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ASYMPTOTIC GENEALOGY OF A CRITICAL
BRANCHING PROCESS
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Consider a continuous-time binaryamching process conditioned to
have population size at some time, and with a chance for recording
each extinct individual in the process. Within the family tree of this process,
we consider the smallest subtree containing the genealogy of the extant
individuals together with the genealogy of the recorded extinct individuals.
We introduce a novel representation of such subtrees in terms of a point-
process, and provide asymptotic results on the distribution of this point-
process as the number of extant individuals increases. We motivate the
study within the scope of a coherent analysis for an a priori model for
macroevolution.

1. Introduction. The use of stochastic models in the theory of macroevolu-
tion (origin and extinction of species) has been common practice for many years
now. Stochastic models have been used to recreate phylogenetic trees of extant
taxa from molecular data, and to recreate the time series of the past number of taxa
from the fossil record. However, only a few attempts have been made to make the
two analyses consistent with each other. Instead of studying data-motivated mod-
els (which are scientifically more realistic for specific applications), the purpose
of this paper is to study a purely random model that can accommodate such a co-
herent analysis. We study a mathematically fundamental stochastic model which
allows for inclusion of both the extant and the fossil types of data in one analysis.

A significant interest in evolutionary biology is devoted to reconstructing
phylogenies based on available data on the extant species (of molecular or other
type). The assumption is that in the distant past there was a common ancestor
from which the extant species evolved according to some (stochastic) evolutionary
model. One then tries to find the ancestral history (genealogy) of the extant species
which optimizes some “best fit” criterion. Using shapes of such phylogenetic trees
one then hopes to make some inference on the diversification properties of the
evolutionary process. We stress here that the number of extant species is given,
although the time from the origin of the evolutionary process to the present often is
inferred from the data as well. On the other hand, inference of diversification rates
based on fossil data mostly makes use of time series analyses of fossil counts.
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Once again one assumes an underlying (stochastic) evolutionary process, then
tries to use fluctuations in the time series of fossil counts to make inferences
on the diversification rates of the process. For the most part, however, only a
small fraction of the species are retained within the fossil record, with variation
in sampling rates over time. It is often hard to estimate precisely the proportion of
species retained as fossils, although its variability may be reasonably captured by
considering the sampling rate to be random as well.

The motivation for this paper was to consider a stochastic process which would
incorporate both sets of data within one evolutionary model, and to present results
describing the genealogy of the fossil record as well. Our basic premises are
the given information on the number of extant species, the amount of time from the
origin of the process to the present and the chance of species to be retained in the
fossil record. It is subsequently possible to randomize the amount of time from
the origin to the present day, as well as the chance of being retained in the fossil
record. Details of such randomization under a reasonable choice of priors can be
found in [17].

The model we propose is the continuous-time critical branching process. The
reasons for our choice are the following. If one is to consider a model in which
extinctions and speciations are random without systematic tendencies for the
number of species to increase or decrease, then for a branching process this
translates into the criticality of the process (the average number of offspring
of each individual is 1). Such a model corresponds to one general view in
evolutionary biology that (except for mass extinctions and their aftermath) the
overall number of species does not have exponential growth nor an exponential
decrease.

The fundamental critical branching processes previously employed in evolu-
tionary models have drawbacks that exclude their use in our proposed study. The
basic evolution model is the Yule process [20], the elementary continuous-time
pure birth process [the process starts with one individual, each individual gives
birth to offspring according to a Poisson(rate 1) process]. One can clearly not em-
ploy this model, as it a priori does not involve the extinction of species, hence does
not allow for inclusion of the fossil record. The next candidate model, which in-
cludes the extinction of individuals, is the basic neutral model used in population
genetics. The Moran model [7] is the process of uniformly random speciations
and extinctions of individuals in a population of a fixed size [the total number of
individuals is a fixed number, each individual lives for an Exponential(mean 1)
lifetime, at the end of which it is replaced by an offspring chosen uniformly at
random from the total population including itself]. One can consider this process
as having persisted from a distant past to the present, giving implicitly a genealog-
ical tree of the extant individuals. Asymptotically in the total population size (with
suitable rescaling) this genealogical process (backward in time) is Kingman’s co-
alescent model. Although it is possible to make modifications of this model to
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allow for nonconstant population size [11], this unfortunately requires an a priori
assumption on the evolution of the total population size in time.

We are interested in considering a group of species that have some common
ancestor at their origin. This corresponds to the practice in evolutionary biology
of considering monophyletic groups. In this sense, the critical continuous-time
binary branching process, in which individuals live for an Exponential(mean 1)
time during which they produce offspring at Poisson(rate 1) times, is the natural
basic model for the given purpose. We want to study the genealogical structure of
the process conditioned on its population size at a given tinBy genealogical
structure we mean a particular subtree of the branching process family tree.
We consider all the extant individuals at timeand the subset of the extinct
individuals each having independent chapcef being sampled into the record.

The genealogical subtree is the smallest one containing all the common ancestors
of the extant individuals and all the sampled extinct individuals. We introduce

a point-process representation of this genealogical subtree, with a convenient
graphical interpretation, and derive its law. Our main result is the asymptotic
behavior of such point-processes and their connection to a conditioned Brownian
excursion.

The relationship between random trees and Brownian excursions has been much
explored in the literature. We note only a small selection that is directly relevant
to the work in this paper. Neveu and Pitman [14, 15] and Le Gall [12] noted
the appearance of continuous-time critical branching processes embedded in the
structure of a Brownian excursion. Abraham [1] and Le Gall [13] considered the
construction of an infinite tree within a Brownian excursion, which is in some
sense a limit of the trees from the work of Neveu and Pitman. The convergence
of critical branching processes conditioned on total population size to a canonical
tree within a Brownian excursion (tre@ntinuum random tree) was introduced by
Aldous [3]. We state a connection of the asymptotic results in this paper with the
above-mentioned results.

Some aspects of the genealogy of catiGalton—Watson trees conditioned on
nonextinction have been studied by Durrett [6], without the use of random trees.
It has also been studied within the context of superprocesses (see, e.g., [13]). We
further note that, in the biological literature, models of evolution have been made
on each level of taxonomy (species, genera etc.) separately, while it is certainly
desirable to insure hierarchical consistency between them. A natural way to extend
our analysis to the next taxonomic level is to superimpose on the branching
process a random process of marks distinguishing some species as originators of
a new higher taxon. In collaboration with Aldous, we have pursued this study
in [4], as part of a larger project on coherent and consistent stochastic models for
macroevolution.

As a last remark, we note that, as implied by general convergence results
on critical branching processes ([3] and many others), the same asymptotic



ASYMPTOTIC GENEALOGICAL PROCESS 2123

genealogical process obtained here should invariably hold in general for any
critical branching process with finite offspring variance.

The paper is structured in two parts. In Section 2 we give a precise definition
of the genealogical point-process representing the common ancestry of the extant
individuals and provide its exact law and asymptotic behavior (Theorem 5). Then,
in Section 3 we give the definition of the corresponding genealogical point-process
that includes the sampled extinct individuals as well, and we provide its exact law
and asymptotic behavior (Theorem 9).

2. Genealogy of extant individuals. Let 7 be a continuous-time critical
branching process, with initial population size 1. In such a process each individual
has an Exponential(rate 1) lifetime, in the course of which it gives birth to new
individuals at Poisson(rate 1) times, with all the individuals living and reproducing
independently of each other. L&%, be the proces$ conditioned to have
population size: at timet. We shall use the same notatiarn @ndJ; ;) for the
random trees with edge-lengths that are the family trees of these processes.

We depict these family trees as rooted planar trees with the following
conventions. Each individual is represented with a set of edges whose total length
is equal to that individual's lifetime. Each birth time of an offspring corresponds
to a branch-point in the parent’'s edge, with the total length of the parent’s edge
until the branch-point equal to the parent’s age at this time. The new individual is
then represented by the edge on the right, while the parent continues in the edge on
the left. Such trees are identified by their shape and by the collection of the birth
times and lifetimes of individuals. We shall label the vertices in the tree in a depth-
first search manner. An example of a random tree realization pfs shown in
Figure 1(a).

REMARK 1. The random tre& we defined is almost the same as the family
tree of a continuous-time critical binary-branching Galton—Watson process. The
difference between the two is only in the identities of the individuals. If, in the
Galton—Watson process, at each branching event with two offspring we were to
impose the identification of the left offspring with its parent, the resulting random
tree would be the same as the family tree of our branching pratess

Let C+ be the contour process induced by the random fre@he contour
process of a rooted planar tree is a continuous function giving the distance from
the root of a unit-speed depth-first search of the tree. Such a process starts at the
root of the tree, traverses each edge of the tree once upward and once downward
following the depth-first search order of the vertices and ends back at the root of
the tree. The contour process consists of line segments of sldpghe rises) and
line segments of slope-1 (the falls). The unit speed of the traversal insures that
the height levels in the process are equivalent to distances from the root in the tree,
in other words to the times in the branching process. The contour process induced
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Fic. 1. (a)Arealization of thetree 7; ,, whose population at time s isn = 5; the |leaves are |abeled
in depth-first search manner. (b) The contour Cg, , process of the tree 77 ,; each local maximum
of Cg; , corresponds to the height of a leaf of 77 .

by the random tre&; , depicted in Figure 1(a) i€z, shown in Figure 1(b). For

a formal definition of planar trees with edge lengths, contour processes and their
many useful properties one can consult the recent lecture notes of Pitman ([16],
Section 6.1).

Let the genealogy of extant individuals at time be defined as the smallest
subtree of the family tree which contains all the edges representing the ancestry
of the extant individuals. The genealogy of extant individuals iat 7; ,, is thus
an n-leaf tree, which we denote b§(7; ,). Figure 2(a) shows the genealogical
subtree of the tree from Figure 1(a). We now introduce a novel point-process
representation of this genealogical tg@; ,). Thus we get an object that is much
simpler to analyze and gives much clearer asymptotic results than if made in the
original space of trees with edge-lengths.

Informally, think of forming this point-process by taking the heights of the
branching points of the genealogical tig€r; ,,) in the order they have as vertices
in the tree. For convenience (in considering asymptotics miitbreasing) we keep
track of the heights of the branching points in terms of their distances fromrlevel
The vertical coordinate of each branching point is thus its distance belowtlevel
while its horizontal coordinate is just its index. The point-process representation
of §(7;.,) from Figure 2(a) is shown in Figure 2(b). Formally,dgtl <i <n—1,
be the times (distance to the root) of branch-points in thegi@g,), indexed in
order induced from the depth-first search of the vertice® in lets; =t — a; be
their distance below leveland let¢; =i.
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FIG. 2. (a)The genealogical tree (7;,,) of the extant individuals at time ¢. (b) The point-process
I;,, representation of §.(7; ) [the dotted lines show the simple reconstruction of §(7; ) fromits
point-process].

DEFINITION 2. Thegenealogical point-processI1; , is the random finite set

(1) I, ={,t):1<i<n—-10<¢ <t}

For practical purposes it is most useful to exploit the bijection between a
random tree and its contour process. We can obtain the point-pratess
equivalently from the contour proce€s; , as follows. Theth individual extant
at r corresponds to the pa(U;, D;): of the ith up-crossing timeJ; of level ¢
by the contour proces8y,, and of theith down-crossing timeD; of level .

A precise definition oft; and D; will be given by (3) and (4) in the proof of
Lemma 3. The branch-poinig, 1 <i <n — 1, of (77 ,) then correspond to the
levels of lowest local minima of the excursions @f;, below levelz, in other
wordsa; = inf{(?rfm u):D; <u < Ujt1}.

We next use this observation together with the description of the la@of
to obtain the law of1, ,. We first recall the result of Neveu, Pitman and Le Gall,
regarding the law of the contour proce3g of an unconditioned random trée
(one can consult either [12] or [14] for its proof).

LEMMA 1. Inthe contour process C5 of a critical branching process 7 the
sequence of rises and falls (up to the last fall) has the same distribution as a
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sequence of independent Exponentialratel) variables stopped one step before the
sum of successiverises and falls becomes negative (the last fall is then set to equal
this sum).

The following corollary is an immediate consequence of Lemma 1 and the
memoryless property of the exponential distribution.

COROLLARY 2. For the contour process Gy the process X+ = (Cr,
slopdCs]) is a time-homogeneous strong Markov process on Rt x {+1, —1}
stopped when it first reaches (0, —1).

The law of the genealogical point-proceBs, can now easily be derived
using some standard excursion theory of Markov processes. Note that the contour
process of a whole class of binary branching processes can be shown to be a time-
homogeneous Markov process as well (see [9]). In the following lemma we show
that the distances of the— 1 branching points below levelare independent and
identically distributed, with the same law as that of the height of a randonytree
conditioned on its height being less than

LEMMA 3. For any fixed r > 0, therandom set I1; , is a simple point-process
on{l,...,n—1} x (0, ¢) with intensity measure

) B dt 1+t
) Ut,n({l}XdT)—mT-

In other words, #;, 1 <i <n — 1, arei.i.d. variableson (0, r) with the law (2).

PROOF In short the proof relies on the following. The contour proc€gs
of an unconditioned tre§™ is, by the previous corollary, a Markov process
considered until a certain stopping time. Hence, its excursions below some level
are independent and identically distributed. Conditioning of thefrgdranslates
simply in terms of its contour process, into conditioning this Markov process to
have exactly: — 1 excursions below until this stopping time. Further, for the law
of these excursions it will follow, by the sign invariance of the lavw®ef, that their
law is the same as that of a copy®F conditioned to have a height less thran
Consider the Markov processr = (Cy, slopdC+1) until the first hitting time
Uo,-1 =inf{u > 0: X7 (u) = (0, —1)}, and consider its excursions from the point
(t,+1) using the distribution o2+ given by Lemma 1. For > 1 let U; be the
times of the up-crossings of leveby G+,

3) Uy =0, Ui=influ > U;_1: X7 ) =@, +D)}, i>1

ClearlyP 41[inf{u > 0: X7 (u) = (t,+1)} > 0] = 1; hence the set of all visits to
(t,+1) at times{U;, i > 1} is discrete. The excursions &f from level: are, for
i>1,

X7 (Ui +u), forue[0,Uiy1—U,)),

¢i(u) = { 0, +1), else.
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The number of visits in an interv@0, u] is
£(0) =0, L(u) =sufi > 0:u > U;}, u >0,

and the total number prior @, 1) is L =supi > 0:U,—-1) > Ui} =£(U(0,—1))-

If nis theP( t1)-law of ¢;, and if &= is the set of excursions fror, +1) that
return to(z, +1) without reaching0, —1), and&~' the set of all others, then it is
clear that (e.g., [1912, Section VI1.50) the following hold:

(@) Pe,+plL =i]l= [N(&<")]~1,i > 1, andey, e, ... are independent;
(b) giventhatL > i, the law ofeq, ez, ...,e;_1isn(-N &) /n(&~");
(c) given thatL =i, the law ofe; isn(- N &>")/n(&>").

This makes{(¢(U;),e;), 1 <i < L — 1} a simple point-process [note that
L(U;) =i, andé(oco) = L], with the number of points having a Geometricg~"))
law, and with eacla; having the lawn(- N &<")/n(&~").

This observation is particularly convenient for analyzing the law@gf . Since
Cy,, is justCq conditioned onL =n, then — 1 excursions o>y, , belowr are
independentidentically distributed with the la¢ N & <") /n(& <"). We next derive
the law of their deptla; measured as distance from levddy ; =t — a;.

For each up-crossing tintg; of level s, we have a down-crossing time

(4) Di:inf{u>Ui:Xg~(u):(t,—1)}, i>1

For the values o#;, i > 1, we are only interested in the part of the excursions from
(t, +1) below levelr,

e =e;(Dj +u), uel0,Ut1—D;) and e~ (u)=(0,+1) else

We note that the shift and reflection invariance of the transition functio@sqof
as well as its strong Markov property, applied to the kafor ¢~" imply that the
law of e =t — ¢ is the same as the law &f; conditioned to return t¢0, —1)
before reachingr, +1). Consequently the law af — inf(e~") = suqef) is the
same law as that of sg@+) conditioned to be less than

To explicitly express the law of sy@s) we now recall classical results for
the branching process (e.g., [8], Section XVII1.10.11), by which the law of the
population sizeV(¢) of 7 at timer is given by

¢ tk—l
Hence
1
(6) PlsupCs) >t]=P[N() > 0] = 111 fort > 0.

Now for €y, , and for each ki <n — 1 we have that; = inf(e/"), and thee;™’
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are independent with~ ~ n(-N &~<")/n(€~"); hence each = — a; has the law

Plt; e dt] = P[SUpCy) € dT|SURCT) < £]
(7) dr 1+t
=—>— forO<t <rt.
(14+1)2 ¢ O

Asymptotics forIl,, could now be established with a routine calculation.
Instead of considering this result in isolation, it is far more natural to view
it as part of the larger picture connecting critical branching processes and
Brownian excursions. Let us recall the asymptotic results for critical Galton—
Watson processes conditioned on a “large” total population size. A result of
Aldous ([3], Theorem 23) says that its contour process (when appropriately
rescaled) converges, as the total population size increases, to a Brownian excursion
(doubled in height) conditioned to be of length 1. Note thatyi; is the total
population size of aritical Galton—Watson process, aMdz,) its population size
at some given time,, then the event§Niyot = n} and{N(t,) = n|N(t,) > 0} are
both events of “small” probabilities. The first has asymptotic chance’/? as
n — oo, and for{t, },>1 such that, /n — t asn — oo the second has asymptotic
chancec(r)n—1 [3]. While the total populationViot Size corresponds to the total
length of the contour process, the population s\zg,) at a particular time,,
corresponds to the occupation time of the contour process atgevidence, it
is natural to expect that the contour process of a critical Galton—Watson process
conditioned on a “large” population at timg (when appropriately rescaled)
converges, when,/n — t asn — oo, to a Brownian excursion conditioned to
have local time 1 at level

We will show the following. Consider a Brownian excursion conditioned to have
local time 1 at levek, as a “contour process” of an infinite tree (in the sense of
the bijection between continuous functions and trees established in [3]). Consider
defining a “genealogical” point-process from this Brownian excursion, using the
depths of its excursions below levelin the same manner as used in definifyg,
from the contour proces8y, ,, except that the excursions are now indexed by the
amount of local time at levelat their beginning. The state-space of such a point-
process can be simply described, and we show that it has quite a simple law as well.
It is then easy to show that this point-process is precisely the asymptotic process
of appropriately rescaled processés , asn — oco.

We construct a point-process from a Brownian excursion conditioned to have
local time 1 at levet, in the same manner in whidf, ,, was constructed from the
contour proces8y, . LetB(u), u > 0, be a Brownian excursion. For a fixed 0,
let £,(u), u > 0, be its local time at level up to timeu with the normalization of
local time as one-half the occupation density relative to Lebesgue measure (the
normalization choice is analogous to the upcrossings-only count for the contour
procesCy). Leti;(¢£), £ > 0, be the inverse process &f in other words; (¢£) =
inf{u > 0:¢4;(u) > ¢}. Let B;1(u), u > 0, then be the excursio® conditioned
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to have total local time; equal to 1, where; = ¢,(oc0) is the total local time
atr. Consider excursiortzf of B, 1 below levelr indexed by the amount of local
time ¢ at the timei, (£7) of their beginning. For each such excursiondgte its
infimum, and let, be the depth of the excursion measured from level=rt —a;,.
It&’s excursion theory then insures that the prodéésr) :i, (£7) #£ i, (£)} is well
defined.

DEFINITION 3. Thecontinuum genealogical point-process; 1 is the random
countably infinite set

(8) w1 ={(l 1¢) 10 (£7) # i (O)}.

REMARK 4. The name of the process will be justified by establishing it as the
limit of genealogical point-processes.

For the state-space of the continuum genealogical process we introduce the
notion of a nice point-process ([3], Section 2.8). mkce point-process on
[0, 1] x (0, c0) is a countably infinite set of points such that the following hold:

1. foranyé > 0, [0, 1] x [§, o) contains only finitely many points;
2. foranyO<x <y =<1,8 >0,[x, y] x (0,8) contains at least one point.

We next show that the state-space fgn is the set of nice point-processes,
and we establish the law of this process using standard results of Levy, 1td and
Williams on excursion theory.

LEMMA 4. Therandom set ;1 is a Poisson point-process on [0, 1] x (O, 7)
with intensity measure

d
@) v(dl x dt) = dt .
T
In particular, the random set 7; 1 isa.s. a nice point-process.

PROOF The crux of the proof lies in the following observations. An
unconditioned Brownian excursiaB observed from the first time it reaches level
is justr—a standard Brownian motion observed until the first time it reaches
The excursions of3 below levelr are thus the positive excursions of the Brownian
motion. By a standard result, the process of excursions of Brownian motion from 0,
indexed by the amount of local time at 0 at the time of their beginning, is a Poisson
point-process with intensity measuté x n, wheren is Itd’s excursion measure.
One can show that the condition éhto have local time 1 at levelis equivalent
to the condition that the shifted Brownian motion has all its excursions until local
time 1 of height lower tham and has one excursion at local time 1 higher than
This then, by the independence properties of Poisson processes, allows for a simple
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description of the point-process of the depths of excursions beloivB; 1 as a
Poisson process itself, except restricted to th¢Gdi x (0, 1).

Consider the path of an (unconditioned) Brownian excursgoafter the first
hitting time ofz, U, = inf{u > 0: B («) = t}, shifted and reflected about theaxis

(20) Bu)=t— BWU; +u) foru > 0.

Let Eg(u), u > 0, be the local time ofg at level O up to timeu, and
let ig(E), ¢ > 0, be the inverse process of this local time, in other words
i§(£):inf{u>0:£g(u) > ¢}. Then the proces®(u), u > 0, is a standard
Brownian motion stopped at the first hitting timetinf =inf{u >0:8(u) =1}.
Next, the excursions o from 0 are (with a change of sign) precisely the
excursions ofB from ¢, and the local time proceiﬁ of B8 is equivalent to the
local time procesg, of 8. We are only interested in the excursions®below?,
which are the positive excursions gfindexed by¢ such thaﬁg ) # ig (¢) and
supB(u) i (€7) <u<if @)} >0,

ef =B ) +u), wuel0if@—ifw)) and ¢fw)=0 else

Note that we thus have that the infimum of an excursio@dfelow: to be simply
inf(e;") =t — supe)).

Standard results of 1td’s excursion theory (e.g., [18]Section VI1.47) imply
that for a standard Brownian motigh the random set(¢, sup(ej)) :ig(E‘) #+
ig (£)} is a Poisson point-process @i~ x R* with intensity measuré¢ dz/z?
(recall our choice for the normalization of local time).

Now letL=inf{¢ > 0: sunej) >1)}. Then stoppinqg at the hitting time L is
equivalent to stopping at its hitting timeUt’g. Let 7, be a random set defined
from the unconditioned Brownian excursiaB, in the same manner in which
we definedr, 1 from a conditioned Brownian excursiaB; 1. Then, using the
relationship (10) of8 and 8, we observe thatr, is equivalent to a restriction
of {(¢,supe;)) il (t7) #if (0)} on the random s€D, L] x (0, ). The Poisson
point-process description §¢¢, suqej)) :ig ™) # ig (£)} now implies thatz; is
a Poisson point-process @1 x RT with intensity measurd{ dt/z? restricted
to the random s€0, L] x (O, ).

Next, note that the conditiof¢; = 1} for 8 is equivalent to the condition
{Kg(U}S) =1} for B, which is further equivalent to the conditigh = 1} for ;.

We have thus established that; 4 m:[{L =1}.
Further, the conditiofL = 1} on x, is equivalent to the condition that has
no points in[0, 1) x [¢, o0) and has a point ifl} x [r, 00). However, sincer;
is Poisson, independence of Poisson random measures on disjoint sets implies
that conditioningr; on {L = 1} will not alter its law on the sef0, 1] x (0, ).
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However, sincer; 1 is supported precisely of0, 1] x (0, 7), the above results
together imply thatr, 1 is a Poisson point-process @i 1] x (0O, 7) with intensity
measurell dt /2.

It is now easy to see from the intensity measureof that its realizations are
a.s. nice point-processes, namely:

(@) foranys > 0, [fi.1jx[s.00) 40 dT/T2=1/8 < 00;
(b) forany 0<x <y <1,ands >0, [/, (0. d€dT/T%=(y — x) - 00.

Also, sincer; 1 is Poisson, finiteness of its intensity measurg@ri] x [§, co)
implies that it has a.s. only finitely many points in the g&tl] x [8, co), while
infiniteness of its intensity measure pn y] x (0, §) implies that it has a.s. at least
one point on the sdk, y] x (0,4). O

Having thus obtained the description of the continuum genealogical point-
process induced by a conditioned Brownian excursion, it is now a simple task
to confirm that it indeed arises as the limit of genealogical processes. The right
rescaling for7; ,, is to speed up the time byand to assign mass ! to each extant
individual, which implies the appropriate rescaling of each coordinatel,of
by n~1. We hence define the rescaled genealogical point-process as

(11) n M, = {7 n ) L, ) € T )

and establish its asymptotic behaviomas> co.

THEOREMS5. For any {z, > 0},,>1 such that tn/nnjgot we have

-1 d
n Hzn’n = JT[’]_.
n—oo

. d .
REMARK 5. The notation— is used to mean weak convergence of
processes.

PROOF OFTHEOREM 5. The proof of the theorem is a just consequence of
the fact that weak convergence of Poisson point-processes follows from the weak
convergence of their intensity measures.

By Lemma 3 and the rescaling (11) we have thatIl, , is a simple point-

processonfl/n,...,1—1/n} x (0, t,/n) with intensity measure
1= 1
ndt 1+t,,
12 — Stim
(12) Z UL e iy

If {#,},>11s such that,/n — t asn — oo, then itis clear that the support set of the
processrll'[,n,n converges tdo0, 1] x (0, ¢), the support set of the process;.
It is also clear that the intensity measure (12) converge itr /t2, which, by
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Lemma 4, is the intensity measure of 1. For simple point-processes this is
sufficient (e.g., [5], Section 12.3) to insure weak convergence of the processes
n—ll'l,n,,, to a Poisson point-process dA, 1] x (0,r) with intensity measure

dtdr /7% By Lemma 4, we thus have that 11, , nfdgo m1. O

3. Genealogy of sampled extinct individuals. We now want to extend the
analysis of the ancestry of extant individuals to include some proportion of
the extinct individuals as well. Suppose that each individual in the past has
independently had a changeof appearing in the historical record. We indicate
such sampling of extinct individuals by putting a star mark on the le&f; gf
corresponding to the recorded individual. An example of a realization of such
p-sampling is shown in Figure 3(a), and the induced sampling in the contour
process is shown in Figure 3(b).

The goal is to combine the information on the sampled extinct individuals with
our analysis of the ancestry of the extant ones. To do so we extend our earlier
notions of the genealogy of the extant individuals and of the genealogical point-
process.

Let the p-sampled history of extant individuals at time be defined as the
smallest subtree of the family tree which contains all the edges representing
the ancestry both of the extant individuals and of all of gheampled extinct
individuals. We denote the-sampled history of extant individuals atin 7; ,
by ,(7:,,). Note that by definitiong,(7; ,) contains the genealog§(7; ,)
(which would correspond to a 0-sampled history). It is in fact convenient to

(a) (b)

Fic. 3. (a) The tree 77, with p-sampling on its individuals (the sampled individuals are
represented by ='s). (b) The contour process of this tree with the sampling on the corresponding
local maxima.
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think of 4,(7;,) as consisting of the “main genealogical treg(7;,) and
a collection of “p-sampled subtrees” attached to this main tree linking with
additional branches the ancestry pfsampled extinct individuals. Figure 4(a)
shows thep-genealogical subtree of the tree from Figure 3(a). We next extend
the notion of the genealogical point-process to represent this enrjgisadhpled
genealogy. We construct a point-process representatiof,d; ,) so that it
containsll; , as its “main points.”

Informally, think of extending the point-proces$s; , [representingg.(7;.,)],
by adding sets representing tipesampled subtrees as follows. At each branch-
point of the main tree there is a setpfsampled subtrees attached to the edges of
the main tree on the left of this branching point, and a sgi-shmpled subtrees
attached on the right of this branching point [see Figure 4(a)]. We associate with
each branch-point at height a left set£; and a right seRr;, which shall represent
these sets of subtrees. Each suth and R; needs to contain the following
information: the heights; ; (j) anda; r(j) at which thep-sampled subtrees get
attached to the edges of the main tree [as before we shall keep track of these heights
as distances from leveinterms oft; 1 (j) =t —a; . (j) andt; g(j) =t —a; r(j)];
and the shape of the subtre¥es; (j) andY; r(j) themselves (the indexing> 0
on the subtrees is induced by a depth-first search forward to the branch-pgint at
for the left sets and a depth-first search backward to the branch-paintatthe
right sets). The point-process representing phgampled genealogical tree from

(a) (b)

Fic. 4. (a)The p-sampled tree §, (7;,,); the “main tree” (in bold) has the * p-sampled subtrees’
attached to it. (b) The point-process representation E{’ n Of Gp(72,0); each of the “main points’
(large dots) has an associated |eft set and a right set representing the p-sampled subtrees attaching
to the left and right of that branch-point.
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Figure 4(a) is shown in Figure 4(b). To describe the law of gheubtrees it will
also be convenient to keep track of the heigght (j) andh; r(j) of the subtrees
Yi,.(j) andY; g(j).

Formally, we define the point-processgf(7;, ,) from the contour procesy, , .
The p-sampling on the tree is represented by the sampling of the local max-
ima of Cg, ,. From the definition off1, ,, we have the heights of the branch-
points of§(77,,) to bea; = inf{Cq, , (u) : D; < u < U; 41}, occurring in the contour
procesCy, , at timesB; =argminCy, , (u) :u € (D;, U;j1+1)}. The setL;, repre-
senting the set op-subtrees attaching to the edgesgafr; ,) on the left of the
branch-point;, is defined from the part of the excursion®f; , below: before
time B;. In other words if, forXs, , = (Cy, ,, slopdCy, 1), we define

e w)=Xg, (Di+u), uel0, B;— D),

thenL; is completely defined byfi. AnalogouslyR; is defined from the part of
the excursion o7, , below: after timeB;; in other words if we define

ei;?(u) = XTrn (Ui+l - M)v uec [0’ Ui+l - Bi)7

then it is completely defined b(_s/f;e (the subscriptd. and R reflect whether the
entities are involved in defining:; or ;). Note that thee<t runs forward up
to time B;, wherease"; runs backward. On the extreme ends we have the set
of p-subtrees on the left of the first branchlng point defined by the paftyof
prior to the first up-crossing timé/y, eg ) = X7,,(Ur — u), u € [0, U).
Analogously, the set gf-subtrees on the rlght of the last branching pointis defined
by the part oiC7, , after the last down-crossing tini,, e;'; (u) = X7, , (D, +u),
ue[0,Uqp,-1) — Dy), WhereU,) =influ >0: X5, = (0, -1)}.

To define the set£; andR; we also need to define the processes

Gi,r () = 0<irJf<u e (v, u€l0, B — D)),
sig() = inf e r(),  uel0,Up1— B)).

The bijection between the trég , and its contour procesdy, , implies that the
heights at which thep-subtrees are attached to the edges of the main tree are
precisely the levels of constancy of the procesggsandg; g. Furthermore, the
p-subtrees themselves have as their contour processes the excur%@?@s@h
andef,’e i.r above these levels of constancy (see [16] for a detailed description).
Figure 5 shows;; together with its infimum proce9§L

We definey; L(]) j >0, to be the successive levels of constancy;qf, and
letz; 1 (j) =t —a; 1 (j) be their distance from level For each level of constancy
a;,L(j), lete;; (j) be the excursion of;] — ¢; 1. that lies above the level 1. ().
Leth; 1 (j) be the height of this excursmh,, L(j)= sup(e 1(j)), and letY; 1 (j)
be the tree whose contour process is the excurslf(im]). Figure 5 shows an
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E,Lv(j)zt_az,L(j) TI,L (.])

e,.(j)
t=t—a (j)

v

FIG. 5. The left half e<£ of an excursion of Cg, , below ¢, with its infimum process ¢; ; whose
levels of constancy are {al L(j)};, above which I|e the p-marked subtrees {Y; 1 (j)}; of heights

{h, L(J)}

excursionei(j) with the p-subtre€Y; ; (j) it defines. Note that all the star marks
due top-sampling are contained in the excursmﬁ%(ﬁ hence are contained in
the subtreed;, L(]) An analogous definition leads WQr(j), j=>0,h;g(j) and

Y. (j) from el’ L(j) andg; g(j). With each point¢;, #;) of I, , we now associate
the sets

13)  Li={(tL() Yir(D)} ;20 and Ri={(t.r(): Yir())} 20

In addition, for extreme ends we define one gt from eg’, and we define a
set.L, from e,f’L For ease of future notation we sép = &, R, = &, (Lo, 1) =
(1,1) and(€y, tn) = (n,1).

DEFINITION 6. The p-sampled historical point-process E/,, is the random
set

(14) B, =i, ti, Li, Ri): (i, ;) €y, 0<i <n}.

REMARK 7. We have in fact implicitly defined a point-process represen-
tation &, , of a complete historical point-process (which would correspond to
1-sampling). The difference betweén, andu, , Is only in thex’s on the leaves
in the latter. It will, however, be clear that for nice asymptotic behavior we need to
con5|der__‘t , With p < 1; in other words we can only keep track of a proportion
of the extinct individuals.

We can now derive the law of the point—proc@%ﬂ. For this we shall also need
the law of thep-subtrees appearing in the setsandR;. Let T denote the space
of finite rooted binary trees with edge-lengths, andAetlenote the law o of
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the treed". Then, letA” denote the law o induced by thep-sampling on the
treeJ . Further, for any: > 0, IetAfl’ denote the law induced by restrictidg’ to
the treesy” of heighth.

To describe the law oE?, we use a more careful and detailed analysis of the
structure of the contour process; ,. First we use the result of Lemma 3, which
gives us the law of the main points &f ,,. Then conditional on the location of the
main points, we give the law of the sefs andR; of p-subtrees. We show that the
setsL; andR; are independent Poisson point-processes. The intensity measure of
each such set is given by the following. First, chogs€j), the distances below
¢ at which thep-sampled subtrees are getting attached, uniformly gyére total
distance below to theith branch-point. Next, choosg ; (j), the height for each
p-subtree, according to the same law as that of the height of &trekose height
is known to be less than (). Finally, choose the law of’; ;. (j), the attaching
subtree, according to the la, described above.

LEMMA 6. For any fixed 0 < p < 1, the law of the random set Effn is given
by the following:

(@) {(¢;, 1) :1<i <n— 1} isthe simple point-process I1; , of Lemma 3;

(b) given {(¢;,t;), 1<i <n — 1}, thesets £; and R; are independent; and for
each 0 <i <n therandomsets .£; and (R; are Poisson point-processeson R* x T
with intensity measure

(15) Li0<r<y) dt 1{0<h<t}$¥/\ﬁ-

PrROOF The proof relies on exploiting the alternating Exponential(rate 1) step
structure of the contour process; ,. From Lemma 3 we have that the excursions
of Cg,, belowt are independent and that their law is the same as th&t;of
conditioned on having height less tharWe further show that, when decomposed
into the part before its lowest point and a part after it, the two parts of these
excursions are conditionally independent given the excursion’s depth. In fact, if
the former is run forward to the lowest point, and the latter backward to the
lowest point, these two parts have the same conditioned law. We obtain a simple
description of the law of the levels of constancy of the infimum process for these
parts, and the excursions above these levels of constancy are shown to be copies
of G+ restricted in their height.

Independence of the pairs of sefs, R; over the index; follows from the
independence of the excursiogs’ of X7, , below levelr as shown in Lemma 3.
The strong Markov property oK+ also gives the independence 85 and £,
from all the pairsL;, R;. The proof of Lemma 3 also shows that the law of the
excursions — ¢~ is the same as that &fs conditioned on suf®y) < . The left
halfr —e;] of such an excursion is defined as the partef;~" until it reaches its
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maximum, and the right haif— e~} as the part after this maximum, run backward
in time (theu-coordinate). To derlve the conditional law df;, R; givenr; we
thus need to analyze the conditional law of the two partXefon either side of
its maximum, given the maximum'’s value.

Let us first consider the processr continued past its first hitting time of
(0, —1). Let S+ be its maximum process

Sy (u) = sup Cg(v), u=>0,
O<v=<u

and let us consider the proce$Ss, S+ — C+), which clearly completely
describesXs. The processSy, S+ — Cq) consists of an alternating sequence
of the following: rises of slope 1 fa§+ paired with the intervals at O fdfs- — C,
and levels of constancy f&8+ paired with the excursions from 0 fdi — Cs.
Figure 6(a) shows a decomposition Bf- into S+ and S+ — C+. Because the
alternating steps of+ are independent Exponential(rate 1) variables, it is not
difficult to see that the alternating steps(@f-, S+ — C) are independent, and
that the rises ofS+ all have the same Exponential(rate 1) distribution while the
excursions ofS — G4 all have the same distribution &~ [stopped when it first
hits (0, —1)]. Namely, the first rise of+ is just the first rise o€+ ; the X4+ law and
independence of a subsequent excursio§;of- C+ is immediate from the law
of C; and, finally, the Exponential(rate 1) law and independence of a subsequent
rise of S5 is just a consequence of the memoryless property of ris€g-of

Consider now the point-proce$6, )} of levels of constancy of+ paired
with the excursions of+ — G5 below them. The above analysis shows thét),
u > 0} is a Poisson(rate 1) process, and the excursigradl have the same law
asCy. We shall denote the law @+ by n (as in the proof of Lemma 3). Then

s s=h(eg )
M .

Sq-Cr * |
/\/\/\ ; h(es)

(b)

FIG. 6. (a)Theprocess X4 continued past itsfirst hitting of (0, —1), its maximum process S and
the excursion process S — G4 below the levels of constancy of S ; M isthe maximal value of X4
before it first hits (0, —1). (b) The point-process {(s, h(es))} of the values of constancy of S¢, paired
with the heights of excursions of S+ — G4 below them.



2138 L. POPOVIC

{(s, &5)} forms a Poisson point-process with intensity measisme. Note that it
was shown in (6) that the height 6%, and hence the height of these excursions,
is given byn(sup(:) > h) =1/(1+ h), for h > 0.

We now consider how the maximum &4 in the time interval before it
first hits (0, —1) appears within this point-proce$és, ¢5)}. We denote the first
hitting time of (0, —1) by U, —1) = inf{r: X5 = (0, —1)}, and the maximum
of interest byM = supg X7 (v):v € (0, Uq,—1))}. Then, one can easily note that
s(U,-1)) =M and thatvs € (0, M), h(ss) < s whereas fos = M, h(ey) > M.
Figure 6(b) depicts a realization ¢fs, ,}). In other words, the pointM, ) is
the first point (in terms of the-coordinate) of the procedss, ¢;)} which falls
outside the sef(s, i) :s > 0, hy > 0, sy < s}. Independence of Poisson random
measures on disjoint sets then implies that, given the valdg efsugd X+ (v) v €
(0, Uqo,—1))}, the conditional law of the processs, e;) :s < M} is independent
of the point(M, e5) and has the law of a Poisson point-process with intensity
measure

Lo<s<mds Loch<s

h
mn(' |Sup(-) = h).
It is important now to note that the process, ¢;) : s < M} completely describes
the part of X4 before it reaches the maximud?, while the point(M, &)
completely describes the part af> after it reachesV and before it first hits
O, —-1).

We can now tend to the quantities of interest within the excursiong:;~'.
We have that the conditional law of— ¢, r — ¢, given; is the same as
the conditional law of the parts of+ before and after its maximum given
that M = ;. Within ¢ — efi the levels of constancy ; (j) and the associated
excursionst — eﬁ(j) above these levels precisely correspond to the levels of
constancys and its associated excursionswithin the procesg(s, g5):s < t;}.
Moreover,t — ef,’e precisely corresponds to the part of the excursigrbefore it
hits (0, —1), reversed in time (cf. Figures 5 and 6).

From our analysis above it thus follows tHét; (/). ¢;7 (j))}, thatis,r — ;7]
andr — effe are conditionally independent givenand that(z; 1 (j), efi (7))} has
the law of a Poisson point-process with intensity measure

(lThh)zn(- | SUR(-) = h).

Now the strong Markov property implies that thesampling on the local
maxima of the whole contour process; , is for eachefi(j) again a Bernoulli
p-sampling on its local maxima. Thus the conditional law of freampled tree
Y;..(j) defined fromefj.(j) given the heighty; 1.(j) = suple; 77 () is Afi,L(j).
Putting all the above results together we have that givéine random seft; =

]lO<t<ti dt lo<h<s
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{(ti,.(J), Yi,.(j))} >0 is conditionally independent of the s@&;, and its law is a
Poisson point-process with intensity measure

dh

140<r<s;) dt 1{0<h<z}m1\h'

The same conditional law @R; follows from time reversibility of the law 0é;~.
O

Let us now consider the implications that thesampling of extinct individuals
has in the asymptotic context. In Section 2, the genealogical point-process was
defined from the contour procesy;,,, and its asymptotics was identified as
the continuum genealogical point-process similarly defined from a Brownian
excursion$; 1 conditioned to have local time 1 at level Now the p-sampled
historical process is defined from a contour proc€gs, whose local maxima
are sampled independently with equal chanpceln terms of the (horizontal)
u-coordinate ofCs,, the p-sampled individuals form a random set of marks
onR*. The fact that®+ is an alternating sum of independent Exponential(rate 1)
random variables implies that the random set formed by the local maxir@a of
is a Poisson process of rat¢2lon R*, and the same still holds for the sets
formed by the local maxima of each part of an excursiogf, below:. If we
further sample these local maxima independently with change have a Poisson
process of ratgp/2 onR™. Now, for the asymptotics, the appropriate rescaling,
as in Section 2, speeds up the time axi<Cgf, by n. Hence if we considep,
such thatup, — p asn — oo, then asymptotically the,,-sampling onCy, , will
converge to a Poisson process of rat. This prompts us to consider for the
asymptotics of thep-historical point-process a process similarly defined from a
conditioned Brownian excursiol; 1 sampled according to a Poisson(rat&)
process along its (horizontal}coordinate.

REMARK 8. We are interested in obtaining an asymptotic point-process that
has a.s. finitely many extinct individuals recorded. It is clear that thus the rate of
sampling asymptotically has to satisfy,, — p asn — oo.

We define a process derived from a conditioned Brownian excugjarn the
same manner tha!,, was derived from the contour process of the conditioned
branching procesey, ,. Recall that8(u), u > 0, denotes a Brownian excursion,
for a fixedr > 0; £,(u), u > 0, is its local time at level up to timeu; i,(¢),
¢ > 0, is the inverse process 6f. Also, B;.1(«#), u > 1 denotes the excursia8
conditioned to have total local time aequal to 1, and¢, e;f) denotes the set of
excursions ofB; 1 below levelr indexed by the local timé, at the time of their
beginning.



2140 L. POPOVIC

Define thep-sampling ongB; 1 to be a Poisson(ratp/2) process along the
u-axis of B; 1. We indicate this by putting a star mark on the grapiBpf at the
times of this Poisson process. L&t’ be an excursion af3; 1 below levelr

e () =B (i, (£7) +u), u€[0,i(£) —ir(£7)).

Recall thatz, = inf(e;™) is its lowest point occurring at, = arg minte~'(«)), and
thats, =+ — a, denotes its distance from level For eache;" we define its left
and right parts (relative to its lowest point) to be

et (W)= Ba(i(€)+u),  uel0ug—i(€7)),
e ) =B 1(i: (0) — u), u e [0,i,(6) — up).

Note thate;"; runs forward to the lowest point ef”', whereag %, runs backward
in time to it. We shall also need their respective processes of infima

Ge.L(u) = 0<|rl}f<u e (v), uel0,ug—i(€7)),

Ge.r(u) = Osirvlfsu e;R(V), ue[0,i,(€) —ug).

Figure 7 showgz’L ande; %, with ¢, 1 andgy .

]

'| il I\
(“ 1" '.I r~||'| l'fh T

i ﬂ JII"' ”a'l"h'

Fic. 7. (Top)Anexcursione;’ of :B’t 1 belows, itslefte;”, andright e parts, withtheir infimum
processes; (bottom)the prooeSSe —SeL-




ASYMPTOTIC GENEALOGICAL PROCESS 2141

We defineay 1 (j), j = 0, to be the successive levels of constancypf ,
and we lett, 1 (j) =t — ae,(j) be their distance to level For each level of
constancyu, 1 (j), let eZ’L(j) be the excursion oéfL — ¢¢. that lies above the
levelae 1 (j). Leth, 1 (j) = sup(eZ’L(j)) be the height of this excursion. Note that
a.s. all thep-sampled points o, 1 lie on these excursion@j(j). We define
a treeY, ;(j) induced by such @-sampled excursian’L(j) as the tree whose
contour process is the linear interpolation of the sequence of the vallagé@f)
at the p-sampling times, alternating with the sequence of the minimaZQf(j)
between thep-sampling times. An analogous definition leadszior (), j > O,
te.r(j), j =0, he r(j) @and Yy, (R) from ey (j) andge r ().

REMARK 9. This definition of a tree from an excursion path sampled at given
times has been explored for different sampling distributions in the literature (for
some examples see [16], Section 6). Since for egchihere are a.s. only finitely
many p-sampled points the tre¢¥ 1 (j)};, {Y¢,zr(j)}; are a.s. in the spadeof
rooted planar trees with edge-lengths and finitely many leaves.

With each point¥, #,) of 7; 1 we now associate the sets
(16) Le={(te.L (). Te.L(N)}js0 aNd Re={(ter()), Ye.r())} 50

We also define the first “right” seRg and the last “left” set£1 from pathSea’R

of B; 1 before the first hitting time of, andeffL of B, 1 after the last hitting time
of t. For ease of notationwe lelg=R1 =, (g =11 = 1.

DEFINITION 10. The p-sampled continuum historical point-process gt’fl is
the random set

17) £l =1 te, Lo, Re): (€, 10) € 71,1, i (€7) # i (0)),.

We next derive the law of the point-proceg§ . For this we shall also need the
law of the trees induced by the-sampled excursions ef<! — ¢. Let A? denote
the law on the spacé induced by aB sampled at Poisson(rage points (in the
sense of the bijection between sampled continuous functions and trees [3], same
as the definition off’, ; (j) from the p-samplede, ;. (j)). Then, for anyz > 0, let
/\5 denote the law induced by restricting to the set of Brownian excursior®8
of heighth.

To derive the law otfl we exploitin a more detailed manner the nice properties
of Brownian excursions. We first use the result of Lemma 4, which gives us the
law of the se{{ (¢, #;) : i, (£7) # i;(£)}. Then conditional on this set we give the law
of the sets£, and R,. We show thaf.L,, R}, are independent Poisson point-
processes. The intensity measure of each such set is given by the following. First,
choosey 1 (), the distances belowat which thep-sampled subtree excursions of
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eZ’L — g¢,2 occur uniformly over,, the distance belowof the lowest point oé .
Next, chooséi, 1 (j), the height for each such-sampled excursion, according
to the same law as that of the height ofBawhose height is known to be less
thanz, 1 (j). Finally, choose the law of the induced tr&e ; (j) according to the
law A/ described above.

LEMMA 7. Therandomset £, is such that the following hold:

(@) {(€,10):i;(£7) #i; ()} isthe Poisson point-process ir; 1 of Lemma 4;

(b) given {(¢, 1) :i,(£7) # i, ()} the sets L, and R, are independent; and for
each ¢:i,(£7) #i;(¢), £, and R, are Poisson point-processes on R™ x T with
intensity measure

dh
(18) 1{0<r <z} dt ]1{O<h<z}ﬁ)\£-

PrROOF The proof proceeds in many of the same steps as the one for deriving
the law of thep-sampled historical proces . The notable difference is that we
now have to resort to more sophisticated Markovian results on the decomposition
of a Brownian path, such as the Williams decomposition of a Brownian excursion
given its height, and the Pitman theorem on Bessel processes. In short, we
consider the decomposition of the conditioned Brownian excur@ipn into its
excursions below leved provided by the Lemma 4. For each such excursion
below: given its lowest point at distaneg below, the Williams decomposition
gives us the independence and identity in law of its left and right parts, as well
as the description of their laws in terms of a three-dimensional Bessel process.
Furthermore, we can use Pitman’s theorem that describes the law of the excursions
of this Bessel process above the levels of constancy of its future infimum. After
taking care of some conditioning issues, this finally gives us a simple description
of these excursions above the levels of constancy as simply Brownian excursions
conditioned on their maximal height.

The independence of the sefy over the index¢ (the same holds for the
sets.R() follows from the independence of the excursionsBf; below level.

This also holds (by the strong Markov property 8) for the setsRg and L,
defined from the parts of the path @&; ; of its ascent to leved and its descent
from it. For eache;" excursion of8, 1 below levelz, we lete/ = — ;. By
Lemma 4, the conditional law @12* given(¢, ty) is that of a Brownian excursiofs
conditioned on the value of its supremu\{supB) = t,}. Let t;, = inf{u >

0 :ej(u) = t¢}; then by the Williams decompaosition of a Brownian excursi®n
(e.g., [19],1, Section 111.49), the law Oi’ZL =t— eZtL is that of a Bess(3) (three-
dimensional Bessel) processstopped the first time,f =influ >0:p) =t} it
hits #,. By time reversibility of8 the process

re.p(u) =ty — eZL(r,e —u), u€ (0, 1,),
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also has the law of the stopped Bess(3) prog&ss, u < (0, r,’g ). Let

Jer(u) = uslpsf

re L, MG(O, Tfe)'
T[Z

Then{t, —1, 1. (j)}; are (in reversed index order) the successive levels of constancy
of the processi 1 (u), u € (0, 7,); {he,1.(j)}; (in reversed index order) are the
heights of the successive excursions from 0 of the proegeg$u) — jo.r(u),

u € (0,7,), and{Y, 1 (j)}; (in reversed index order) are the trees induced by the
p-sampled points on these excursions. To obtain the layy efandr, ;. — je.1
consider the Bess(3) procesé&s), u > 0, and its future infimum processu) =
infy>, p(v), u > 0. We note that the law of, ; (v), u € (0, 7;,), is equivalent to

that of j (u), u € (0, 7)), if j(z/;) =1¢; in other words, ifo(u), u > 0, after it first
reaches, never returns to that height again. So,

Gersrer —je) = Gop—DI(EE) =1} forue(0,1,).
By Pitman’s theorem, then by Levy’s theorem (e.g., [18], VI, Sections 3 and 6)

Go—NE@c—p L, 18D,

whereg is a standard Brownian motion,its supremum procesks| is a reflected
Brownian motion/ its local time at O (with the occupation time normalization).
Thus, forz, :=inf{u > 0:|B, + €y = ¢},

Gerorer —jer) £ @ 1B, =1} forue (0,1,).

The condition{¢;, =1} is equivalent to the conditiof¢;, =1, ||z, = 0} and
{u<7,: 8, <ty |Blu <t —L,). Hence,

. N - _ ~
(19) GeLorer — jer) = € 1BDNEL <t |Blu <te — Lu; Lz, =10, |Blz, = O}.

Since (¢, sup(|B|)) is a Poisson point-process with intensity measifdh /i?,

then using the independence property of a Poisson random measure on disjoint
sets in (19), we obtain far=r, — ¢ that(z, — Je.L, SURre.L — je.r)) is @ Poisson
point-process with intensity measure

dh
]1(O<t<tg) dt ]1(O<h<t) ﬁ

Recall the relationship of the valué¢s ; (j), he,1.(j), Ye,.(j)}; Of L, with the
processeg, ;. andr, ;. — j¢... The above result thus implies thét is a Poisson
point-process with intensity measure

dh_,
]1(O<t<tg) dt ]1(O<h<t) ﬁ)\h s

where the last factor comes from the fact that, () is just the tree induced by
the p-sampled excursion @g| of heighth, ; (j). O
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Our next goal is to show that the proc@;ﬁ whose law we have just obtained
is indeed the asymptotic result of the procesﬁég after appropriate rescaling.

To do so, we first must show that the IaM" on the space of trees converge
asn — oo to the Iawk{l’ if np, — p. We need to consider more closely the
treesY; 1 (j) and Y, . (j) induced by the sampled excursions appearing in the
historical point-processes above. In both cases we have an excuegia, B,

of a given height and with marks on it produced by a sampling process. Laws of
the trees induced by sampled excursions of unrestricted height can be very simply
and elegantly described (see [10] for the case&df However, for the trees from
excursions of a given height that we need to consider here, the description is much
messier. We shall give next a recursive description that applies equally to define
an Y, . (j) from Cs of a given height, or to defin&, ;. (j) from B of a given
height. A similar recursive description of an infinite tree induced by an unsampled
Brownian excursion is given by Abraham and Mazliak [2].

Define the “spine” of the tree to extend from the root of the tree to the point of
maximal height in the excursion. An equivalent representation of the tree is one
in which the subtrees of the trees on the left and on the right of the axis through
the spine are attached to this spine, an example of which is shown in Figure 8. We

Y ()

£(j)

FiG. 8. The “first” set in the recursive description consists of branch levels {¢7 (j)}; at which
subtrees induced by sampled excursions of e¢; — ¢; are attached to the spine; and the heights
{hp(j)}; of these subtrees.
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obtain the branch levels at which these subtrees are attached, as well as parameters
needed for the description of the subtrees as follows.

We denote the excursion function defining this treeeloy), u > 0 (in other
wordse = G5 ore = B). Leth be its given height, antl;, = arg maXe(u) : u > 0}
the time at which it is achieved. Then let (u), u € [0, U], be the left part of
the excursion, and we also define its future infimum procg$s) = inf,>, e(v),
u € [0, Uy]. Then the subtrees attaching on the left of the spine are defined by
the procesg; — ¢; and the set of sampled marks. They are precisely the trees
induced by the sampled excursiang j) of e;, — ¢z whose height is somie ().
The levels at which they are attached to the spine are the levels of constéjcy
of ¢, at which the excursions @f, — ¢; occur. Thus the s, (j), hr(j))} ;>0
is the “first” set in our recursive definition of trees. The “second” set is derived in
the same manner from the sampled excursjepéj)}; and so on. We define these
sets analogously for the right part af

This recursive procedure is clearly very similar to our definition of the left
and right setst;, R; for ¢/ and L, R for e as defined earlier. The main
difference is that the subtrees here are defined from excursions above the levels of
constancy of the future infimum process tgrwhereas earlier they were defined
from excursions above the levels of constancy of the past infimum process for
e" ande;". However, time inversion and reflection invariance of the transition
function of e will allow us to easily derive the laws of the “first” set of points
here from the results of Lemmas 6 and 7. In the next lemma we give a recursive
description of the law oA} andA” , and we show that we do have the convergence
of theAf” (appropriately rescaled) vq’j if np, — p.

LEMMA 8. The law A,f" of a tree induced by a p,-sampled contour
process Cy of a given height / is such that the first sets of points {; (j), hr(j)};
and {tr(j),hr(j)}; are independent Poisson point-processes with intensity
measure

de 147
A+Kx)2 1

1
(20) ﬁﬂ(0<7<h) dt ]]-(0<K<h—f)
The law A{l’ of a tree induced by a p-sampled Brownian excursion 8 of a given
height % is such that the first sets of points {r;(j), k. (j)}; and {tr(j), hr(j)};
are independent Poisson point-processes with intensity measure

1 dk
(21) —1(0<r<h) dt 1(0<K<h—r)ﬁ-

N2
Let n~1A » e the law of the tree induced by a rescaled p,-sampled contour
process G5 by n~1 in the vertical coordinate. Then for any {p, € (O, 1)},>1 such
that np, — p wehaven A" = A7.
n—oo n—oo
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ProOF The key for this proof is to observe the following.dfu), u > 0, is
the p,-sampled procesX s |{SUpCy) = h}, thener (u) = e(u), u € [0, U], has
the law of ap,-sampledX+|{t;, < 10}, wherety, 1o are the first hitting times of
(h,+1), (0, —1), respectively, byXs. Then time reversibility and the reflection
invariance of the transition function &f imply thath — ey (U, —u), u € [0, Uy],
has the same law ag.(u), u € [0, U;]. Now the levels of constancy af;, and
the corresponding excursiorg — ¢; above them, are equivalent to the levels
of constancy and excursions of a sét considered in Lemma 6, thus giving a
Poisson process of intensity measure as in (15). The factd# in the intensity
measure (20) comes from the fact that here we only consider the excursions of
er — ¢t that have at least one sampled mark in them. Namely, for the branching
processT, if Nyt denotes the total population size ®f, then the generating
function of Nyt is E(xMot) = 1 — (1 — x)¥2. Hence, the chance of at least one
mark in thep,-sampled point-process 6f is 1— E((1 — p,)Net) = p,1/2.

A similar argument applies wher(u), u > 0, is the proces®8|{supB) = h}
sampled at Poisson(raje/2) times. Time reversibility and reflection invariance
of the transition function of8 allow us to identify that the law of the levels of
constancy ofc;, and the corresponding excursiaf)s— ¢; above them, are the
same as those for a st considered in Lemma 7, which we know form a Poisson
process with intensity measure as in (18). The fapto¥'? in the intensity measure
of (21) then comes from the rate of excursions with at least one sampled mark.
Namely, a Poisson(rate/2) process of marks o along its time coordinate is
in its local time coordinate a Poisson(rgi&’2) process of marks (see [19,
Section VI.50).

Now the law of the first set of the rescaled process witHAZ" converges to
the law of the first set of the process with the lafl This follows from the fact
that the former is a sequence of Poisson point-processes whose support set and
intensity measure converge to those of the latter Poisson point-process. Since for
Poisson random measures the convergence of finite-dimensional sets is sufficient
to insure weak convergence of the whole process our claim follows for the first
sets, and by recursion for the whole proceds.

Finally, we can obtain the asymptotic result for thesampled historical point-
processes. The rescaling Eﬁ’jn is the same as that fdi, ,. Both coordinates
of I, , are rescaled by 1, so that the vertical coordinate of the setsR; is
also rescaled by 1, and the sampling rate is rescaled/hyHence the rescaled
process is defined as

(22) n B, =,y L T R U T, L, R € BEL L

The asymptotic properties of the rescaledampled historical process are now
easily established from our earlier results.
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THEOREM9. For any {#, > 0},>1 and {p, € (0, 1)},>1 such that tn/nnjgot
—1—=Pn P
andnp, — pwehaven "', = &

n—oo

PROOF By Theorem 5 we already have that'Il, , =271 Applying

the rescaling to the results of Lemma 6 together with the result of Lemma 8 now
implies that the support set and intensity measure of the Poisson point-process of
each.; after rescaling converges to those of the Poisson point-prateas given

by Lemma 7. Then the convergence of the support set and intensity measure for
the Poisson random measuEg”, to those ofs”; implies the weak convergence

of these processesl]
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