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ASYMPTOTIC GENEALOGY OF A CRITICAL
BRANCHING PROCESS

BY LEA POPOVIC

University of California, Berkeley

Consider a continuous-time binary branching process conditioned to
have population sizen at some timet , and with a chancep for recording
each extinct individual in the process. Within the family tree of this process,
we consider the smallest subtree containing the genealogy of the extant
individuals together with the genealogy of the recorded extinct individuals.
We introduce a novel representation of such subtrees in terms of a point-
process, and provide asymptotic results on the distribution of this point-
process as the number of extant individuals increases. We motivate the
study within the scope of a coherent analysis for an a priori model for
macroevolution.

1. Introduction. The use of stochastic models in the theory of macroevolu-
tion (origin and extinction of species) has been common practice for many years
now. Stochastic models have been used to recreate phylogenetic trees of extant
taxa from molecular data, and to recreate the time series of the past number of taxa
from the fossil record. However, only a few attempts have been made to make the
two analyses consistent with each other. Instead of studying data-motivated mod-
els (which are scientifically more realistic for specific applications), the purpose
of this paper is to study a purely random model that can accommodate such a co-
herent analysis. We study a mathematically fundamental stochastic model which
allows for inclusion of both the extant and the fossil types of data in one analysis.

A significant interest in evolutionary biology is devoted to reconstructing
phylogenies based on available data on the extant species (of molecular or other
type). The assumption is that in the distant past there was a common ancestor
from which the extant species evolved according to some (stochastic) evolutionary
model. One then tries to find the ancestral history (genealogy) of the extant species
which optimizes some “best fit” criterion. Using shapes of such phylogenetic trees
one then hopes to make some inference on the diversification properties of the
evolutionary process. We stress here that the number of extant species is given,
although the time from the origin of the evolutionary process to the present often is
inferred from the data as well. On the other hand, inference of diversification rates
based on fossil data mostly makes use of time series analyses of fossil counts.
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Once again one assumes an underlying (stochastic) evolutionary process, then
tries to use fluctuations in the time series of fossil counts to make inferences
on the diversification rates of the process. For the most part, however, only a
small fraction of the species are retained within the fossil record, with variation
in sampling rates over time. It is often hard to estimate precisely the proportion of
species retained as fossils, although its variability may be reasonably captured by
considering the sampling rate to be random as well.

The motivation for this paper was to consider a stochastic process which would
incorporate both sets of data within one evolutionary model, and to present results
describing the genealogy of the fossil record as well. Our basic premises are
the given information on the number of extant species, the amount of time from the
origin of the process to the present and the chance of species to be retained in the
fossil record. It is subsequently possible to randomize the amount of time from
the origin to the present day, as well as the chance of being retained in the fossil
record. Details of such randomization under a reasonable choice of priors can be
found in [17].

The model we propose is the continuous-time critical branching process. The
reasons for our choice are the following. If one is to consider a model in which
extinctions and speciations are random without systematic tendencies for the
number of species to increase or decrease, then for a branching process this
translates into the criticality of the process (the average number of offspring
of each individual is 1). Such a model corresponds to one general view in
evolutionary biology that (except for mass extinctions and their aftermath) the
overall number of species does not have exponential growth nor an exponential
decrease.

The fundamental critical branching processes previously employed in evolu-
tionary models have drawbacks that exclude their use in our proposed study. The
basic evolution model is the Yule process [20], the elementary continuous-time
pure birth process [the process starts with one individual, each individual gives
birth to offspring according to a Poisson(rate 1) process]. One can clearly not em-
ploy this model, as it a priori does not involve the extinction of species, hence does
not allow for inclusion of the fossil record. The next candidate model, which in-
cludes the extinction of individuals, is the basic neutral model used in population
genetics. The Moran model [7] is the process of uniformly random speciations
and extinctions of individuals in a population of a fixed size [the total number of
individuals is a fixed number, each individual lives for an Exponential(mean 1)
lifetime, at the end of which it is replaced by an offspring chosen uniformly at
random from the total population including itself]. One can consider this process
as having persisted from a distant past to the present, giving implicitly a genealog-
ical tree of the extant individuals. Asymptotically in the total population size (with
suitable rescaling) this genealogical process (backward in time) is Kingman’s co-
alescent model. Although it is possible to make modifications of this model to
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allow for nonconstant population size [11], this unfortunately requires an a priori
assumption on the evolution of the total population size in time.

We are interested in considering a group of species that have some common
ancestor at their origin. This corresponds to the practice in evolutionary biology
of considering monophyletic groups. In this sense, the critical continuous-time
binary branching process, in which individuals live for an Exponential(mean 1)
time during which they produce offspring at Poisson(rate 1) times, is the natural
basic model for the given purpose. We want to study the genealogical structure of
the process conditioned on its population size at a given timet . By genealogical
structure we mean a particular subtree of the branching process family tree.
We consider all the extant individuals at timet , and the subset of the extinct
individuals each having independent chancep of being sampled into the record.
The genealogical subtree is the smallest one containing all the common ancestors
of the extant individuals and all the sampled extinct individuals. We introduce
a point-process representation of this genealogical subtree, with a convenient
graphical interpretation, and derive its law. Our main result is the asymptotic
behavior of such point-processes and their connection to a conditioned Brownian
excursion.

The relationship between random trees and Brownian excursions has been much
explored in the literature. We note only a small selection that is directly relevant
to the work in this paper. Neveu and Pitman [14, 15] and Le Gall [12] noted
the appearance of continuous-time critical branching processes embedded in the
structure of a Brownian excursion. Abraham [1] and Le Gall [13] considered the
construction of an infinite tree within a Brownian excursion, which is in some
sense a limit of the trees from the work of Neveu and Pitman. The convergence
of critical branching processes conditioned on total population size to a canonical
tree within a Brownian excursion (thecontinuum random tree) was introduced by
Aldous [3]. We state a connection of the asymptotic results in this paper with the
above-mentioned results.

Some aspects of the genealogy of critical Galton–Watson trees conditioned on
nonextinction have been studied by Durrett [6], without the use of random trees.
It has also been studied within the context of superprocesses (see, e.g., [13]). We
further note that, in the biological literature, models of evolution have been made
on each level of taxonomy (species, genera etc.) separately, while it is certainly
desirable to insure hierarchical consistency between them. A natural way to extend
our analysis to the next taxonomic level is to superimpose on the branching
process a random process of marks distinguishing some species as originators of
a new higher taxon. In collaboration with Aldous, we have pursued this study
in [4], as part of a larger project on coherent and consistent stochastic models for
macroevolution.

As a last remark, we note that, as implied by general convergence results
on critical branching processes ([3] and many others), the same asymptotic
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genealogical process obtained here should invariably hold in general for any
critical branching process with finite offspring variance.

The paper is structured in two parts. In Section 2 we give a precise definition
of the genealogical point-process representing the common ancestry of the extant
individuals and provide its exact law and asymptotic behavior (Theorem 5). Then,
in Section 3 we give the definition of the corresponding genealogical point-process
that includes the sampled extinct individuals as well, and we provide its exact law
and asymptotic behavior (Theorem 9).

2. Genealogy of extant individuals. Let T be a continuous-time critical
branching process, with initial population size 1. In such a process each individual
has an Exponential(rate 1) lifetime, in the course of which it gives birth to new
individuals at Poisson(rate 1) times, with all the individuals living and reproducing
independently of each other. LetTt,n be the processT conditioned to have
population sizen at time t . We shall use the same notation (T andTt,n) for the
random trees with edge-lengths that are the family trees of these processes.

We depict these family trees as rooted planar trees with the following
conventions. Each individual is represented with a set of edges whose total length
is equal to that individual’s lifetime. Each birth time of an offspring corresponds
to a branch-point in the parent’s edge, with the total length of the parent’s edge
until the branch-point equal to the parent’s age at this time. The new individual is
then represented by the edge on the right, while the parent continues in the edge on
the left. Such trees are identified by their shape and by the collection of the birth
times and lifetimes of individuals. We shall label the vertices in the tree in a depth-
first search manner. An example of a random tree realization ofTt,n is shown in
Figure 1(a).

REMARK 1. The random treeT we defined is almost the same as the family
tree of a continuous-time critical binary-branching Galton–Watson process. The
difference between the two is only in the identities of the individuals. If, in the
Galton–Watson process, at each branching event with two offspring we were to
impose the identification of the left offspring with its parent, the resulting random
tree would be the same as the family tree of our branching processT .

Let CT be the contour process induced by the random treeT . The contour
process of a rooted planar tree is a continuous function giving the distance from
the root of a unit-speed depth-first search of the tree. Such a process starts at the
root of the tree, traverses each edge of the tree once upward and once downward
following the depth-first search order of the vertices and ends back at the root of
the tree. The contour process consists of line segments of slope+1 (the rises) and
line segments of slope−1 (the falls). The unit speed of the traversal insures that
the height levels in the process are equivalent to distances from the root in the tree,
in other words to the times in the branching process. The contour process induced
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FIG. 1. (a)A realization of the tree Tt,n whose population at time t is n = 5; the leaves are labeled
in depth-first search manner. (b) The contour CTt,n

process of the tree Tt,n; each local maximum
of CTt,n

corresponds to the height of a leaf of Tt,n.

by the random treeTt,n depicted in Figure 1(a) isCTt,n shown in Figure 1(b). For
a formal definition of planar trees with edge lengths, contour processes and their
many useful properties one can consult the recent lecture notes of Pitman ([16],
Section 6.1).

Let the genealogy of extant individuals at timet be defined as the smallest
subtree of the family tree which contains all the edges representing the ancestry
of the extant individuals. The genealogy of extant individuals att in Tt,n is thus
an n-leaf tree, which we denote byG(Tt,n). Figure 2(a) shows the genealogical
subtree of the tree from Figure 1(a). We now introduce a novel point-process
representation of this genealogical treeG(Tt,n). Thus we get an object that is much
simpler to analyze and gives much clearer asymptotic results than if made in the
original space of trees with edge-lengths.

Informally, think of forming this point-process by taking the heights of the
branching points of the genealogical treeG(Tt,n) in the order they have as vertices
in the tree. For convenience (in considering asymptotics witht increasing) we keep
track of the heights of the branching points in terms of their distances from levelt .
The vertical coordinate of each branching point is thus its distance below levelt ,
while its horizontal coordinate is just its index. The point-process representation
of G(Tt,n) from Figure 2(a) is shown in Figure 2(b). Formally, letai,1 ≤ i ≤ n−1,
be the times (distance to the root) of branch-points in the treeG(Tt,n), indexed in
order induced from the depth-first search of the vertices inTt,n, let ti = t − ai be
their distance below levelt and let�i = i.
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FIG. 2. (a)The genealogical tree G(Tt,n) of the extant individuals at time t . (b) The point-process
�t,n representation of G(Tt,n) [the dotted lines show the simple reconstruction of G(Tt,n) from its
point-process].

DEFINITION 2. Thegenealogical point-process �t,n is the random finite set

�t,n = {(�i, ti) : 1 ≤ i ≤ n − 1, 0 < ti < t}.(1)

For practical purposes it is most useful to exploit the bijection between a
random tree and its contour process. We can obtain the point-process�t,n

equivalently from the contour processCTt,n as follows. Theith individual extant
at t corresponds to the pair(Ui,Di): of the ith up-crossing timeUi of level t
by the contour processCTt,n and of theith down-crossing timeDi of level t .
A precise definition ofUi andDi will be given by (3) and (4) in the proof of
Lemma 3. The branch-pointsai,1 ≤ i ≤ n − 1, of G(Tt,n) then correspond to the
levels of lowest local minima of the excursions ofCTt,n below levelt , in other
wordsai = inf{CTt,n (u) :Di < u < Ui+1}.

We next use this observation together with the description of the law ofCTt,n

to obtain the law of�t,n. We first recall the result of Neveu, Pitman and Le Gall,
regarding the law of the contour processCT of an unconditioned random treeT
(one can consult either [12] or [14] for its proof).

LEMMA 1. In the contour process CT of a critical branching process T the
sequence of rises and falls (up to the last fall) has the same distribution as a
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sequence of independent Exponential(rate1) variables stopped one step before the
sum of successive rises and falls becomes negative (the last fall is then set to equal
this sum).

The following corollary is an immediate consequence of Lemma 1 and the
memoryless property of the exponential distribution.

COROLLARY 2. For the contour process CT the process XT = (CT ,

slope[CT ]) is a time-homogeneous strong Markov process on R
+ × {+1,−1}

stopped when it first reaches (0,−1).

The law of the genealogical point-process�t,n can now easily be derived
using some standard excursion theory of Markov processes. Note that the contour
process of a whole class of binary branching processes can be shown to be a time-
homogeneous Markov process as well (see [9]). In the following lemma we show
that the distances of then − 1 branching points below levelt are independent and
identically distributed, with the same law as that of the height of a random treeT
conditioned on its height being less thant .

LEMMA 3. For any fixed t > 0, the random set �t,n is a simple point-process
on {1, . . . , n − 1} × (0, t) with intensity measure

νt,n({i} × dτ) = dτ

(1+ τ )2

1+ t

t
.(2)

In other words, ti , 1≤ i ≤ n − 1, are i.i.d. variables on (0, t) with the law (2).

PROOF. In short the proof relies on the following. The contour processCT

of an unconditioned treeT is, by the previous corollary, a Markov process
considered until a certain stopping time. Hence, its excursions below some levelt

are independent and identically distributed. Conditioning of the treeTt,n translates
simply in terms of its contour process, into conditioning this Markov process to
have exactlyn − 1 excursions belowt until this stopping time. Further, for the law
of these excursions it will follow, by the sign invariance of the law ofCT , that their
law is the same as that of a copy ofCT conditioned to have a height less thant .

Consider the Markov processXT = (CT ,slope[CT ]) until the first hitting time
U(0,−1) = inf{u ≥ 0 :XT (u) = (0,−1)}, and consider its excursions from the point
(t,+1) using the distribution ofCT given by Lemma 1. Fori ≥ 1 let Ui be the
times of the up-crossings of levelt by CT ,

U0 = 0, Ui = inf{u > Ui−1 :XT (u) = (t,+1)}, i ≥ 1.(3)

ClearlyP(t,+1)[inf{u > 0 :XT (u) = (t,+1)} > 0] = 1; hence the set of all visits to
(t,+1) at times{Ui, i ≥ 1} is discrete. The excursions ofXT from levelt are, for
i ≥ 1,

ei(u) =
{

XT (Ui + u), for u ∈ [0,Ui+1 − Ui),

(0,+1), else.
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The number of visits in an interval[0, u] is

�(0) = 0, �(u) = sup{i > 0 :u > Ui}, u > 0,

and the total number prior toU(0,−1) isL = sup{i ≥ 0 :U(0,−1) > Ui} = �(U(0,−1)).
If n is theP(t,+1)-law of ei , and if E<t is the set of excursions from(t,+1) that
return to(t,+1) without reaching(0,−1), andE>t the set of all others, then it is
clear that (e.g., [19],2, Section VI.50) the following hold:

(a) P(t,+1)[L ≥ i] = [n(E<t )]i−1, i ≥ 1, ande1, e2, . . . are independent;
(b) given thatL ≥ i, the law ofe1, e2, . . . , ei−1 is n(· ∩ E<t)/n(E<t );
(c) given thatL = i, the law ofei is n(· ∩ E>t )/n(E>t ).

This makes{(�(Ui), ei), 1 ≤ i ≤ L − 1} a simple point-process [note that
�(Ui) = i, and�(∞) = L], with the number of points having a Geometric(n(E>t))
law, and with eachei having the lawn(· ∩ E<t )/n(E<t ).

This observation is particularly convenient for analyzing the law ofCTt,n . Since
CTt,n is justCT conditioned onL = n, then − 1 excursions ofCTt,n below t are
independent identically distributed with the lawn(·∩E<t)/n(E<t ). We next derive
the law of their depthai measured as distance from levelt by ti = t − ai .

For each up-crossing timeUi of level t , we have a down-crossing time

Di = inf{u > Ui :XT (u) = (t,−1)}, i ≥ 1.(4)

For the values ofai , i ≥ 1, we are only interested in the part of the excursions from
(t,+1) below levelt ,

e<t
i = ei(Di + u), u ∈ [0,Ui+1 − Di) and e<t

i (u) = (0,+1) else.

We note that the shift and reflection invariance of the transition function ofCT ,
as well as its strong Markov property, applied to the lawn for e<t

i imply that the
law of e+

i = t − e<t
i is the same as the law ofXT conditioned to return to(0,−1)

before reaching(t,+1). Consequently the law oft − inf(e<t
i ) = sup(e+

i ) is the
same law as that of sup(CT ) conditioned to be less thant .

To explicitly express the law of sup(CT ) we now recall classical results for
the branching processT (e.g., [8], Section XVII.10.11), by which the law of the
population sizeN(t) of T at timet is given by

P[N(t) = 0] = t

1+ t
; P[N(t) = k] = tk−1

(1+ t)k+1 for k ≥ 1.(5)

Hence

P[sup(CT ) > t] = P[N(t) > 0] = 1

1+ t
for t ≥ 0.(6)

Now for CTt,n and for each 1≤ i ≤ n − 1 we have thatai = inf(e<t
i ), and thee<t

i
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are independent withe<t
i ∼ n(· ∩E<t)/n(E<t ); hence eachti = t − ai has the law

P[ti ∈ dτ ] = P[sup(CT ) ∈ dτ |sup(CT ) < t]
(7)

= dτ

(1+ τ )2

1+ t

t
for 0 ≤ τ ≤ t. �

Asymptotics for�t,n could now be established with a routine calculation.
Instead of considering this result in isolation, it is far more natural to view
it as part of the larger picture connecting critical branching processes and
Brownian excursions. Let us recall the asymptotic results for critical Galton–
Watson processes conditioned on a “large” total population size. A result of
Aldous ([3], Theorem 23) says that its contour process (when appropriately
rescaled) converges, as the total population size increases, to a Brownian excursion
(doubled in height) conditioned to be of length 1. Note that, ifNtot is the total
population size of acritical Galton–Watson process, andN(tn) its population size
at some given timetn, then the events{Ntot = n} and{N(tn) = n|N(tn) > 0} are
both events of “small” probabilities. The first has asymptotic chancecn−3/2 as
n → ∞, and for{tn}n≥1 such thattn/n → t asn → ∞ the second has asymptotic
chancec(t)n−1 [3]. While the total populationNtot size corresponds to the total
length of the contour process, the population sizeN(tn) at a particular timetn
corresponds to the occupation time of the contour process at leveltn. Hence, it
is natural to expect that the contour process of a critical Galton–Watson process
conditioned on a “large” population at timetn (when appropriately rescaled)
converges, whentn/n → t as n → ∞, to a Brownian excursion conditioned to
have local time 1 at levelt .

We will show the following. Consider a Brownian excursion conditioned to have
local time 1 at levelt , as a “contour process” of an infinite tree (in the sense of
the bijection between continuous functions and trees established in [3]). Consider
defining a “genealogical” point-process from this Brownian excursion, using the
depths of its excursions below levelt , in the same manner as used in defining�t,n

from the contour processCTt,n , except that the excursions are now indexed by the
amount of local time at levelt at their beginning. The state-space of such a point-
process can be simply described, and we show that it has quite a simple law as well.
It is then easy to show that this point-process is precisely the asymptotic process
of appropriately rescaled processes�tn,n asn → ∞.

We construct a point-process from a Brownian excursion conditioned to have
local time 1 at levelt , in the same manner in which�t,n was constructed from the
contour processCTt,n . LetB(u), u ≥ 0, be a Brownian excursion. For a fixedt > 0,
let �t(u), u ≥ 0, be its local time at levelt up to timeu with the normalization of
local time as one-half the occupation density relative to Lebesgue measure (the
normalization choice is analogous to the upcrossings-only count for the contour
processCT ). Let it (�), � ≥ 0, be the inverse process of�t , in other wordsit (�) =
inf{u > 0 :�t(u) > �}. Let Bt,1(u), u ≥ 0, then be the excursionB conditioned
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to have total local time�t equal to 1, where�t = �t(∞) is the total local time
at t . Consider excursionse<t

� of Bt,1 below levelt indexed by the amount of local
time � at the timeit (�−) of their beginning. For each such excursion leta� be its
infimum, and lett� be the depth of the excursion measured from levelt , t� = t −a�.
Itô’s excursion theory then insures that the process{(�, t�) : it (�−) �= it (�)} is well
defined.

DEFINITION 3. Thecontinuum genealogical point-process πt,1 is the random
countably infinite set

πt,1 = {(�, t�) : it (�
−) �= it (�)}.(8)

REMARK 4. The name of the process will be justified by establishing it as the
limit of genealogical point-processes.

For the state-space of the continuum genealogical process we introduce the
notion of a nice point-process ([3], Section 2.8). Anice point-process on
[0,1] × (0,∞) is a countably infinite set of points such that the following hold:

1. for anyδ > 0, [0,1] × [δ,∞) contains only finitely many points;
2. for any 0≤ x < y ≤ 1, δ > 0, [x, y] × (0, δ) contains at least one point.

We next show that the state-space forπt,1 is the set of nice point-processes,
and we establish the law of this process using standard results of Levy, Itô and
Williams on excursion theory.

LEMMA 4. The random set πt,1 is a Poisson point-process on [0,1] × (0, t)

with intensity measure

ν(d� × dτ) = d�
dτ

τ2 .(9)

In particular, the random set πt,1 is a.s. a nice point-process.

PROOF. The crux of the proof lies in the following observations. An
unconditioned Brownian excursionB observed from the first time it reaches levelt

is just t—a standard Brownian motion observed until the first time it reachest .
The excursions ofB below levelt are thus the positive excursions of the Brownian
motion. By a standard result, the process of excursions of Brownian motion from 0,
indexed by the amount of local time at 0 at the time of their beginning, is a Poisson
point-process with intensity measured� × n, wheren is Itô’s excursion measure.
One can show that the condition onB to have local time 1 at levelt is equivalent
to the condition that the shifted Brownian motion has all its excursions until local
time 1 of height lower thant and has one excursion at local time 1 higher thant .
This then, by the independence properties of Poisson processes, allows for a simple



2130 L. POPOVIC

description of the point-process of the depths of excursions belowt of Bt,1 as a
Poisson process itself, except restricted to the set[0,1] × (0, t).

Consider the path of an (unconditioned) Brownian excursionB after the first
hitting time oft , Ut = inf{u ≥ 0 :B(u) = t}, shifted and reflected about theu-axis

β(u) = t − B(Ut + u) for u ≥ 0.(10)

Let �
β
0(u), u ≥ 0, be the local time ofβ at level 0 up to timeu, and

let i
β
0 (�), � ≥ 0, be the inverse process of this local time, in other words

i
β
0 (�) = inf{u > 0 :�β

0(u) > �}. Then the processβ(u), u ≥ 0, is a standard

Brownian motion stopped at the first hitting time oft , U
β
t = inf{u ≥ 0 :β(u) = t}.

Next, the excursions ofβ from 0 are (with a change of sign) precisely the
excursions ofB from t , and the local time process�β

0 of β is equivalent to the
local time process�t of B. We are only interested in the excursions ofB below t ,
which are the positive excursions ofβ indexed by� such thatiβ0 (�−) �= i

β
0 (�) and

sup{β(u) : iβ0 (�−) ≤ u ≤ i
β
0 (�)} > 0,

e+
� = β

(
i
β
0 (�−) + u

)
, u ∈ [

0, i
β
0 (�) − i

β
0 (�−)

)
and e+

� (u) = 0 else.

Note that we thus have that the infimum of an excursion ofB belowt to be simply
inf(e<t

� ) = t − sup(e+
� ).

Standard results of Itô’s excursion theory (e.g., [19],2, Section VI.47) imply
that for a standard Brownian motionβ the random set{(�,sup(e+

� )) : iβ0 (�−) �=
i
β
0 (�)} is a Poisson point-process onR+ × R

+ with intensity measured�dτ/τ2

(recall our choice for the normalization of local time).
Now let L= inf{� ≥ 0 : sup(e+

� ) ≥ t)}. Then stopping�β
0 at the hitting time L is

equivalent to stoppingβ at its hitting timeU
β
t . Let πt be a random set defined

from the unconditioned Brownian excursionB, in the same manner in which
we definedπt,1 from a conditioned Brownian excursionBt,1. Then, using the
relationship (10) ofB and β, we observe thatπt is equivalent to a restriction
of {(�,sup(e+

� )) : iβ0 (�−) �= i
β
0 (�)} on the random set[0,L] × (0, t). The Poisson

point-process description of{(�,sup(e+
� )) : iβ0 (�−) �= i

β
0 (�)} now implies thatπt is

a Poisson point-process onR+ × R
+ with intensity measured�dτ/τ2 restricted

to the random set[0,L] × (0, t).
Next, note that the condition{�t = 1} for B is equivalent to the condition

{�β
0(U

β
t ) = 1} for β, which is further equivalent to the condition{L = 1} for πt .

We have thus established thatπt,1
d= πt |{L = 1}.

Further, the condition{L = 1} on πt is equivalent to the condition thatπt has
no points in[0,1) × [t,∞) and has a point in{1} × [t,∞). However, sinceπt

is Poisson, independence of Poisson random measures on disjoint sets implies
that conditioningπt on {L = 1} will not alter its law on the set[0,1] × (0, t).
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However, sinceπt,1 is supported precisely on[0,1] × (0, t), the above results
together imply thatπt,1 is a Poisson point-process on[0,1] × (0, t) with intensity
measured�dτ/τ2.

It is now easy to see from the intensity measure ofπt,1 that its realizations are
a.s. nice point-processes, namely:

(a) for anyδ > 0,
∫∫

[0,1]×[δ,∞) d� dτ/τ2 = 1/δ < ∞;
(b) for any 0≤ x < y ≤ 1, andδ > 0,

∫∫
[x,y]×(0,δ) d� dτ/τ2 = (y − x) · ∞.

Also, sinceπt,1 is Poisson, finiteness of its intensity measure on[0,1] × [δ,∞)

implies that it has a.s. only finitely many points in the set[0,1] × [δ,∞), while
infiniteness of its intensity measure on[x, y]× (0, δ) implies that it has a.s. at least
one point on the set[x, y] × (0, δ). �

Having thus obtained the description of the continuum genealogical point-
process induced by a conditioned Brownian excursion, it is now a simple task
to confirm that it indeed arises as the limit of genealogical processes. The right
rescaling forTt,n is to speed up the time byn and to assign massn−1 to each extant
individual, which implies the appropriate rescaling of each coordinate of�t,n

by n−1. We hence define the rescaled genealogical point-process as

n−1�t,n = {(n−1�i, n
−1ti ) : (�i, ti) ∈ �t,n}(11)

and establish its asymptotic behavior asn → ∞.

THEOREM 5. For any {tn > 0}n≥1 such that tn/n −→
n→∞ t we have

n−1�tn,n
d	⇒

n→∞πt,1.

REMARK 5. The notation
d	⇒ is used to mean weak convergence of

processes.

PROOF OFTHEOREM 5. The proof of the theorem is a just consequence of
the fact that weak convergence of Poisson point-processes follows from the weak
convergence of their intensity measures.

By Lemma 3 and the rescaling (11) we have thatn−1�tn,n is a simple point-
process on{1/n, . . . ,1− 1/n} × (0, tn/n) with intensity measure

1

n

n−1∑
i=1

δ{i/n}(�)
ndτ

(1+ nτ)2

1+ tn

tn
.(12)

If {tn}n≥1 is such thattn/n→ t asn → ∞, then it is clear that the support set of the
processn−1�tn,n converges to[0,1] × (0, t), the support set of the processπt,1.
It is also clear that the intensity measure (12) converges tod�dτ/τ2, which, by
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Lemma 4, is the intensity measure ofπt,1. For simple point-processes this is
sufficient (e.g., [5], Section 12.3) to insure weak convergence of the processes
n−1�tn,n to a Poisson point-process on[0,1] × (0, t) with intensity measure

d�dτ/τ2. By Lemma 4, we thus have thatn−1�tn,n
d	⇒

n→∞πt,1. �

3. Genealogy of sampled extinct individuals. We now want to extend the
analysis of the ancestry of extant individuals to include some proportion of
the extinct individuals as well. Suppose that each individual in the past has
independently had a chancep of appearing in the historical record. We indicate
such sampling of extinct individuals by putting a star mark on the leaf ofTt,n

corresponding to the recorded individual. An example of a realization of such
p-sampling is shown in Figure 3(a), and the induced sampling in the contour
process is shown in Figure 3(b).

The goal is to combine the information on the sampled extinct individuals with
our analysis of the ancestry of the extant ones. To do so we extend our earlier
notions of the genealogy of the extant individuals and of the genealogical point-
process.

Let the p-sampled history of extant individuals at timet be defined as the
smallest subtree of the family tree which contains all the edges representing
the ancestry both of the extant individuals and of all of thep-sampled extinct
individuals. We denote thep-sampled history of extant individuals att in Tt,n

by Gp(Tt,n). Note that by definitionGp(Tt,n) contains the genealogyG(Tt,n)

(which would correspond to a 0-sampled history). It is in fact convenient to

FIG. 3. (a) The tree Tt,n with p-sampling on its individuals (the sampled individuals are
represented by ∗’s). (b) The contour process of this tree with the sampling on the corresponding
local maxima.
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think of Gp(Tt,n) as consisting of the “main genealogical tree”G(Tt,n) and
a collection of “p-sampled subtrees” attached to this main tree linking with
additional branches the ancestry ofp-sampled extinct individuals. Figure 4(a)
shows thep-genealogical subtree of the tree from Figure 3(a). We next extend
the notion of the genealogical point-process to represent this enrichedp-sampled
genealogy. We construct a point-process representation ofGp(Tt,n) so that it
contains�t,n as its “main points.”

Informally, think of extending the point-process�t,n [representingG(Tt,n)],
by adding sets representing thep-sampled subtrees as follows. At each branch-
point of the main tree there is a set ofp-sampled subtrees attached to the edges of
the main tree on the left of this branching point, and a set ofp-sampled subtrees
attached on the right of this branching point [see Figure 4(a)]. We associate with
each branch-point at heightai a left setLi and a right setRi , which shall represent
these sets of subtrees. Each suchLi and Ri needs to contain the following
information: the heightsai,L(j) andai,R(j) at which thep-sampled subtrees get
attached to the edges of the main tree [as before we shall keep track of these heights
as distances from levelt in terms ofti,L(j) = t −ai,L(j) andti,R(j) = t −ai,R(j)];
and the shape of the subtreesϒi,L(j) andϒi,R(j) themselves (the indexingj ≥ 0
on the subtrees is induced by a depth-first search forward to the branch-point atai

for the left sets and a depth-first search backward to the branch-point atai for the
right sets). The point-process representing thep-sampled genealogical tree from

FIG. 4. (a)The p-sampled tree Gp(Tt,n); the “main tree” ( in bold) has the “p-sampled subtrees”
attached to it. (b) The point-process representation 	

p
t,n of Gp(Tt,n); each of the “main points”

(large dots) has an associated left set and a right set representing the p-sampled subtrees attaching
to the left and right of that branch-point.
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Figure 4(a) is shown in Figure 4(b). To describe the law of thep-subtrees it will
also be convenient to keep track of the heighthi,L(j) andhi,R(j) of the subtrees
ϒi,L(j) andϒi,R(j).

Formally, we define the point-process ofGp(Tt,n) from the contour processCTt,n .
The p-sampling on the tree is represented by the sampling of the local max-
ima of CTt,n . From the definition of�t,n, we have the heights of the branch-
points ofG(Tt,n) to beai = inf{CTt,n (u) :Di < u < Ui+1}, occurring in the contour
processCTt,n at timesBi = argmin{CTt,n (u) :u ∈ (Di,Ui+1)}. The setLi , repre-
senting the set ofp-subtrees attaching to the edges ofG(Tt,n) on the left of the
branch-pointai , is defined from the part of the excursion ofCTt,n below t before
time Bi . In other words if, forXTt,n = (CTt,n ,slope[CTt,n ]), we define

e<t
i,L(u) = XTt,n (Di + u), u ∈ [0,Bi − Di),

thenLi is completely defined bye<t
i,L. AnalogouslyRi is defined from the part of

the excursion ofCTt,n below t after timeBi ; in other words if we define

e<t
i,R(u) = XTt,n (Ui+1 − u), u ∈ [0,Ui+1 − Bi),

then it is completely defined bye<t
i,R (the subscriptsL andR reflect whether the

entities are involved in definingLi or Ri ). Note that thee<t
i,L runs forward up

to time Bi , wherease<t
i,R runs backward. On the extreme ends, we have the set

of p-subtrees on the left of the first branching point defined by the part ofCTt,n

prior to the first up-crossing timeU1, e<t
0,R(u) = XTt,n (U1 − u), u ∈ [0,U1).

Analogously, the set ofp-subtrees on the right of the last branching point is defined
by the part ofCTt,n after the last down-crossing timeDn, e<t

n,L(u) = XTt,n (Dn +u),
u ∈ [0,U(0,−1) − Dn), whereU(0,1) = inf{u ≥ 0 :XTt,n = (0,−1)}.

To define the setsLi andRi we also need to define the processes

ςi,L(u) = inf
0≤v≤u

e<t
i,L(v), u ∈ [0,Bi − Di),

ςi,R(u) = inf
0≤v≤u

e<t
i,R(v), u ∈ [0,Ui+1 − Bi).

The bijection between the treeTt,n and its contour processCTt,n implies that the
heights at which thep-subtrees are attached to the edges of the main tree are
precisely the levels of constancy of the processesςi,L andςi,R . Furthermore, the
p-subtrees themselves have as their contour processes the excursions ofe<t

i,L −ςi,L

ande<t
i,R −ςi,R above these levels of constancy (see [16] for a detailed description).

Figure 5 showse<t
i,L together with its infimum processς<t

i,L.
We defineai,L(j), j ≥ 0, to be the successive levels of constancy ofςi,L, and

let ti,L(j) = t − ai,L(j) be their distance from levelt . For each level of constancy
ai,L(j), let e<t

i,L(j) be the excursion ofe<t
i,L − ςi,L that lies above the levelai,L(j).

Let hi,L(j) be the height of this excursion,hi,L(j) = sup(e<t
i,L(j)), and letϒi,L(j)

be the tree whose contour process is the excursione<t
i,L(j). Figure 5 shows an
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FIG. 5. The left half e<t
i,L of an excursion of CTt,n

below t , with its infimum process ςi,L whose
levels of constancy are {ai,L(j)}j , above which lie the p-marked subtrees {ϒi,L(j)}j of heights
{hi,L(j)}j .

excursione<t
i,L(j) with thep-subtreeϒi,L(j) it defines. Note that all the star marks

due top-sampling are contained in the excursionse<t
i,L(j), hence are contained in

the subtreesϒi,L(j). An analogous definition leads toai,R(j), j ≥ 0, hi,R(j) and
ϒi,L(j) from e<t

i,R(j) andςi,R(j). With each point(�i, ti) of �t,n we now associate
the sets

Li = {(
ti,L(j),ϒi,L(j)

)}
j≥0 and Ri = {(

ti,R(j),ϒi,R(j)
)}

j≥0.(13)

In addition, for extreme ends we define one setR0 from e<t
0,R, and we define a

setLn from e<t
n,L. For ease of future notation we setL0 = ∅, Rn = ∅, (�0, t) =

(1, t) and(�n, tn) = (n, t).

DEFINITION 6. Thep-sampled historical point-process 	
p
t,n is the random

set

	
p
t,n = {(�i, ti ,Li ,Ri ) : (�i, ti) ∈ �t,n, 0 ≤ i ≤ n}.(14)

REMARK 7. We have in fact implicitly defined a point-process represen-
tation 	t,n of a complete historical point-process (which would correspond to
1-sampling). The difference between	t,n and	

p
t,n is only in the∗’s on the leaves

in the latter. It will, however, be clear that for nice asymptotic behavior we need to
consider	p

t,n with p < 1; in other words we can only keep track of a proportion
of the extinct individuals.

We can now derive the law of the point-process	
p
t,n. For this we shall also need

the law of thep-subtrees appearing in the setsLi andRi . Let T denote the space
of finite rooted binary trees with edge-lengths, and let� denote the law onT of
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the treeT . Then, let�p denote the law onT induced by thep-sampling on the
treeT . Further, for anyh > 0, let�p

h denote the law induced by restricting�p to
the treesT of heighth.

To describe the law of	p
t,n we use a more careful and detailed analysis of the

structure of the contour processCTt,n . First we use the result of Lemma 3, which
gives us the law of the main points of	

p
t,n. Then conditional on the location of the

main points, we give the law of the setsLi andRi of p-subtrees. We show that the
setsLi andRi are independent Poisson point-processes. The intensity measure of
each such set is given by the following. First, chooseti,L(j), the distances below
t at which thep-sampled subtrees are getting attached, uniformly overti , the total
distance belowt to theith branch-point. Next, choosehi,L(j), the height for each
p-subtree, according to the same law as that of the height of a treeT whose height
is known to be less thanti,L(j). Finally, choose the law ofϒi,L(j), the attaching
subtree, according to the law�p

h described above.

LEMMA 6. For any fixed 0 < p < 1, the law of the random set 	
p
t,n is given

by the following:

(a) {(�i, ti) : 1 ≤ i ≤ n − 1} is the simple point-process �t,n of Lemma 3;
(b) given {(�i, ti), 1≤ i ≤ n − 1}, the sets Li and Ri are independent; and for

each 0 ≤ i ≤ n the random sets Li and Ri are Poisson point-processes on R
+ × T

with intensity measure

1{0<t<ti} dt 1{0<h<t}
dh

(1+ h)2

1+ t

t
�

p
h .(15)

PROOF. The proof relies on exploiting the alternating Exponential(rate 1) step
structure of the contour processCTt,n . From Lemma 3 we have that the excursions
of CTt,n below t are independent and that their law is the same as that ofCT

conditioned on having height less thant . We further show that, when decomposed
into the part before its lowest point and a part after it, the two parts of these
excursions are conditionally independent given the excursion’s depth. In fact, if
the former is run forward to the lowest point, and the latter backward to the
lowest point, these two parts have the same conditioned law. We obtain a simple
description of the law of the levels of constancy of the infimum process for these
parts, and the excursions above these levels of constancy are shown to be copies
of CT restricted in their height.

Independence of the pairs of setsLi ,Ri over the indexi follows from the
independence of the excursionse<t

i of XTt,n below levelt as shown in Lemma 3.
The strong Markov property ofXT also gives the independence ofR0 andLn

from all the pairsLi ,Ri . The proof of Lemma 3 also shows that the law of the
excursionst − e<t

i is the same as that ofXT conditioned on sup(CT ) < t . The left
half t − e<t

i,L of such an excursion is defined as the part oft − e<t
i until it reaches its
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maximum, and the right halft − e<t
i,R as the part after this maximum, run backward

in time (theu-coordinate). To derive the conditional law ofLi ,Ri given ti we
thus need to analyze the conditional law of the two parts ofXT on either side of
its maximum, given the maximum’s value.

Let us first consider the processXT continued past its first hitting time of
(0,−1). Let ST be its maximum process

ST (u) = sup
0≤v≤u

CT (v), u ≥ 0,

and let us consider the process(ST , ST − CT ), which clearly completely
describesXT . The process(ST , ST − CT ) consists of an alternating sequence
of the following: rises of slope 1 forST paired with the intervals at 0 forST −CT ,
and levels of constancy forST paired with the excursions from 0 forST − CT .
Figure 6(a) shows a decomposition ofXT into ST andST − CT . Because the
alternating steps ofCT are independent Exponential(rate 1) variables, it is not
difficult to see that the alternating steps of(ST , ST − CT ) are independent, and
that the rises ofST all have the same Exponential(rate 1) distribution while the
excursions ofST − CT all have the same distribution asXT [stopped when it first
hits(0,−1)]. Namely, the first rise ofST is just the first rise ofCT ; theXT law and
independence of a subsequent excursion ofST − CT is immediate from the law
of CT ; and, finally, the Exponential(rate 1) law and independence of a subsequent
rise ofST is just a consequence of the memoryless property of rises ofCT .

Consider now the point-process{(s, εs)} of levels of constancy ofST paired
with the excursions ofST −CT below them. The above analysis shows that{s(u),
u ≥ 0} is a Poisson(rate 1) process, and the excursionsεs all have the same law
asCT . We shall denote the law ofCT by n (as in the proof of Lemma 3). Then

FIG. 6. (a)The process XT continued past its first hitting of (0,−1), its maximum process ST and
the excursion process ST − CT below the levels of constancy of ST ; M is the maximal value of XT
before it first hits (0,−1). (b) The point-process {(s, h(εs))} of the values of constancy of ST , paired
with the heights of excursions of ST − CT below them.
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{(s, εs)} forms a Poisson point-process with intensity measureds n. Note that it
was shown in (6) that the height ofCT , and hence the height of these excursions,
is given byn(sup(·) > h) = 1/(1+ h), for h ≥ 0.

We now consider how the maximum ofXT in the time interval before it
first hits (0,−1) appears within this point-process{(s, εs)}. We denote the first
hitting time of (0,−1) by U(0,−1) = inf{t :XT = (0,−1)}, and the maximum
of interest byM = sup{XT (v) :v ∈ (0,U(0,−1))}. Then, one can easily note that
s(U(0,−1)) = M and that∀ s ∈ (0,M), h(εs) < s whereas fors = M , h(εM) ≥ M .
Figure 6(b) depicts a realization of{(s, εs}). In other words, the point(M,εM) is
the first point (in terms of thes-coordinate) of the process{(s, εs)} which falls
outside the set{(s, hs) : s ≥ 0, hs ≥ 0, hs < s}. Independence of Poisson random
measures on disjoint sets then implies that, given the value ofM = sup{XT (v) :v ∈
(0,U(0,−1))}, the conditional law of the process{(s, εs) : s < M} is independent
of the point(M,εM) and has the law of a Poisson point-process with intensity
measure

10<s<M ds 10<h<s

dh

(1+ h)2n
( · |sup(·) = h

)
.

It is important now to note that the process{(s, εs) : s < M} completely describes
the part ofXT before it reaches the maximumM , while the point(M,εM)

completely describes the part ofXT after it reachesM and before it first hits
(0,−1).

We can now tend to the quantities of interest within the excursionst − e<t
i .

We have that the conditional law oft − e<t
i,L, t − e<t

i,R given ti is the same as
the conditional law of the parts ofXT before and after its maximumM given
that M = ti . Within t − e<t

i,L the levels of constancyti,L(j) and the associated
excursionst − e<t

i,L(j) above these levels precisely correspond to the levels of
constancys and its associated excursionsεs within the process{(s, εs) : s < ti}.
Moreover,t − e<t

i,R precisely corresponds to the part of the excursionεM before it
hits (0,−1), reversed in time (cf. Figures 5 and 6).

From our analysis above it thus follows that{(ti,L(j), e<t
i,L(j))}, that is,t − e<t

i,L

andt − e<t
i,R are conditionally independent giventi , and that{(ti,L(j), e<t

i,L(j))} has
the law of a Poisson point-process with intensity measure

10<t<ti dt 10<h<t

dh

(1+ h)2n
( · |sup(·) = h

)
.

Now the strong Markov property implies that thep-sampling on the local
maxima of the whole contour processCTt,n is for eache<t

i,L(j) again a Bernoulli
p-sampling on its local maxima. Thus the conditional law of thep-sampled tree
ϒi,L(j) defined frome<t

i,j (j) given the heighthi,L(j) = sup(e<t
i,L(j)) is �

p
hi,L(j).

Putting all the above results together we have that giventi the random setLi =
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{(ti,L(j),ϒi,L(j))}j≥0 is conditionally independent of the setRi , and its law is a
Poisson point-process with intensity measure

1{0<t<ti } dt 1{0<h<t}
dh

(1+ h)2
�

p
h.

The same conditional law ofRi follows from time reversibility of the law ofe<t
i .
�

Let us now consider the implications that thep-sampling of extinct individuals
has in the asymptotic context. In Section 2, the genealogical point-process was
defined from the contour processCTt,n , and its asymptotics was identified as
the continuum genealogical point-process similarly defined from a Brownian
excursionBt,1 conditioned to have local time 1 at levelt . Now thep-sampled
historical process is defined from a contour processCTt,n whose local maxima
are sampled independently with equal chancep. In terms of the (horizontal)
u-coordinate ofCTt,n the p-sampled individuals form a random set of marks
on R

+. The fact thatCT is an alternating sum of independent Exponential(rate 1)
random variables implies that the random set formed by the local maxima ofCT

is a Poisson process of rate 1/2 on R
+, and the same still holds for the sets

formed by the local maxima of each part of an excursion ofCTt,n below t . If we
further sample these local maxima independently with chancep we have a Poisson
process of ratep/2 on R

+. Now, for the asymptotics, the appropriate rescaling,
as in Section 2, speeds up the time axis ofCTt,n by n. Hence if we considerpn

such thatnpn → p asn → ∞, then asymptotically thepn-sampling onCTt,n will
converge to a Poisson process of ratep/2. This prompts us to consider for the
asymptotics of thep-historical point-process a process similarly defined from a
conditioned Brownian excursionBt,1 sampled according to a Poisson(ratep/2)
process along its (horizontal)u-coordinate.

REMARK 8. We are interested in obtaining an asymptotic point-process that
has a.s. finitely many extinct individuals recorded. It is clear that thus the rate of
sampling asymptotically has to satisfynpn → p asn → ∞.

We define a process derived from a conditioned Brownian excursionBt,1 in the
same manner that	p

t,n was derived from the contour process of the conditioned
branching processCTt,n . Recall thatB(u), u ≥ 0, denotes a Brownian excursion,
for a fixed t > 0; �t (u), u ≥ 0, is its local time at levelt up to timeu; it (�),
� > 0, is the inverse process of�t . Also, Bt,1(u), u ≥ 1 denotes the excursionB
conditioned to have total local time att equal to 1, and(�, e<t

� ) denotes the set of
excursions ofBt,1 below levelt indexed by the local time�t at the time of their
beginning.
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Define thep-sampling onBt,1 to be a Poisson(ratep/2) process along the
u-axis ofBt,1. We indicate this by putting a star mark on the graph ofBt,1 at the
times of this Poisson process. Lete<t

� be an excursion ofBt,1 below levelt

e<t
� (u) = Bt,1

(
it (�

−) + u
)
, u ∈ [

0, it (�) − it (�
−)

)
.

Recall thata� = inf(e<t
� ) is its lowest point occurring atu� = arg min(e<t(u)), and

that t� = t − a� denotes its distance from levelt . For eache<t
� we define its left

and right parts (relative to its lowest point) to be

e<t
�,L(u) = Bt,1

(
it (�

−) + u
)
, u ∈ [

0, u� − it (�
−)

)
,

e<t
�,R(u) = Bt,1

(
it (�) − u

)
, u ∈ [

0, it (�) − u�

)
.

Note thate<t
�,L runs forward to the lowest point ofe<t

� , wherease<t
�,R runs backward

in time to it. We shall also need their respective processes of infima

ς�,L(u) = inf
0≤v≤u

e<t
�,L(v), u ∈ [

0, u� − it (�
−)

)
,

ς�,R(u) = inf
0≤v≤u

e<t
�,R(v), u ∈ [

0, it (�) − u�

)
.

Figure 7 showse<t
�,L ande<t

�,R with ς�,L andς�,R.

FIG. 7. (Top)An excursion e<t
� of Bt,1 below t , its left e<t

�,L and right e<t
�,R parts, with their infimum

processes; (bottom)the process e<t
�,L − ς�,L.
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We definea�,L(j), j ≥ 0, to be the successive levels of constancy ofς�,L,
and we lett�,L(j) = t − a�,L(j) be their distance to levelt . For each level of
constancya�,L(j), let e<t

�,L(j) be the excursion ofe<t
�,L − ς�,L that lies above the

levela�,L(j). Leth�,L(j) = sup(e<t
�,L(j)) be the height of this excursion. Note that

a.s. all thep-sampled points onBt,1 lie on these excursionse<t
�,L(j). We define

a treeϒ�,L(j) induced by such ap-sampled excursione<t
�,L(j) as the tree whose

contour process is the linear interpolation of the sequence of the values ofe<t
�,L(j)

at thep-sampling times, alternating with the sequence of the minima ofe<t
�,L(j)

between thep-sampling times. An analogous definition leads toa�,R(j), j ≥ 0,
t�,R(j), j ≥ 0, h�,R(j) andϒ�,L(R) from e<t

�,R(j) andς�,R(j).

REMARK 9. This definition of a tree from an excursion path sampled at given
times has been explored for different sampling distributions in the literature (for
some examples see [16], Section 6). Since for eache<t

� there are a.s. only finitely
manyp-sampled points the trees{ϒ�,L(j)}j , {ϒ�,R(j)}j are a.s. in the spaceT of
rooted planar trees with edge-lengths and finitely many leaves.

With each point(�, t�) of πt,1 we now associate the sets

L� = {(
t�,L(j),ϒ�,L(j)

)}
j≥0 and R� = {(

t�,R(j),ϒ�,R(j)
)}

j≥0.(16)

We also define the first “right” setR0 and the last “left” setL1 from pathse<t
0,R

of Bt,1 before the first hitting time oft , ande<t
1,L of Bt,1 after the last hitting time

of t . For ease of notation we letL0 = R1 = ∅, t0 = t1 = t .

DEFINITION 10. Thep-sampled continuum historical point-process ξ
p
t,1 is

the random set

ξ
p
t,1 = {(�, t�,L�,R�) : (�, t�) ∈ πt,1, it (�

−) �= it (�)}.(17)

We next derive the law of the point-processξ
p
t,1. For this we shall also need the

law of the trees induced by thep-sampled excursions ofe<t − ς . Let λp denote
the law on the spaceT induced by aB sampled at Poisson(ratep) points (in the
sense of the bijection between sampled continuous functions and trees [3], same
as the definition ofϒ�,L(j) from thep-samplede�,L(j)). Then, for anyh > 0, let
λ

p
h denote the law induced by restrictingλp to the set of Brownian excursionsB

of heighth.
To derive the law ofξp

t,1 we exploit in a more detailed manner the nice properties
of Brownian excursions. We first use the result of Lemma 4, which gives us the
law of the set{(�, t�) : it (�−) �= it (�)}. Then conditional on this set we give the law
of the setsL� andR�. We show that{L�,R�}� are independent Poisson point-
processes. The intensity measure of each such set is given by the following. First,
chooset�,L(j), the distances belowt at which thep-sampled subtree excursions of
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e<t
�,L −ς�,L occur uniformly overt�, the distance belowt of the lowest point ofe<t

� .
Next, chooseh�,L(j), the height for each suchp-sampled excursion, according
to the same law as that of the height of aB whose height is known to be less
thant�,L(j). Finally, choose the law of the induced treeϒ�,L(j) according to the
law λ

p
h described above.

LEMMA 7. The random set ξ
p
t,1 is such that the following hold:

(a) {(�, t�) : it (�−) �= it (�)} is the Poisson point-process πt,1 of Lemma 4;
(b) given {(�, t�) : it (�−) �= it (�)} the sets L� and R� are independent; and for

each � : it (�−) �= it (�), L� and R� are Poisson point-processes on R+ × T with
intensity measure

1{0<t<t�} dt 1{0<h<t}
dh

h2 λ
p
h .(18)

PROOF. The proof proceeds in many of the same steps as the one for deriving
the law of thep-sampled historical process	p

t,n. The notable difference is that we
now have to resort to more sophisticated Markovian results on the decomposition
of a Brownian path, such as the Williams decomposition of a Brownian excursion
given its height, and the Pitman theorem on Bessel processes. In short, we
consider the decomposition of the conditioned Brownian excursionBt,1 into its
excursions below levelt provided by the Lemma 4. For each such excursion
below t given its lowest point at distancet� below t , the Williams decomposition
gives us the independence and identity in law of its left and right parts, as well
as the description of their laws in terms of a three-dimensional Bessel process.
Furthermore, we can use Pitman’s theorem that describes the law of the excursions
of this Bessel process above the levels of constancy of its future infimum. After
taking care of some conditioning issues, this finally gives us a simple description
of these excursions above the levels of constancy as simply Brownian excursions
conditioned on their maximal height.

The independence of the setsL� over the index� (the same holds for the
setsR�) follows from the independence of the excursions ofBt,1 below levelt .
This also holds (by the strong Markov property ofB) for the setsR0 andL∞
defined from the parts of the path ofBt,1 of its ascent to levelt and its descent
from it. For eache<t

� excursion ofBt,1 below levelt , we let e+
� = t − e<t

� . By
Lemma 4, the conditional law ofe+

� given(�, t�) is that of a Brownian excursionB
conditioned on the value of its supremumB|{sup(B) = t�}. Let τt� = inf{u >

0 :e+
� (u) = t�}; then by the Williams decomposition of a Brownian excursionB

(e.g., [19],1, Section III.49), the law ofe+
�,L = t − e<t

�,L is that of a Bess(3) (three-
dimensional Bessel) processρ stopped the first timeτρ

t�
= inf{u > 0 :ρ(u) = t�} it

hits t�. By time reversibility ofB the process

r�,L(u) = t� − e+
�,L

(
τt� − u

)
, u ∈ (

0, τt�

)
,
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also has the law of the stopped Bess(3) processρ(u), u ∈ (0, τ
ρ
t�
). Let

j�,L(u) = inf
u≤v≤τt�

r�,L, u ∈ (
0, τt�

)
.

Then{t� − t�,L(j)}j are (in reversed index order) the successive levels of constancy
of the processj�,L(u), u ∈ (0, τt�); {h�,L(j)}j (in reversed index order) are the
heights of the successive excursions from 0 of the processr�,L(u) − j�,L(u),
u ∈ (0, τt�), and{ϒ�,L(j)}j (in reversed index order) are the trees induced by the
p-sampled points on these excursions. To obtain the law ofj�,L andr�,L − j�,L

consider the Bess(3) processρ(u),u ≥ 0, and its future infimum process (u) =
infv≥u ρ(v), u ≥ 0. We note that the law ofj�,L(u), u ∈ (0, τt�), is equivalent to
that of (u), u ∈ (0, τ

ρ
t�
), if  (τ

ρ
t�
) = t�; in other words, ifρ(u), u ≥ 0, after it first

reachest� never returns to that height again. So,

(j�,L, r�,L − j�,L)
d= (, ρ − )|{(

τ
ρ
t�

) = t�
}

for u ∈ (
0, τt�

)
.

By Pitman’s theorem, then by Levy’s theorem (e.g., [18], VI, Sections 3 and 6)

(, ρ − )
d= (ζ, ζ − β)

d= (�̄, |β̄|),
whereβ is a standard Brownian motion,ζ its supremum process;|β̄| is a reflected
Brownian motion,�̄ its local time at 0 (with the occupation time normalization).
Thus, forτ̄t� := inf{u ≥ 0 :|β̄|u + �̄u = t�},

(j�,L, r�,L − j�,L)
d= (�̄, |β̄|)|{�̄τ̄t�

= t�
}

for u ∈ (
0, τt�

)
.

The condition{�̄τ̄t�
= t�} is equivalent to the condition{�̄τ̄t�

= t�, |β̄|τ̄t�
= 0} and

{u < τ̄t� : �̄u < t�, |β̄|u < t� − �̄u}. Hence,

(j�,L, r�,L − j�,L)
d= (�̄, |β̄|)|{�̄u < t�, |β̄|u < t� − �̄u; �̄τ̄t�

= t�, |β̄|τ̄t�
= 0

}
.(19)

Since(�̄, sup(|β̄|)) is a Poisson point-process with intensity measured�̄ dh̄/h̄2,
then using the independence property of a Poisson random measure on disjoint
sets in (19), we obtain fort = t� − �̄ that(t� − j�,L, sup(r�,L − j�,L)) is a Poisson
point-process with intensity measure

1(0<t<t�) dt 1(0<h<t)

dh

h2
.

Recall the relationship of the values{t�,L(j), h�,L(j),ϒ�,L(j)}j of L� with the
processesj�,L andr�,L − j�,L. The above result thus implies thatL� is a Poisson
point-process with intensity measure

1(0<t<t�) dt 1(0<h<t)

dh

h2
λ

p
h,

where the last factor comes from the fact thatϒ�,L(j) is just the tree induced by
thep-sampled excursion of|β̄| of heighth�,L(j). �
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Our next goal is to show that the processξ
p
t,1 whose law we have just obtained

is indeed the asymptotic result of the processes	
p
t,n after appropriate rescaling.

To do so, we first must show that the laws�
pn

h on the space of trees converge
as n → ∞ to the lawλ

p
h if npn → p. We need to consider more closely the

treesϒi,L(j) andϒ�,L(j) induced by the sampled excursions appearing in the
historical point-processes above. In both cases we have an excursion,CT or B,
of a given height and with marks on it produced by a sampling process. Laws of
the trees induced by sampled excursions of unrestricted height can be very simply
and elegantly described (see [10] for the case ofB). However, for the trees from
excursions of a given height that we need to consider here, the description is much
messier. We shall give next a recursive description that applies equally to define
an ϒl,L(j) from CT of a given height, or to defineϒ�,L(j) from B of a given
height. A similar recursive description of an infinite tree induced by an unsampled
Brownian excursion is given by Abraham and Mazliak [2].

Define the “spine” of the tree to extend from the root of the tree to the point of
maximal height in the excursion. An equivalent representation of the tree is one
in which the subtrees of the trees on the left and on the right of the axis through
the spine are attached to this spine, an example of which is shown in Figure 8. We

FIG. 8. The “first” set in the recursive description consists of branch levels {tL(j)}j at which
subtrees induced by sampled excursions of eL − ςL are attached to the spine; and the heights
{hL(j)}j of these subtrees.
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obtain the branch levels at which these subtrees are attached, as well as parameters
needed for the description of the subtrees as follows.

We denote the excursion function defining this tree bye(u), u ≥ 0 (in other
wordse = CT or e = B). Leth be its given height, andUh = arg max{e(u) :u > 0}
the time at which it is achieved. Then leteL(u), u ∈ [0,Uh], be the left part of
the excursion, and we also define its future infimum processςL(u) = infv≥u e(v),
u ∈ [0,Uh]. Then the subtrees attaching on the left of the spine are defined by
the processeL − ςL and the set of sampled marks. They are precisely the trees
induced by the sampled excursionseL(j) of eL − ςL whose height is somehL(j).
The levels at which they are attached to the spine are the levels of constancytL(j)

of ςL at which the excursions ofeL − ςL occur. Thus the set{(tL(j), hL(j))}j≥0
is the “first” set in our recursive definition of trees. The “second” set is derived in
the same manner from the sampled excursions{eL(j)}j and so on. We define these
sets analogously for the right part ofe.

This recursive procedure is clearly very similar to our definition of the left
and right setsLi ,Ri for e<t

i and L�,R� for e<t
� as defined earlier. The main

difference is that the subtrees here are defined from excursions above the levels of
constancy of the future infimum process fore, whereas earlier they were defined
from excursions above the levels of constancy of the past infimum process for
e<t
i ande<t

� . However, time inversion and reflection invariance of the transition
function of e will allow us to easily derive the laws of the “first” set of points
here from the results of Lemmas 6 and 7. In the next lemma we give a recursive
description of the law of�pn

h andλ
p
h , and we show that we do have the convergence

of the�
pn

h (appropriately rescaled) toλp
h if npn → p.

LEMMA 8. The law �
pn

h of a tree induced by a pn-sampled contour
process CT of a given height h is such that the first sets of points {tL(j), hL(j)}j
and {tR(j), hR(j)}j are independent Poisson point-processes with intensity
measure

1√
pn

1(0<τ<h) dτ 1(0<κ<h−τ)

dκ

(1+ κ)2

1+ τ

τ
.(20)

The law λ
p
h of a tree induced by a p-sampled Brownian excursion B of a given

height h is such that the first sets of points {tL(j), hL(j)}j and {tR(j), hR(j)}j
are independent Poisson point-processes with intensity measure

1√
p

1(0<τ<h) dτ 1(0<κ<h−τ)

dκ

κ2
.(21)

Let n−1�
pn

h be the law of the tree induced by a rescaled pn-sampled contour
process CT by n−1 in the vertical coordinate. Then for any {pn ∈ (0,1)}n≥1 such
that npn −→

n→∞p we have n−1�
pn

h 	⇒
n→∞λ

p
h .
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PROOF. The key for this proof is to observe the following. Ife(u), u ≥ 0, is
the pn-sampled processXT |{sup(CT ) = h}, theneL(u) = e(u), u ∈ [0,Uh], has
the law of apn-sampledXT |{τh < τ0}, whereτh, τ0 are the first hitting times of
(h,+1), (0,−1), respectively, byXT . Then time reversibility and the reflection
invariance of the transition function ofXT imply thath− eL(Uh −u), u ∈ [0,Uh],
has the same law aseL(u), u ∈ [0,Uh]. Now the levels of constancy ofςL, and
the corresponding excursionseL − ςL above them, are equivalent to the levels
of constancy and excursions of a setLi considered in Lemma 6, thus giving a
Poisson process of intensity measure as in (15). The factorp−1/2 in the intensity
measure (20) comes from the fact that here we only consider the excursions of
eL − ςL that have at least one sampled mark in them. Namely, for the branching
processT , if Ntot denotes the total population size ofT , then the generating
function of Ntot is E(xNtot) = 1 − (1− x)1/2. Hence, the chance of at least one
mark in thepn-sampled point-process ofT is 1− E((1− pn)

Ntot) = pn
1/2.

A similar argument applies whene(u), u ≥ 0, is the processB|{sup(B) = h}
sampled at Poisson(ratep/2) times. Time reversibility and reflection invariance
of the transition function ofB allow us to identify that the law of the levels of
constancy ofςL, and the corresponding excursionseL − ςL above them, are the
same as those for a setL� considered in Lemma 7, which we know form a Poisson
process with intensity measure as in (18). The factorp−1/2 in the intensity measure
of (21) then comes from the rate of excursions with at least one sampled mark.
Namely, a Poisson(ratep/2) process of marks onB along its time coordinate is
in its local time coordinate a Poisson(ratep1/2) process of marks (see [19],2,
Section VI.50).

Now the law of the first set of the rescaled process withn−1�
pn

h converges to
the law of the first set of the process with the lawλ

p
h . This follows from the fact

that the former is a sequence of Poisson point-processes whose support set and
intensity measure converge to those of the latter Poisson point-process. Since for
Poisson random measures the convergence of finite-dimensional sets is sufficient
to insure weak convergence of the whole process our claim follows for the first
sets, and by recursion for the whole process.�

Finally, we can obtain the asymptotic result for thepn-sampled historical point-
processes. The rescaling of	

pn
tn,n is the same as that for�t,n. Both coordinates

of �t,n are rescaled byn−1, so that the vertical coordinate of the setsLi ,Ri is
also rescaled byn−1, and the sampling rate is rescaled byn. Hence the rescaled
process is defined as

n−1	
pn
tn,n = {

(n−1li , n
−1τi, n

−1Li , n
−1Ri ) : (li , τi,Li,Ri ) ∈ 	

pn
tn,n

}
.(22)

The asymptotic properties of the rescaledp-sampled historical process are now
easily established from our earlier results.
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THEOREM 9. For any {tn > 0}n≥1 and {pn ∈ (0,1)}n≥1 such that tn/n −→
n→∞ t

and npn −→
n→∞p we have n−1	

pn
tn,n 	⇒

n→∞ ξ
p
t,1.

PROOF. By Theorem 5 we already have thatn−1�tn,n 	⇒
n→∞πt,1. Applying

the rescaling to the results of Lemma 6 together with the result of Lemma 8 now
implies that the support set and intensity measure of the Poisson point-process of
eachLi after rescaling converges to those of the Poisson point-processL� as given
by Lemma 7. Then the convergence of the support set and intensity measure for
the Poisson random measure	

pn
tn,n to those ofξp

t,1 implies the weak convergence
of these processes.�
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