the p-adic
L-function Lp(E, K) presented in Section 1 of [BD2] can be modified, fol-
lowing the ideas of [PR2] and [Po1], by removing the infinitely many “trivial
zeroes” that occur at p-power roots of unity. This process yields two p-adic
L-functions L+

p (E, K) and L−p (E, K) which both belong to Λ and emerge
as the appropriate substitutes for the p-adic L-function in the supersingular
setting.

2. In tandem with this analytic complication, the Selmer group Sel(K∞, Ep∞)
is never a co-torsion Λ-module when p is supersingular. Following an idea of
Kobayashi [Kob], Section 3 introduces two restricted Selmer groups

Sel+(K∞, Ep∞) and Sel−(K∞, Ep∞)

defined by imposing more stringent local conditions at the prime p. Let
C+ and C− denote the characteristic power series of the Pontryagin duals of
Sel+(K∞, Ep∞) and Sel−(K∞, Ep∞) respectively. (Here we follow the same
conventions as before, whereby the characteristic power series of a non-torsion
Λ-module is taken to be 0.)

The main conjecture that we are interested in is formulated in terms of the
plus/minus p-adic L-functions and the restricted Selmer groups, as follows:
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Conjecture 1.3. Assume that ap = 0. Then the characteristic power series
C+ and C− generate the same ideal of Λ as the p-adic L-functions L+

p (E, K)
and L−p (E, K) respectively.

Fix an integer n ≥ 1. A key ingredient in the proof of Theorem 1.1 given
in [BD2] is the construction of certain global cohomology classes

κ(`) ∈ lim
← m

H1(Km, E[pn]),

indexed by rational primes ` satisfying suitable properties (the n-admissible
primes in the sense of [BD2]). These classes form a kind of Euler system, as
spelled out in Sections 4 and 7 of [BD2]. Section 4 of this paper explains how
the construction of [BD2] can be modified in the supersingular case to yield
classes κ+(`) and κ−(`) satisfying properties analogous to the classes κ(`) of
[BD2]. The strategy of the proof of Theorem 1.1 carries over to establish one
of the divisibilities predicted by Conjecture 1.3, which is the main result of
this paper.

Theorem 1.4. Assume that ap = 0 and that N− is the square-free product of
an odd number of primes. Assume also that (E, K, p) satisfies the hypotheses
stated in 1.6 and 1.7 below. Then the characteristic power series C+ and C−
divide the p-adic L-functions L+

p (E, K) and L−p (E, K) respectively.

Remark 1.5. When N− is the square-free product of an even number of
primes, the p-adic L-functions L+

p (E, K) and L−p (E, K) vanish identically,
much as in the ordinary case, and the corresponding Selmer groups are not
Λ-co-torsion.

Throughout this article, the following assumptions are made on (E, K, p):

Assumptions 1.6. 1. The prime p is greater or equal to 5.

2. The Galois representation attached to Ep has image isomorphic to
GL2(Fp).

3. There is a modular parameterization X0(N0) −→ E whose degree is not
divisible by p.

4. For all primes ` such that `2 divides N , and p divides `+1, the module
Ep is an irreducible I`-module, where I` denotes the inertia group at `.
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These assumptions are made mainly to simplify the arguments and could
probably be relaxed at the cost of complicating the proofs. (See Remark 1
after the statement of Assumption 6 in the introduction of [BD2].) The next
set of assumptions, which does not appear in [BD2], is imposed on us by our
lack of understanding of the local condition to impose at p in defining the
appropriate Selmer group when p is a supersingular prime and p is inert in
K.

Assumptions 1.7. 1. The prime p is split in K, so that it can be written
p = pp̄, where p is a prime of K.

2. The prime p is totally ramified in the anticyclotomic Zp-extension at-
tached to K.

Assumption 2 is automatically satisfied if p does not divide the class
number of K. It would be desirable to be able to dispense with assumption
1 and treat the inert primes on the same footing as the split primes, as is
done in [BD2] when p is ordinary.

Acknowledgements: The authors are grateful to the anonymous referee for
a careful proofreading which led to corrections of some inaccuracies and to
significant improvements in the presentation. Both authors were supported
by grants from NSERC. The first author was supported by a James McGill
Chair, and the second by a Canada Research Chair, while this research was
conducted.

2 The plus/minus p-adic L-functions

2.1 Modular forms on quaternion algebras

Let N+ and N− be positive integers such that N+ is divisible only by primes
which are split in K and N− by primes which are inert in K. Assume that
N− is square-free, and has an odd number of prime factors. Let p be a prime
which does not divide N0 := N+N−.

Let B be the definite quaternion algebra of discriminant N−∞, and let
R be an Eichler Z[ 1

p
]-order of conductor N+ in B. Since p does not divide

N−, we may fix an isomorphism

ι : Bp := B ⊗ Qp −→ M2(Qp).
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Let R×1 denote the group of elements of reduced norm one in R, and define

Γ = ι(R×) ⊂ GL2(Qp).

Let T denote the Bruhat-Tits tree attached to PGL2(Qp), whose set
V(T ) of vertices is in bijection with the similarity classes of Zp-lattices in Q2

p,
two vertices being joined by an edge if the corresponding classes of lattices
admit representatives in which one contains the other with index p. The
group GL2(Qp) (and hence, in particular, Γ) acts naturally on T and the
quotient of T by the action of Γ is a finite graph.

Definition 2.1. A modular form of weight 2 on V(T ) for Γ is a Γ-invariant
Zp-valued function on V(T ).

Denote by S2(V/Γ) the space of all such forms; it is a finitely generated
Zp-module equipped with a natural action of the Hecke operators T` (with
` 6 |N) described as in [BD2], Section 1.1. Furthermore, it admits a natural
Z-structure S2(V/Γ)Z consisting of the Z-valued functions in S2(V/Γ), which
is preserved by the action of the Hecke operators.

Let fE ∈ S2(Γ0(N0))
new be the eigenform of weight two corresponding to

E. For each prime ` not dividing N we have

T`(fE) = a`(E)fE,

where T` denotes the Hecke operator acting on the space of classical cusp
forms on Γ0(N0).

Theorem 2.2 (Jacquet-Langlands). There is an eigenform f ∈ S2(V/Γ)Z

with the same Hecke eigenvalues as those attached to fE, i.e., such that

T`(f) = a`(E)f, for all ` 6 |N.

This form is unique up to multiplication by a non-zero scalar.

In addition, the function f satisfies the following property:

Proposition 2.3. For all v ∈ V(T ),

∑

v′↔v

f(v′) = ap(E)f(v),

where the sum is taken over the p + 1 vertices v ′ adjacent to v.

6



Proof. This follows directly from the description of the action of the Hecke
operator Tp on S2(V/Γ):

(Tpf)(v) =
∑

v′↔v

f(v′),

and the fact that f is an eigenvector for Tp with associated eigenvalue ap(E).

We normalize the form f so that it is not divisible by any integer in
S2(V/Γ)Z. This makes f well-defined up to a sign. As shall be seen in the
next section, the p-adic L-function attached to E and K is defined directly
in terms of f rather than in terms of the classical cusp form fE.

2.2 Rankin L-functions

The goal of this section is to define a p-adic L-function attached to a modular
form f ∈ S2(V/Γ) satisfying ap(f) = 0 and to a quadratic subfield K ⊂ B,
by combining the construction described in Section 1.2. of [BD2] with the
ideas of Pollack [Po1].

Suppose for simplicity that the discriminant of K is prime to N . Let OK

denote the ring of integers of K and let O := OK [1/p] denote its ring of
{p}-integers. For the sake of concreteness, we present the construction under
the further assumption that the class number of OK[1/p] is equal to 1. The
reader may, if she wishes, adapt the construction to general class number
by following the approach described in Section 1.2 of [BD2]. The advantage
of the class number one assumption is that it allows for a different, more
concrete and geometric—purely p-adic, instead of adelic—presentation of
Section 1.2 of [BD2], enabling the authors to avoid what would otherwise be
a somewhat tedious repetition of the constructions in that section.

Let n be fixed integer, and let f be an eigenform in S2(V/Γ) satisfying
ap(f) ≡ 0 (mod pn). Let

Ψ : K −→ B

be an embedding of algebras, satisfying

Ψ(K) ∩ R := Ψ(O).

Such an embedding exists if and only if all the primes dividing N+ are split
in K, while those dividing N− are inert in K. It is then unique, up to
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conjugation by the action of R×, thanks to the class number one assumption.
Let Kp := K ⊗Qp be the p-adic completion of K. The embedding Ψ induces
an action of the p-adic group Π∞ := K×p /Q×p on T by isometries by setting

g ? x := ιΨ(g)(x), (1)

for any g ∈ K×p and x any vertex or edge of T . We begin by defining
certain partial p-adic L-functions attached to Ψ, by studying this action. It
is somewhat clearer to separate the study into two cases:

Case 1: Suppose p is split in K. The choice of a prime p of K above p induces
a homomorphism

| |p : K×p /Q×p −→ Z

defined by
|α|p := ordp(α/ᾱ).

Note that replacing p by p̄ only changes the resulting homomorphism | |p
by a sign, so that the abuse of notation inherent in the notation | |p is not
serious. The kernel of | |p is the maximal compact subgroup of Π∞, denoted
U0. This group is identified with Z×p under the map which sends α to α/ᾱ.
Let

. . . ⊂ Un ⊂ . . . ⊂ U1 ⊂ U0 (2)

be the the natural decreasing filtration of the group U0 by subgroups in
which the index of Un is (p − 1)pn−1. In the action of Π∞ on T of (1), the
maximal compact subgroup U0 fixes a sequence (infinite in both directions) of
consecutive vertices, i.e., a geodesic J = JΨ of T . The quotient Π∞/U0

∼= Z

acts by translation on this geodesic.
The distance between a vertex v of T and the geodesic JΨ is defined to

be the shortest distance between v and a vertex of JΨ. If the distance from
v to JΨ is equal to n, then the stabilizer of v in Π∞ is exactly Un, and the
quotient Π∞/Un acts simply transitively on the set of vertices at distance n
from JΨ.

Now let us fix a sequence of consecutive vertices v0, v1, v2, ... such that vn

is at distance n from J = JΨ. (See Figure 1 for an illustration in the case
where p = 2.)

We define a sequence of functions

fK,n : Π∞/Un −→ Zp, by the rule fK,n(α) = f(α ? vn).
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Figure 1: Action of K×p on T when p is split.

Let up be a fundamental p-unit of K, i.e., a generator of the group of
elements in OK [1/p]× of norm one, modulo torsion. The quotient

G̃∞ = Π∞/uZ
p

is a compact p-adic group. By abuse of notation, the groups Uj occurring
in the filtration (2) and their natural images in G̃∞ will be denoted by the
same symbol.

Lemma 2.4. The functions fK,n are invariant under translation by up, and
hence descend to functions on G̃∞/Un.

Proof. Note that

fK,n(upα) = f((upα) ? vn) = f(ιΨ(up)(α ? vn)),

and that ιΨ(up) belongs to Γ. The result therefore follows from the invariance
of f under translation by elements of Γ.

Thanks to Lemma 2.4, the functions fK,n defined above can be viewed as
functions on the finite quotients G̃∞/Un.

Case 2: Suppose now that p is inert in K. This case is somewhat simpler,
because Π∞ = K×p /Q×p is already compact, and is equal, therefore, to its
maximal compact subgroup U0. This group is identified with the group of
elements in OK ⊗Zp of norm one under the map which sends α to α/ᾱ. Let

. . . ⊂ Un ⊂ . . . ⊂ U1 ⊂ U0 = Π∞ (3)
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Figure 2: Action of K×p on T when p is inert.

be the the natural decreasing filtration of the group U0 by subgroups of index
(p + 1)pn−1. The group G̃∞ fixes a distinguished vertex v0. If the distance
from a vertex v to v0 is equal to n, then the stabilizer of v in G̃∞ is exactly
Un, and the quotient G̃∞/Un acts simply transitively on the set of vertices
at distance n from v0.

Fix a sequence of consecutive vertices v0, v1, v2, . . . such that vn is at
distance n from v0. (See Figure 2).

We then define a sequence of functions

fK,n : G̃∞/Un −→ Zp, by the rule fK,n(α) = f(α ? vn).

In conclusion, in both the cases where p is split or inert in K, we have
associated to f and Ψ a sequence of functions

fK,n : G̃n −→ Zp, where G̃n := G̃∞/Un.

We associate to these functions a sequence of elements L̃n ∈ Zp[G̃n] by
setting:

L̃n :=
∑

σ∈G̃n

fK,n(σ)σ−1 ∈ Zp[G̃n].

Remark 2.5. The assumption that the class number of O is equal to 1 can
readily be disposed of following the treatment given in Section 1.2 of [BD2].
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The definitions given there would yield a sequence L̃n as above, belonging to
the finite group rings Zp[G̃n], where now G̃∞ denotes the group

G̃∞ := (K ⊗ Ẑ)×/

(
(Q ⊗ Ẑ)×

∏

6̀=p

(O ⊗ Z`)
×K×

)
,

which is identified with the Galois group over K of the union of all ring class
fields of K of p-power conductor, an extension which contains the Hilbert
class field of K.

Denote by
πn+1,n : Zp[G̃n+1] −→ Zp[G̃n]

the ring homomorphism induced by the natural projection G̃n+1 −→ G̃n.
Occasionally we will abuse notation and view L̃n as an element of Zp[G̃n+1]
by replacing it by an arbitrary lift to this ring under the homomorphism
πn+1,n. Of course this element is not well-defined, but the product

ξ̃nL̃n ∈ Zp[G̃n+1]

is well-defined, where

ξ̃n =
∑

s∈Un/Un+1

s.

Lemma 2.6. The elements L̃n satisfy the following compatibility relations
under the projections πn+1,n:

πn+1,n(L̃n+1) = ap(E)L̃n − ξn−1L̃n−1.

In particular, if p is supersingular for E so that ap(E) = 0,

πn+1,n(L̃n+1) = −ξ̃n−1L̃n−1, for all n ≥ 1.

Proof. If gn is any element of G̃n, let gn+1 denote an arbitrary lift of this
element to G̃n+1. A direct calculation shows that

πn+1,n(L̃n+1) =
∑

gn∈G̃n


 ∑

s∈Un/Un+1

fK,n+1(sgn+1)


 g−1

n . (4)
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Figure 3: The inner sum

On the other hand,
∑

s∈Un/Un+1

fK,n+1(sgn+1) =
∑

s∈Un/Un+1

f((sgn+1) ? vn+1). (5)

The sum on the right corresponds to summing the function f over the p
vertices which are adjacent to the vertex gn?vn and are different from gn?vn−1

(see figure 3).
It follows from proposition 2.3 satisfied by f that

∑

s∈Un/Un+1

f((sgn+1) ? vn+1) = ap(E)f(gn ? vn) − f(gn ? vn−1) (6)

= ap(E)fK,n(gn) − fK,n−1(gn). (7)

The lemma follows by combining (4), (5), and (7).

We may write
G̃∞ = ∆ × G∞,

where ∆ is the torsion subgroup of G̃∞ and G∞ is its maximal torsion-free
quotient, which is topologically isomorphic to Zp. The image of ∆ in G̃n is
identified with ∆, and the group G∞ can be written as

G∞ = lim
←

Gn, where Gn := G̃n+1/∆ ' Z/pnZ.

Let π : Zp[G̃n+1] −→ Zp[Gn] be the natural homomorphism induced by the
projection G̃n+1 −→ Gn. Then for each n ≥ 0, we set:

Ln := π(L̃n+1).
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By abuse of notation, denote again by

πn+1,n : Zp[Gn+1] −→ Zp[Gn]

the maps induced by the natural group homomorphisms. The elements Ln

inherit from the L̃n the compatibility properties of Lemma 2.6 under these
maps, i.e., when p is supersingular:

πn+1,n(Ln+1) = −ξnLn−1, for all n ≥ 1. (8)

Here ξn := π(ξ̃n+1) is the element of Zp[Gn] given by ξn =
∑

σ∈Hn

σ, where

Hn = ker(Gn −→ Gn−1).
Let us fix a topological generator

γ ∈ lim
←

Gn
∼= Zp.

This determines the identification sending γ to 1 + T

Λ = lim
←

Zp[Gn] ∼= Zp[[T ]].

In this way Zp[Gn] is identified with Zp[T ]/ωnZp[T ], where ωn = (T +
1)pn − 1, and the element ξn is identified with the pn-power cyclotomic poly-
nomial in T + 1. (In other words, the roots of ξn(T ) are of the form ζ − 1,
where ζ ranges over all primitive pn-th roots of unity.) Note that we have

ωn(T ) = T
n∏

j=1

ξj(T ).

Let us also write

ω̃+
n (T ) :=

n∏

j=2

j even

ξj(T ), ω̃−n (T ) :=

n∏

j=1

j odd

ξj(T ),

and set ω±n (T ) = T ω̃±n (T ).
The following technical lemma is straightforward to derive, but we note it
for better reference.

Lemma 2.7. Let n be a positive integer and ε denote the sign of (−1)n.
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1. Multiplication by ω̃−ε
n induces a natural isomorphism

Λ/(ωε
n) −→ ω̃−ε

n Λ/(ωn).

2. For all r ≥ 1, multiplication by ω̃−ε
n induces a natural isomorphism

Λ/(ωε
n, p

r) −→ ω̃−ε
n Λ/(ωn, p

r).

3. If X is a free Λr,n := Λ/(ωn, p
r)-module and x ∈ X is annihilated by

ωε
n, then there is a unique y ∈ X/ωε

nX such that x = ω̃−ε
n y.

The following proposition is key in the construction of the plus and minus
p-adic L-functions.

Proposition 2.8. Let ε denote the sign of (−1)n. Then

1. ωε
nLn = 0

2. There is a unique element Lε
n ∈ Λ/ωε

nΛ such that Ln = ω̃−ε
n Lε

n.

Proof. For the first assertion, suppose first that n > 2 is even. Then

ω+
n Ln = ω+

n−2ξnLn = ω+
n−2ξnπn,n−1(Ln).

But by equation (8),

ω+
n−2ξnπn,n−1(Ln) = −ω+

n−2ξnξn−2Ln−2.

This allows the statement to be reduced by induction to the case n = 2. For
this value of n it follows from the direct calculation

ω+
2 L2 = Tξ2(T )L2 = Tξ2π2,1(L2) = −Tξ1ξ2L0,

where the last equality follows from (8). But this expression is 0 because
Tξ1ξ2 = 0 in Zp[G2]. The proof when n is odd is identical. For the second
(divisibility) assertion, we invoke Lemma 2.7, noting that we have ωn =
ωε

nω̃
−ε
n . Therefore an element of Λ/ωnΛ annihilated by ωε

n is divisible by ω̃−ε
n

and the result of the division is unique in Λ/ωε
nΛ.

Let us now denote by
{ L+

n = (−1)
n
2 L+

n if n is even ;

L−n = (−1)
n+1

2 L−n if n is odd.
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Lemma 2.9. The sequence {L+
n }n even is compatible with respect to the nat-

ural projections
Λ/ω+

n −→ Λ/ω+
n−2,

and likewise for the sequence {L−n }n odd.

Proof. Let us, for all n ≥ 0, choose lifts of Ln and L±n to Λ and denote them
by the same symbols. Suppose first that n ≥ 2 is even. Then we have

Ln = −ξn−1Ln−2 (mod ωn−1).

This implies that there exists F ∈ Λ such that

ω̃−n L+
n = −ξn−1ω̃

−
n−2L

+
n−2 + ωn−1F.

Noting that ωn−1 = ω+
n−2ω̃

−
n , we can cancel by ω̃−n = ξn−1ω̃n−2 to obtain

L+
n = −L+

n−2 + ω+
n−2F,

which proves the statement when n is even. The case where n is odd is
similar.

Thanks to this lemma we may denote by

L+
f := lim

←
L+

n ∈ lim
←

Λ/ω+
n
∼= Λ,

and define L−f ∈ Λ similarly. Let L 7→ L∗ denote the involution in Λ sending
every group- like element in this completed group ring to its inverse. We set

Lp(f, K)± := L±f (L±f )∗,

following definition 1.6 of [BD2].

3 Selmer groups

Class field theory identifies G̃∞ with Gal(K̃∞/K), where K̃∞ is the union of
all the ring class fields of K of p-power conductor. For each integer m ≥ 0, the
quotient G̃m is identified with Gal(K̃m/K), where K̃m is the ring class field
of K of conductor pm. The subfield of K̃∞ fixed by ∆ is the anticyclotomic
Zp-extension K∞ of K, so that

G∞ = Gal(K∞/K).
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Under this identification, the group Gm corresponds to the Galois group
Gal(Km/K), where Km is defined to be the m-th layer of the Zp-tower K∞.

Following the notations of Section 2.1 of [BD2], denote by Vf the two-
dimensional Galois representation attached to the modular form f (with
coefficients in Qp) and let Tf denote a GQ stable Zp-sub-lattice. The finite
modules

Tf,n := Tf/p
nTf = (Vf/Tf)[p

n] (n ≥ 1)

fit naturally both into a projective and an inductive system, i.e., for all r ≥ n
there are natural maps

Tf,r � Tf,n, Tf,n ↪→ Tf,r,

which will be used to take both projective and injective limits of cohomology
groups associated to the Tf,n.

The main goal of this section is to define certain Selmer groups at-
tached to the Galois representations Tf,n, and to prove certain basic facts
about their structure. For each m ≥ 0 and n ≥ 1, the Selmer group
Sel(Km, Tf,n) is defined as a subgroup of the (continuous) Galois cohomology
group H1(Km, Tf,n) by imposing conditions on restrictions to local decom-
position groups.

More precisely, for every rational prime `, let

Km,` := Km ⊗Q Q` = ⊕λ|`Km,λ, H1(Km,`, Tf,n) := ⊕λ|`H
1(Km,λ, Tf,n).

There is a natural restriction map

res` : H1(Km, Tf,n) −→ H1(Km,`, Tf,n).

For each rational prime ` we define certain distinguished subgroups

H1
fin(Km,`, Tf,n) ⊂ H1(Km,`, Tf,n),

referred to as the finite part of these local cohomology groups as follows. Let
Af denote the abelian variety associated to the modular form f , as described
in greater detail in Section 4. Let Vp(Af ) := Tp(Af) ⊗ Qp be the p-adic
Galois representation associated to Af , and let H1

fin(Km,`, Vp(Af )) denote the
image of Af (Km,`) ⊗ Zp in H1(Km,`, Vp(Af)) under the Kummer map. By
construction, the two-dimensional Galois representation Vf is a quotient of
Vp(Af ). Write

πf : Vp(Af) −→ Vf , H1(Km,`, Vp(Af)) −→ H1(Km,`, Vf)
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for the associated GQ-equivariant projection, as well as for the maps induced
by it on the various local cohomology groups. We define

H1
fin(Km,`, Vf) := πf(H

1
fin(Km,`, Vp(Af))),

and H1
fin(Km,`, Tf) as the inverse image of H1

fin(Km,`, Vf) under the natural
map

H1(Km,`, Tf) −→ H1(Km,`, Vf)

induced by the inclusion Tf ↪→ Vf . Finally for every n ≥ 1 we let H1
fin(Km,`, Tf,n)

be the image of H1
fin(Km,`, Tf) in H1(Km,`, Tf,n) under the map induced by

the canonical projection Tf −→ Tf,n.

Definition 3.1. The Selmer group attached to Km and Tf,n is the group of
cohomology classes s ∈ H1(Km, Tf,n) satisfying

res`(s) belongs to H1
fin(Km,`, Tf,n), for all `.

It is denoted Sel(Km, Tf,n).

We also set

Sel(K∞, Tf,n) := lim
m

Sel(Km, Tf,n), Sel(K∞, Tf,∞) := lim
n

Sel(K∞, Tf,n),

(9)
where the direct limits are taken with respect to the natural maps induced
by restriction and the inclusions Tf,n ↪→ Tf,n′.

3.1 Local conditions at ` 6= p

We begin by discussing the groups H1
fin(Km,`, Tf,n) in the case where ` 6= p.

We define (following [BD2]) the singular part of the local cohomology
group H1(Km,`, Tf,n) to be the quotient

H1
sing(Km,`, Tf,n) :=

H1(Km,`, Tf,n)

H1
fin(Km,`, Tf,n)

.

If ` does not divide N , then

H1
sing(Km,`, Tf,n) = H1(Im,`, Tf,n)

GK` :=
∏

λ

H1(Im,λ, Tf,n)GK` ,
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where λ runs over the primes of Km over ` and Im,λ is the inertia subgroup
of GKm,λ

.
Restriction defines a so-called residue map

∂` : H1(Km,`, Tf,n) −→ H1
sing(Km,`, Tf,n)

such that the following sequence is exact

0 −→ H1
fin(Km,`, Tf,n) −→ H1(Km,`, Tf,n) −→ H1

sing(Km,`, Tf,n).

The following gives a local control theorem for the Selmer group.

Lemma 3.2. For all rational primes ` 6= p, the natural map induced by
restriction

H1
sing(K`, Tf,n) −→ H1

sing(Km,`, Tf,n)

is injective.

For example, when ` does not divide N , this follows from the fact that
Km/K is unramified at the primes above `, so that any class which becomes
unramified over Km already had to be unramified over K.

The cup product in local Galois cohomology combined with the Weil
pairing Tf,n × Tf,n −→ µpn leads to the non-degenerate local Tate pairing

H1(Km,`, Tf,n) × H1(Km,`, Tf,n) −→ H2(Km,`, µpn)
inv`−→ Z/pnZ,

in which the rightmost map is given by

inv`(κ) :=
∑

λ|`

invλ(κ),

where invλ is the standard identification of H2(Km,λ, µpn) with Z/pnZ given
by local class field theory.

It is a standard fact that the groups H1
fin(Km,`, Tf,n) are maximal isotropic

for the local Tate pairing, and that this pairing therefore induces a perfect
duality

H1
fin(Km,`, Tf,n) × H1

sing(Km,`, Tf,n) −→ Z/pnZ.

(Cf. Proposition 2.3 of [BD2].)
We now recall the definition of admissible primes given in Section 2.2 of

[BD2].

18



Definition 3.3. A rational prime ` is said to n-admissible relative to f if it
satisfies the following conditions:

1. ` does not divide pN ;

2. ` is inert in K/Q;

3. p does not divide `2 − 1;

4. pn divides ` + 1 − a` or ` + 1 + a`.

One of the motivations for singling out these primes is the following
freeness result for the local cohomology group H1(Km,`, Tf,n) when ` is n-
admissible.

Lemma 3.4. If ` is an n-admissible prime, then

1. The groups H1
fin(Km,`, Tf,n) and H1

sing(Km,`, Tf,n) are free of rank one
over Λn,m = Λ/(pn, ωm).

2. The group H1(Km,`, Tf,n) is free of rank two over Λn,m.

Proof. See Lemma 2.7 of [BD2].

An important caveat that needs to be noted is that the finite part at `
does not just depend on the underlying Galois representation Tf,n, but on
the Galois representation Vf from which it arises. For example, if Tf,n comes
from the p-division points of an abelian variety Af with good reduction at
`, then the representation Tf,n is of course unramified, and H1

fin(Km,`, Tf,n)
merely consists of the unramified cohomology classes. This is not the case
if Tf,n is unramified but arises from an abelian variety with multiplicative
reduction at `. If ` is a prime which divides N exactly, then Vf is is an
ordinary representation of GQ`

: it contains a unique one-dimensional Qp-
vector subspace which is stable under the action of the decomposition group
at `. Let T

(`)
f,n denote the corresponding rank one (Z/pnZ)-submodule of Tf,n.

Then H1
fin(Km,`, Tf,n) is the image in H1(Km,`, Tf,n) of H1(Km,`, T

(`)
f,n).
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3.2 Local conditions at p

In the supersingular setting, the classical definition of the Selmer group
Sel(K∞, Tf,∞) given in (9) suffers from the fact that the resulting object
is not a co-torsion module over the Iwasawa algebra Λ = Zp[[G∞]]. The idea
is to cut down the size of this Selmer group by imposing more stringent local
conditions at the primes above p.

We will follow closely Sections 4 and 6 of [IP] with some adjustments due
to the fact that here we work with torsion coefficients. In order to define
the appropriate subgroups of H1

fin(Km,p, Tf,n), we need to make the following
assumptions which are satisfied in our application:

Assumptions 3.5. 1. The prime p is split in K, so that it can be written
p = pp̄, where p is a prime of K.

2. The prime p is totally ramified in the anticyclotomic Zp-extension K∞
attached to K.

3. The Galois representation Tf,n is isomorphic (as a representation of
GQp

) to E[pn], where E is an elliptic curve over Qp with supersingular
reduction at p.

Note that this implies, in particular, that

ap(f) ≡ 0 (mod pn).

Recall that Km denotes the m-th layer in the anticyclotomic Zp-extension
K∞. Let Km,p := Km ⊗ Qp = Km,p ⊕ Km,p̄ denote the completion of Km at

p. Let Ê denote the formal group of EQp
. First we will recall the description

of
Ê(Km,p) := Ê(Km,p) ⊕ Ê(Km,p̄)

as a Zp[Gm] = Λm-module, for all m ≥ 0.
Since the discussion in this section is purely local, we will lighten nota-

tions by letting {Lm}m≥0 denote either of the following towers of local fields:
{Km,p}m≥0 or {Km,p̄}m≥0.

The following theorem is essential in defining the plus and minus Selmer
groups attached to Tf,n.

Theorem 3.6. For m ≥ 0 there exist points dm ∈ Ê(Lm) such that
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1. Trm
m−1(dm) = −dm−2 for all m ≥ 2

2. Tr1
0(d1) = ud0 with u ∈ Z×p

3. dm, dm−1 generate Ê(Lm) as a Zp[Gm]-module and d0 generates Ê(L0)
as a Zp-module.

This theorem is proved in [IP]. (See Theorem 4.5 of [IP].)
Using the sequence of points {dm}m≥0 we consider two subsequences

d+
m =

{
dm if m is even;
dm−1 if m is odd;

d−m =

{
dm−1 if m ≥ 2 is even;
dm if m is odd.

Now we define Ê±(Lm) := Λmd±m ⊂ Ê(Lm).

Let us remark that the Λm-submodule Ê±(Lm) thus defined is indepen-
dent of the choice of the sequence of points {dm}m≥0 as in Theorem 3.6. (See
Lemma 4.13 of [IP].)

Let us now fix integers m, n.

Lemma 3.7. The natural map

j : Ê±(Lm)/pnÊ±(Lm) −→ Ê(Lm)/pnÊ(Lm)

is injective for all m, n.

Proof. We consider the case where the sign is +, the other case being proved
in a similar way. Let P ∈ Ê+(Lm) be a point whose image under j is 0.

Then there exists Q ∈ Ê(Lm) such that P = pnQ. Since ω+
m is the exact

annihilator of Ê+(Lm) in Ê(Lm) (cf. Proposition 4.11 of [IP]) we have

pn(ω+
mQ) = 0,

and as there are no non-zero p-power torsion points in Ê(LM), we conclude
that

ω+
mQ = 0.

Hence Q itself belongs to Ê+(Lm), which proves the lemma.

Recall from Section 3.1 that local Tate duality induces perfect pairings

〈 , 〉m,n : H i(Lm, TE,n) × H2−i(Lm, TE,n) −→ Qp/Zp
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and
〈 , 〉m : H i(Lm, TpE) × H2−i(Lm, E[p∞]) −→ Qp/Zp.

Let us define, following Section 4.3 of [IP],

H1
fin±(Lm, Tf,n) := (Ê±(Lm) ⊗ Z/pnZ),

H1
fin(Lm, Tf,n) := (Ê(Lm) ⊗ Z/pnZ),

H1
±(Lm, Tf,n) := (Ê±(Lm) ⊗ Z/pnZ)⊥,

where the orthogonal complement in the last definition is taken relative to
the pairing 〈 , 〉m. We’ll also write

H1
±(Lm, TE,n) := (Ê±(Lm) ⊗ Z/pnZ)⊥,

with the orthogonal complement taken under the pairing 〈 , 〉m,n.

Lemma 3.8. H0(Lm, E[pn]) = H2(Lm, E[pn]) = 0.

Proof. This follows from Lemma 4.6 of [IP] and the non-degeneracy of the
local Tate pairing.

Lemma 3.9. H1
±(Lm, Tf,n) is a free Z/pnZ[Gm]-module of rank 1.

Proof. Taking the Lm-cohomology of the exact sequences

0 → TpE
pn

−→ TpE −→ TE,n → 0, 0 → TE,n −→ E[p∞]
pn

−→ E[p∞] → 0

and using Lemma 3.8 yields the natural isomorphisms of Z/pnZ[Gm]-modules

H1(Lm, TE,n) ∼= H1(Lm, TpE)/pnH1(Lm, TpE)

and
H1(Lm, TE,n) ∼= H1(Lm, E[p∞])[pn].

The pairing 〈 , 〉m,n is naturally induced from the pairing 〈 , 〉m under these

identifications. Therefore, since Ê±(Lm) ⊗ Qp/Zp is a p-divisible group we
immediately obtain

H1
±(Lm, TE,n) ∼= (Ê±(Lm) ⊗ Z/pnZ)⊥

∼= (Ê±(Lm) ⊗ Qp/Zp)
⊥/pn(Ê±(Lm) ⊗ Qp/Zp)

⊥.

This yields the isomorphism

H1
±(Lm, TE,n) ∼= H1

±(Lm, TpE)/pnH1
±(Lm, TpE).

Proposition 4.16 of [IP] implies that H1
±(Lm, TpE) is a free Zp[Gm]-module

of rank 1. Lemma 3.9 follows.
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The following result, which is a consequence of Theorem 10.1 of [GIP],
shows that the subgroup H1

fin(Km,p, Tf,n) depends only on the Galois repre-
sentation Tf,n, unlike its counterpart for ` 6= p in general, so that in particular
it behaves well under congruences. As [GIP] is not yet available we will sketch
here the main arguments of the proof. Let f1, f2 ∈ S2(V/Γ) and let us denote
by Ti := Tfi

and Ti,n := Tfi,n for i = 1, 2 and some n ≥ 1.

Theorem 3.10. Suppose that the GQp
-representations T1 and T2 are congru-

ent modulo pn, i.e. we have an isomorphism

ι : T1,n
∼= T2,n

as Z/pnZ[GQp
]-modules. We’ll further assume that Assumptions 3.5 hold for

T1,n (and consequently also for T2,n) and that L is one of the local fields Km,p

or Km,p̄ for some m ≥ 0. Then ι induces a natural isomorphism

gL : H1
fin(L, T1,n) −→ H1

fin(L, T2,n).

Proof. First we have natural isomorphisms and inclusions

H1
fin(L, Ti)/p

nH1
fin(L, Ti) ∼= H1

fin(L, Ti,n) ↪→ H1(L, Ti,n), for i = 1, 2

as a consequence of the assumptions and lemma 3.8. Therefore the conclusion
of the theorem makes sense.
Second, given the totally ramified extension L/Qp we perform (see [Fa] and
[Br]) the following construction. Let π be a uniformizer of L and let

E(u) = ue + a1u
e−1 + ... + ae ∈ Zp[u]

be the minimal polynomial of π over Zp. Let S denote the p-adic completion
of the Zp-algebra Zp[u, uie/i!]i∈N ⊂ Qp[u]. It has the following structure:

1. a continuous Zp-linear Frobenius σ : S −→ S such that σ(u) = up;

2. a natural continuous derivation d : S −→ ΩS/Zp
;

3. a decreasing filtration (FiliS)i∈N, where FiliS is the p-adic completion

of
∑

j≥i

(E(u)j/j!)S. (One checks that FiliS is an ideal of S.)
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Let us consider the Galois representations T1, T2 as above, denote by D1, D2

the strongly divisible lattices attached to T1, T2 respectively as in [FL] and
set Mi := Di ⊗Zp

S, for i = 1, 2. Let finally M be any one of the S-modules
M1, M2, M1/p

nM1, or M2/p
nM2. Then M is endowed with the following

structure:

1. a one step filtration M0 ⊂ M ;

2. σ-linear Frobenii ϕ : M → M and ϕ0 : M0 → M such that ϕ|M0
= pϕ0;

3. a connection (nilpotent modulo p) ∇ : M −→ M ⊗S ΩS/Zp
such that

∇ ◦ ϕ0 = (ϕ/p) ◦ ∇|M0
.

Given M as above we define the double complex of Zp-modules

M0
∇−→ M ⊗S ΩS/Zp

C•,•(M) : α ↓ ↓ β

M
∇−→ M ⊗S ΩS/Zp

,

where α = ϕ0 − 1 and β = −(1 − ϕ/p). Let us write

Hn(M) := Hn(C•,•(M)), for n ≥ 0.

Then under the conditions of the theorem one can prove (for the details
see [GIP]) that H2(M) = 0 and that there is a canonical and functorial
isomorphism

H1(Mi) ∼= H1
fin(L, Ti) for i = 1, 2.

From the exact sequences

0 −→ Ti
pn

−→ Ti −→ Ti,n −→ 0

for i = 1, 2 we deduce the isomorphisms:

H1(Mi/p
nMi) ∼= H1

fin(L, Ti)/p
nH1

fin(L, Ti) ∼= H1
fin(Ti,n).

The fact that T1,n and T2,n are isomorphic implies that the same is true for
M1/p

nM1 and M2/p
nM2. The result follows.
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We can use Theorem 3.10 to meaningfully define the restricted local con-
ditions at p for f . Namely, assume that the Assumptions 3.5 hold. In par-
ticular Tf is congruent to TpE modulo pn so we define H1,±

fin (Km,p, Tf,n) to be

the image of Ê±(Km,p)/p
nÊ±(Km,p) under the composition

Ê(Km,p)/p
nÊ(Km,p) ∼= H1

fin(Km,p, TE,n) ∼= H1
fin(Km,p, Tf,n)

where the first isomorphism is the Kummer map and the second is provided
by Theorem 3.10 via local duality. We also define the group H1

±(Km,p, Tf,n)

to be the orthogonal complement of H1,±
fin (Km,p, Tf,n) under local duality.

Clearly this group is the image of H1
±(Km,p, TE,n) under the isomorphism

H1(Km,p, TE,n) ∼= H1(Km,p, Tf,n) induced by ι.
We recall that Λn,m := Z/pnZ[Gm] = Λm/pn denotes the group ring of

Gm with mod pn coefficients. From the previous discussion, we have

Corollary 3.11. The local cohomology groups H1
±(Km,p, Tf,n) are free Λn,m-

modules of rank two.

Proof. Since p = pp̄, we have

H1
±(Km,p, Tf,n) = H1

±(Km,p, Tf,n) ⊕ H1
±(Km,p̄, Tf,n).

But each of the summands on the right is a free Λn,m-module, by Lemma
3.9. The result follows.

3.3 Generalised Selmer groups

We are now in a position to define more general Selmer groups that will play
a key role in our argument. We retain the notations and assumptions of
earlier sections; in particular Assumption 3.5 of Section 3.2.

Let
Γm = Gal(K∞/Km), so that Gm = Γ/Γm.

If s belongs to H1(Km, Tf,n) and ` is a rational prime we denote by s` :=
res`(s) the image of s in H1(Km,`, Tf,n) under restriction.

Definition 3.12. Let m and n be non-negative integers. The unrestricted
Selmer group attached to f , n, and Km, denoted Sel2(Km, Tf,n), is the group
of classes s ∈ H1(Km, Tf,n) satisfying

s` ∈ H1
fin(Km,`, Tf,n) for all ` 6= p.
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The subgroups

Sel0(Km, Tf,n) ⊂ Sel±(Km, Tf,n) ⊂ Sel(Km, Tf,n) ⊂ Sel2(Km, Tf,n)

are defined by the additional conditions:

1. s ∈ Sel0(Km, Tf,n) if sp = 0;

2. s ∈ Sel±(Km, Tf,n) if sp ∈ H1
fin±(Km,p, Tf,n);

3. s ∈ Sel(Km, Tf,n) if sp ∈ H1
fin(Km,p, Tf,n).

We also define

Sel](K∞, Tf,n) := lim
→,m

Sel](Km, Tf,n),

Sel](K∞, Tf,∞) := lim
→,n

Sel](K∞, Tf,n),

where the transition maps for the inductive limit are restrictions and the
inclusions Tf,n ↪→ Tf,n′, and ] is either 0, ±, or 2.

Let S be a square-free integer prime to N .

Definition 3.13. The generalized Selmer group SelS,](Km, Tf,n) is the set of
classes in Sel](Km, Tf,n) satisfying

s` = 0 for all `|S.

Definition 3.14. Let ] = 0, fin,±, or 2. The dual Selmer group attached
to f , n, Km, S and ] is defined to be the subgroup H1

S,](Km, Tf,n) of classes
κ ∈ H1(Km, Tf,n) satisfying

1. κ` ∈ H1
fin(Km,`, Tf,n) for all rational primes ` not dividing pS;

2. κp belongs to H1
] (Km,p, Tf,n) if ] ∈ {fin,±}, and κp = 0 if ] = 0;

3. κ` is arbitrary if `|S.

Note the sequence of inclusions

H1
S,0(Km, Tf,n) ⊂ H1

S,fin(Km, Tf,n) ⊂ H1
S,±(Km, Tf,n) ⊂ H1

S,2(Km, Tf,n).
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As in [BD2], denote by

Ĥ1(K∞, Tf,n) = lim
←,m

H1(Km, Tf,n),

where the transition maps are co-restrictions. Similar conventions are adop-
ted in defining Ĥ1(K∞,p, Tf,n).

Both SelS,](Km, Tf,n) and H1
S,](Km, Tf,n) are special cases of the general

notion of an abstract Selmer group: a subgroup of the global cohomology
group H1(Km, Tf,n) defined by local conditions which agree with the unram-
ified classes, for all but finitely many primes of Km. The following pairs are
dual Selmer groups in the sense that the local conditions defining them are
orthogonal to each other under the local Tate pairings:

SelS,0(Km, Tf,n) and H1
S,2(Km, Tf,n);

SelS,±(Km, Tf,n) and H1
S,±(Km, Tf,n);

SelS(Km, Tf,n) and H1
S,fin(Km, Tf,n);

SelS,2(Km, Tf,n) and H1
S,0(Km, Tf,n).

Finally we define

Ĥ1
S,](K∞, Tf,n) := lim

←,m
H1

S,](Km, Tf,n),

where the transition maps are co-restrictions.

3.4 Freeness results for Selmer groups

The Euler system of this section is constructed (just like the Euler system
of [BD2]) from a system of Heegner points on a collection of Shimura curves
indexed by certain admissible primes `. The main new difficulty arising in
the supersingular setting is that the classes manufactured directly from these
Heegner points are not compatible under norms (co-restriction). To obtain
a norm-compatible family of cohomology classes it is necessary to divide
the classes obtained “directly” from Heegner points by certain products of
p-power cyclotomic polynomials, a process which mirrors the division per-
formed in the construction of the p-adic L-function in Section 2 following
[Po1]. In order to show that this division can be performed, a number of re-
sults concerning the structure of generalized Selmer groups as modules over
the group rings Λn,m are required.
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Let ` be an n-admissible prime. Note (cf. the discussion preceding The-
orem 4.1 of [BD2]) the canonical direct sum decomposition:

Ĥ1(K`,∞, T ) = Ĥ1
fin(K`,∞, T ) ⊕ Ĥ1

sing(K`,∞, T ).

Denote (as in [BD2]) by v` and ∂` the projections onto the first and second
factors. We recall the following proposition from [BD2] that makes it possible
to produce many n-admissible primes.

Proposition 3.15. Let s be any nonzero element of H1(K, Tf,1). There exist
infinitely many n-admissible primes ` relative to f such that ∂`(s) = 0 and
v`(s) 6= 0.

Proof. This is Theorem 3.2 of [BD2], whose proof relies on a careful appli-
cation of the Chebotarev density theorem, and makes no use of the local
properties of Tf,1 at p, so that it applies equally well to the supersingular
case.

Adopting the terminology of Definition 2.22 of [BD1], we make the fol-
lowing definition.

Definition 3.16. A square-free product S of n-admissible primes is said to
be n-admissible if the natural map

Sel2(K, Tf,n) −→ ⊕`|SH1
fin(K`, Tf,n)

is injective.

Note that, if S is n-admissible, then

SelS,2(K, Tf,n) = 0. (10)

Recall that Λn,m = Z/pnZ[Gm] = Λ/(ωm, pn)Λ is the group ring at level
m with Z/pnZ coefficients. Let I be the augmentation ideal of Λn,m and
denote by m = 〈p, I〉 the maximal ideal of this local ring. We begin by
noting the following “control theorems” for the Selmer groups that have
been introduced:

Lemma 3.17. If S is an n-admissible set, then the natural maps induced by
restriction and the inclusion Tf,1 −→ Tf,n

SelS,2(K, Tf,1) −→ SelS,2(Km, Tf,n)[m],

H1
S,0(K, Tf,1) −→ H1

S,0(Km, Tf,n)[m]

are isomorphisms.
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Proof. Consider the following commutative diagram with exact rows:

0 → SelS,2(K, Tf,n) → H1(K, Tf,n) → ΩS(K)
↓ ↓ ↓

0 → SelS,2(Km, Tf,n)Gm → H1(Km, Tf,n)
Gm → ΩS(Km),

(11)

where

ΩS(K) :=
(
⊕`|SH1(K`, Tf,n)

)
⊕
(
⊕`-pSH1

sing(K`, Tf,n)
)
,

ΩS(Km) :=
(
⊕`|SH1(Km,`, Tf,n)

)
⊕
(
⊕`-pSH1

sing(Km,`, Tf,n)
)
.

The inflation-restriction sequence for Tf,n implies that the middle vertical
map in (11) is an isomorphism, because T Gm

f,n = 0. The rightmost ver-
tical map is injective, by Lemma 3.2 and the fact that primes in S split
completely in Km/K. It follows from the five-lemma that SelS,2(K, Tf,n) =
SelS,2(Km, Tf,n)Gm, and therefore

SelS,2(Km, Tf,n)[m] = SelS,2(Km, Tf,n)[I][p] =

= SelS,2(K, Tf,n)[p] = SelS,2(K, Tf,1),

where the last equality follows from the fact that H0(K, Tf,n−1) = 0. The
proof of the second assertion, in which 2 is replaced by 0, uses in addition
the injectivity of the map H1(Kp, Tf,n) −→ H1(Km,p, Tf,n)

Gm in the analysis
of the diagram analogue to diagram 11 (which follows from the fact that

T
GKm,p

f,n = 0), but is otherwise the same.

Lemma 3.18. If S is an n-admissible set, then SelS,](Km, Tf,n) = 0, for all
m and ] = 0,±, fin, or 2.

Proof. It suffices to show that the finite Λn,m-module M := SelS,2(Km, Tf,n)
is trivial, since this Selmer group contains all the others. By Lemma 3.17
and (10),

M [m] = SelS,2(K, Tf,1) = 0,

and hence M = 0.

The following proposition gives explicit formulae for the cardinality of the
global cohomology groups H1

S,](Km, Tf,n).
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Proposition 3.19. Let t := #S − 2, and let δm := [Km : K] = pm. For all
n-admissible sets S, and for all m ≥ 0,

#H1
S,0(Km, Tf,n) = pntδm ,

#H1
S,2(Km, Tf,n) = #H1

S,0(Km, Tf,n)#H1(Km,p, Tf,n).

Proof. A general theorem arising from the Poitou-Tate exact sequence in
Galois cohomology (cf. for example Theorem 2.19 of [DDT]) relates the car-
dinalities of a Selmer group and its dual, expressing the ratio of these cardi-
nalities as a product of simple local terms. In the present context, Theorem
2.19 of [DDT] gives:

#H1
S,0(Km, Tf,n)

#SelS,2(Km, Tf,n)
=


∏

`|S∞

#H1(Km,`, Tf,n)

#H0(Km,`, Tf,n)


 ,

#H1
S,2(Km, Tf,n)

#SelS,0(Km, Tf,n)
=


∏

`|S∞

#H1(Km,`, Tf,n)

#H0(Km,`, Tf,n)


× #H1(Km,p, Tf,n).

By Lemma 3.18, the denominators occurring in the left-hand sides of these
formulae are equal to 1. Furthermore, we already know from Lemma 3.4 that

#H1(Km,`, Tf,n)

#H0(Km,`, Tf,n)
=

{
pnδm if v|S;
p−2nδm if v = ∞.

The Proposition follows.

The usefulness of the concept of n-admissible set lies in the following
two propositions concerning the groups H1

S,0(Km, Tf,n) and H1
S,±(Km, Tf,n).

These propositions can be viewed as global analogues of Lemma 3.4 and
Corollary 3.11.

Proposition 3.20. If S is an n-admissible set, then the group H1
S,0(Km, Tf,n)

is free of rank t := #S − 2 over Λn,m.

Proof. Consider the module M := (H1
S,0(Km, Tf,n))∨, where the superscript

∨ denotes the Pontryagin dual. We have

M/mM = (H1
S,0(Km, Tf,n)[m])∨ = (H1

S,0(K, Tf,1))
∨ ' (Z/pZ)t,
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where the second equality follows from Lemma 3.17 and the third isomor-
phism from Proposition 3.19 with m = 0 and n = 1. Let ξ1, . . . , ξt be a set
of elements of M which map to a basis for M/mM . By Nakayama’s lemma,
these elements generate M as a Λn,m-module, and yield a surjective map
Λt

n,m → M of Λn,m-modules. Proposition 3.19 implies that #M = #(Λt
n,m),

and hence this map is an isomorphism. It follows that the module M is free
of rank t, and therefore

H1
S,0(Km, Tf,n) ' (Λ∨n,m)t.

The local ring Λm := Zp[Gm] = Zp[t]/(tp
m−1) is a local complete intersection

in the sense of Definition 5.1 of [DDT]. Hence by Proposition 5.9 of [DDT],
it is Gorenstein in the sense of Definition 5.8 in [DDT], i.e.,

HomZp
(Λm, Zp) ' Λm.

It follows that
HomZ/pnZ(Λn,m, Z/pnZ) ' Λn,m.

This proves Proposition 3.20.

Proposition 3.21. If S is an n-admissible set, then the group H1
S,±(Km, Tf,n)

is free of rank #S over Λn,m.

Proof. The natural sequence

0 −→ H1
S,0(Km, Tf,n) −→ H1

S,2(Km, Tf,n) −→ H1(Km,p, Tf,n) −→ 0

is exact. This assertion follows from the definition of the objects involved,
for all but the penultimate map, whose surjectivity is a consequence of the
second assertion in Proposition 3.19. It follows that the sequence

0 −→ H1
S,0(Km, Tf,n) −→ H1

S,±(Km, Tf,n) −→ H1
±(Km,p, Tf,n) −→ 0

is exact. Proposition 3.21 now follows from Corollary 3.11 and Proposition
3.20.

4 Construction of the Euler system

We maintain the notations of the previous sections, and fix an n-admissible
prime ` for f . Let X := XN+,N−` be the Shimura curve introduced in Section
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5.1 of [BD2], and let Pm ∈ X(K̃m) be the Heegner point of conductor pm

defined in Section 6 of [BD2], where the integers which are denoted M+ and
M− in that section are set to be equal to N+ and N−` respectively. Note
that, unlike the setting that is considered in Section 6 of [BD2], the integer
M+ is now assumed to be prime to p. The behaviour of Heegner points under
norms (cf. for example Proposition 3.10 of [Da]) implies that the Heegner
points Pm satisfy the following compatibilities (expressed as equalities of
divisors on X) for all m ≥ 1:

Trm+1
m (Pm+1) = TpPm − Pm−1,

where Trm+1
m denotes the Galois trace from the m+1-st layer to the m-th layer

(i.e., from K̃m+2 to K̃m+1, or from Km+1 to Km), and Tp is the p-th Hecke
operator. Let g be an eigenform of weight 2 on X such that Tg,n

∼= Tf,n = T
as Galois modules. Such an eigenform exists by condition 4 in the definition
of n-admissible primes: cf. Proposition 3.12 of [BD2].

In order to replace the points Pm on X by degree zero divisors, we choose
a fixed auxiliary prime q which does not divide N, `, or p, and let

P̃m := (Tq − (q + 1))Pm ∈ Div0(X).

Denote by the same symbol the image of this divisor in the Jacobian Jac(X)
of X.

Let κ̃(`)m denote the image of P̃m in H1(K̃m, Jac(X)[pn]) under the global
Kummer map. Write κ(`)m for the image of κ̃(`)m under the composition

H1(K̃m, Jac(X)[pn]) −→ H1(K̃m, Tg,n) −→ H1(Km, Tg,n) ∼= H1(Km, T ).

The first map is induced by “projection onto the g-isotypical component”
Jac(X)[pn] −→ Tg,n, the second is co-restriction and the third is induced by
the isomorphism Tg,n

∼= T .

Proposition 4.1. The element κ(`)m belongs to H1
`,fin(Km, T ).

Proof. Everything follows from Section 7 and the beginning of Section 8 of
[BD2] except the behaviour of the class under localization at primes above p.
Let p be a prime of Km above p, then by the properties of the Kummer map
and of co-restriction we have κ̃(`)m,p ∈ H1

fin(Km,p, Tg,n). Now apply Theorem
3.10 and deduce that κ̃(`)m,p ∈ H1

fin(Km,p, T ). Hence κ(`)m,p belongs to
H1

fin(Km,p, T ).
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The classes κ(`)m satisfy the compatibility relations under the trace maps

Trm+1
m (κ(`)m+1) = −κ(`)m−1.

Therefore we have

Lemma 4.2. Let ε denote the sign of (−1)m. Then ωε
mκ(`)m = 0.

Proof. Let ξk denote the pk-th cyclotomic polynomial in T + 1 as in Section
2, and suppose without loss of generality that m is even. Then

ω+
mκ(`)m = ω+

m−2ξmκ(`)m = ω+
m−2Trm

m−1(κ(`)m) = −ω+
m−2κ(`)m−2.

The result now follows by induction, using the fact that Tκ(`)0 = 0. The
proof when m is odd is identical.

Let S be a square-free product of primes which is n-admissible in the sense
of Definition 3.16. We can view the class κ(`) as an element of the larger
Λn,m-module H1

S,±(Km, Tf,n). It is useful to do so because of the following
proposition:

Proposition 4.3. There exists a unique class

η(`)ε
m ∈ H1

S,ε(Km, T )/ωε
mH1

S,ε(Km, T )

such that
ω̃−ε

m η(`)ε
m = κ(`)m.

Proof. This follows from the fact that H1
S,±(Km, T ) is a free Λn,m-module by

Proposition 3.21, using Lemma 4.2 and Lemma 2.7.

Now define the global cohomology classes indexed by the n-admissible primes
`:

κ(`)+
m := (−1)

m
2 η(`)m ∈ H1

S,+(Km, T )/ω+
m if m is even; (12)

κ(`)−m := (−1)
m+1

2 η(`)m ∈ H1
S,−(Km, T )/ω−m if m is odd.

An argument identical to the one used in the proof of Lemma 2.9 shows
that the sequences {κ(`)+

m}m even and {κ(`)−m}m odd are compatible under co-
restriction, so that we can write

κ(`)± := lim
←

κ(`)±m. (13)
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This element belongs to

lim
←

H1
S,±(Km, T )/ω±m

∼= lim
←

(H1
S,±(Km, T ) ⊗ Λ/(ω±m, pn)) = Ĥ1

S,±(K∞, T ).

Let ` be an n-admissible prime dividing S. Note that both Ĥ1
fin(K∞,`, T ) and

Ĥ1
sing(K∞,`, T ) are isomorphic to Λ/pn by Lemma 3.4.

As in [BD2], the classes κ(`)± satisfy two key reciprocity laws relating
them to the p-adic L-functions L±f defined in Section 2. The first reciprocity
law concerns the properties of the class κ(`)± at the prime `.

Proposition 4.4. The class κ(`)± satisfies:

v`(κ(`)±) = 0, ∂`(κ(`)±) ≡ L±f (mod pn),

where the equality holds in Λ/pn, up to multiplication by elements of Z×p and
G∞.

Proof. Let us fix m ≥ 0 and consider the following commutative diagram

H1
S,±(Km, T )/ω±m

∂`−→ H1(Km,`, T )/ω±m = Λ/(ω±m, pn)
↑ ↑ ↑

H1
S,±(Km, T )

∂`−→ H1(Km,`, T ) = Λ/(ωm, pn)
∪ || ||

H1
S,fin(Km, T )

∂`−→ H1(Km,`, T ) = Λ/(ωm, pn)

The proof of the first explicit reciprocity law given in Section 8 of [BD2]
adapts without change to the classes κ(`)m considered here and yields

∂`(κ(`)m) = Lm

up to units in Λn,m. Moreover as

κ(`)m = (−1)[m+1

2
]ω̃∓mκ(`)±m,

we have
(−1)[m+1

2
]ω̃∓m∂`(κ(`)±m) = Lm = (−1)[m+1

2
]ω̃∓mL±m

in ω̃∓mΛ/(ωm, pn). Using the isomorphism of Lemma 2.7 we conclude that

∂`(κ(`)±m) = L±m
in Λ/(ω±m, pn) up to units in this ring.
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Let `1 and `2 be distinct n-admissible primes relative to f , such that pn

divides `1 + 1 − ε1a`1(f) and `2 + 1 − ε2a`2(f), for ε1 and ε2 equal to ±1. It
is further assumed that the pair (`1, `2) is rigid in the sense of Section 3.3 of
[BD2].

The second reciprocity law describes the localization of κ(`1) at `2. Note
that this localization belongs to the finite part of the local cohomology group
at `2.

Let B′ be the definite quaternion algebra of discriminant Disc(B)`1`2, let
R′ be an Eichler Z[1/p]-order of level N+ in B′ and let Γ′ := (R′)×/Z[1/p]×.
The theory of congruences between modular forms yields the following propo-
sition:

Proposition 4.5. There exists an eigenform g ∈ S2(T /Γ′, Z/pnZ) such that
the following equalities modulo pn hold:

Tqg ≡ aq(f)g (q 6 |N`1`2), Uqg ≡ aq(f)g (q|N), (14)

U`1g ≡ ε1g, U`2g ≡ ε2g.

Furthermore (because of the assumption that the pair (`1, `2) is rigid) the
form g can be lifted to an eigenform with coefficients in Zp satisfying (14)
above. This form is p-isolated.

Proof. The existence of the mod pn eigenform g, which relies on the concepts
and notations introduced in Sections 5 and 9 of [BD2], is proved in Theorem
9.3 of [BD2].

For any class κ ∈ Ĥ1
S,±(K∞, T ), and any n-admissible prime ` which

does not divide S, write v`(κ) for the natural image of κ in Ĥ1
fin(K∞,`, Tf,n)

under the restriction map at `. Note again that the target module for v` is
isomorphic to Λ/pnΛ by Lemma 2.7 of [BD2]. With these notations we are
ready to state the second explicit reciprocity law.

Proposition 4.6. The equality

v`2(κ(`1)
±) = L±g

holds in Ĥ1
fin(K∞,`2, Tf,n) ' Λ/pnΛ, up to multiplication by elements of Z×p

and G∞.
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Proof. This is essentially Theorem 4.2 of [BD2], whose proof, explained in
Section 9 of that article, adapts to the setting where ap = 0, the class κ(`1)
is replaced by κ(`1)

± and Lg is replaced by L±g .

We record the following consequence of Propositions 4.4 and 4.6:

Corollary 4.7. For all pairs of n-admissible primes (`1, `2) attached to f ,
the equality

v`1(κ(`2)
±) = v`2(κ(`1)

±)

holds in Λ/pnΛ, up to multiplication by elements of Z×p and G∞.

5 Proof of the main result

Following Section 2.1 of [BD2], we make the following assumptions on the
mod p Galois representation attached to f which correspond to some of the
hypotheses made in Assumption 1.6 on E.

Assumption 5.1. The Galois representation attached to Tf,1 has image iso-
morphic to GL2(Fp). Furthermore, for all ` dividing N exactly, the Ga-
lois representation Tf,1 has a unique Gal(Q̄`/Q`)-stable one-dimensional sub-
space.

Thanks to the reciprocity laws given in proposition 4.4 and 4.6 of the
previous section, the classes κ(`)± ∈ Ĥ1

{`,±}(K∞, Tf,n) indexed by the n-
admissible primes attached to f enjoy exactly the same properties as the
classes κ(`) used in [BD2] in the study of the main conjecture in the ordinary
case. They will be used to show:

Theorem 5.2. Let f be an eigenform in S2(V/Γ) with coefficients in Zp

which is p-isolated and satisfies assumption 5.1 above. Then the characteris-
tic power series of (Sel±(K∞, Tf,∞))∨ divides the p-adic L-function L±p (f, K).

The proof (as well as the statement!) of this theorem is identical to that
of Theorem 4.4. of [BD2], after replacing Sel(K∞, Tf,∞) by Sel±(K∞, Tf,∞)
and κ(`) by κ(`)±. Before launching into this proof, let us first make the
following general comments.

1. Unlike the approach that is followed in [Ka], where p-Selmer groups are
bounded via global cohomology classes whose local behaviour at the
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prime p is related to p-adic L-functions, our approach adapts to the
supersingular setting the ideas of [BD2], where the p-Selmer group is
controlled using global classes whose local behaviour at primes ` 6= p is
related to p-adic L-series. The main new difficulty in the supersingular
case lies in the construction of the classes κ(`)± satisfying the same
relation to the Pollack-style p-adic L-functions L±f and L±g as the classes
κ(`) did with Lf and Lg. With these classes in hand, the argument of
[BD2] never involves the local behaviour of the Galois representations
Tf,n and Tf,n at p, but only at n-admissible primes ` 6= p which split
completely in K∞/K. This is why the Euler system argument in the
proof of Theorem 4.4 of [BD2] extends to the supersingular setting
without raising new difficulties or requiring substantial modifications.

2. Our approach to Theorem 5.2 is to prove it by induction, reducing
the statement about f to an identical one about g for an appropriately
chosen modular form g which is congruent to f modulo pn. It is for this
reason that a more general main conjecture (applying to all modular
eigenforms on definite quaternion algebras with Zp-coefficients, and
not just those associated to elliptic curves) is needed even if one is only
interested in establishing Theorem 1.4 of the introduction.

Proof of Theorem 5.2: For the convenience of the reader, we recall here the
main lines of the argument, with an emphasis on the aspects that are specific
to the supersingular setting. Note however that we follow the strategy of the
proof of Theorem 4.4 of [BD2] very closely, and that the modifications that
need to be made to this proof are comparatively minor.

Proposition 3.1 of [BD2], implies that it is enough to show that

ϕ(L±f )2 belongs to FittO((Sel±(K∞, Tf,n))∨ ⊗ϕ O), (15)

for all homomorphisms ϕ of Λ into a discrete valuation ring O. Fix O, ϕ,
and n, write π for a uniformiser of O, and let e := ordπ(p) be absolute
ramification degree of O. Write

tf := ordπ(ϕ(L±f )).

Assume without loss of generality that

1. tf < ∞. (Otherwise, ϕ(L±f ) = 0 and (16) is trivially verified.)

2. The group (Sel±(K∞, Tf,n))∨ ⊗ O is non-trivial. (Otherwise, its Fitting
ideal is equal to O and (16) is trivially verified.)
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We propose to show that

ϕ(L±f )2 belongs to FittO((Sel±(K∞, Tf,n))∨ ⊗ϕ O) (16)

by induction on tf .

We begin by using the classes κ(`)± to construct global cohomology classes
that will be used to bound Sel±(K∞, Tf,n). Let ` be any (n + tf)-admissible
prime, and let S be a square-free product of (n + tf)-admissible primes with
`|S. Let

κ(`)± ∈ Ĥ1
{`},±(K∞, Tf,n+tf ) ⊂ Ĥ1

S,±(K∞, Tf,n+tf )

be the cohomology class attached to ` in (13), and denote by κϕ(`)± the
natural image of this class in

M := Ĥ1
S(K∞, Tf,n+tf ) ⊗ϕ O.

Note that this module is free over O/p(n+tf ), by Proposition 3.21. By Propo-
sition 4.4,

ordπ(κϕ(`)±) ≤ ordπ(∂`κϕ(`)±) = ordπ(ϕ(L±f )) = tf ,

so that t := ordπ(κϕ(`)±) ≤ tf . Choose an element κ̃ϕ(`)± ∈ M satisfying

πtκ̃ϕ(`)± = κϕ(`)±. (17)

Note that κ̃ϕ(`)± is well defined modulo the πt-torsion subgroup of M, which
is contained in the kernel of the natural homomorphism

Ĥ1
S(K∞, Tf,n+tf ) ⊗ϕ O −→ Ĥ1

S(K∞, Tf,n) ⊗ϕ O.

Let κ′ϕ(`)± denote the image of κ̃ϕ(`)± in Ĥ1
S(K∞, Tf,n) ⊗O. Note that this

class does not depend on the choice of κ̃ϕ(`)± satisfying (17). The key prop-
erties of the class κ′ϕ(`)± are summarized in the following two Lemmas. 5.3
and 5.4 below.

Lemma 5.3. The class κ′ϕ(`)± belongs to Ĥ1
`,±(K∞, Tf,n) ⊗ϕ O, and

1. ordπ(κ′ϕ(`)±) = 0.

2. v`(κ
′
ϕ(`)±) = 0, and ordπ(∂`κ

′
ϕ(`)±) = tf − t.

38



Proof. The fact that κ′ϕ(`)± belongs to Ĥ1
`,±(K∞, Tf,n)⊗ϕ O follows from the

fact that κ(`)± belongs to Ĥ1
`,±(K∞, Tf,n+tf ). Property 1 follows from the

construction of κ′ϕ(`)±, while property 2 is a direct consequence of Proposi-
tion 4.4.

Lemma 5.4. The residue ∂`(κ
′
ϕ(`)±) belongs to the kernel of the natural

homomorphism

η` : Ĥ1
sing(K∞,`, Tf,n) ⊗ϕ O −→ (Sel±(K∞, Tf,n))∨ ⊗ϕ O.

Proof. The proof is the same as that of Lemma 4.6 of [BD2].

We now turn to the proof of (16) when tf = 0—the basis for the induction
argument.

Proposition 5.5. If tf = 0, (i.e., L±f is a unit) then (Sel±(K∞, Tf,n))
∨ is

trivial.

Proof. The proof is the same as that of Proposition 4.7 of [BD2], which makes
no use of the hypothesis that p is ordinary.

Turning now to the general case of equation (16), let Π be the set of
rational primes ` satisfying the following conditions:

1. ` is (n + tf)-admissible.

2. The quantity t = ordπ(κϕ(`)±) is minimal, among all primes satisfying
condition 1.

Proposition 3.15 implies that Π is non-empty. Let t be the common value of
ordπ(κϕ(`)±) for all ` ∈ Π. Note that t ≤ tf by definition.

Lemma 5.6. The integer t is strictly less than tf .

Proof. See Proposition 4.8 of [BD2].

Before stating the next lemma, we need to recall the notion of rigid pairs
of n-admissible primes that is defined in Section 3.3 of [BD2]. This notion
relies on the Selmer group SelS(Q, Wf) attached to the 3-dimensional mod p
representation Wf := ad0(Tf,1) consisting of trace 0 endomorphisms of Tf,1,
and to a square-free product S of 1-admissible primes. The definition of this
Selmer group is the same as in Definition 3.5 of [BD2], except that, since Wf
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is not ordinary at p, but is crystalline, the group H1
fin(Qp, Wf) is defined to

be the set of cohomology classes that are crystalline at p. With this change,
it is still true that f is p-isolated precisely when Sel1(Q, Wf) = 0. (This is
just Proposition 3.6. of [BD2] whose proof applies just as well to the case
where f is non-ordinary at p.) Following Definition 3.9 of [BD2], we say that
a pair (`1, `2) of n-admissible primes is a rigid pair if Sel`1`2(Q, Wf) is trivial.

Lemma 5.7. There exist primes `1, `2 ∈ Π such that (`1, `2) is a rigid pair.

Proof. See Lemma 4.9 of [BD2] whose proof adapts without change to the
supersingular setting.

Let (`1, `2) be a rigid pair of (n + tf )-admissible primes in Π, whose
existence is guaranteed by Lemma 5.7. By Proposition 4.6, note that t =
tg = ordπ(ϕ(Lg)), where g is the p-isolated eigenform in S2(T /Γ′) attached
to f and (`1, `2) through proposition 4.5.

Recall the Selmer group

Sel`1`2,±(K∞, Tf,n) ⊂ Sel±(K∞, Tf,n)

consisting of classes which are locally trivial at the primes dividing `1 and
`2. By definition, there is a natural exact sequence of Λ-modules

0 −→ Sf
`1`2

−→ (Sel±(K∞, Tf,n))∨ −→ (Sel`1`2,±(K∞, Tf,n))∨ −→ 0, (18)

where Sf
`1`2

denotes the kernel of the natural surjection of duals of Selmer
groups. Note the natural surjection given by local Tate duality:

ηf : (Ĥ1
sing(K∞,`1, Tf,n) ⊕ Ĥ1

sing(K∞,`2, Tf,n)) −→ Sf
`1`2

induced from the inclusion

(Sf
`1`2

)∨ ⊂ H1
fin(K∞,`1, Tf,n) ⊕ H1

fin(K∞,`2, Tf,n).

The domain of ηf is isomorphic to (Λ/pnΛ)2, by Lemma 2.7 of [BD2]. Let
ηϕ

f denote the map induced from ηf after tensoring by O via ϕ. The domain
of ηϕ

f is isomorphic to (O/pnO)2. By Lemma 5.4, the kernel of ηϕ
f contains

the vectors (∂`1κ
′
ϕ(`1)

±, 0) and (0, ∂`2κ
′
ϕ(`2)

±) in

(
Ĥ1

sing(K∞,`1, Tf,n) ⊕ Ĥ1
sing(K∞,`2, Tf,n)

)
⊗ϕ O ' (O/pnO)2.

40



By part 3 of Lemma 5.3,

tf − tg = ordπ(∂`1κ
′
ϕ(`1)

±) = ordπ(∂`2κ
′
ϕ(`2)

±).

Hence
π2(tf−tg) belongs to the Fitting ideal of Sf

`1`2
⊗ϕ O. (19)

One may repeat the same argument with the modular form g. Thus we have
an exact sequence similar to (18) but involving g instead of f :

0 −→ Sg
`1`2

−→ (Sel±(K∞, Tg,n))∨ −→ (Sel`1`2,±(K∞, Tg,n)))∨ −→ 0, (20)

as well as a surjection given by local Tate duality:

ηg : (Ĥ1
fin(K∞,`1, Tf,n) ⊕ Ĥ1

fin(K∞,`2, Tf,n)) −→ Sg
`1`2

.

By global reciprocity, the kernel of the map ηϕ
g obtained from ηg after ten-

soring by O via ϕ contains the elements

(v`1κ
′
ϕ(`1)

±, v`2κ
′
ϕ(`1)

±) = (0, v`2κ
′
ϕ(`1)

±)

as well as (v`1κ
′
ϕ(`2)

±, 0). But

ordπ(v`2κ
′
ϕ(`1)

±) = ordπ(v`1κ
′
ϕ(`2)

±) = tg − t = 0.

It follows that the module Sg
`1`2

⊗ϕ O is trivial, and the natural surjection

(Sel±(K∞, Tg,n))
∨ ⊗ϕ O −→ (Sel`1`2,±(K∞, Tg,n))

∨ ⊗ϕ O is an isomorphism.
(21)

Recall that, by Lemma 5.6,

tg < tf ,

and that the eigenform g satisfies all the hypotheses of Theorem 5.2. (The
fact that g is p-isolated follows from the fact that (`1, `2) is a rigid pair of
admissible primes.) By the induction hypothesis,

ϕ(Lg)
2 belongs to the Fitting ideal of (Sel±(K∞, Tg,n))∨ ⊗ϕ O. (22)

The theory of Fitting ideals implies that

π2tf = π2(tf−tg)π2tg

∈ FittO(Sf
`1`2

⊗O) FittO((Sel±(K∞, Tg,n))
∨ ⊗O), by (19) and (22)

= FittO(Sf
`1`2

⊗O) FittO((Sel`1`2,±(K∞, Tg,n))
∨ ⊗O), by (21).
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But note that Sel`1`2,±(K∞, Tg,n) = Sel`1`2,±(K∞, Tf,n) by definition, in light
of the fact that the Galois modules Tf,n and Tg,n are isomorphic, and that
the local conditions used to define the associated Selmer groups are the same
outside of `1 and `2. It follows that

π2tf ∈ FittO(Sf
`1`2

⊗O) FittO((Sel`1`2,±(K∞, Tf,n))
∨ ⊗O)

⊂ FittO((Sel±(K∞, Tf,n))∨ ⊗O), by (18).

Hence ϕ(L±f )2 belongs to the Fitting ideal of (Sel±(K∞, Tf,n))∨ ⊗ϕ O, and
(16) is therefore proved. Theorem 5.2 follows.

Note finally that Theorem 1.4 follows from Theorem 5.2 specialized to
the case where f has integer Hecke eigenvalues, and hence corresponds to
a modular elliptic curve E via the Eichler-Shimura construction combined
with the Jacquet-Langlands correspondence.
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