
On overconvergent modular forms

Fabrizio Andreatta
Adrian Iovita
Glenn Stevens

February 23, 2010

Contents

1 Introduction 1

2 The Hodge-Tate sequence 4
2.1 The Hodge-Tate sequence in the semiabelian reduction case . . . . . . . . . . . . 10

3 The sheaves Ωκ
w in the elliptic case 12

3.1 The sheaves Ωκ are universal modular sheaves . . . . . . . . . . . . . . . . . . . 15
3.2 The case of a general κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The sheaves Ωr,w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 The sheaves Ωκ for Hilbert modular forms 22

5 Appendix: The map dlog 23

1 Introduction

Let p ≥ 5 be a prime integer, K a finite extension of Qp and let N be a positive integer. We fix
once for all an algebraic closure K of K and an embedding Q ↪→ K, where Q is the algebraic
closure of Q in C. We denote by Cp the completion of K.
We suppose that N is divisible by pf − 1, where pf is the number of elements of the residue field
of K and that a primitive Np-th root of 1 in K is contained in K. We denote by v the p-adic
valuation of Cp normalized such that v(p) = 1.
We consider the modular curve X := X1(Np) over K classifying generalized elliptic curves with
Γ1(Np)-level structure, we let E −→ X denote the universal semiabelian scheme over X1(Np)
and e : X −→ E its identity section. We let ωE/X := e∗(Ω1

E/X); it is a line bundle over X and it

can be identified with the sheaf of invariant sections of Ω1
E/X .

Let W denote the weight space for GL2/Q, i.e. the rigid analytic space over Qp whose K-
points areW(K) := Homcont(Z×p , K×). We embed Z inW(Qp) by sending k ∈ Z to the character
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which maps a ∈ Z×p to ak. If U ⊂ W is an affinoid sub-domain we denote by A(U) its affinoid
algebra.

H. Hida in [H] and R. Coleman in [C1] proved the following magnificent theorem. Let f be
a modular eigenform of level Γ1(N) ∩ Γ0(p) and weight k0 + 2 ≥ 2. We suppose that all Hecke
eigenvalues of f are in K, in particular we denote by ap the Up-eigenvalue.

Theorem 1.1 ([H],[C1]). In the notations above suppose that a2
p 6= pk0+1 and v(ap) < k0 + 1.

Then there exists an affinoid sub-domain U ⊂ W defined over Qp, containing k0 and a power
series

F :=
∞∑

n=0

Anq
n ∈ A(U)[[q]],

such that:

• for every k ∈ U(K) ∩ Z, k > k0, F(k) =
∞∑

n=0

An(k)qn ∈ K[[q]] is the q-expansion of a

(classical) modular eigenform of level Γ1(N) and weight k + 2,
and
• F(k0) is the q-expansion of f .

The power series F above is called a p-adic eigenfamily of modular forms deforming f . Let us

remark that for every κ ∈ U(K) we have a specialization F(κ) =
∞∑

n=0

An(κ)qn and these can be

thought of as constituents of the p-adic family F. It is shown in [C1] that these power series have
remarkable properties in particular they are q-expansions of so called “overconvergent modular
eigenforms of weight κ+ 2”. The definition of these objects in [C1] depends if κ is an integer or
not, as follows.

a) Suppose κ ∈ Z ∩ U(K).
Let w ∈ Q be such that 0 ≤ w < p/(p + 1) and let us suppose that there is an ele-

ment in K whose valuation is w. Such an element will be denoted pw. Let us recall that the
normalized Eisenstein series Ep−1 of level 1 and weight p − 1 is a lift to characteristic 0 of
the Hasse invariant and can be seen as a modular form on X1(N). We denote X1(N)(w) :=
{x ∈ X1(N) | such that |Ep−1(x)| ≥ p−w}. We have the following tower of modular curves:
X1(Np) −→ X(N, p) −→ X1(N), whereX(N, p) classifies generalized elliptic curves with Γ0(p)∩
Γ1(N)-level structure. Let us first remark that the natural (forgetful) map X(N, p) −→ X1(N)
has a canonical section over X1(N)(w) whose image is the connected component of X(N, p)(w)
containing the cusp ∞. This section is defined by sending a point (E , ψN) ∈ X1(N)(w), where
E is an elliptic curve and ψN is a Γ1(N)-level structure, to the point (E , ψN , C) ∈ X(N, p). Here
C ⊂ E [p] is the canonical subgroup. We define X1(Np)(w) := X1(Np)×X(N,p) X1(N)(w), which
we see as an affinoid sub-domain of X1(Np).

We define an overconvergent modular form of weight k and level Γ1(Np) to be an element of

M †(Γ1(Np), k)K := lim
→,w

H0(X1(Np)(w), ω
⊗(k)
E/X ).

These forms have q-expansions at the cusps in X1(Np)(w) and natural actions of the Hecke
operators T` for ` 6= p and of Up.
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b) Suppose κ ∈ U(K)− Z.
In this situation Coleman did not define ωκ

E/X or even
(
ωE/X |X1(Np)(w)

)κ
if w > 0 and so the

definition of orverconvergent modular forms of weight κ is not geometric and uses a trick. More
precisely, for any κ 6= 1 in W(K) such that ζ∗(κ) 6= 0 we define the series

Eκ(q) := 1 +
2

ζ∗(κ)

∑
n≥1

( ∑
d|n,(d,p)=1

κ(d)d−1
)
qn.

Here

ζ∗(κ) :=
1

κ(c)− 1

∫
Z×p
κ(a)a−1d(E1,c)(a)

where c ∈ Z×p is any element such that κ(c) 6= 1 and E1,c is the Bernoulli measure defined in
[C1], section B1.

If κ = 1, we define the series ([C1], section B1)

E(q) := 1 +
2

Lp(0,1)

∑
n≥1

( ∑
d|n,(p,d)=1

τ−1(d)
)
qn,

where τ : Z×p −→ µp−1 ⊂ Q×p is reduction modulo p composed with the Teichmüler character.
It is proved in [C1] that the series Eκ(q) are in fact q-expansions at the cusp ∞ of sections

(denoted Eκ) of H0
(
X1(Np)(0),

(
ω|X1(Np)(0)

)κ
)

where
(
ω|X1(Np)(0)

)κ
was defined in [K1] and is

recalled in section §3 of this article. If κ = k is an integer then Ek is in fact an overconvergent
modular form of weight k as defined at a) above.

Let f(q) ∈ K[[q]] be a power series and suppose that it extends to a section denoted f

of H0
(
X1(Np)(0),

(
ω|X1(Np)(0)

)κ
)

(i.e. f is a p-adic modular form of weight κ). We say

that f is overconvergent. with degree of overconvergence w > 0 if the function f/Eκ ∈
H0(X1(Np)(0),OX1(Np)) extends to a section H0(X1(Np)(w),OX1(Np)). The set of overconver-
gent modular forms of weight κ and degree of overconvergence w is denoted M(Γ1(Np), κ, w)K .
It is proved in [C1] that these forms have q-expansions at all the cusps in X1(Np)(w) and actions
of Hecke operators T` for (`, pN) = 1 and Up.

Remark 1.2. A priori it is not clear that the definition above of overconvergent modular forms
of non-integral weight makes any sense. However, the eigenforms defined by Coleman have
Galois representations attached to them, and these have the prescribed properties in particular
they fit into p-adic analytic families of Galois representations. This suggests that the definition
is right.

Remark 1.3. As the definition of overconvergent elliptic modular forms of non-integral weight
makes heavy use of the family of Eisenstein series {Eκ}κ∈W(K) introduced above and as such
families are sparse in general for other groups (for example the Hilbert modular Eisenstein series
all have parallel weight) overconvergent modular forms of non-integral weight have not yet been
defined for a general algebraic group.

The main goal of this article is to remedy the problem outlined in remark 1.3 as follows.
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I) Let κ ∈ W(K). Then there is w ∈ Q depending on κ with 0 < w < p/(p + 1) and a locally
free sheaf Ωκ

w,K on X1(Np)(w) such that if we denote

M(Γ1(Np), κ, w)K := H0(X1(Np)(w),Ωκ
w,K),

then we have:
• There exist natural actions of the Hecke operators T`, Up ((`,Np) = 1) on M(Γ1(Np), κ, w)K

and the elements ofM(Γ1(Np), κ, w)K have Fourier expansions at the cusps in X1(Np)(w).
and

• We have natural K-linear isomorphisms which are Hecke-equivariant

M(Γ1(Np), κ, w)K
∼= M †(Γ1(Np), κ, w)K .

Moreover the sheaves Ωκ
w,K can be put into p-adic analytic families in the following sense.

Let us identify W as rigid analytic space with qε∈bµp−1D, where D is the open unit disk in Cp

centered at 0 and µ̂p−1 is the group of characters of the group µp−1(Cp). If r > 0 we denote by
Wr := {z ∈ W(Cp) | |z| ≤ p−r}. Then {Wr}r>0 is a family of affinoids of W which defines
an admissible covering of it. For each r ∈ Q, r > 0 we show that there is 0 < w ≤ p/(p + 1)
depending on r and a locally free sheaf Ωr,w on Wr ×X1(Np)(w) such that if κ ∈ Wr(K) and
if we denote by fκ : X1(Np)(w) −→ Wr ×X1(Np)(w) the morphism fκ(z) = (κ, z), we have a
natural (specialization) morphism of sheaves ψκ : (fκ)

∗(Ωr,w) −→ Ωκ
w,K . We have

• Let r1, r2 > 0 be rational numbers and let 0 < w1, w2 ≤ p/(p+1) be the associated degrees
of overconvergence. Then the restrictions of the sheaves Ωr1,w1 and Ωr2,w2 on

(
Wr1 ∩ Wr2

)
×(

X1(Np)(w1) ∩X1(Np)(w2)
)

coincide.
• If F is p-adic analytic family of modular forms over an affinoid subdomain U ⊂ W as in

theorem 1.1, then first there is an r > 0 such that U ⊂ Wr. Than, F is the q-expansion at the
cusp ∞ of a section G ∈ H0(U ×X1(Np)(w),Ωr,w), for w > 0 as above

and
• If κ ∈ U(K) then the specialization F(κ) described in theorem 1.1 is the q-expansion of

the section ψκ,U×X1(Np)(w)(G).

II) We construct sheaves Ωκ
w,K and Ωr,w for Hilbert modular varieties for GL2/F , where F is

a totally real number field such that p is unramified in F . In this situation the definition of
overconvergent modular forms is a new definition.

We’d like to point out that Vincent Pilloni independently has constructed in [P], using a
slightly different method, sheaves like our Ωκ

w,K and therefore realized geometrically the over-
convergent elliptic modular forms of non-integral weight defined in [C1].

Notations Throughout this article we’ll use the following notations: if u ∈ Q, we’ll denote by
pu an element of Cp of valuation u. If pu ∈ OK and M is an object over R (an R-module,
an R-scheme or formal scheme) then we denote by Mu := M ⊗R R/p

uR. In particular M1 =
M ⊗R R/pR.

2 The Hodge-Tate sequence

We fix N , p and w where N is a positive integer, p ≥ 3 is a prime integer and w is a rational
number such that 0 ≤ w ≤ 1/p. We denote by K a finite extension of Qp containing an element
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of valuation w. Let k be its residue field.
Our standard local assumptions will be the following. Let us denote by R an OK-algebra

which is an integral domain, p-adically complete and separated and such that there is a formally
étale morphism of OK-algebras: OK{T1, ..., Td}/(T1...Tj − πa) −→ R, where 1 ≤ j ≤ d, π is a
uniformizer of K and a ≥ 0 is an integer. We let π : A −→ U := Spec(R) be an abelian scheme
of relative dimension g ≥ 1. We denote by ωA/R := π∗(Ω

1
A/R) and will assume that ωA/R is a

free OU -module of rank g.
Let us now consider ϕA : R1π∗(A1) −→ R1π∗(A1) the Frobenius morphism, let det(ϕ) denote

the ideal of R/pR generated by the determinant of ϕA in a basis of R1π∗(A1). We assume that
there exists 0 ≤ w < 1/p such that pw ∈ det(ϕA) and pw ∈ det(ϕA∨). By [AG] it follows that
there exists a canonical subgroup C ⊂ A[p] of A defined over UK . We let D ⊂ A[p]∨ ∼= A∨[p] be
the Cartier dual of A[p]/C over UK . We fix a geometric generic point η = Spec(K) of U where K
is an algebraic closure of the fraction field of R which contains K. We denote by ∆ := π1(UK , η)
and by G := π1(UK , η). Let T := Tp(Aη), where Aη is the fiber of A at η. G acts continuously
on T .

We denote by R the inductive limit of all R-algebras S ⊂ K which are normal and such that

RK ⊂ SK is finite and étale and by R̂ the p-adic completion of R. The group G is then the

Galois group of RK over RK and as such acts continuously on R̂. Let us remark that we have
an isomorphism as G-modules T ∼= lim

←,n
A[pn](R).

We’d now like to recall a classical construction which will be essential for the rest of this article,
namely the map dlog. Let G be a finite and locally free group scheme over U annihilated by
pm, let G∨ denote its Cartier dual and we denote by ωG∨/R the R-module of global invariant
differentials on G∨. We fix an affine, noetherian, normal scheme, p-torsion free S → U and
define the map

dlogG,S : G(SK) −→ ωG∨/R ⊗R OS/p
mOS

as follows. Let x be an SK-point of G. Since S is normal, affine and p-torsion free and G
is finite and flat over U , it extends uniquely to an S-valued point, abusively denoted by x,
of G. Such point defines a group scheme homomorphism over S, fx : G∨ −→ Gm and we set
dlog(x) = f ∗x(dT/T ) where dT/T is the standard invariant differential of Gm/S.

Lemma 2.1. The map dlogG,S is functorial with respect to U , G and S, more precisely:
a) Let U ′ −→ U be a morphism of schemes, let G −→ U be a finite locally free group scheme

and denote by G′ −→ U ′ the base change of G to U ′ and let S −→ U ′ be a morphism with S
normal, noetherian, affine and flat over OK. Then the natural diagram commutes

G′(S)
dlogG′,S−→ ω(G′)∨/R′ ⊗R′ OS/p

mOS

↓ ↓
G(S)

dlogG,S−→ ωG∨/R ⊗R OS/p
mOS

b) Let G and G′ be group schemes, finite and locally free over U = Spec(R) and G′ −→ G a
homomorphism of group schemes over U . As before we fix a morphism S −→ U with S normal,
noetherian, affine and flat over OK. Then, we have a natural commutative diagram
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G′(S)
dlogG′,S−→ ω(G′)∨/R ⊗R OS/p

mOS

↓ ↓
G(S)

dlogG,S−→ ωG∨/R ⊗R OS/p
mOS

c) Finally let us suppose that we have a morphism of normal, noetherian, affine schemes S ′ −→ S
over U , which are flat over OK. Then we have a natural commutative diagram

G(S)
dlogG,S−→ ω(G)∨/R ⊗R OS/p

mOS

↓ ↓
G(S ′)

dlogG,S′−→ ωG∨/R ⊗R OS′/p
mOS′

Proof. The proof is standard and we leave it to the reader.

Applying the construction above to the group schemes A∨[pn] ∼= (A[pn])∨ for n ≥ 1 over the
tower of normal R-algebras S whose union is R (see above) we obtain compatible G-equivariant
maps (for varrying n)

dlogn : A∨[pn](RK) −→ ωA[pn]/R ⊗R R/p
nR ∼= ωA/R ⊗R R/p

nR.

By taking the projective limit of these maps we get the morphism of G-modules

dlogA∨ : Tp(A
∨
η )⊗Zp R̂ −→ ωA/R ⊗R R̂.

We also have the analogous map for A itself i.e., a map dlogA : Tp(Aη) ⊗Zp R̂ −→ ωA∨/R ⊗R R̂.

The Weil pairing identifies Tp(Aη) with the G-module Tp(A
∨
η )∨(1) so that the R̂-dual of dlogA

provides a map a : ω−1
A∨/R ⊗R R̂(1) −→ Tp(A

∨
η )⊗Zp R̂. We thus obtain the following sequence of

R̂-modules compatible with the semilinear action of G:

0 −→ ω−1
A∨/R ⊗R R̂(1)

a−→ Tp(A
∨
η )⊗Zp R̂

dlog−→ ωA/R ⊗R R̂ −→ 0.

Since H0
(
G, R̂(−1)

)
= 0 we have that dlog ◦ a = 0 i.e. this sequence is in fact a complex. We

have

Theorem 2.2 ([F],[Fa]). The homology of the complex above, which we call the Hodge-Tate
sequence attached to A, is annihilated by a power of p.

Remark 2.3. It follows from [Bri] that p is not a zero divisor in R̂, therefore the morphism a
above is injective.

From now on whenever we write D, A∨[p] and A∨[p]/D we mean the G-representations
D(RK), A∨[p](RK) and

(
A∨[p]/D

)
(RK) respectively. Let us denote by F 0 := Im(dlog) and

F 1 = Ker(dlog). They are R̂-modules and because dlog is G-equivariant it follows that F 0 and
F 1 have natural continuous actions of G.
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Proposition 2.4. a) The R̂-modules F 0 and F 1 are free of rank g and we have a commutative
diagram with exact rows and vertical isomorphisms

0 −→ F 1/p1−vF 1 −→ Tp(A
∨
η )⊗Zp R/p

1−vR −→ F 0/p1−vF 0 −→ 0
↓∼= || ↓∼=

0 −→ D ⊗R/p1−vR −→ A∨[p]⊗R/p1−vR −→ (A∨[p]/D)⊗R/p1−vR −→ 0

b) The cohomology of the Hodge-Tate sequence above is annihilated by pv.

Proof. We divide the proof in three steps.

Step 1: F 0 is a free R̂-module of rank g and pv annihilates Coker(dlog). It follows from 5.1
that the mod p reduction of dlog factors via a map

α :
(
A∨[p]/D)⊗Fp R/pR −→ ωA/R ⊗R R/pR.

Choose elements {f̃1, . . . , f̃g} of Tp(A
∨
η )/pTp(A

∨
η ) which provide a basis of A∨[p]/D over Fp. We

also fix a basis {ω1, ω2, . . . , ωg} of ωA/R. If t1, t2, . . . , tg are elements of a group we denote by t
the column vector with those coefficients and by t̃ the reduction of t modulo p. Let us denote by

δ̃ ∈Mg×g(R/pR) the matrix with the property that α̃(f̃) = δ̃ ·ω̃. Let now denote by δ ∈Mg×g(R̂)

any matrix such that the image of δ under the natural projection Mg×g(R̂) −→Mg×g(R/pR) is

δ̃. Let G0 ⊂ ωA/R ⊗R R̂ be the R̂-module generated by the vectors δ · ω. Thus Step 1 follows if
we prove the following:

Lemma 2.5. (1) There exists a matrix s ∈Mg×g(R̂) such that δ · s = s · δ = pvId.

(2) The R̂-module G0 is free of rank g and it contains pvωA/R ⊗R R̂.

(3) The R̂-module G0 coincides with F 0.

In particular, F 1 is a finite and projective R̂-module of rank g.

Proof. The last statement follows from the others.
(1) We use proposition 5.1: as pvCoker(dlog) = 0( mod p) and δ · ω generates the image of

dlog modulo p, it follows that there are matices A and B ∈Mg×g(R̂) such that

pvω = dlog(d) = pA · ω +Bδ · ω.

Therefore, we have pv
(
Id−p1−vA

)
= Bδ and as Id−p1−vA is invertible we obtain that s·δ = pvId.

Let us now recall that p is a non-zero divisor in R̂, therefore the natural morphism Mg×g(R̂) −→
Mg×g(R̂[1/p]) is injective and in the target module the matrices δ, p−vs are inverse one to the

other. Therefore we obtain the relation δ · s = pvId first in Mg×g(R̂[1/p]) and then even in

Mg×g(R̂).

(2) By construction G0 is generated by the g vectors δ · ω. Let a ∈
(
R̂

)g
be a row vector

such that a · δ · ω = 0. Since δ is invertible after inverting p and ω is a basis of ωA/R, we have

that a = 0 in R̂[p−1]g. Since p is not a zero divisor in R̂ and δ is invertible after inverting p, we
conclude that a = 0. Moroever, we have pvω = s · δ · ω. Hence, the last claim follows.

7



(3) For every d ∈ Tp(A
∨
η ) ⊗Zp R̂ there exists A and B ∈ Mg×g(R̂) such that dlog(d) =

Aδ · ω + pBω. Since pvωA/R ⊗R R̂ is contained in G0, we conclude that F 0 ⊂ G0. Similarly,

since pvCoker(dlog) = 0 we have that pvωA/R ⊗R R̂ ⊂ F 0. The vectors δ · ω are contained in

F 0 + pωA/R ⊗R R̂ which is contained in F 0. The conclusion follows.

Step 2: We prove that we have a commutative diagram

ω−1
A/R ⊗R R/pR

ã−→ Tp(A
∨
η )⊗R/pR

gdlog−→ ωA/R ⊗R/pR
β̃ ↓ || ↑ α̃

0 −→ D ⊗R/pR −→ A∨[p]⊗R/pR −→
(
A∨[p]/D

)
⊗R/pR −→ 0

Let H0 and H1 be the image and respectively the kernel of the map dlog : Tp(Aη)⊗Zp R̂ −→
ωA∨/R ⊗R R̂. Since we assumed that also A∨ admits a canonical subgroup, then we know from

Step 1 that H0 is a free R̂-module of rank g and H1 is a finite and projective R̂-module of rank
g. It follows from [F, §3, lemma 2] that H1 and F 1 are orthogonal with respect to the perfect

pairing
(
Tp(Aη) ⊗Zp R̂

)
×

(
Tp(A

∨
η ) ⊗Zp R̂

)
−→ R̂(1) defined by extending R̂-linearly the Weil

pairing. In particular, via the isomorphism

h : Tp(A
∨
η )⊗Zp R̂ −→ Tp(A

∨
η )∨ ⊗ R̂(1),

induced by the pairing, we have h(F 1) ⊂ (H0)∨(1). Thus, h induces a morphism h′ : F 0 −→
(H1)∨(1). Since H1 is a projective R̂-module, the map Tp(A

∨
η )∨⊗ R̂(1)→ (H1)∨(1) is surjective

so that h′ is a surjective morphism of finite and projective R̂-modules of the same rank and,
hence, it must be an isomorphism. This implies that h induces an isomorphism F 1 ∼= (H0)∨(1).

Since (H0)∨/p(H0)∨)(1) ⊂ Tp(A
∨
η )∨⊗ R̂/pR̂(1) is identified with D⊗R/pR ⊂ A∨[p]⊗R/pR via

h, we get the claim in Step 2.

Step 3: End of proof. From Step 1 (applied to the abelian scheme A/R) we have that

pv(ωA∨/R ⊗R R̂) ⊂ H0 and from Step 2 we have an isomorphism F 1 ∼= (H0)∨(1). We deduce

that pvF 1 ⊂ ω−1
A∨/R ⊗R R̂(1).

Consider the map

γ : F 1 ⊂ Tp(A
∨
η )⊗R −→ A∨[p]⊗R/pR −→

(
A∨[p]/D

)
⊗R/pR.

Note that ω−1
A∨/R ⊗R R/pR goes to zero in

(
A∨[p]/D

)
⊗ R/pR by Step 2 and the latter is

a free R/pR-module. Since R is p-torsion free, the subset of elements of R/pR annihilated
by pv coincides with p1−vR/pR. We conclude that the image of the map γ is contained in
p1−v

(
A∨[p]/D

)
⊗ R/pR. In particular, the composition Tp(A

∨
η ) ⊗ R −→ A∨[p] ⊗ R/p1−vR −→(

A∨[p]/D
)
⊗ R/p1−vR has the property that it sends F 1 is 0. Therefore it induces a map

F 0/p1−vF 0 −→
(
A∨[p]/D

)
⊗ R/p1−vR. This is a surjective morphism of free R/p1−vR-modules

of the same rank. Hence, it must be an isomorphism. More concretely, it is defined by sending
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the reduction of δ · ω modulo p1−v, to the basis f̃ of D. Since F 0 is a free R̂-module, we can

find a (non canonical) splitting Tp(A
∨
η ) ⊗ R = F 0 ⊕ F 1. In particular, F 1/p1−vF 1 injects in

Tp(A
∨
η ) ⊗ R/p1−vR and it must coincide with D ⊗ R/p1−vR. This provides the diagram in the

statement of proposition 2.4.

Note that D ⊗ R/p1−vR is a free R/p1−vR-module of rank g. Since F 1 is a projective R̂-
module of rang g, any lift of a basis of D ⊗ R/p1−vR to elements of F 1 provides a basis of the

latter as R̂-module. We conclude that also F 1 is a free R̂-module of rank g as claimed.

Let us now suppose that (A∨[p]/D)(R) = (A∨[p]/D)(R) and therefore, using 5.2, it follows that
δ̃ ∈Mg×g(R/pR). We have the following

Proposition 2.6. Let δ0 ∈ Mg×g(R) be any lift of δ̃ in Mg×g(R). Let us denote by G0 ⊂ ωA/R

the R-submodule generated by δ0 · ω.

1) Then, G0 is a free R-module of rank g with basis δ0 · ω and G0 ⊗R R̂ ∼= F 0..

2) The R-module F0 := (F 0)G ⊂ ωA/R coincides with G0. In particular, F0 ⊗R R̂ ∼= F 0.
3) We have a natural isomorphism F0/p

1−vF0
∼= (A∨[p]/D)⊗R/p1−vR whose base change via

R→ R̂ provides the isomorphism F 0/p1−vF 0 ∼= (A∨[p]/D)⊗R/p1−vR in 2.4 via the isomorphism

F0 ⊗R R̂ ∼= F 0.

4) Let F1 := (F0)
∨(1), then we have a natural isomorphism as R̂-modules, G-equivariant:

F1 ⊗R R̂ ∼= F 1.

Proof. (1) As δ0( mod pR̂) = δ̃ lemma 2.5 implies that there is an s0 ∈ Mg×g(R̂) such that

δ0 · s0 = s0 · δ0 = pvId. In Mg×g

(
R̂[1/p]

)
we have s0 = p−vδ0 ∈ Mg×g

(
R[1/p]

)
∩Mg×g(R̂). But

R[1/p] ∩ R̂ = R because R is normal. Hence, δ0 · s0 = s0 · δ0 = pvId. This implies that G0 is a

free R-module. By lemma 2.5 the R̂-submodule generated by δ0 · ω is F 0. This concludes the
proof of (1).

(2) It follows from (1) that G0 ⊂ F 0 and that G0 ⊂ (F 0)G. Let now x ∈ (F 0)G. Then

x = ut · (δ0 · ω) for some column vector u with coefficients in R̂. As x and δ0 · ω are G-invariant
and the elements of δ0 · ω are R-linearly independent (as δ0 is in GLg(R[1/p])), it follows that
u is G-invariant and so x ∈ G0. This concludes the proves (2).

(3) By construction the map F 0 −→ (A∨[p]/D) ⊗ R/p1−vR in 2.4 sends the basis δ0 · ω to
the given basis of A∨[p]/D; see Step 3 of the proof of 2.4. Extending R-linearly and reducing
modulo p1−v we get the claimed isomorphism F0/p

1−vF0 → (A∨[p]/D)⊗R/p1−vR.

(4) This follows from the natural isomorphism as R̂-modules which is G-equivariant F 1 ∼=
(F 0)∨(1) (see Step 2 of the proof of proposition 2.4.)

We now claim that the free R-module F0 defined in proposition 2.6, and which will be now
denoted F0(A/R) is functorial both in A/R. More precisely, we have:
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Lemma 2.7. a) Let R −→ R′ be a morphism of OK-algebras of the type defined at the beginning
of this section, let A/R be an abelian scheme such that the assumptions of 2.6 hold and let
A′/R′ be the base change of A to R′. Then we have a natural isomorphism of R′-modules
F0(A/R)⊗R R

′ ∼= F0(A
′/R′) compatible with the isomorphism ωA/R ⊗R R

′ ∼= ωA′/R′.
b) Let us assume that we have a morphism of abelian schemes A −→ B over R and that

both A and that the assumptions of 2.6 hold. Then we have a natural morphism of R-modules
F0(B/R) −→ F0(A/R) compatible with the morphism ωB/R −→ ωA/R.

Proof. We have similar statements for F 0: in case (a) we have a morphism of R̂
′
-modules

F 0(A/R)⊗bR R̂
′
−→ F 0(A′/R′), compatible with the isomorphism of invariant differentials, and

in case (b) we have a natural morphism of R̂-modules F 0(B/R) −→ F 0(A/R) compatible with
the morphism on invariant differentials. These two statements follow from the functoriality of
dlog; see 2.1. Taking Galois invariants we immediately get (b) and also that we have a morphism
f : F0(A/R)⊗R R

′ −→ F0(A
′/R′). Since f is an isomorphism modulo p1−v by 2.6 and since it is

a linear morphism of free R′-modules of the same rank, it must be an isomorphism as claimed.

2.1 The Hodge-Tate sequence in the semiabelian reduction case

We need a generalization of proposition 2.4 to the case of semiabelian schemes in order to deal
with the cusps when implementing our constructions to moduli spaces of abelian varieties. We
follow [F, §3.e] providing more details.

Let S ⊂ U be a simple normal crossing divisor transversal to the special fiber of U . We write

Uo := U\S and let R[S−1] be the underlying ring. Assume that its p-adic ompletion R̂[S−1]

is an integral normal domain. As before we fix a geometric generic point η = Spec(K) of Ûo.
We denote by ∆o := π1(Uo

K
, η) and by Go := π1(Uo

K , η). We denote by R the inductive limit of
all R-algebras M ⊂ K which are normal and such that R[S−1, p−1] ⊂ M [S−1, p−1] is finite and

étale. Let R̂ be the p-adic completion of R with its continuous action of G.
Let A be an abelian scheme over Uo and assume that there exists an ètale sheaf X over U

of finite and free Z-modules, a semiabelian scheme G over U , extension of an abelian scheme
B by a torus T , and a 1-motive M := [X → GUo ] over Uo

K such that Tp(Aη) is isomorphic to
the Tate module Tp(Mη) as Go-module. This is the case for generalized Tate objects used to
define compactifications of moduli spaces. Let M∨ := [Y → HUo ] be the dual motive; here,
Y is the character group of T and H is a semiabelian scheme over U , extension of B∨ by the
torus T ′ with character group X. Then, Tp(A

∨
η ) is isomorphic to the p-adic Tate module of

the dual motive M∨. In particular, it admits a decreasing filtration W−iTp(A
∨
η ) for i = 0, 1

and 2 by Go-submodules such that (1) W−1Tp(A
∨
η ) = Tp(H

∨
η ); (2) gr0Tp(A

∨
η ) ∼= Y ⊗ Zp; (3)

gr−2Tp(A
∨
η ) ∼= Tp(T

′); (4) gr−1(T ) ∼= Tp(B
∨
η ).

Consider the map dlog : Tp(A
∨
η )⊗R̂[S−1] −→ ωA/Uo⊗RR̂[S−1]. Since the p-adic completion of

ωA/Uo can be expressed in terms of the p-divisible subgroup of A and the latter can be expressed

using M we have ωA/Uo ⊗R R̂[S−1] ∼= ωG/U ⊗R R̂[S−1]. The latter sits in an exact sequence given
by the exact sequence over U :

0 −→ ωB/U −→ ωG/U −→ ωT/U −→ 0.
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We then define a filtration on ωG/U by setting W−2ωG/U := 0, W−1ωG/U := ωB/U and W−2ωG/U :=
ωG/U .

Lemma 2.8. The map dlog extends uniquely to a morphism

dlog : Tp(A
∨
η )⊗ R̂ −→ ωG/U ⊗R R̂,

which is trivial on gr−2Tp(A
∨
η ), induces an isomorphism on gr0Tp(A

∨
η ) ⊗ R̂ −→ ωT/U ⊗R R̂

and coincides with the map dlog : Tp(B
∨
η ) ⊗ R̂ −→ ωB/U ⊗R R̂[S−1] on B via the identification

gr−1Tp(A
∨
η ) ∼= Tp(B

∨
η ).

Such extension is functorial in R and in A. More precisley, assume that we have a morphism
of abelian schemes f : A→ A′ over Uo such that the associated p-adic Tate modules are the Tate
modules of 1-motives M = [X → G] and M ′ = [X ′ → G′] as above and the map induced from f
on Tate modules arises from a morphism of 1-motives M → M ′. Then, the following diagram
is commutative

Tp((A
′
η)
∨)⊗ R̂

dlog(A′)∨−→ ωG′/R ⊗ R̂
↓ ↓

Tp(A
∨
η )⊗ R̂ dlogA∨−→ ωG/R ⊗ R̂

Proof. The uniqueness follows from the fact that dlog is a map of free R̂-modules and the map

R̂→ R̂[S−1] is injective.
This also implies that the displayed diagram commutes since it commutes after base change

to R̂[S−1] by functoriality of dlog.
For every n ∈ N let R ⊂ Rn ⊂ R be a finite and normal extension such that A∨η [pn] ∼= M∨

η [pn]
is trivial as Galois module over Rn[S−1, p−1]. This allows to split the filtration on Mη[p

n]
so that Mη[p

n] ∼= B∨η [pn] ⊕ T ′η[p
n] ⊕ Y/pnY as representations of the Galois group of R over

Rn. Note that the Galois module B∨η [pn] ⊕ T ′η[pn] ⊕ Y/pnY is associated to the group scheme
B∨[pn]⊕T ′[pn]⊕Y/pnY over Rn. By functoriality of the map dlog we deduce that dlog modulo pn

extends to all of Spec(Rn) and coincides with the sum of the maps dlog of these group schemes.
Passing to the limit the conclusion follows.

Applying the same argument to the dual abelian scheme and 1-motive we deduce that also
in this case we have a Hodge-Tate sequence attached to A:

0 −→ ω−1
H∨/R ⊗R R̂(1)

a−→ Tp(A
∨
η )⊗Zp R̂

dlog−→ ωG/R ⊗R R̂ −→ 0.

As before we let F 0 to be the image of dlog and F 1 to be the kernel. We assume that Frobe-
nius ϕB : R1π∗(B1) −→ R1π∗(B1) and ϕB∨ : R1π∗(B

∨
1 ) −→ R1π∗(B

∨
1 ) have determinant ideals

containing pw for some 0 ≤ w < 1/p. Let C ⊂ B[p] be the Galois submodule associated to the
canonical subgroup and DB ⊂ B∨[p] to be the Cartier dual of B[p]/C. We define D ⊂ A∨[p] (as
Galois modules) to be the inverse image of DB in H[p]→ B∨[p] which we view in A∨[p] via the
inclusion H[p] ⊂ A∨[p]. Note that the kernel of D → DB is T ′[p]. Then,
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Corollary 2.9. The R̂-modules F 0 and F 1 are free of rank g and we have a commutative diagram
with exact rows and vertical isomorphisms

0 −→ F 1/p1−vF 1 −→ Tp(A
∨
η )⊗Zp R/p

1−vR −→ F 0/p1−vF 0 −→ 0
↓∼= || ↓∼=

0 −→ D ⊗R/p1−vR −→ A∨[p]⊗R/p1−vR −→ (A∨[p]/D)⊗R/p1−vR −→ 0

Moroever, if A∨[p]/D is a constant group over Uo, the R-module F0 := (F 0)G ⊂ ωA/R is free

of rank g, we have F0⊗R R̂ ∼= F 0 and we have a natural isomorphism F0/p
1−vF0

∼= (A∨[p]/D)⊗
R/p1−vR whose base change via R → R provides the isomorphism F 0/p1−vF 0 ∼= A∨[p]/D) ⊗
R/p1−vR.

Eventually, the construction of F0 is functorial in U and A (see 2.8 for the meaning of the
functoriality in A).

Proof. The statement concerning F0 follows from the first arguing as in 2.6. The statement
about the functoriality is the analogue of 2.7 and is proven as in loc. cit.. It is deduced from the
functoriality of F 0 using the functoriality of the map dlog proven in 2.8.

For the first statement one argues that, using the filtration given in 2.8 and the description
of dlog on such a filtration, it suffices to prove the claim for B∨ and this is the content of 2.4.
Details are left to the reader.

3 The sheaves Ωκ
w in the elliptic case

Let N , p ≥ 5, K be as in section 1. For a fixed 0 ≤ w ≤ p/(p+1) let us recall that we defined in
section 1 the K-rigid analytic spaces X = X1(Np), X1(N)(w) ⊂ X(N, p) and X1(Np)(w) ⊂ X.
We let X1(Np) and X(N, p) denote the formal completions of X1(Np) and X(N, p), seen as
proper schemes over OK , along their special fibers and let X1(N)(w) denote the formal blow-up
of X1(N) defined by the ideal of OX1(N) generated by (pw, Ep−1(E/X1(N), ω)), for a generator ω
of ωE/X1(N).
We let X1(Np)(w) denote the normalization of X1(N)(w) in X1(Np)(w). Let us point out
that this definition makes sense. Let U = Spf(R) ⊂ X1(N)(w) be an affine open, let UK =
Spm(RK) ⊂ X1(N, p)(w) denote its (rigid analytic) generic fiber and let VK ⊂ X1(Np)(w) be
the inverse image of UK under the morphism X1(Np)(w) −→ X(N, p)(w). This morphism is
finite and étale therefore VK is an affinoid, VK = Spm(SK), with RK −→ SK a finite and étale
K-algebra homomorphism. Let S be the normalization of R in SK and V = Spf(S). Then S is a
p-adically complete, separated and normal R-algebra and for varrying U ’s, the V ’s constructed
above glue to give a formal scheme X1(Np)(w) with a unique morphism to X1(N)(w).
Moreover we have a natural semiabelian scheme E −→ X1(Np)(w) which is the fiber product of
the diagram Euniv −→ X1(N) ←− X1(Np)(w), together with a Γ1(N)-level structure, ψN . We
also have a natural Γ1(p)-level structure for EK −→ X1(Np)(w)K = X1(Np)(w). With these
structures X1(Np)(w) is not a formal moduli scheme but it has a nice “universal” description as
follows. Let R denote an OK-algebra, p-adically complete, separated and normal.

Lemma 3.1. There is a natural bijection between the set of points X1(Np)(w)(R) − {cusps}
and the set of isomorphism classes of quadruples (E/R, ψN , ψp, Y ) where E −→ Spec(R) is an
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elliptic curve, ψN is a Γ1(N) level structure of E/R, ψp is a Γ1(p)-level structure of EK/RK i.e.
a morphism of group-schemes over RK: (Z/pZ)RK

↪→ EK, finally Y is a global section of ω1−p
E/R

such that Y · Ep−1(E/R) = pw.

Proof. If x ∈ X1(Np)(w)(R) − {cusps} we may see it as a morphism of formal schemes x :
Spf(R) −→ X1(Np)(w) and its generic fiber is denoted xK : Spm(RK) −→ X1(Np)(w). The

first morphism gives by pull back a morphism of formal schemes Ê −→ Spf(R) and a level

Γ1(N)-structure on it, together with a formal section Ŷ , while the second morphism gives us

the level Γ1(p)-structure (after inverting p.) Now, as Ê −→ Spf(R) is proper by GAGA it is
algebrizable and so we obtain the family of elliptitc curves E −→ Spec(R) together with ψN , Y
and ψp after inverting p. This gives the correspondence in one direction.

Conversely, let (E/R, ψN , ψp, Y ) be a quadruple as in the statement of the lemma. By

formally completing along the special fiber we obtain a formal triple (Ê −→ Spf(R), ψ̂N , Ŷ ),
which provides a unique morphism of formal schemes f : Spf(R) −→ X1(N)(w), whose generic
fiber is fK : Spm(RK) −→ X1(N)(w). Moreover, the quadruple (EK/RK , ψN,K , ψp, YK) gives us
a morphism of K-rigid analytic spaces gK : Spm(RK) −→ X1(Np)(w). We’d like to show that
there is a unique morphism g : Spf(R) −→ X1(Np)(w) whose generic fiber is gK and which lifts
f . For this we may asume that f(Spf(R)) is contained in an affine open Spf(S) of X1(N)(w) (if
this is not the case we cover Spf(R) by affine opens for which this property holds and reason
in the same way for each of them.) As the morphism X1(Np)(w) −→ X1(N)(w) is finite, the
inverse image of Spm(SK) in X1(Np)(w) is an affinoid Spm(TK) and we denote by T ⊂ TK the
normalization of S in TK . Then Spf(T ) is an open affine of X1(Np)(w) and we have the following
diagram of rings and morphisms:

SK
hK−→ TK

gK−→ RK

∪ ∪ ∪
S

h−→ T R

where hK is finite and étale and so h is integral. Moreover we have f : S −→ R whose generic
fiber is gK ◦ hK . We’ll show that gK(T ) ⊂ R. Indeed, let t ∈ T , then t is integral over S and
therefore gK(t) is integral over R. But R is normal and so gK(t) ∈ R. Therefore g is defined as
the restriction of gK to T and it has all the desired properties, in particular it defines a point
x ∈ X1(Np)(w)(R).

Let now consider U = Spf(R) an affine open of X1(Np)(w) then proposition 2.4 and its semi-
abelian analogue, corolalry 2.9 give us a canonical free R-submodule FU of ωE/X1(Np)(w)(U).

Namely, assume that ωE/X1(Np)(w)|U is a free OU -module. Then, FU =
(
Im(dlog)

)G
if E|U is

proper or FU =
(
Im(dlog)

)Go

if E|U admits a description as a Tate curve. We denote by F the
unique locally free OX1(Np)(w)-module of rank 1 whose module of sections over a small formal
affine U is FU . Recall that we have an isomorphism of OX1(Np)(w)-modules:

F/p1−vF ∼=
(
E [p]/C

)
⊗OX1(Np)(w)/p

1−vpOX1(Np)(w).

Let us denote by F ′v the inverse image under F −→
(
E [p]/C

)
⊗ OX1(Np)(w)/p

1−vpOX1(Np)(w) of
the constant sheaf (of sets)

(
E [p]/C

)
− {0}. If we denote by Sv the sheaf of abelian groups on
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X1(Np)(w) defined by
Sv := Z×p ·

(
1 + p1−vOX1(Np)(w)

)
,

then 2.4 and 2.9 show that F ′v is an Sv-torsor, locally trivial for the Zariski topology on
X1(Np)(w).

We denote by W the weight space defined in section 1 and let κ ∈ W(K). We will first assume
that there is a pair (χ, s) ∈ µ̂p−1×mK such that κ(t) := χ([t])〈t〉s where [t] denote the Teichmüler
lift in µp−1 ⊂ Z×p of t( mod p), 〈t〉 := t/[t] and we have denoted 〈t〉s := exp(s log(〈t〉)) Let w ∈ Q
be such that 0 ≤ w ≤ p/(p + 1) and let us denote v = w/(p − 1). If x = a · b is a section of
Sv = Z×p (1 + p1−vOX1(Np)(w), then we denote by xκ := κ(a) · bs where bs := exp(s log(b). Then

xκ is another section of Sv so we denote by O(κ)
X1(Np)(w) the sheaf OX1(Np)(w) with action by Sv

twisted by κ.

Definition 3.2. We define the sheaf Ωκ
v := HomSv

(
F ′v,O

(−κ)
X1(Np)(v)

)
on X1(Np)(w). We denote

M(Γ1(Np), κ, p
w) := H0

(
X1(Np)(w),Ωκ

v

)
and M(Γ1(Np), κ, p

w)K := H0
(
X1(Np)(w),Ωκ

v ⊗OK

K
)

= H0
(
X1(Np)(w),Ωκ

v ⊗OK
K

)
.

Since Sv-torsor F ′v is trivial locally on X1(Np)(w), the sheaf Ωκ
v is a locally free OX1(Np)(w)-

module of rank one.

Remark 3.3. At this point we would like to recall a very useful result, namely proposition 1.7
of [O]: Suppose that g : T −→ S is an admissible blow-up of formal schemes over OK . Then g∗

and g∗ induce equivalences between the category of coherent sheaves of K⊗OK
OK-modules on S

(denoted Coh(K⊗OS) in [O]) and the category of K⊗OK
OT -modules on T (i.e. Coh(K⊗OT ).)

Lemma 3.4. Take w′ ≥ w and v′ = w′/(p − 1), v = w/(p − 1). Then, via the morphism
fw,w′ : X1(Np)(w)→ X1(Np)(w

′) have a natural isomorphism ρv,v′ : f
∗
w,w′ (Ω

κ
v′)
∼= Ωκ

v′ of OX1(Np)(w′)-

modules such that (1) ρv,v = Id and (2) for w′′ ≥ w′ ≥ w we have ρv,v′ ◦ fa
w,w′st

(
ρv′,v′′

)
= ρv,v′′.

Proof. Since v′ ≥ v, one has that Sv is a subsheaf of Tv′ := Z×p ·
(
1 + p1−v′OX1(Np)(w)

)
. Simi-

lalry, F ′v is a subsheaf of sets of G ′v′ :=, defined as the inverse image under F −→
(
E [p]/C

)
⊗

OX1(Np)(w)/p
1−v′pOX1(Np)(w) of E [p]/C\{0}. Infact, the action of Sv on G ′v′ induced by this inclu-

sion is the same as the action induced by the map Sv ⊂ Tv′ . In particular, since F ′v is an Sv-torsor
and G ′v′ is an Tv′-torsor, the natural map F ′v ⊂ G ′v′ induces an isomorphism F ′v×Sv Sv′ −→ G ′v′ of

Tv′-torsors. Here F ′v ×Sv Tv′ is the pushed-out torsor. Note that the action of Sv on O(−κ)
X1(Np)(v)

extends to an action of Tv′ . By adjunction we then have

HomSv

(
F ′v,O

(−κ)
X1(Np)(v)

) ∼= HomTv′

(
F ′v ×Sv Tv′ ,O(−κ)

X1(Np)(v)

) ∼= HomTv′

(
G ′v′ ,O

(−κ)
X1(Np)(v)

)
.

We have a natural morphism of sheaves of groups f−1
w,w′(Sv′) → Tv′ and of sehaves of sets

f−1
w,w′(Fv′) → G ′v′ . The latter is f−1

w,w′(Sv′)-equivaraiant so that we have an isomorphism of Tv′-

torsors f−1
w,w′(Fv′)×f−1

w,w′ (Sv′ ) Tv′
∼= Tv′ . Again by adjunction we deduce that

HomTv′

(
G ′v′ ,O

(−κ)
X1(Np)(v)

) ∼= Homf−1
w,w′ (Sv′ )

(
f−1

w,w′(Fv′),O(−κ)
X1(Np)(v)

)
.

14



Since Ωκ
v′ is a locally free OX1(Np)(v′)-module, the natural map

f ∗w,w′ (Ω
κ
v′) −→ Homf−1

w,w′ (Sv′ )

(
f−1

w,w′(Fv′),O(−κ)
X1(Np)(v)

)
is checked to be an isomorphism. This chain of isomorphisms provides ρv,v′ . We leave to the
reader to check the equalities (1) and (2).

Definition 3.5. We define

M(Γ1(Np), κ) := lim
→,w
M(Γ1(Np), κ, p

w) andM(Γ1(Np), κ)K := lim
→,w
M(Γ1(Np), κ, p

w)K .

Our goal in this chapter is to show thatM(Γ1(Np), κ)K has natural actions of Hecke operators
and that it is canonically and Hecke equivariantly isomorphic to the space of overconvergent
modular forms of weight κ, as defined in section 1.

In order to achieve this we’ll first exploit the “universality” of the family E −→ X1(Np)(w)
and give in the next section a different expression (à la N. Katz) of the elements ofM(Γ1(Np), κ, p

w)
and ofM(Γ1(Np), κ, p

w)K .
Let us first recall the overconvergent Eisentsein series of weight 1 and level Γ1(p) denoted E

in the introduction. It is uniquely characterized by the properties:
• Ep−1 = Ep−1 as sections of ωE/X1(Np)(w)

• The q-expansion of E at ∞, E(q) (given in section 1) is congruent to 1 modulo p.
Let us fix U = Spf(R) ⊂ X1(Np)(w) an affine such that ωE/X1(Np)(w) has a generator ω.

Proposition 5.2 implies that the element δ of proposition 2.6 can be chosen to be E(E/R, ω, ψ) ∈
R. Here ψ is the level Γ1(Np)-structure of the restriction of E to U . In particular FU is the free
R-submodule of ωE/U generated by the differential, which we’ll call standard differential:

ωstd := E(E/R, ψ) = E(E/R, ω, ψ)ω, for every generator ω ∈ ωE/X1(Np)(w)(U).

As E(E/X1(Np)(w), ψ) is a canonical global section of ωE/X1(Np)(w), it follows that F is a
free OX1(Np)(w)-submodule of ωE/X1(Np)(w). Recall that F ′v is the inverse image under F −→(
E [p]/C

)
⊗OX1(Np)(w)/p

1−vOX1(Np)(w) of the constant sheaf (of sets)
(
E [p]/C

)
−{0}. Then F ′ is

an S-torsor, generated by the standard differential ωstd. In particular, Ωκ
v admits the following

generator Xκ,v. For every U = Spf(R) and every u ∈ S(U) = Z×p (1 + p1−vR), define

Xκ,v(uω
std) := u−κ ∈ R.

We thus deduce:

Corollary 3.6. The OX1(Np)(w)-module Ωκ
v is a free OX1(Np)(w)-module with basis element Xκ,v.

These elements are compatible via the morphisms ρv,v′ defined in 3.4 i e., ρv,v′ (Xκ,v′) = Xκ,v.

3.1 The sheaves Ωκ are universal modular sheaves

In this section we’d like to show how one can express the elements ofM(Γ1(Np), κ, p
w) defined

in the previous section more concretely.
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We fix p,N ,K, w and v as in the previous section and we first describe our test objects: they
are sequences (E/R, α, ψN , ψp, Y ), where
• R is a p-adically complete, separated and normal OK-algebra, in which p is not a zero

divisor.
• E −→ Spec(R) is an elliptic curve over R such that ωE/R is a free R-module of rank 1.
• ψN is a Γ1(N)-level structure for E/R and ψp is a Γ1(p)-level structure of EK/RK .
• Y is a global section of ω1−p

E/R such that Y Ep−1(E/R) = pw.

We still have to say what α is. We assume that (E/R, ψN , ψp, Y ) as above exist and let η be
any generator of ωE/U . We denote by TE/R := SR · ωstd ⊂ ωE/R, where SR = Z×p (1 + p1−vR) and
ωstd := E(E/R, η, ψp)η ∈ ωE/R, where E(E/R, η, ψp) = E(EK/RK , η, ψp) ∈ R ⊂ RK . We have

Lemma 3.7. TE/R is an SR-torsor functorial both in R and E, i.e. commutes with base change
and is preserved by isogenies between elliptic curves, whose kernels do not intersect the canonical
subgroup of the domain.

Proof. By “universality” of E −→ X1(Np)(w) (i.e. lemma 3.1) it is enough to prove the lemma
if Spf(R) is an affine open of X1(Np)(w) and E is the restriction of the universal elliptic curve.
In that case the functoriality of TE/R follows from lemma 2.7.

So finally a test object is a quintuple (E/R, α, ψN , ψp, Y ), where (E/R, ψN , ψp, Y ) have already
been defined and α ∈ TE/R. Then we have the following

Lemma 3.8. An element of M(Γ1(Np), κ, p
w) is a rule which assigns to every test object

(E/R, α, ψN , ψp, Y ), an element f(E/R, α, ψN , ψp, Y ) ∈ R such that:
• f(E/R, α, ψN , ψp, Y ) only depends on the isomorphism class of (E/R, α, ψN , ψp, Y ).
• If ϕ : R −→ R′ is an OK-algebra homomorphism and we denote by (Eϕ/R

′, αϕ, ψN,ϕ, ψp,ϕK
, Yϕ)

the base change of (E/R, α, ψN , ψp, Y ), then we have f(Eϕ/R
′, αϕ, ψN,ϕψp,ϕK

, Yϕ) = ϕ
(
f(E/R, α, ψ, Y )

)
.

• f(E/R, uα, ψN , ψp, Y ) = u−κf(E/R, α, ψN , ψp, Y ) for u ∈ SR.

Proof. Everything follows from the “universality” of the family E −→ X1(Np)(w) (see lemma
3.1) and the functoriality of Ωκ

v .

We define in an analogue way the elements of M(Γ1(Np), κ, p
w)K . More precisely the test

objects are sequences (E/R, α, ψN , ψp, Y ) as above.

Lemma 3.9. An element of M(Γ1(Np), κ, p
w)K can be seen as a rule which assigns to every

test object (E/R, α, ψN , ψp, Y ) an element f(E/R, α, ψN , ψp, Y ) ∈ RK satisfying the properties
• f(E/R, α, ψ, Y ) only depends on the isomorphism class of (E/R, α, ψN , ψp, Y ).
• If ϕ : R −→ R′ is an OK-algebra homomorphism and we denote by (Eϕ/R

′, αϕ, ψN,ϕ, ψp,ϕK
, Yϕ)

the base change of (E/R, α, ψ, Y ), then we have f(Eϕ/R
′, αϕ, ψN,ϕ, ψp,ϕK

, Yϕ) = ϕK

(
f(E/R, α, ψN , ψp, Y )

)
.

• f(E/R, uα, ψN , ψp, Y ) = u−κf(E/R, α, ψN , ψp, Y ) for u ∈ SR.

Proof. Let f ∈M(Γ1(Np), κ, p
w)K = H0

(
X1(Np)(w),Ωκ

v

)
⊗OK

K and let a test object (E/R, α, ψN , ψp, Y )
be as in the statement of lemma 3.9. Then there is a unique morphism ϕ : Spf(R) −→ X1(Np)(w)
such that (E/R, ψN , ψp, Y ) are inverse images of the universal ones. It follows that α = uωstd =
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uϕ∗(ωstd
univ) as both are expressed in terms of the Eisenstein series E, where u ∈ SR. Finally

f = aXκ,v, where a ∈ H0(X1(Np)(w),OX1(Np)(w))⊗OK
K and Xκ,v was defined in corollary 3.6.

We set:
f(E/R, α, ψN , ψp, Y ) := u−κXκ,v(ω

std
univ)ϕ

∗
K(a) = u−κϕ∗K(a).

Clearly this rule satisfies the desired properties. We leave the converse as an exercise to the
reader.

3.1.1 Hecke operators

We will define Hecke operators acting onM(Γ1(Np), κ, p
w)K for 0 ≤ w ≤ p/(p+1). For this let

` be a prime (it may be p) and let X(N, p, `)(w) denote the rigid analytic space over K which
represents the functor sending aK-rigid analytic space S to a quintuple (E/S, ψS, C,H, Y ), where
E −→ S is an elliptic curve, ψS is a Γ1(Np)-level structure, C ⊂ E [p] is a canonical subgroup
and H ⊂ E [`] is a locally free subgroup scheme, finite of order ` such that C ∩H = {0} (the last
condition is automatic if ` 6= p) and Y is a global section of ω1−p

E/S such that Y Ep−1(E/S, ψS) = pw.

We have natural morphisms p1 : X(N, p, `)(w) −→ X1(Np)(w) and p2 : X(N, p, `)(w) −→
X1(Np)(w

′) where w′ = w if ` 6= p and w′ = pw if ` = p (in which case we will assume that
0 ≤ w ≤ 1/(p + 1).) These morphisms are defined (on points) as follows: p1(E , ψ, C,H, Y ) =
(E , ψ, C, Y ) = (E , ψ, Y ) ∈ X1(Np)(w) and p2(E , ψ, C,H, Y ) = (E/H, ψ′, C ′, Y ′) = (E/H, ψ′, Y ′) ∈
X1(Np)(w) where ψ′ and Y ′ are the induced Γ1(Np)-level structure and global section associated
to E/H. The morphism p1 is finite and étale while p2 is an isomorphism of K-rigid spaces.

We denote by X(N, p, `)(w) the normalization of X1(Np)(w) in X(N, p, `)(w), using p1, de-
note by p1 : X(N, p, `)(w) −→ X1(Np)(w) the natural induced morphism whose genric fiber is p1

and by E −→ X(N, p, `)(w) the semiabelian scheme which is pull back via p1 of E −→ X1(Np)(w).
We also consider the morphism X(N, p, `)(w) −→ X1(Np)(w

′) which is p2 composed with the
natural specialization X1(Np)(w) −→ X1(Np)(w) which makes X1(Np)(w) a formal model of
X(N, p, `)(w′).

Lemma 3.10. Let R be a p-adically complete, separated and normal OK-algebra. Then there is
a bijective correspondence between the set of points X(N, p, `)(w)(R)−{cusps} and the set of iso-
morphism classes of sequences: (E/R, ψN , ψp, C,H, Y ), where E −→ Spec(R) is an elliptic curve,
ψN , C,H, Y are respectively a level Γ1(N)-structure, the canonical subgroup, a subgroup scheme
of order ` of E [`] such that C∩H = {0} and a global section of ω1−p

E/R such that Y Ep−1(E/R) = pw,

and ψp is a Γ1(p)-level structure of EK/RK.

Proof. The proof is very similar to the proof of lemma 3.1 and is left to the reader.

Let us now observe that we have a natural morphism p2 : X(N, p, `)(w′) −→ X1(Np)(w) given
on points by: p2(E , ψN , ψp, C,H, Y ) := (E/H, ψ′N , ψ′p, C ′, Y ′) where ψ′N , C

′, Y ′ are the induced
objects on E/H and ψ′p is the Γ1(p)-level structure induced on EK/HK by ψp. Therefore we have
the following natural isogeny π` : E −→ E/H over X(N, p, `)(w), which by the functoriality of
the sheaves Ωκ, v, induces a natural morphism of sheaves on X(N, p, `)(w):

πκ
` : p∗2(Ω

κ
w) −→ p∗1(Ω

κ
w′).
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For every 0 ≤ w ≤ p/(p+ 1) and prime integer ` such that (`,Np) = 1 we define the Hecke op-
erator T` :M(Γ1(Np), κ, p

w)K −→M(Γ1(Np), κ, p
w)K by 1/(`+ 1) multiplied the composition:

H0
(
X1(Np)(w),Ωκ

w ⊗OK
K

)
−→ H0

(
X(N, p, `)(w), p∗2(Ω

κ
w)⊗OK

K
) πκ

`−→
πκ

`−→ H0
(
X(N, p, `)(w), p∗1(Ω

κ
w)⊗OK

K
)

= H0
(
X(N, p, `)(w), p∗1

(
Ωκ

w)⊗OK
K

)) Trp1−→

Trp1−→ H0
(
X1(Np)(w),Ωκ

w ⊗OK
K

)
.

Moreover, for 0 ≤ w ≤ 1/(p + 1) we define the operator Up : M(Γ1(Np), κ, p
pw)K −→

M(Γ1(Np), κ, p
pw) to be: 1/p multiplied the composition:

H0
(
X1(Np)(pw),Ωκ

pw ⊗OK
K

) ρpw,w−→ H0
(
X1(Np)(w),Ωκ

w ⊗OK
K

)
−→

−→ H0
(
X(N, p, p)(w), p∗2(Ω

κ
w)⊗OK

K
) πκ

p−→ H0
(
X(N, p, p)(pw), p∗1(Ω

κ
pw)⊗OK

K
)

=

= H0(
(
X(N, p, p)(pw), p∗1

(
Ωκ

w)⊗OK
K

)) Trp1−→ H0
(
X1(Np)(pw),Ωκ

pw ⊗OK
K

)
.

As the first restriction is completely continuous, it follows the Up is completely continuous.
Finally, let us express the Hecke operators defined above in a more concrete (and hopefully

more familiar) way. Let ` be a prime integer (may be p). Let f ∈ M(Γ1(Np), κ, p
w)K and let

(E/R, α, ψN , ψp, Y ) be a test object as in section §3.1. First we consider R −→ R′ a normal
extension such that RK −→ R′K is finite étale and such that (EK)R′K [`] contains all subgroup-
schemes HK , finite, flat of order `. By theorem 10.6 of [AG] there is an admissible blow-up
Bl −→ Spf(R′) such that all HK as above extend to finite flat group-schemes H of order ` of
EBl[`] over Bl.

Then we have
a) If ` is a prime integer such that (`,Np) = 1:

(f |T`)(E/R, α, ψN , ψp, Y ) = 1/(`+ 1)
∑

H⊂EBl[`]

f(EBl/Bl, α′ψ′N , ψ
′
p, Y

′),

where we mean the following: we cover the scheme Bl (which is not affine) by affine opens
Spec(S) on which ωES/S is free and we glue along intersections the following sum:

(∗`) 1/(`+ 1)
∑

HS⊂ES [`]

f(ES/S, α
′
S, ψN,S, ψp,S, YS)

where ψN,S, ψp,S, YS are base-changes to E/S of the original objects and α′S ∈ T(ES/HS)/S is such
that πκ

S(α′S) = αS for π : ES −→ ES/HS the natural isogeny.
Let us remark that every term of the sum (∗`) is an element of SK , therefore each f(EBl/Bl, α′, ψ′N , ψ

′
p, Y

′) ∈
H0(Bl,OBl)⊗OK

K = R′K by remark 3.3. Therefore, (f |T`)(E/R, α, ψN , ψp, Y ) ∈ RK as it should.
b) If ` = p

(f |Up)(E/R, α, ψN , ψp, Y ) = 1/p
∑

H⊂EBl[p]

f(EBl/Bl, α′ψ′N , ψ
′
p, Y

′),
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where the sum runs over all subgroups H such that H∩C = {0}, with C the canonical subgroup
of EBl[p] and the meaning of the notation is as at a) above.

3.1.2 Comparison with integral weight overconvergent modular forms after inverting p

Proposition 3.11. For every k ∈ Z and 0 ≤ w ≤ p/(p + 1), v = w/(p − 1) we have a natural
isomorphism of sheaves on X1(Np)(w) Ωk

v ⊗OK
K ∼= ω⊗k

EK/X1(Np)(w). It induces a K-linear iso-

morphism equivariant with respect to the Hecke operators M†(Γ1(Np), k)K
∼= M †(Γ1(Np), k)K.

Proof. The isomorphism is defined by: Φk : Ωk
v ⊗OK

K −→ ω⊗k
EK/X1(Np)(w) given as follows.

If U is an open of X1(Np)(w) and f ∈ Ωk
v(U) then Φk,U(f ⊗ 1) := f(ωstd) · (ωstd)⊗k ⊗ 1 ∈

ω⊗k
E/X1(Np)(w)(U) ⊗OK

K. As ωstd ⊗ 1 is a generator of ωEK/X1(Np)(w)(UK) (but in general not

of ωE/X1(Np)(w)(U)) the morphism above is an isomorphism of OX1(Np)(w)-modules. The second
statement of the proposition follows from the description of the action of Hecke oeprators on
M†(Γ1(Np), k)K and M †(Γ1(Np), k)K in the previous section.

3.1.3 Restriction to the ordinary locus

Let us suppose that w = v = 0 and let us denote in this section X1(Np)(0) =: Zord and let
us remark that E −→ Zord is ordinary. In this situation Zord is a smooth affine formal scheme
defined over Zp, Zord = Spf(R). Let us recall that in this situation we have a G := π1(Zord

Qp
, η)-

equivariant exact sequence (see section 2)

0 −→ T co −→ T −→ T et −→ 0

where T et ∼= Zp(φ), for φ : G −→ Z×p an etale character. If κ ∈ W(K) the definition in [K1] of
the space of p-adic modular forms of weight κ and level Γ1(Np) is:

M(R, κ, p0) :=
(
R̂(φκ)

)G
.

Proposition 3.12. We have a natural isomorphism of R-modules

Φord
κ M(Γ1(Np), κ, p

0) :=: H0(Zord,Ωκ
0)
∼= M(Zp, κ, p

0).

Proof. We have the natural commutative diagram with exact rows:

0 −→ ω−1
E/R ⊗R R̂(1) −→ T ⊗ R̂ dlog−→ ωE/R ⊗R R̂ −→ 0

↓ ‖ ↑ α
0 −→ T co ⊗ R̂ −→ T ⊗ R̂ −→ T et ⊗ R̂ −→ 0

M The morphism α is an isomorphism so that F 0 = ωE/R ⊗R R̂ in this case. Modulo p the
morphism α induces the isomorphism E [p]et ⊗ R ∼= ωE/R ⊗R R/pR. Let G′ (resp. F ′) be the

inverse image of (E [p]/C)− {0} under the map ωE/R ⊗ R̂ −→ (E [p]/C)⊗R/pR (resp. ωE/R −→
(E [p]/C)⊗R). Then, G′ (resp. F ′) is a torsor under Sord = Z×p (1 + pR̂) (resp. S = Z×p (1 + pR))
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and the inclusion F ′ ⊂ G′ induces the isomorphism G′ ∼= F ′ ×S Sord, where the latter is the

push-out torsor. Let R̂
(−κ)

(resp R(−κ)) be R̂ (resp. R) with the action by Sord (resp. S) twisted

by −κ. Then,
(
Sord

)G
= S and

(
R̂

(−κ))G
= R(−κ). Let us recall that Ωκ(U) = HomS(G′, R(−κ))

so that

Ωκ(U) =
(
HomS(G′, R̂

(−κ)

)
)G

=
(
HomSord(F ′ ×S Sord, R̂

(−κ)

)
)G

= HomSord,G
(
G′, R̂

(−κ))
.

The isomorphism α : T et ⊗ R̂ = R̂(φ) −→ ωE/R ⊗R R̂ gives α−1(G′) ∼= Sord, where the G-
action is defined by: if σ ∈ G, y ∈ Sord then σ ∗ y = σ(y)φ(σ) ∈ Sord. Therefore α induces an
isomorphism

Ωκ(U) ∼= HomSord,G(S
ord, R̂

−κ

) =
(
HomSord(Sord, R̂

−κ)G
.

Let us observe that HomSord(Sord, R̂
(−κ)

) ∼= R̂, as R̂-modules, and the G-action is given as

follows. Let σ ∈ G and g : Sord −→ R̂
(−κ)

be an Sord-morphism. Then (σg)(u) := σ(g(σ−1(u)),
in particular (σg)(1) = σ(g(σ−1(1))) = σ(g(φ(σ)−1 · 1)) = φ(σ)κg(1).

In other words, HomSord(Sord, R̂
(−κ)

) ∼= R̂(φκ) as G-modules and therefore α induces an
isomorphism

Ψord : M(Γ1(Np), κ, p
0) ∼= M(R, κ, p0).

3.1.4 q-Expansions of overconvergent modular forms

Definition 3.13. Let us fix N, p ≥ 5, w as in section §3.1.2 and suppose K is such that con-
tains an element of valuation v = w/(p − 1) and a primitive root of unity of order Np. Let
f ∈ H0(X1(Np)(w),Ωκ

v . Then we define its q-expansion at the cusp ψ, denoted f(q, ψ) as
f(Tate(qNp), ωcan = dz/z, ψ) ∈ OK [[q]]. Let us recall that because E(Tate(qNp), ωcan, ψ) ∈
1 + pOK [[q]] ⊂ SOK [[q]], we have ωcan ∈ TTate(qNp)/OK [[q]].

Example 3.14. 1) Let us recall the overconvergent modular form Xκ,v ∈ H0(X1(Np)(w),Ωκ
v)

defined in section 3 and let us calculate its q-expansion. We have:

Xκ,v(q, ψ) = Xκ(Tate(qNp), ωcan, ψ) = Xκ(Tate(qNp), E(Tate(qNp), ωcan, ψ)−1ωcan, ψ) =

=
(
E(Tate(qNp), ωcan, ψ)

)κ
=

(
E(q, ψ)

)κ
.

2) Let f ∈ H0(X1(Np)(w),Ωκ
v), let us denote by f ord = f |Zord and let g = Ψord(f ord) ∈

M(OK , p
0, κ). Then the same calculation as above shows that

f(q, ψ) = f ord(Tate(qNp), ωcan, ψ) = g(Tate(qNp), ωcan, ψ) = g(q, ψ).

Theorem 3.15. Let Eκ ∈M(OK , p
0, κ) denote the normalized p-adic Eisenstein series of weight

κ whose q-expansion at the cusp ∞ was given in section 1 and let Zord
κ = (Ψord)−1(Eκ) ∈

Ωκ(Zord). Then there is a unique section Zκ ∈ H0(X1(Np)(w),Ωκ(w)) such that Zκ|Zord = Zord
κ .

Moreover Zκ generates H0(X1(Np)(w),Ωκ
v)⊗OK

K.
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Proof. Let us denote by Xord
κ := Xκ|Zord . Then by example 3.14 and [C1], hord := Zord

κ /Xord
κ ∈

R = OZord(Zord) has the property that there is a unique h ∈ OZ(Z) such that h|Zord = hord. It
is enough to denote by Zκ := hXκ ∈ Ωκ(Z) and observe that it has the desired property.

An immediate consequence of theorem 3.15 is the following result announced in section 1.

Corollary 3.16. We have a natural K-linear, Hecke-equivariant isomorphism,

Φκ :M†(Γ1(Np), κ)K
∼= M †(Γ1(Np), κ)K .

Moreover, if κ = k is an integer then Φk coincides with the one defined in the proposition 3.11.

Proof. It is enough to show that we have natural, compatible isomorphisms for every 0 ≤
w ≤ p/(p + 1): M(Γ1(Np), κ, p

w)K
∼= M(Γ1(Np), κ, p

w)K . Indeed, given the definition of
M(Γ1(Np), κ, p

w)K in section 1 (following [C1]) the isomorphism is defined by sending Zkappa
(defined in theorem 3.15 to Eκ. Using the description of the action of the Hecke operators on
M †(Γ1(Np), κ)K in [C1], it follows easyly that Φκ thus defined is Hecke-equivariant.

3.2 The case of a general κ

In general not all κ ∈ W(K) are associated to a pair (χ, s) ∈ µ̂p−1 × mK as above. However
for a general κ ∈ W(K) there is s ∈ mK , r ∈ N and a character α of Z×p of finite order such
that for all t ∈ Z×p with v(〈t〉 − 1) > r we have κ(t) = α(t) · 〈t〉s. For r ∈ N as above let
w ∈ Q, 0 < w < p/(p + 1) be such that for every point of X1(Np)(w)(Cp) the corresponding
elliptic curve has a canonical subgroup of order r + 1. Then proposition 2.4, proposition 2.6
and corollary 2.9 can be redone using these canonical subgroups to providea a torsor F ′r,w on

X1(Np)(w) for the sheaf of groups Sr,w := Z×p
(
1 + pr+1−vOX1(Np)(w)

)
.

Moreover, if x = a · b is a section of Sr,w we denote by xκ := κ(a) · bs which is again a section

of OX1(Np)(w). We denote by O(κ)
X1(Np)(w) the sheaf OX1(Np)(w) with the action by the sheaf Sr,w

twisted by κ.
We define

Ωκ
w := HomSr,w

(
F ′r,w,O

(−κ)
X1(Np)(w)

)
.

This is a locally free OX1(Np)(w)-module on X1(Np)(w) of rank 1. We denote byM(Γ1(Np), κ) :=
H0(X1(Np)(w),Ωκ

w) and byM(Γ1(Np), κ)K := H0(X1(Np)(w),Ωκ
w,K).

Everething that was done for a weight κ associated to a pair (χ, s) as above can be redone for
an arbitrary weight κ, under the restriction that the degree of overconvergence w > 0 depends
on κ.

3.3 The sheaves Ωr,w

Let us fix an integer r > 0, let Wr ⊂ W be the respective affinoid as defined in section 1
and Ar = A(Wr) be the affinoid algebra of Wr. We have a continuous universal character
ψr : Z×p −→ A×r defined by: ψr(t)(κ) := κ(t), for t ∈ Z×p and κ ∈ Wr.

Let 0 < w < p/(p + 1) be a rational number such that for every point of X1(Np)(w) the
corresponding elliptic curve has a canonical subgroup of order r + 1.
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Now we consider the natural projection Wr × X1(Np)(w) −→ X1(Np)(w) and the inverse
images under it of the sheaf of groups Sr,w := Z×p (1 + pr+1−vOX1(Np)(w)) and of the Sr,w-torsor
F ′r,w on X1(Np)(w), which we denote by the same names.

Now we’d like to show that we have an action of Sr,w on OWr ⊗OX1(Np)(w). Let x = a · b be
a section of Sr,w and A⊗B a section of OWr ⊗OX1(Np)(w).

We define x · (A⊗B) as the map which sends κ ∈ Wr to(
x · (A⊗B)

)
(κ) := κ(a)A(κ) · bκB,

where bκ was defined in section 3.2. This is clearly analytic in κ therefore defines a section of
OWr ⊗OX1(Np)(w).

Now we define the sheaf

Ωr,w := HomSr,w

(
F ′r,w,OWr ⊗OX1(Np)(w)

)
.

As F ′r,s is an Sr,w-torsor it follows that Ωr,s is a locally free (in fact free) OWr⊗OX1(Np)(w))-module
of rank 1.

4 The sheaves Ωκ for Hilbert modular forms

Let F denote a totally real number field of degree g over Q with ring of integers OF and different
ideal DF . Fix an integer N ≥ 4, a prime p ≥ 3 and a rational numer 0 ≤ w ≤ 1/p and assume
that p is unramified in F and does not divide N . Define the weight space for this setting as
W(K) := Homcont

(
(OF ⊗Z Zp)

∗, K∗
)
.

Let M(OK , µN) be a toroidal compactification of the Hilbert modular scheme over OK clas-
sifying abelian schemes A → S of relative dimension g over OK , together with an emebdding
ι : OF ⊂ EndS(A), a closed immersion Ψ: µN ⊗D−1

F → A compatible with OF -actions and satis-
fying Rapoport condition that ωA/S is a locally free OF ⊗ZOS-module of rank 1. See [AG, §3] for
details. It is a smooth scheme over OK and it admits a universal semiabelian scheme with real
mulpiplication A. Let M(OK , µN)(w) be the formal scheme defining the strict neighborhood of
the ordinary locus of M(OK , µN)k of width pw. Then, the canonical subgroup HK exists in the
universal abelian scheme over the rigid analytic fiber M(OK , µN)(w)K .

Lemma 4.1. The group scheme HK is isomorphic to the constant group scheme OF/pOF over
a finite and ètale covering Z(w)K →M(OK , µN)(w)K.

Proof. We first consider the finite and étale cover Z ′ where HK becomes constant. We have to
prove that finite ètale locally over Z ′ such group is isomorphic fo OF/pOF . It suffices to prove
it for every point of Z ′. For points speciis is clear Let K ⊂ L be a finite extension and let F
be its residue field and consider an L-valued point x of Z ′. If x specializes to a cusp then the
canonical subgroup of the underlying abelian variety over L is µp⊗OF and the claim is clear. If
not, the pull-back Ax of A to the ring of integers of L is an abelian scheme. Then, Ax,K admits
a canonical subgroup Hx,K which is a constant group. In particular, it is a OF/pOF -module, of
dimension pg as Fp-vector space. We need to prove that it is a free OF/pOF -module. It suffices
to show that given a non-trivial element e of OF/pOF then e does not annihilate Hx,K . We let
Hx ⊂ Ax be the schematic closure of Hx,K in Ax. Its special fiber Hx,F coincides with the kernel
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of Frobenius on Ax,F. In particular, its module of invariant differentials coincide with ωAx,F/F
which is a free OF ⊗F-module so that e does not annihilate it. Then, e does not annihilate Hx,K

either.

Write Z(w) for the normalization of M(OK , µN)(w) in Z(w)K . Assuming that OK contains
a primitive p-th root of 1, it follows from 4.1 that also have that the cartier dual Cv

Kee is a
free OF/pOF -module of rank 1. Choose OF/pOF -generator e. It coincides with A∨[p]/D over
Z(w)K in the notations of 2.6. Since F0/p

1−vF0
∼=

(
A∨[p]/D

)
⊗ OZ(w)/p

1−vOZ(w) as OF ⊗Z
OZ(w)/p

1−vOZ(w)-modules, it follows that F0 is a locally free OF ⊗Z OZ(w)-module of rank 1.
Define F ′v as the inverse image of

(
A∨[p]/D

∖
{0} in F0. It then a torsor under the sheaf of

groups Sv :=
(
OF ⊗ Zp

)∗ · (1 + p1−vOF ⊗Z OZ(w)

)
.

Definition 4.2. We define, for every κ ∈ W(K) a sheaf of OZ(w)-modules on Z(w) by

Ωκ
v := HomS

(
F ′v,O

(−κ)
Z(w)

)
.

where O(−κ)
Z(w) is OZ(w) with action of S twisted by −κ.

Define Γ
(
Z(w),Ωκ

v

)
to be the Hilbert overconvergent modular forms of level Γ1(Np), weight

κ and degree of overconvergence pw.

We state several properties which are proven as in the elliptic case

(1) the sheaf Ωκ
v is a locally free OZ(w)-module of rank one;

(2) for w′ ≥ w we have a natural isomorphism ρv,v′ : f
∗
w,w′ (Ω

κ
v′)
∼= Ωκ

v′ of OZ(w′)-modules
which is the identity for w; = w and satisfies the usual cocycle condition for w′′ ≥ w′ ≥ w. See
3.4.

Note that M(OK , µN)(0) is the ordinary locus. Let M
(
OK , µNp∞

)
be the formal affine

scheme defined by the Igusa tower over M(OK , µN)(0): it classifies ordinary abelian schemes
with real multplication by cOF and a µNp∞ structure and it is Galois with group (OF ⊗ Zp)

∗

over M(OK , µN)(0). Let G be the Galois group of M
(
OK , µNp∞

)
over M

(
OK , µNp

)
. Following

[K2, §1.9], we define the p-adic modular forms à la Katz of level Γ1(Np) and weight κ to be the
space of eigenfunctions on M

(
OK , µNp∞

)
on which G acts via the character κ. Then, as in 3.12

one proves:

(3) Γ
(
Z(0),Ωκ

0

)
is isomorphic to the space of Katz’s p-adic modular forms of level Γ1(Np)

and weight κ.

Given fractional ideal A and B of OF and a notion of positivity on AB, one can construct
a Tate object Tate(A,B). It admits a canonical generator of the differentials and a canonical
µpN -level structure. Then,

(4) evaluation at the Tate object Tate(A,B) provides a q-expansion map

Γ
(
Z(w),Ωκ

v

)
−→ OK

[[
qα|α ∈ AB+ ∪ {0}

]]
.

5 Appendix: The map dlog

Congruence group schemes: Assume that K contains a p–th root of 1, let R be a p-adically
complete and separated flat OK-algebra which is an integral domain and let λ ∈ R such that
λp−1 ∈ pR.
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Let Gλ = Spec(Aλ), with Aλ = R[T ]/
(
Pλ(T )

)
, be the finite and flat group scheme over R as

in [AG, Def. 5.1]. Here, Pλ(T ) := (1+λT )p−1
λp and the group scheme structure is given as follows.

The comultpilication is T 7→ T ⊗ 1 + 1 ⊗ T + λT ⊗ T , the counit T 7→ 0, the coinverse by
T 7→ −T (1 + λT )−1. This makes sense since Aλ is p-adically complete and separated so that
1 + λT is a unit in Aλ.

Homomorphisms between congruence group schemes: If µ is ana element of R dividing λ the
Fp-vector space HomR(Gλ, Gµ) is of dimension 1 generated by the map ηλ,µ : Gλ → µp sending
Z 7→ 1 + λµ−1T ; see [AG, §5.3]. If ν ∈ R divides µ one has ην,µ ◦ ηλ,µ = ηλ,ν . In particular,
if µ is a unit then there is a canonical isomorphism Gµ

∼= µp by [AG, Ex. 5.2(b)] and we put
ηλ := ηλ,µ. It follows that HomR(Gλ, Gµ) = 0 if µ does not divide λ.

Relation to Oort-Tate theory: In terms of Oort–Tate theory Gλ corresponds to the group
scheme G(a,c) = Spec

(
R[Y ]/(Y p−aY )

)
where ac = p and c = c(λ) = λp−1(1−p)p−1w−1

p−1. There

is a canonical isomorphism G(a,c) ∼= Gλ sending T 7→
∑p−1

i=1 λ
i−1 Y i

wi
where w1, . . . , wp−1 are the

universal constants of Oort-Tate; see [AG, §5.4]. We remark for later purposes that a = pλ1−p

up to unit so that a = 0 modulo pλ1−p. Recall also that wi ≡ i! modulo p for i = 1, . . . , p− 1 so
that T 7→

∑p−1
i=1 λ

i−1 Y i

i!
modulo p. In particular,

1 + λT 7→
p−1∑
i=0

λi−1Y
i

i!

and at the level of differentials we have dT 7→
∑p−1

i=1 λ
i−1 Y i−1

(i−1)!
dY = βdY with β =

∑p−2
i=1 λ

i−1 Y i

i!
.

In particular, β = 1 modulo λY and (1+λT )−1dT 7→
(
1−λp−1Y p−1

)
dY modulo λp−1λY p = λpaY

which is a multiple of λp and hence is 0 modulo p.

Differentials: Since Pλ(T ) := (1+λT )p−1
λp the derivative of Pλ(T ) is pλ1−p(1 + λT )p−1 which is

a up to unit. Hence, we have ΩGλ/R
∼= λdT/aAλdT with a = 0 modulo pλ1−p. In this case, In

particular, ΩGλ/R is free of rank 1 as Aλ/(pλ
1−p)-module so that also the invariant differentials

ωGλ/R of Gλ is a free R/(pλ1−p)-module of rank 1. The image of the invariant differential of µp

via ηλ is then λ(1 + λT )−1dT i.e.,

dlog : G∨λ −→ ωGλ
, ηλ 7→ λ(1 + λT )−1.

Let p be a prime number ≥ 3. Let 0 ≤ w ≤ 1
p

be a rational number. Let K be a finite
extension of Qp with ring of integers OK and containing the p-roots of unity. We fix such a root
ζp so that over OK we have a canonical homomorphism of group schemes Z/pZ → µp, sending
1 7→ ζp, which is an isomorphism over K. Normalize the induced discrete valuation on K so
that p has valuation 1. Assume that there exists an element pw ∈ OK of normalized valuation
w. Let R be a normal and flat OK-algebra, which is an integral domain and it is p-adically
complete and separated. Let π : A −→ U := Spec(R) be an abelian scheme of relative dimension
g ≥ 1. Assume that the determinant ideal of the Frobenius ϕ : R1π∗(A1) −→ R1π∗(A1) contains
pw. Then, it follows by the main theorem [AG, Thm. 3.5] that A over UK admits a canonical
subgroup C. Let D ⊂ A[p]∨K

∼= A∨[p]K be the Cartier dual of A[p]K/C over UK . Then,
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Proposition 5.1. (1) The map dlog : A∨[p]K −→ ωA/R ⊗R R/pR has D as kernel.

(2) The cokernel of the R-linear extension A∨[p]K ⊗ R/pR −→ ωA/R ⊗R R/pR of dlog is

annihilated by p
w

p−1 .

Proof. To prove (1) it suffices to prove that for every S-valued point x of A∨[p], where S =
Spec(R′) and R′ is a finite normal extension of R, we have xK ∈ D(SK) if and only if xK ∈
Ker

(
dlog

)
. Replacing R′ with the completion at its prime ideals above p, we may assume that

R′ is a complete dvr. Passing to a faithfully flat extension we may further replace R′ with its
normalization R

′
in an algebraic closure of the fraction field of R′. Replace S with S := Spec(R

′
).

To prove (2) we remark that A∨[p]K ⊗ R/pR and ωA/R ⊗R R/pR are free R/pR-modules of
the same rank. Take the determinant of the R-linear extension of dlog and call it d ∈ R/pR.
Then, d annihilates the cokernel. We may assume that d ∈ R′/pR′ for some R ⊂ R′ finite and

normal and R′ ⊂ R. Since R′ is normal, to prove that d = αp
gw
p−1 for some α ∈ R′ it suffices

to show that this holds after localizing at the prime ideals of R′ over p. As before, passing to
a faithfully flat extension we may further replace R′ with its normalization R

′
in an algebraic

closure of the fraction field of R′.
As proven in [AG, prop. 13.5] the map dlog modulo p can also be defined in terms of torsors

and corresponds to the following map rmdLog : A∨(S) = H1
fppf(AS, µp) → ωAS/S/pωAS/S. A

µp-torsor over ASK
extends to a µp-torsor Y → AS is defined by giving a Zariski affine cover

Ui of AS and units ui in Γ(Ui,OUi
) so that the Y |Ui

is defined by the equation Zp
i − ui. Then,

rmdLog(Y ) is defined by u−1
i dui ∈ Γ(Ui,Ω

i
Ui/S)/(p) which one verifies defines a global section of

ωAS/S/pωES/S. Let λ ∈ R′ be an element of valuation 1−w
p−1

. It follows from [AG, Prop. 13.4] and

[AG, Prop. 12.1] that the kernel of rmdLog has dimension g and is isomorphic to H1
fppf(AS, Gλ).

Note that H1
fppf(AS, Gλ) ∼= HomS

(
G∨λ , A

∨
S) by Cartier duality [AG, §5.12] so that we get a map

Ψ: G∨,g
λ −→ A∨S which is a closed immersion after inverting p. Let D ⊂ A∨S be the schematic

closure of ΨK . Then, by [AG, Def. 12.4] it is the Cartier dual of AS/C. This concludes the
proof of (1).

(2) Consider on E = A∨S/D an increasing filtration by g finite and flat subgroup schemes
FiliE such that Ei = Fili+1E/FiliE is of order p. Such filtration exists over K with Ei,K

∼= Z/pZ
since EK

∼= (Z/pZ)g. One then defines Fil1E = E1 to be the schematic closure of E1,K in E and
this is a finite and flat subgroup scheme of E sing R′ is a dvr. One lets Ei+1 be the schematic
closure of Ei+1,K in E/Ei and one puts FiliE to be the inverse image of Ei+1 via the quotient
map E → E/Ei. In particular, Ei

∼= G∨λi
for some λi ∈ R. The invariant differentials ωGλi

of

Gλi
define a free rank 1 module over R

′
/
(
pλ1−p

i

)
.

It follows from [Fa] that D is the canonical subgroup of A∨ and that
∏g

i=1 λ
1−p
i divides pw.

Hence, each ωGλi
/(p1−w) is a free R

′
/p1−wR

′
-module. The image of the map dlog : G∨λi

⊗R′ −→
ωGλi

is generated by λi so that its cokernel is annihilated by λi. Since E∨ ⊂ AS is a closed

immersion, the invariant differentials ωE∨ of E∨ modulo p1−w are a quotient of the invariant
differentials of AS which is a free R

′
-module of rank g. Note that ωE∨/(p

1−w) ∼= ωAS
/(p1−w)

admits a filtration, with graded pieces ωE∨i
/(p1−w), compatible with the given filtration on E.

Due to the functoriality of dlog the map dlog : E ⊗ R′ −→ ωE∨/(p
1−w) preserves the filtrations

and we conclude that
∏g

i=1 λi annihilates its image. In particular, p
w

p−1 annihilates the cokernel
as claimed.
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We now pass to the case of elliptic curves. Let N be an integer prime to p. Let π : E →
Y1(N, p) be the universal relative elliptic curve where Y1(N, p) is the modular curve associated to

the congruence subgroup Γ1(N)∩Γ0(p). Write E1 for the mod p reduction of E . Let F : E1 → E (p)
1

be the Frobenius isogeny and let

ϕ : R1π∗OE1 −→ R1π∗OE1

be the induced σ-linear morphism on cohomology. This defines a modular form H of weight
p − 1 on the mod p-reduction of Y1(N, p) called the Hasse invariant. It coincides with the
modular form Ep−1 modulo p for p ≥ 5. Let U(w) be the formal subscheme of Y1(N, p) defined
by |H| ≤ w. This makes sense: locally one lifts H so that |H| ≤ w makes sense in unequal
characteristic and then one shows that the formals scheme does not depend on the choice of the
lift. Let Z(w) be the normalization of the inverse image of U(w) in the p-adic formal scheme
associated to Y1(Np). Its rigid analytic geometric fibre is finite and étale of degree p − 1 over
U(w)Qp . Recall that we have a map

d log : E [p] −→ ωE1

defined as follows. Consider a formal scheme S over U(w) and an S-valued point x of E [p]. Via
the canonical isomorphism E [p] ∼= E [p]∨ it defines an S-valued point of E [p]∨ i. e., a group scheme
homomorphism fx : E [p]S → Gm,S. Then, the d log(x) is the invariant differential on E1 given
by the inverse image via fx of the standard invariant differential Z−1dZ on Gm,S. In general, a
similar construction provides for every finite and locally free group scheme G over a base S a
map d log : G∨ → ωG/S where ωG/S is the sheaf of invariant differentials of G.

Proposition 5.2. Over Z(w) we have an exact sequence

0 −→ C −→ E [p] d log−→ ωE1 ,

where C is the canonical subgroup of E [p]∨. Moreover,

1.) H admits a unique p−1-root H
1

p−1 on Z(w)1 which extends at the cusps and has q-expansion

1. If p ≥ 5 then H
1

p−1 lifts uniquely to a p − 1-th root E
1

p−1

p−1 of Ep−1 on Z(w) i. e., a weight 1
modular form whose p− 1-th power is Ep−1;

2.) E [p]/C admits a canonical Z(w)-section, which we denote by γ and which is a generator

over Z(w)Qp. Modulo p1−w the image of γ via d log is the weight 1 modular form H
1

p−1 . There

is α ∈ OZ(w)1 such that α ·H
1

p−1 = p
w

p−1 .

Proof. The first statement follwos from 5.1. We simply write Z for Z(w).
(1) Choose a basis eR of R1π∗OE on an open formal subscheme U = Spf(R) ⊂ Z and

denote by A ∈ R an element such that F (eR) = AeR modulo p. For p ≥ 5 we take A so that
Ep−1(E , e∨R) = Ae∨,p−1

R . Here we identify the element ΩR := e∨R with a generator of the invariant
differentials ωU via the isomorphism R1π∗O∨E ∼= ωU given by Serre’s duality. We may then write
ϕ−pw : R1π∗OE1−w −→ R1π∗OE1 on U as the map S1 → S1 sending X → HXp−pwX. For every
ring extension R ⊂ R′ we let ZR′(A) be the set of solutions of the equation X → AXp− pwX in
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R′. We let ZR′,1(A) and ZR′,1−w(A) be the solutions in R′1 and R′1−w. Write red1,1−w

(
ZR′,1(A)

)
for the image of ZR′,1(A) in ZR′,1−w(A). It coincides with the set of solutions of R′1−w 3 X 7→
AXp − pwX ∈ R′1. Then, [AG, Lemma 9.5] asserts that if R′ is normal, noetherian, p-torsion
free and p-adically complete and separated the natural map

ZR′(A) −→ red1,1−w

(
ZR′,1(A)

)
is a bijection. By [AG, Thm. 8.1 & Def. 12.4] we have an isomorphism

E [p]/C(R′K) ∼= C∨(R′K) ∼= red1,1−w

(
ZR′,1(A)

)
.

Thus, set ZR′(A) is an Fp-vectors space of dimension ≤ 1 and it is of dimension 1 if and only if
C∨(R′K) becomes constant over R′K .

Since by construction the canonical subgroup exists and has a generator c over RK and since
by assumption µp,K

∼= Z/pZ, then also C∨(R′K) admits a canonical generator c∨. Then, ZR(A)
has dimension 1 as Fp-vector space and the image of c∨ defines a basis element. Such image is

of the form p
w

p−1 δ−1 where δ is a given p− 1–root of A in R. This already implies that H admits
a p− 1-root on R1 defined by δ and it also implies the last claim in (2).

Assume that U is contained in the ordinary locus of Z(w). Then, the canonical subgroup
is canonically isomorphic to µp and we can take the invariant differential of µp as a generator
of ωcU modulo p and, hence, of R1π∗OE1 . With respect to this basis H is 1 and, hence, δ = 1;
see [AG, Prop. 3.4]. Such construction, applied to the Tate curve, implies the claim on the
q-expansion.

Assume that p ≥ 5. Two different local trivializations of ωE on U differ by a unit u. Thus,
we get two different functions A and B such that B = up−1A. In particular, multiplication by
u defines a bijection from red1,1−w

(
ZR′,1(A)

)
to red1,1−w

(
ZR′,1(B)

)
and the root p

w
p−1 δ−1

A is sent

to p
w

p−1 δ−1
B · u. This implies that over Z(w) the modular form pwE−1

p−1, and hence the modular
form Ep−1, admits a globally defined p− 1-root as wanted.

(2) Choose U , eR and δ as in the proof of (1). Let Gδ be the group scheme introduced at the
beginninig of this section. The canonical subgroup of E [p] is isomorphic to the subgroup scheme
G(−pδ1−p,−δp−1) by [C, Thm. 2.1]. It is denoted by B−u with u = pδ1−p in loc. cit. using the relation
between Coleman’s approach and Oort-Tate description given the proof of [C, Prop. 1.1]. Such
group scheme is isomorphic to G(a,c) modulo p with a and c as at the beginning of the section.
We remark that in this case a = p1−w(pwδ(1 − p) up to unit so that a ≡ 0 modulo p1−w. By
loc. cit. the immersion h : G(a,c) ⊂ E has the property that h∗(ΩR) = (1− δp−1Y p−1)dY modulo
p. The latter is equivalent to (1− δp−1Y p−1)dY and hence to (1 + δT )−1dT modulo p.

By the first claim of the proposition and identifying E [p] with E [p]∨ via the principal polar-
ization on E , the map d log factors via the map E [p]∨ → G∨δ and by functoriality of d log it is
compatible with the map d log for Gδ. Moreover, the morphism ηδ : Gδ → µp introduced at the
beginning of the section defines a canonical section of E [p]∨/C ∼= G∨δ which is a generator over
Qp. This defines the section γ of E [p]/C claimed in (2). Denote by U1−w and E1−w the reduction
of U and E modulo p1−wOK . Consider the following commutative diagram

E [p]∨ d log−→ ωE1−w/U1−wy y
G∨δ

d log−→ ωGδ/U1−w .
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SinceGδ ⊂ E [p] is a closed immersion, the natural map ωE1−w/U1−w → ωGδ/U1−w is surjective. Since
ωGδ/U1−w is free as OU1−w-module, such map is an isomorphism. The map d log : G∨δ → ωGδ/U1−w

sends ηδ to the pull–back of the invariant differential of µp in ωGδ/U1 which is δ(1+δT )−1dT i. e.,

δΩR via the isomorphism ωE1−w/U1−w
∼= ωGδ/U1−w . Hence, d log(ηδ) is equal to H

1
p−1 modulo p1−w

concluding the proof of (2).

In [C1, Lemma 9.2] Coleman introduces a weight 1 overconvergent modular form Dp of level
Γ1(Np) whose p − 1-power is Ep−1 and, from the proof of the Lemma, it has q-expansion 1

modulo p. These two properties characterize such modular form. Our modular form E
1

p−1

p−1 is a
p− 1-root of Ep−1 and it has q-expansion 1 modulo p by 5.2. We deduce:

Corollary 5.3. The overconvergent modular form defined by E
1

p−1

p−1 over Z(w)Qp is the weight 1
overconvergent modular form Dp of level Γ1(Np) introduced by Coleman.

In particular, our approach can be seen as a refinement of [C1, Lemma 9.2] providing a formal
model for Dp.
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