Rare events and Applications (Winter 2019): Assignment 2 Due date: February 21

Some of the questions below are from the book "Large Deviations" by Frank den Hollander.

1. Let

$$I_{\rho}(\nu) = \int_{S} d\nu(x) \log(\frac{d\nu}{d\rho})(x)$$

where $\nu \ll \rho \in \mathcal{M}_1(S)$. Show that $I_{\rho}(\nu) \ge 0$ with $I_{\rho}(\nu) = 0$ iff $\nu = \rho$.

- 2. (a) Give an example of ν, ρ such that $\nu \ll \rho$ and $\rho \ll \nu$ but $H(\nu|\rho) \neq H(\rho|\nu)$.
 - (b) Show that the function $d_H = \frac{1}{2}(H(\nu|\rho) + H(\rho|\nu))$ is a metric: $d(x, y) = d(y, x), d(x, y) \ge 0, d(x, x) = 0, d(x, z) \le d(x, y) + d(y, z)$ on the subset of measures in $\mathcal{M}_1(S)$ that are absolutely continuous with respect to each other.
- 3. Let $Y_1, Y_2, \ldots, Y_n \sim \rho$ be i.i.d. random variables on $\Gamma = \{1, 2\}$ with $\rho(1) = 1 \rho(2) = 1 p$. Let $\nu \in \mathcal{M}_1(\Gamma \times \Gamma)$ with $\bar{\nu}(j) = \sum_{i=1}^r \nu(i, j) = \sum_{i=1}^r \nu(j, i)$. Calculate the function $I_{\rho,2}(\nu)$ needed for the large deviations of the empirical measure on pairs $(Y_1, Y_2), (Y_2, Y_3), \ldots$

$$I_{\rho,2}(\nu) = \sum_{(i,j)=(1,1)}^{(r,r)} \nu(i,j) \log\left(\frac{\nu(i,j)}{\bar{\nu}(i)\rho(j)}\right)$$

(**Hint:** express ν in terms of two parameters $a, b \in [0, 1]$)

- 4. Consider $\Gamma = \{1, 2, ..., r\}$
 - (a) Show that convergence in $d_{TV}(\nu_n, \nu) \to 0$ is equivalent to pointwise convergence $\nu_n(i) \to \nu(i) \,\forall i \in \Gamma$, and that it is also equivalent to weak convergence: $E_{\nu_n}[f] \to E_{\nu}[f] \,\forall f$ bounded on Γ .
 - (b) Consider the set $A_k = \{\nu \in \mathcal{M}_1(\Gamma) : \operatorname{support}(\nu) \subset \{1, \ldots, k\}\}$. Show that A_k^c is an open set.
 - (c) Let $\rho_k \sim \text{Unif}(\{1, \dots, k\})$. Find ν^* which attains $\inf\{H(\nu|\rho) : \nu \in A_k\}$.
 - (d) Consider X_1, X_2, \ldots be i.i.d. $\sim \rho$ with $L_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ the empirical distribution of *n*-sample. Calculate

$$\lim_{n \to \infty} \frac{1}{n} \log P(L_n \in A_k)$$

5. Let $\rho \sim \mathcal{N}(0, \sigma^2)$. Show that

$$\inf\left\{H(\nu|\rho):\nu\in\mathcal{M}_1(\mathbb{R}),\int xd\nu(x)=\mu\right\}=\frac{\mu^2}{2}$$

Use the Contraction principle to re-verify Cramer's theorem for $X_1, \ldots, X_n \sim \rho$ i.i.d.