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A reaction network is a chemical system involving multiple reactions and
chemical species. Stochastic models of such networks treat the system as a
continuous time Markov chain on the number of molecules of each species
with reactions as possible transitions of the chain. In many cases of biologi-
cal interest some of the chemical species in the network are present in much
greater abundance than others and reaction rate constants can vary over sev-
eral orders of magnitude. We consider approaches to approximation of such
models that take the multiscale nature of the system into account. Our pri-
mary example is a model of a cell’s viral infection for which we apply a
combination of averaging and law of large number arguments to show that
the “slow” component of the model can be approximated by a deterministic
equation and to characterize the asymptotic distribution of the “fast” compo-
nents. The main goal is to illustrate techniques that can be used to reduce the
dimensionality of much more complex models.

1. Stochastic models for reaction networks. A reaction network is a chem-
ical system involving multiple reactions and chemical species. The simplest sto-
chastic model for a network treats the system as a continuous time Markov chain
whose state X is a vector giving the number of molecules of each species present
with each reaction modeled as a possible transition for the state. The model for
the kth reaction is determined by a vector of inputs νk specifying the number of
molecules of each chemical species that are consumed in the reaction, a vector
of outputs ν′

k specifying the number of molecules of each species that are created
in the reaction, and a function of the state λk(x) that gives the rate at which the
reaction occurs. Specifically, if the reaction occurs at time t , the new state becomes

X(t) = X(t−) + ν′
k − νk.
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Let Rk(t) denote the number of times that the kth reaction occurs by time t . Then
the state of the system at time t can be written as

X(t) = X(0) + ∑
k

Rk(t)(ν
′
k − νk) = (ν′ − ν)R(t),

where ν′ is the matrix with columns given by the ν′
k , ν is the matrix with columns

given by the νk , and R(t) is the vector with components Rk(t).
Rk is a counting process with intensity λk(X(t)) (called the propensity in the

chemical literature) and can be written as

Rk(t) = Yk

(∫ t

0
λk(X(s)) ds

)
,

where the Yk are independent unit Poisson processes. Note that writing Rk in this
form makes it clear why λk is referred to as a rate.

Defining |νk| = ∑
i νik , the stochastic form of the law of mass action says that

the rate should be given by

λN
k (x) = κk

∏
i νik!

N |νk |−1

(
x

ν1k · · ·νmk

)
= Nκk

∏
i νik!

N |νk |
(

x

ν1k · · ·νmk

)
,

where N is a scaling parameter usually taken to be the volume of the system times
Avogadro’s number, and κk is a constant specifying the rate of the reaction. Note
that the rate is proportional to the number of distinct subsets of the molecules
present that can form the inputs for the reaction. Intuitively, this assumption reflects
the idea that the system is well stirred, in the sense that all molecules are equally
likely to be at any location at any time.

1.1. Law of large numbers and diffusion approximations. If N is the vol-
ume times Avogadro’s number and x gives the number of molecules of each
species present, then c = N−1x gives the concentrations in moles per unit vol-
ume. With this scaling and a large volume (where large can be pretty small since
Avogadro’s number is 6 × 1023),

λN
k (x) ≈ Nκk

∏
i

c
νik

i ≡ Nλ̃k(c).(1.1)

Since the law of large numbers for the Poisson process implies N−1Y(Nu) ≈ u,
(1.1) implies

C(t) = N−1X(t) ≈ C(0) + ∑
k

∫ t

0
κk

∏
i

C(s)
νik

i (ν′
k − νk) ds,

which in the large volume limit gives the classical deterministic law of mass action

Ċ(t) = ∑
k

κk

∏
i

C(t)
νik

i (ν′
k − νk).
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Similarly, since an appropriately renormalized Poisson process can be approxi-
mated by a standard Brownian motion, that is,

Y(Nu) − Nu√
N

≈ W(u),

we can derive a diffusion approximation for the Markov chain by replacing Yk(Nu)

by
√

NWk(u) + Nu, that is,

CN(t) = CN(0) + ∑
k

N−1Yk

(∫ t

0
λk(X

N(s)) ds

)
(ν′

k − νk)

≈ CN(0) + ∑
k

N−1/2Wk

(∫ t

0
λ̃k(C

N(s)) ds

)
(ν′

k − νk)

+
∫ t

0
F(CN(s)) ds,

where

F(c) = ∑
k

λ̃k(c)(ν
′
k − νk).

The diffusion approximation is given by the equation

C̃N(t) = C̃N(0) + ∑
k

N−1/2Wk

(∫ t

0
λ̃k(C̃

N(s)) ds

)
(ν′

k − νk)

+
∫ t

0
F(C̃N(s)) ds,

which is distributionally equivalent to the Itô equation

C̃N(t) = C̃N(0) + ∑
k

N−1/2
∫ t

0

√
λ̃k(C̃N(s)) dW̃k(s)(ν

′
k − νk)

+
∫ t

0
F(C̃N(s)) ds

= C̃N(0) + ∑
k

N−1/2
∫ t

0
σ(C̃N(s)) dW̃

+
∫ t

0
F(C̃N(s)) ds,

where σ(c) is the matrix with columns
√

λ̃k(c)(ν
′
k − νk). A precise version of this

approximation is given in [7]. (See also [4], Chapter 10, [5], Chapter 7, and [12].)
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1.2. Multiscale approximations. Interest in modeling chemical reactions
within cells has led to renewed interest in stochastic models, since the number
of molecules involved, at least for some of the species, may be sufficiently small
that the deterministic model does not provide a good representation of the behav-
ior of the system. Modeling is further complicated by the fact that some species
may be present in much greater abundance than others. In addition, the rate con-
stants κk may vary over several orders of magnitude. With these two issues in
mind, we consider a different approach to deriving a scaling limit approximation
of the model.

N will still denote a scaling parameter for the model, but it is no longer inter-
preted in terms of volume or Avogadro’s number. In fact, N−1 plays the same role
as ε in a perturbation analysis of a deterministic model (see, e.g., [11]). N may
have no physical meaning, but it will have a specific (hopefully large) value in any
physical or biological setting in which the approximation is applied.

For example, let N be of the order of magnitude of the abundance of the most
abundant species in the system. For each species i, we then specify a parameter
0 ≤ αi ≤ 1 and normalize the number of molecules by Nαi , defining

Zi(t) = N−αiXi(t).

αi should be selected so that Zi = O(1), but that still leaves a degree of arbi-
trariness regarding the selection. Note that αi could be zero, so Zi could still be
integer-valued.

We want to express the reaction rates in terms of Z rather than X and also to
take into account large variation in the reaction rates. Consequently, we introduce
another set of exponents βk for the reactions and now assume that the reaction
rates can be written as Nβkλk(z), where λk(z) = O(1) for all relevant values of z.
The model becomes

Zi(t) = Zi(0) + ∑
k

N−αiYk

(∫ t

0
Nβkλk(Z(s)) ds

)
(ν′

k − νk).

Our goal is to derive simplified models under the assumption that N is large, where
“large” may be much smaller than Avogadro’s number. We demonstrate that this
process may lead to interesting and reasonable models by analyzing a number of
examples in the literature.

1.3. Outline of the paper. Reaction networks of interest in biology can be very
high dimensional involving many chemical species and many reactions. Conse-
quently, there has been considerable effort to exploit the multiscale nature of these
systems to derive reduced models. In Section 2 we borrow examples from a num-
ber of these papers to illustrate how the kind of scaling limits we have in mind can
be used to provide a rigorous and intuitive approach to model reduction. The pri-
mary focus of the paper is a model of an intracellular viral infection given in [10]
and studied further in [6]. We analyze this model in Section 3, and give a system-
atic identification of the scaling parameters in Section A.2.
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2. Examples.

2.1. Simple crystallization. We consider a model studied by Haseltine and
Rawlings [6] using the parameters in Table I of their paper. The system involves
four species and two reactions:

2A
κ1−→ B, A + C

κ2−→ D.

The model satisfies

XA(t) = XA(0) − 2Y1

(∫ t

0

1
2κ1XA(s)

(
XA(s) − 1

)
ds

)
− Y2

(∫ t

0
κ2XA(s)XC(s) ds

)
,

XB(t) = XB(0) + Y1

(∫ t

0

1
2κ1XA(s)

(
XA(s) − 1

)
ds

)
,

XC(t) = XC(0) − Y2

(∫ t

0
κ2XA(s)XC(s) ds

)
.

Following Rawlings and Haseltine, XA(0) = 106, XB(0) = 0, XC(0) = 10, and
κ1 = κ2 = 10−7. Let N = 106, and take αA = αB = 1 and αC = 0. Writing κ1 =
κ2 = 0.1 × N−1, the normalized system becomes

ZN
A (t) = 1 − N−12Y1

(
N

∫ t

0
0.05ZN

A (s)
(
ZN

A (s) − N−1)
ds

)
− N−1Y2

(∫ t

0
0.1ZN

A (s)ZN
C (s) ds

)
,

ZN
B (t) = N−1Y1

(
N

∫ t

0
0.05ZN

A (s)
(
ZN

A (s) − N−1)
ds

)
,

ZN
C (t) = 10 − Y2

(∫ t

0
0.1ZN

A (s)ZN
C (s) ds

)
.

Letting N → ∞, the simplified system is

ZA(t) = 1 −
∫ t

0
0.1ZA(s)2 ds,

ZB(t) =
∫ t

0
0.05ZA(s)2 ds,

ZC(t) = 10 − Y2

(∫ t

0
0.1ZA(s)ZC(s) ds

)
,

which gives

ZA(t) = 1

1 + 0.1t
.
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Since ZA is deterministic, ZC is a linear death process with time-varying rate
λ(t) = 0.1ZA(t). Consequently, for any t > 0, the distribution of ZC(t) is
Binomial(10,p(t)) with

p(t) = exp
{
−

∫ t

0
0.1ZA(s) ds

}
= 1

1 + 0.1t
.

In particular,

E[ZC(t)] = 10

1 + 0.1t
, Var[ZC(t)] = t

(1 + 0.1t)2 ,

compare favorably with the simulation results in Figure 1 of [6].

2.2. Enzyme kinetics. Rao and Arkin [9] analyze a model of enzyme kinetics,
involving an enzyme, substrate, their enzyme-substrate complex and a product of
this complex

E + S

κ1−→←−
κ−1

ES, ES
κ2−→ P + E.

The state of this system can be represented by

Xs(t) = Xs(0) + Y−1

(∫ t

0
κ−1Xes(r) dr

)
− Y1

(∫ t

0
κ1Xe(r)Xs(r) dr

)
,

Xes(t) = Xes(0) − Y−1

(∫ t

0
κ−1Xes(r) dr

)
+ Y1

(∫ t

0
κ1Xe(r)Xs(r) dr

)
− Y2

(∫ t

0
κ2Xes(r) dr

)
,

Xe(t) = Xe(0) + Y−1

(∫ t

0
κ−1Xes(r) dr

)
− Y1

(∫ t

0
κ1Xe(r)Xs(r) dr

)
+ Y2

(∫ t

0
κ2Xes(r) dr

)
,

Xp(t) = Y2

(∫ t

0
κ2Xes(r) dr

)
,

where Xs gives the number of substrate molecules, Xe the number of enzymes,
Xes the number of enzyme complexes, and Xp the number of molecules of the
reaction product. Following Rao and Arkin, take Xs(0) = 100, Xe(0) = 1000, κ1 =
κ−1 = 1, κ2 = 0.1. Let N = 1000, and define ZN

s = N−2/3Xs, ZN
es = N−2/3Xes,

ZN
p = N−2/3Xp, ZN

e = N−1Xe, and κ2 = N−1/3. Then the normalized system
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becomes

ZN
s (t) = 1 + N−2/3Y−1

(∫ t

0
N2/3ZN

es(r) dr

)
− N−2/3Y1

(∫ t

0
N5/3ZN

e (r)ZN
s (r) dr

)
,

ZN
es(t) = −N−2/3Y−1

(∫ t

0
N2/3ZN

es(r) dr

)
+ N−2/3Y1

(∫ t

0
N5/3ZN

e (r)ZN
s (r) dr

)
− N−2/3Y2

(∫ t

0
N1/3ZN

es(r) dr

)
,

ZN
e (t) = 1 + N−1Y−1

(∫ t

0
N2/3ZN

es(r) dr

)
− N−1Y1

(∫ t

0
N5/3ZN

e (r)ZN
s (r) dr

)
+ N−1Y2

(∫ t

0
N1/3ZN

es(r) dr

)
,

ZN
p (t) = N−2/3Y2

(∫ t

0
N1/3ZN

es(r) dr

)
.

Rescaling time by N1/3 and defining V N
i (t) = ZN

i (N1/3t), we have

V N
s (t) = 1 + N−2/3Y−1

(∫ t

0
NV N

es (r) dr

)
− N−2/3Y1

(∫ t

0
N2V N

e (r)V N
s (r) dr

)
,

V N
es (t) = −N−2/3Y−1

(∫ t

0
NV N

es (r) dr

)
+ N−2/3Y1

(∫ t

0
N2V N

e (r)V N
s (r) dr

)
− N−2/3Y2

(∫ t

0
N2/3V N

es (r) dr

)
,

V N
e (t) = 1 + N−1Y−1

(∫ t

0
NV N

es (r) dr

)
− N−1Y1

(∫ t

0
N2V N

e (r)V N
s (r) dr

)
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+ N−1Y2

(∫ t

0
N2/3V N

es (r) dr

)
,

V N
p (t) = N−2/3Y2

(∫ t

0
N2/3V N

es (r) dr

)
,

V N
s (t) + V N

es (t) = 1 − N−2/3Y2

(∫ t

0
N2/3V N

es (r) dr

)
.

Note that V N
s + V N

es ≤ 1 and V N
e + N−1/3V N

es = 1, so supr≤t |V N
e (r) − 1| → 0. It

follows that for 0 < ρ < 1 and N sufficiently large, infr≤t V
N
e (r) ≥ ρ and V N

s (t) ≤
V̂ N

s (t), where V̂ N
s is the solution of

V̂ N
s (t) = 1 + N−2/3Y−1

(∫ t

0
NV N

es (r) dr

)
− N−2/3Y1

(∫ t

0
N2ρV̂ N

s (r) dr

)
.

The fact that supr≤t
NV N

es (r)

N2ρ
→ 0 ensures that supδ<r≤t V

N
s (r) → 0, for 0 < δ < t ,

and (V N
p ,V N

s + V N
es ) converges to the solution of

Vp(t) =
∫ t

0
Ves(r) dr,

Ves(t) = 1 −
∫ t

0
Ves(r) dr,

that is, Ves(t) = e−t and Vp(t) = 1 − e−t . On the original time scale ZN
p (t) ≈

1 − e−t/10, that is, Xp(t) ≈ 100(1 − e−t/10), which matches well the simulation
results in the lower plot in Figure 1 of [9].

Rao and Arkin also consider Xs(0) = 100, Xe(0) = 10, κ1 = κ−1 = 1, κ2 =
0.1. For this example, let N = 100 and define ZN

s = N−1Xs, ZN
es = N−1/2Xes,

ZN
e = N−1/2Xe, and ZN

p = Xp, and set κ2 = N−1/2. Then the normalized system
becomes

ZN
s (t) = 1 + N−1Y−1

(∫ t

0
N1/2ZN

es(r) dr

)
− N−1Y1

(∫ t

0
N3/2ZN

e (r)ZN
s (r) dr

)
,

ZN
es(t) = −N−1/2Y−1

(∫ t

0
N1/2ZN

es(r) dr

)
+ N−1/2Y1

(∫ t

0
N3/2ZN

e (r)ZN
s (r) dr

)
− N−1/2Y2

(∫ t

0
ZN

es(r) dr

)
,

ZN
e (t) = 1 + N−1/2Y−1

(∫ t

0
N1/2ZN

es(r) dr

)
− N−1/2Y1

(∫ t

0
N3/2ZN

e (r)ZN
s (r) dr

)
+ N−1/2Y2

(∫ t

0
ZN

es(r) dr

)
,

ZN
p (t) = Y2

(∫ t

0
ZN

es(r) dr

)
.
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Since

N−1/2Y1

(∫ t

0
N3/2ZN

e (r)ZN
s (r) dr

)
≤ 1 + N−1/2Y−1

(∫ t

0
N1/2ZN

es(r) dr

)
+ N−1/2Y2

(∫ t

0
ZN

es(r) dr

)
and Zes(t) ≤ 1, it follows that supr≤t |ZN

s (r)− 1| → 0, for each t > 0. Noting that∫ t
0 ZN

es(r) dr = t −∫ t
0 ZN

e (r) dr , we must have
∫ t

0 ZN
es(r) dr ≈ t and ZN

p (t) ≈ Y2(t).

2.3. Reversible isomerization. Next, we consider a model of reversible iso-
merization studied by Cao, Gillespie and Petzold [3]. The model involves three
chemical species and two reactions:

S1

κ1−→←−
κ2

S2, S2
κ3−→ S3.

The model is given by

X1(t) = X1(0) − Y1

(∫ t

0
κ1X1(s) ds

)
+ Y2

(∫ t

0
κ2X2(s) ds

)
,

X2(t) = X2(0) + Y1

(∫ t

0
κ1X1(s) ds

)
− Y2

(∫ t

0
κ2X2(s) ds

)
− Y3

(∫ t

0
κ3X2(s) ds

)
,

X3(t) = X3(0) + Y3

(∫ t

0
κ3X2(s) ds

)
.

The first set of parameter values in (34) of [3] give X1(0) = 1200, X2(0) = 600,
X3(0) = 0 and κ1 = 1, κ2 = 2, κ3 = 5 × 10−5. Let N = 1000, and define ZN

1 =
N−1X1,Z

N
2 = N−1X2,Z

N
3 = X3, and κ3 = 5N−5/3. Then the normalized system

becomes

ZN
1 (t) = ZN

1 (0) − N−1Y1

(∫ t

0
NZN

1 (s) ds

)
+ N−1Y2

(∫ t

0
2NZN

2 (s) ds

)
,

ZN
2 (t) = ZN

2 (0) + N−1Y1

(∫ t

0
NZN

1 (s) ds

)
− N−1Y2

(∫ t

0
2NZN

2 (s) ds

)
− N−1Y3

(∫ t

0
5N−2/3ZN

2 (s) ds

)
,

ZN
3 (t) = Y3

(∫ t

0
5N−2/3ZN

2 (s) ds

)
.
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Assuming that (ZN
1 (0),ZN

2 (0)) → (Z1(0),Z2(0)) (which gives Z1(0) = 1.2 and
Z2(0) = 0.6 for the particular values in [3]), the limiting system is

Z1(t) = Z1(0) −
∫ t

0
Z1(s) ds +

∫ t

0
2Z2(s) ds,

Z2(t) = Z2(0) +
∫ t

0
Z1(s) ds −

∫ t

0
2Z2(s) ds,

Z3(t) = 0.

Consequently,

Z1(t) + Z2(t) = Z1(0) + Z2(0),

D(t) ≡ Z1(t) − 2Z2(t) = D(0) − 3
∫ t

0
D(s)ds,

so

Z1(t) = 1
3

(
Z1(0) − 2Z2(0)

)
e−3t + 2

3

(
Z1(0) + Z2(0)

)
,

Z2(t) = −1
3

(
Z1(0) − 2Z2(0)

)
e−3t + 1

3

(
Z1(0) + Z2(0)

)
and

lim
t→∞

(
Z1(t),Z2(t)

) = (2
3 , 1

3

)(
Z1(0) + Z2(0)

)
.

Defining UN
i (t) = ZN

i (N2/3t), the system becomes

UN
1 (t) = UN

1 (0) − N−1Y1

(∫ t

0
N5/3UN

1 (s) ds

)
+ N−1Y2

(∫ t

0
2N5/3UN

2 (s) ds

)
,

UN
2 (t) = UN

2 (0) + N−1Y1

(∫ t

0
N5/3UN

1 (s) ds

)
− N−1Y2

(∫ t

0
2N5/3UN

2 (s) ds

)
− N−1Y3

(∫ t

0
5UN

2 (s) ds

)
,

UN
3 (t) = Y3

(∫ t

0
5UN

2 (s) ds

)
and, hence,

UN
1 (t) + UN

2 (t) = UN
1 (0) + UN

2 (0) − N−1Y3

(∫ t

0
5UN

2 (s) ds

)
.

Dividing the equation for UN
1 by N2/3, it follows that

lim
N→∞

(∫ t

0
UN

1 (s) ds −
∫ t

0
2UN

2 (s) ds

)
= 0

and, hence, assuming limN→∞(UN
1 (0) + UN

2 (0)) = C,

lim
N→∞

∫ t

0
UN

2 (s) ds = 1
3Ct
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and UN
3 converges to

U3(t) = Y3

(
5Ct

3

)
,

that is, a Poisson process with parameter 5C/3.
Rescaling time by N5/3, and defining V N

i (t) = N−1Xi(N
5/3t), we have

V N
1 (t) = V N

1 (0) − N−1Y1

(∫ t

0
N8/3V N

1 (s) ds

)
+ N−1Y2

(∫ t

0
2N8/3V N

2 (s) ds

)
,

V N
2 (t) = V N

2 (0) + N−1Y1

(∫ t

0
N8/3V N

1 (s) ds

)
− N−1Y2

(∫ t

0
2N8/3V N

2 (s) ds

)
− N−1Y3

(∫ t

0
5NV N

2 (s) ds

)
,

V N
3 (t) = N−1Y3

(∫ t

0
5NV N

2 (s) ds

)
.

Setting RN(t) = V N
1 (t) + V N

2 (t) and assuming limN→∞ RN(0) = R(0), we have
(RN,V N

3 ) → (R,V3) satisfying

R(t) = R(0) −
∫ t

0

5
3R(s) ds, V3(t) =

∫ t

0

5
3R(s) ds,

which gives

R(t) = R(0)e−(5/3)t , V3(t) = R(0)
(
1 − e−(5/3)t ).

For δ > 0,

lim
N→∞ sup

δ≤r≤t

(∣∣V N
1 (r) − 2

3R(t)
∣∣+∣∣V N

2 (r) − 1
3R(t)

∣∣) = 0.

Note that the simulation results given in Figure 1 of [3] appear to be plots of
{(X3(tk)δ,Xi(tk))}, for some δ > 0, rather than of {(tk,Xi(tk))}, where the {tk}
are the jump times of X3. Consequently, their plots show linear decay rather than
exponential decay.

Cao, Gillespie and Petzold also study a second set of parameter values (35)
in [3], taking X1(0) = 2000,X2(0) = X3(0) = 0 and κ1 = 10, κ2 = 4 × 104,
κ3 = 2. Letting N = 104, we now define ZN

1 = N−1X1,Z
N
2 = X2,Z

N
3 = X3. The

normalized system becomes

ZN
1 (t) = 0.2 − N−1Y1

(∫ t

0
10NZN

1 (s) ds

)
+ N−1Y2

(∫ t

0
4NZN

2 (s) ds

)
,

ZN
2 (t) = Y1

(∫ t

0
10NZN

1 (s) ds

)
− Y2

(∫ t

0
4NZN

2 (s) ds

)
− Y3

(∫ t

0
2ZN

2 (s) ds

)
,

ZN
3 (t) = Y3

(∫ t

0
2ZN

2 (s) ds

)
.
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Dividing the equation for ZN
2 by N , we see that

sup
r≤t

1

N

(
Y1

(∫ r

0
10NZN

1 (s) ds

)
−Y2

(∫ r

0
4NZN

2 (s) ds

))
→ 0,

for each t > 0, and hence,

sup
r≤t

|ZN
1 (r) − 0.2| → 0,

sup
r≤t

∣∣∣∣∫ r

0
ZN

2 (s) ds − 1
2r

∣∣∣∣ → 0,

and ZN
3 converges to Y3(t).

Rescaling time by N , and defining V N
i (t) = N−1Xi(Nt), for i = 1,3 and

V N
2 (t) = X2(Nt), we have

V N
1 (t) = 0.2 − N−1Y1

(∫ t

0
10N2V N

1 (s) ds

)
+ N−1Y2

(∫ t

0
4N2V N

2 (s) ds

)
,

V N
2 (t) = Y1

(∫ t

0
10N2V N

1 (s) ds

)
− Y2

(∫ t

0
4N2V N

2 (s) ds

)
− Y3

(∫ t

0
2NV N

2 (s) ds

)
,

V N
3 (t) = N−1Y3

(∫ t

0
2NV N

2 (s) ds

)
.

Let V̂ N
1 (t) = V N

1 (t) + N−1V N
2 (t), and since earlier results imply V N

2 (t) =
ZN

2 (Nt) ≈ 1
2 , we have supr≤t |V N

1 (r) − V̂ N
1 (r)| → 0.

Then

V̂ N
1 (t) = 0.2 − N−1Y3

(∫ t

0
2NV N

2 (s) ds

)
,

and from the equation for V N
2 ,

sup
r≤t

∣∣∣∣∫ r

0
10V̂ N

1 (s) ds −
∫ r

0
(4 + 2N−1)V N

2 (s)

∣∣∣∣ → 0.

Consequently, (V N
1 ,V N

3 ) converge to the solution of

V1(t) = 0.2 −
∫ t

0
5V1(s) ds,

V3(t) =
∫ t

0
5V1(s) ds,

giving

V1(t) = 0.2e−5t , V3(t) = 0.2(1 − e−5t ).
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To better understand the behavior of V N
2 , for a bounded function f (v2), define

ANf (v1, v2) = 10v1
(
f (v2 + 1) − f (v2)

) + (4 + 2N−1)v2
(
f (v2 − 1) − f (v2)

)
and note that

f (V N
2 (t)) − N2

∫ t

0
ANf

(
V N

1 (s),V N
2 (s)

)
ds

is a martingale. Dividing by N2, it follows that∫ t

0
ANf

(
V N

1 (s),V N
2 (s)

)
ds → 0

and that for each t , V N
2 (t) converges in distribution to a random variable V2(t)

satisfying

E
[
Af

(
V1(t),V2(t)

)] = 0,

where

Af (v1, v2) = 10v1
(
f (v2 + 1) − f (v2)

) + 4v2
(
f (v2 − 1) − f (v2)

)
(see, e.g., [8]).

For each v1, Av1f (v2) ≡ Af (v1, v2) is the generator of an infinite-server queue-
ing model with arrival rate 10v1 and service rate 4. It follows that V2(t) has a
Poisson distribution with parameter 2.5V1(t). Note that V N

2 does not converge in
a functional sense. In particular, for 0 < t1 < t2 < · · · < tm, (V N

2 (t1),V
N
2 (t2), . . . ,

V N
2 (tm)) converges in distribution and the components of the limit (V2(t1),V2(t2),

. . . , V2(tm)) are independent Poisson random variables.

3. Intracellular viral kinetics. Next we consider a model of an intracellular
viral infection given in [10] and studied further in [6]. We follow the presenta-
tion (in particular, the indexing) in [6]. The model includes three time-varying
species, the viral template, the viral genome and the viral structural protein. We
denote these as species 1, 2 and 3, respectively, and let Xi(t) denote the number of
molecules of species i in the system at time t . The model involves six reactions,
designated (28a)–(28f) in [6]:

(a) T + stuff
κ1
⇀ T + G,

(b) G
κ2
⇀ T ,

(c) T + stuff
κ3
⇀ T + S,

(d) T
κ4
⇀ ∅,

(e) S
κ5
⇀ ∅,

(f) G + S
κ6
⇀ V ,
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where “stuff” refers to nucleotides and amino acids that are assumed available at
constant concentrations. The basic model satisfies

X1(t) = X1(0) + Yb

(∫ t

0
κ2X2(s) ds

)
− Yd

(∫ t

0
κ4X1(s) ds

)
X2(t) = X2(0) + Ya

(∫ t

0
κ1X1(s) ds

)
− Yb

(∫ t

0
κ2X2(s) ds

)
− Yf

(∫ t

0
κ6X2(s)X3(s) ds

)
X3(t) = X3(0) + Yc

(∫ t

0
κ3X1(s) ds

)
− Ye

(∫ t

0
κ5X3(s) ds

)
− Yf

(∫ t

0
κ6X2(s)X3(s) ds

)
.

Following Haseltine and Rawlings, X1(0) = 1,X2(0) = X3(0) = 0, while the
reaction constants from Table III of [6] are as given below. Let N = 1000, corre-
sponding to the order of magnitude of the largest reaction constant. Then the rate
constants can be expressed as follows:

κ1 1 1
κ2 0.025 2.5N−2/3

κ3 1000 N

κ4 0.25 0.25
κ5 2 2
κ6 7.5 × 10−6 0.75N−5/3.

Note that, for simplicity, we have replaced κ5 = 1.9985 by κ5 = 2.
We have identified N with the largest rate constant, but it is also the order of

magnitude of the most abundent species. Writing ZN
1 = X1, ZN

2 = N−2/3X2 and
ZN

3 = N−1X3, the normalized system with the scaled rate constants becomes

ZN
1 (t) = ZN

1 (0) + Yb

(∫ t

0
2.5ZN

2 (s) ds

)
− Yd

(∫ t

0
0.25ZN

1 (s) ds

)
,

ZN
2 (t) = ZN

2 (0) + N−2/3Ya

(∫ t

0
ZN

1 (s) ds

)
− N−2/3Yb

(∫ t

0
2.5ZN

2 (s) ds

)
− N−2/3Yf

(∫ t

0
0.75ZN

2 (s)ZN
3 (s) ds

)
,

ZN
3 (t) = ZN

3 (0) + N−1Yc

(∫ t

0
NZN

1 (s) ds

)
− N−1Ye

(∫ t

0
2NZN

3 (s) ds

)
− N−1Yf

(∫ t

0
0.75ZN

2 (s)ZN
3 (s) ds

)
.
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We also write XN
i for the system Xi with rate constants expressed in terms of N ,

including the superscript N only to emphasize the dependence of the model on the
scaling parameter.

There is substantial probability that the infection dies out quickly, but if ZN
2

reaches any significant level, the chance becomes negligible.
To be precise, let

KN
a (t) = Ya

(∫ t

0
XN

1 (s) ds

)
,

and for k = 1,2, . . . , define

βN
k = inf{t ≥ 0 :KN

a (t) ≥ k}.(3.1)

We have the following results.

LEMMA 3.1 (Probability of infection). For βN
k defined in (3.1),

lim
k→∞ lim

N→∞P {βN
k < ∞} = 0.75.

In particular, there exist kN → ∞ such that limN→∞ P {βN
kN

< ∞} = 0.75.

REMARK 3.2. The theorem essentially gives the probability that a single virus
successfully infects the cell. The argument, which essentially compares the initial
stages of the infection to a branching process, is a standard tool in the analysis of
epidemic models. See, for example, [2].

PROOF OF LEMMA 3.1. To understand the initial behavior of the system, con-
sider

XN
1 (t) = Yb

(∫ t

0
2.5N−2/3XN

2 (s) ds

)
− Yd

(∫ t

0
0.25XN

1 (s) ds

)
,(3.2)

XN
2 (t) = 1 + Ya

(∫ t

0
XN

1 (s) ds

)
− Yb

(∫ t

0
2.5N−2/3XN

2 (s) ds

)
(3.3)

− Yf

(∫ t

0
0.75N−2/3XN

2 (s)ZN
3 (s) ds

)
,

ZN
3 (t) = N−1Yc

(∫ t

0
NXN

1 (s) ds

)
− N−1Ye

(∫ t

0
2NZN

3 (s) ds

)
(3.4)

− N−1Yf

(∫ t

0
0.75N−2/3XN

2 (s)ZN
3 (s) ds

)
.

If the virus production term (reaction f ) is dropped from the equation for XN
2 ,

the resulting system,

X̂N
1 (t) = Yb

(∫ t

0
2.5N−2/3X̂N

2 (s) ds

)
− Yd

(∫ t

0
0.25X̂N

1 (s) ds

)
,

X̂N
2 (t) = 1 + Ya

(∫ t

0
X̂N

1 (s) ds

)
− Yb

(∫ t

0
2.5N−2/3X̂N

2 (s) ds

)
,
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determines a continuous time, two-type branching process. It is easy to check that
the process is supercritical. The “lifetime” of each Type 1 molecule is exponen-
tially distributed with parameter 0.25 and the number ξi of Type 2 molecules cre-
ated by the ith Type 1 molecule during its lifetime has a shifted geometric distrib-
ution with expectation 4, that is,

P {ξ = k} =
∫ ∞

0
0.25e−0.25t e−t t

k

k! dt = 1

5

(
4

5

)k

, k = 0,1, . . . .

Each Type 2 molecule is eventually converted to Type 1. Starting with a single
Type 1 or Type 2 molecule, the probability of extinction is simply the probability
that

Sn = 1 +
n∑

i=1

(ξi − 1)

hits zero for some n ≥ 0, an event with probability 0.25.
To complete the proof of the lemma, one only needs to check that

Yf

(∫ βN
k

0
0.75N−2/3XN

2 (s)ZN
3 (s) ds

)
→ 0

in probability for each k. But

E

[
Yf

(∫ βN
k

0
0.75N−2/3XN

2 (s)ZN
3 (s) ds

)]

≤ 0.75N−2/3(k + 1)E

[∫ βN
k

0
ZN

3 (s) ds

]

≤ 0.375N−2/3(k + 1)E

[∫ βN
k

0
XN

1 (s) ds

]
≤ 0.375N−2/3(k + 1)k

→ 0,

where the second inequality follows from equation (3.4) and the last inequality
follows from the fact that

E

[∫ βN
k

0
XN

1 (s) ds

]
= E

[
Ya

(∫ βN
k

0
XN

1 (s) ds

)]
≤ k. �

We now want to describe the behavior of the process once the infection is estab-
lished. Since we have scaled XN

2 by N−2/3, XN
2 must reach a level that is O(N2/3)

to have nontrivial behavior.
As in the proof of Lemma 3.1, if the virus production term is dropped from

the equation for XN
2 , the expectation of the resulting two-type branching process
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(X̂N
1 , X̂N

2 ) satisfies ṁ(t) = QNm(t), where

QN =
(−0.25 2.5N−2/3

1 −2.5N−2/3

)
.

Following the classical analysis for branching processes (see Section V.7 of [1]),
the largest eigenvalue for QN is

λN = −(0.25 + 2.5N−2/3) + √
(0.25 + 2.5N−2/3)2 + 7.5N−2/3

2

and the total “population” should grow like eλN t . There exists ρN > 0 satisfying

(1 − 0.25ρN) = λNρN, 2.5(ρN − 1)N−2/3 = λN,

that is, (ρN,1) is the corresponding left eigenvector. It follows that ρN → 4 and
N2/3λN → 7.5.

Let RN(t) = ρNXN
1 (t) + XN

2 (t), and define

τN
ε = inf{t :RN(t) ≥ N2/3ε}.

We are really interested in the first time XN
2 reaches N2/3ε, but defining τN

ε

in terms of RN rather than XN
2 simplifies the proof of the next theorem.

THEOREM 3.3 (Time until establishment). For kN as in Lemma 3.1 and each
0 < ε < 2 and δ > 0,

lim
N→∞P

{∣∣∣∣ τN
ε

N2/3 logN
− 4

45

∣∣∣∣ > δ
∣∣∣βN

kN
< ∞

}
= 0.

In particular, limN→∞ P {τN
ε < ∞} = 0.75.

PROOF. In the calculations that follow, recall that the law of large numbers
implies that, for a unit Poisson process,

lim
u0→∞ sup

u≥u0

∣∣∣∣Y(u)

u
− 1

∣∣∣∣ = 0 a.s.(3.5)

In addition, note that, without loss of generality, we can assume that kN/

logN → 0.
Define

KN
a (t) = Ya

(∫ t

0
XN

1 (s) ds

)
,

K̃N
a (t) = Ya

(∫ t

0
XN

1 (s) ds

)
−

∫ t

0
XN

1 (s) ds,

KN
b (t) = Yb

(∫ t

0
2.5N−2/3XN

2 (s) ds

)
,

K̃N
b (t) = Yb

(∫ t

0
2.5N−2/3XN

2 (s) ds

)
−

∫ t

0
2.5N−2/3XN

2 (s) ds,
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and similarly for KN
c , KN

d and so on. Since
∫ βN

kN

0 XN
1 (s) ds is the kN th jump time

of Ya ,

1{βN
kN

<∞}
∣∣∣∣ 1

kN

∫ βN
kN

0
XN

1 (s) ds − 1
∣∣∣∣ → 0,

and it follows from (3.5) that

1{βN
kN

<∞} sup
t≥βN

kN

∣∣∣∣ KN
a (t)∫ t

0 XN
1 (s) ds

− 1
∣∣∣∣ → 0,

1{βN
kN

<∞} sup
t≥βN

kN

∣∣∣∣ KN
b (t)∫ t

0 2.5N−2/3XN
2 (s) ds

− 1
∣∣∣∣ → 0

and

1{βN
kN

<∞} sup
t≥βN

kN

∣∣∣∣KN
d (t)

KN
a (t)

− 0.25
∣∣∣∣ → 0.

With reference to (3.4), KN
e (t) ≤ KN

c (t) and

lim
N→∞ 1{βN

kN
<∞} sup

t≥βN
kN

(∫ t
0 2ZN

3 (s) ds∫ t
0 XN

1 (s) ds
− 1

)
∨ 0

= lim
N→∞ 1{βN

kN
<∞} sup

t≥βN
kN

(
KN

e (t)

KN
c (t)

− 1
)

∨ 0 = 0.

Consequently,

lim
N→∞ 1{βN

kN
<∞} sup

βN
kN

≤t≤τN
ε

( KN
f (t)

1 + KN
a (t)

− 0.375ε

)
∨ 0

≤ lim
N→∞ 1{βN

kN
<∞} sup

βN
kN

≤t≤τN
ε

(
Yf (

∫ t
0 0.75εZN

3 (s) ds)

1 + KN
a (t)

− 0.375ε

)
∨ 0

≤ lim
N→∞ 1{βN

kN
<∞} sup

βN
kN

≤t≤τN
ε

(∫ t
0 0.75εZN

3 (s) ds∫ t
0 XN

1 (s) ds
− 0.375ε

)
∨ 0

= 0.

Since KN
d (t) ≤ KN

b (t) ≤ 1 + KN
a (t) and

RN(t) = 1 + KN
a (t) − ρNKN

d (t) + (ρN − 1)KN
b (t) − KN

f (t)

≥ 1 + KN
a (t) − KN

d (t) − KN
f (t),
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we have

RN(t)

KN
d (t)

≥ RN(t)

KN
b (t)

≥ RN(t)

1 + KN
a (t)

(3.6)

≥ 1 − KN
d (t) + KN

f (t)

1 + KN
a (t)

and

lim
N→∞ 1{βN

kN
<∞} inf

βN
kN

≤t≤τN
ε

(
1 − KN

d (t) + KN
f (t)

1 + KN
a (t)

− 0.75(1 − 0.5ε)

)
∧ 0

(3.7)
= 0.

In other words, on the event {βN
kN

< ∞},

inf
βN

kN
≤t≤τN

ε

(
1 − KN

d (t) + KN
f (t)

1 + KN
a (t)

)

is asymptotically bounded below by 0.75(1 − 0.5ε) > 0.
Writing ρ instead of ρN , and β instead of βN

kN
,

logRN(t) = logRN(βN
kN

) +
∫ t

β
log

RN(s−) + 1

RN(s−)
dKN

a (s)

+
∫ t

β
log

RN(s−) + (ρ − 1)

RN(s−)
dKN

b (s)

+
∫ t

β
log

RN(s−) − ρ

RN(s−)
dKN

d (s) +
∫ t

β
log

RN(s−) − 1

RN(s−)
dKN

f (s)

= logRN(βN
kN

) +
∫ t

β

(
log

RN(s−) + 1

RN(s−)
− 1

RN(s−)

)
dKN

a (s)

+
∫ t

β

(
log

RN(s−) + (ρ − 1)

RN(s−)
− ρ − 1

RN(s−)

)
dKN

b (s)

+
∫ t

β

(
log

RN(s−) − ρ

RN(s−)
+ ρ

RN(s−)

)
dKN

d (s)

+
∫ t

β

(
log

RN(s−) − 1

RN(s−)
+ 1

RN(s−)

)
dKN

f (s)
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+
∫ t

β

1

RN(s−)
dK̃N

a (s) +
∫ t

β

ρ − 1

RN(s−)
dK̃N

b (s)

−
∫ t

β

ρ

RN(s−)
dK̃N

d (s) −
∫ t

β

1

RN(s−)
dK̃N

f (s)

+
∫ t

β

(1 − 0.25ρ)XN
1 (s) + (ρ − 1)2.5N−2/3XN

2 (s)

RN(s)
ds

−
∫ t

β

0.75N−2/3XN
2 (s)ZN

3 (s)

RN(s)
ds.

The second term on the right-hand-side is bounded by a constant times∫ t

β

(
KN

a (s−) + 1

RN(s−)

)2 1

(KN
a (s−) + 1)2 dKN

a (s)

≤ sup
β≤s≤t

(
KN

a (s−) + 1

RN(s−)

)2 ∞∑
k=1

1

k2 ,

and similarly for the third, fourth and fifth terms. By (3.6) and (3.8),

1{βN
kN

<∞} sup
βN

kN
≤s≤τN

ε

(
KN

a (s−) + 1

RN(s−)

)2

is stochastically bounded and similarly with KN
b , KN

d and KN
f . The sixth term is

a martingale with quadratic variation∫ t

βN
kN

1

RN(s−)2 dKN
a (s),

and stochastic boundedness of the sequence of martingales follows from the sto-
chastic boundedness of the quadratic variation and the boundedness of the jumps
of the martingale. (See Lemma A.1.)

The last term satisfies

UN(t) ≡
∫ t

β

0.75N−2/3XN
2 (s)ZN

3 (s)

RN(s)
ds

≤ 0.75N−2/3
∫ t

0
ZN

3 (s) ds.

By the equations for ZN
3 ,

E

[∫ τN
ε

0
ZN

3 (s) ds

]
≤ 0.5E

[∫ τN
ε

0
XN

1 (s) ds

]
,
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and adding the equations for XN
1 and XN

2 and taking expectations,

0.75E

[∫ τN
ε

0
XN

1 (s) ds

]
+ 1

= E[XN
1 (τN

ε ) + XN
2 (τN

ε ) + KN
f (τN

ε )]

≤ E[XN
1 (τN

ε ) + XN
2 (τN

ε )] + 0.75εE

[∫ τN
ε

0
ZN

3 (s) ds

]

≤ E[XN
1 (τN

ε ) + XN
2 (τN

ε )] + 0.375εE

[∫ τN
ε

0
XN

1 (s) ds

]
,

and hence,

0.75(1 − 0.5ε)E

[∫ τN
ε

0
XN

1 (s) ds

]
≤ E[XN

1 (τN
ε ) + XN

2 (τN
ε )]

(3.8)
≤ N2/3ε + ρ

and

E[UN(τN
ε )] ≤ ε + N−2/3ρ

2 − ε
.

Consequently,

logRN(τN
ε )

= logRN (
βN

kN

) + O(1)

+
∫ τN

ε

βN
kN

(1 − 0.25ρ)XN
1 (s) + (ρ − 1)2.5N−2/3XN

2 (s)

RN(s)
ds

= logRN (
βN

kN

) + O(1) + λN (
τN
ε − βN

kN

)
.

Note that

lim sup
N→∞

βN
kN

kNN2/3 ≤ lim sup
N→∞

1

kNN2/3

∫ βN
kN

0

(
XN

1 (s) + XN
2 (s)

)
ds

≤ lim sup
N→∞

1

2.5kN

KN
b

(
βkN

)
≤ 1

2.5
.

Then assuming kN/ logN → 0,

τN
ε − βN

kN

N2/3 logN
≈ τN

ε

N2/3 logN
,
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and since RN(βN
kN

) ≤ (1 + ρN)(1 + kN) and N2/3λN → 7.5, we have

λNN2/3 τN
ε

N2/3 logN
≈ logRN(τN

ε )

logN
→ 2

3
,

giving the result. �

The computations in the proof of Theorem 3.3 also give the following lemma.

LEMMA 3.4. Let 0 < ε1 < ε2. Then N−2/3(τN
ε2

− τN
ε1

) is stochastically
bounded, and for δ > 0,

lim
N→∞P

{
2

15
log

ε2

ε1
− δ

≤ N−2/3(
τN
ε2

− τN
ε1

)
≤ 2

15
log

ε2

ε1
+

∫ τN
ε2

τN
ε1

0.1N−2/3XN
2 (s)ZN

3 (s)

RN(s)
ds + δ

}
= 1.

REMARK 3.5. In fact, we will see that N−2/3(τN
ε2

− τN
ε1

) converges to a con-
stant.

PROOF OF LEMMA 3.4. Since for τN
ε1

≤ t ≤ τN
ε2

, RN(t) = O(N2/3), the inte-
gral expression for logRN(t) implies

log
RN(τN

ε2
)

RN(τε1)
= o(1) + λN (

τN
ε2

− τN
ε1

) −
∫ τN

ε2

τN
ε1

0.75N−2/3XN
2 (s)ZN

3 (s)

RN(s)
ds.

The lemma follows from the fact that the last term is nonnegative and stochastically
bounded. �

On t ∈ [0, τN
ε ], XN

1 (t) is dominated by the linear death process with immigra-
tion satisfying

X̃1(t) = Yb(2.5εt) − Yd

(∫ t

0
0.25X̃1(s) ds

)
,

that is, an infinite server queue with Poisson arrivals of rate 2.5ε and exponential
service times with rate 0.25. For β > 0, let γ N

β = inf{t : X̃1(t) ≥ Nβ}. By Dynkin’s
formula, for each t > 0,

E
[
f

(
X̃1(t ∧ γ N

β )
)] = f (0) + E

[∫ γ N
β ∧t

0
Cf (X̃1(s)) ds

]
,

where

Cf (k) = 2.5ε
(
f (k + 1) − f (k)

) + 0.25k
(
f (k − 1) − f (k)

)
.
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For 0 < δ < 1, let f (k) = (k!)δ . Then c0 ≡ supk Cf (k) < ∞, and

P {γ N
β ≤ t} ≤ 1

f (Nβ�)E
[
f

(
X̃1(t ∧ γ N

β )
)] ≤ 1 + c0t

f (Nβ�) .

It follows that, for any α > 0,

lim
N→∞P {γ N

β ≤ Nα} = 0.

Consequently, taking 0 < β < 2/3 and α > 2/3, we see that N−2/3XN
1 (τN

ε ) → 0
and, hence, N−2/3XN

2 (τN
ε ) → ε.

It is clear that the time scale for ZN
2 is much slower than the time scale for

ZN
1 and ZN

3 . The fast time scale of {ZN
1 ,ZN

3 } enables us to “average out” their
contributions to the evolution of the second component after time τN

ε . We define
V N

i (t) = Zi(τ
N
ε + N2/3t).

THEOREM 3.6 (Averaging and deterministic approximation).

(a) Conditioning on τN
ε < ∞, for each δ > 0 and t > 0,

lim
N→∞P

{
sup

0≤s≤t

|V N
2 (s) − V2(s)| ≥ δ

}
= 0,

where V2 is the solution of

V2(t) = ε +
∫ t

0
7.5V2(s) ds −

∫ t

0
3.75V2(s)

2 ds.(3.9)

(b) Conditioning on τN
ε < ∞, for each t ≥ 0, (V N

1 (t),V N
3 (t)) converges in

distribution to a pair (V1(t),V3(t)) with joint distribution µ13
t satisfying∫ [

2.5V2(t)
(
g(z + 1, y) − g(z, y)

)
(3.10)

+ 0.25z
(
g(z − 1, y) − g(z, y)

) + (z − 2y)
∂g

∂y
(z, y)

]
µ13

t (dz, dy) = 0.

In particular, V1(t) has a Poisson distribution with parameter 10V2(t), so

E[V1(t)] = Var(V1(t)) = 10V2(t),

E[V3(t)] = 5V2(t), Var(V3(t)) = 20
9 V2(t)

and

Cov
(
V1(t),V3(t)

) = 40
9 V2(t).

REMARK 3.7. (a) Of course, the equation in Part (a) is just the classical lo-
gistic equation.
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(b) For times t1 < t2, (V N
1 (t1),V

N
3 (t1)) and (V N

1 (t2),V
N
3 (t2)) are asymptoti-

cally independent.

PROOF OF THEOREM 3.6. On the event τN
ε < ∞,

V N
1 (t) = ZN

1 (τN
ε ) + Y ε

b

(∫ t

0
2.5N2/3V N

2 (s) ds

)
− Y ε

d

(∫ t

0
0.25N2/3V N

1 (s) ds

)
,

V N
2 (t) = ZN

2 (τN
ε ) + N−2/3Y ε

a

(∫ t

0
N2/3V N

1 (s) ds

)
− N−2/3Y ε

b

(∫ t

0
2.5N2/3V N

2 (s) ds

)
− N−2/3Y ε

f

(
N2/3

∫ t

0
0.75V N

2 (s)V N
3 (s) ds

)
,

V N
3 (t) = ZN

3 (τN
ε ) + N−1Y ε

c

(∫ t

0
N5/3V N

1 (s) ds

)
− N−1Y ε

e

(∫ t

0
2N5/3V N

3 (s) ds

)
− N−1Y ε

f

(∫ t

0
0.75N2/3V N

2 (s)V N
3 (s) ds

)
,

where Y ε
a , Y ε

b , and so on, are unit Poisson processes obtained from Ya , Yb, and so
on. by taking increments over the appropriate intervals. For example,

Y ε
b (u) = Yb

(∫ τN
ε

0
2.5ZN

2 (s) ds + u

)
− Yb

(∫ τN
ε

0
2.5ZN

2 (s) ds

)
.

By the martingale properties of the Poisson processes,

E[ρNN−2/3V N
1 (t) + V N

2 (t)]
= E[ρNN−2/3ZN

1 (τN
ε ) + ZN

2 (τN
ε )]

+
∫ t

0
E[(1 − 0.25ρN)V N

1 (s) + 2.5(ρN − 1)V N
2 (s)]ds

−
∫ t

0
E[0.75V N

2 (s)V N
3 (s)]ds

≤ E[ρNN−2/3ZN
1 (τN

ε ) + ZN
2 (τN

ε )]
+ λNN2/3

∫ t

0
E[ρNN−2/3V N

1 (s) + V N
2 (s)]ds,

so by Gronwall’s lemma,

E[ρNN−2/3V N
1 (t) + V N

2 (t)] ≤ (
ρNN−2/3ZN

1 (τN
ε ) + ZN

2 (τN
ε )

)
eN2/3λN t

≤ (ε + ρNN−2/3)eN2/3λN t ,
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and the equation for V N
1 implies

E[V N
1 (t)] = E[ZN

1 (τN
ε )]e−0.25N2/3t +

∫ t

0
2.5N2/3e−0.25N2/3(t−s)E[V N

2 (s)]ds

≤ E[ZN
1 (τN

ε )]e−0.25N2/3t + 10(ε + ρNN−2/3)eN2/3tλN

,

and similarly for V N
3 ,

E[V N
3 (t)] ≤ E[ZN

3 (τN
ε )]e−2N2/3t +

∫ t

0
N2/3e−2N2/3(t−s)E[V N

1 (s)]ds

≤ E[ZN
3 (τN

ε )]e−2N2/3t + E[ZN
1 (τN

ε )]e−0.25N2/3t

+ 5(ε + ρNN−2/3)eN2/3tλN

.

The law of large numbers for the Poisson process implies that V N
2 is asymptotic

to

V̂ N
2 (t) = ZN

2 (τN
ε ) +

∫ t

0

(
V N

1 (s) − 2.5V N
2 (s) − 0.75V N

2 (s)V N
3 (s)

)
ds,

and since ZN
2 (τN

ε ) → ε, as in the proof of Lemma A.4, we can verify the relative
compactness of {V̂ N

2 } if we can verify the stochastic boundedness of∫ t

0

(
V N

1 (s) − 2.5V N
2 (s) − 0.75V N

2 (s)V N
3 (s)

)2
ds,

which in turn will follow from the stochastic boundedness of∫ t

0
V N

1 (s)k ds,

∫ t

0
V N

2 (s)k ds,

∫ t

0
V N

3 (s)k ds,(3.11)

for appropriate k.
Let γ N = inf{t :ZN

2 (t) > 4}, and in the equation for ZN
1 , replace Yb(

∫ t
0 2.5 ×

ZN
2 (s) ds) by Yb(

∫ t∧γ N

0 2.5ZN
2 (s) ds). Note that γ N > τN

ε , and if we can verify the
stochastic boundedness of (3.11) for the modified system and show that γ N ⇒ ∞,
we will have the stochastic boundedness for the original system. Note that∫ t

0
V N

1 (s)k ds = N−2/3
∫ τN

ε +N2/3t

τN
ε

ZN
1 (u)k du.(3.12)

Taking ε0 = ε
2 and t0 < 2

15 log 2, it follows from Lemma 3.4 that the sequence
in (3.12) is stochastically bounded for each t if and only if

N−2/3
∫ τN

ε0
+N2/3t1

τN
ε0

+N2/3t0

ZN
1 (u)k du =

∫ t1

t0

ZN
1

(
τN
ε0

+ N2/3s
)k

ds
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is stochastically bounded for each t1. By Lemma A.3,

E
[
ZN

1
(
τN
ε0

+ N2/3s
)k|F N

τ
εN0

]
(3.13)

≤ (
ZN

1
(
τN
ε0

)k ∨ 1
)
e−0.24N2/3s + Ck11

(
1 − e−0.25N2/3s),

where the 11 comes from the fact that 2.5ZN
2 (u)1{u<γ N } + 1 ≤ 11. Since

ZN
1 (τN

ε0
) ≤ N2/3ε0

ρN
+ 1, the first term goes to zero, and the stochastic boundedness

follows. Stochastic boundedness for∫ t1

t0

ZN
i

(
τN
ε0

+ N2/3s
)k

ds,

i = 2,3, follows by a similar argument, using the fact that ZN
2 (τN

ε0
) ≤ ε0 + N−2/3

and, by (3.8),

E
[
ZN

3
(
τN
ε0

)] ≤ E

[∫ τN
ε0

0
XN

1 (s) ds

]

≤ N2/3ε0 + ρN

0.75(1 − 0.5ε0)
,

and applying (3.13) to bound the second term on the right-hand-side of (A.5).
As N → ∞, dividing the equations for V N

1 and V N
3 by N2/3 shows that∫ t

0
V N

1 (s) ds − 10
∫ t

0
V N

2 (s) ds → 0,∫ t

0
V N

3 (s) ds − 5
∫ t

0
V N

2 (s) ds → 0.

The assertion for V N
3 and the fact that V N

2 is asymptotically regular (e.g., one
can prove that limh→0 lim supN→∞ E[supt≤T sups≤h |V N

2 (t + s) − V N
2 (t)|] = 0)

implies ∫ t

0
V N

2 (s)V N
3 (s) ds − 5

∫ t

0
V N

2 (s)2 ds → 0.

It follows that V N
2 converges to the solution of (3.9). It should now be clear why

we shifted the initial time to τN
ε .

V N
1 and V N

3 fluctuate rapidly and locally in time. V N
1 behaves like a simple birth

and death process with V N
2 entering as a parameter, and V N

3 can be approximated
by an ordinary differential equation driven by V N

1 , that is,

V N
3 (a + N−2/3r) ≈ V N

3 (a)e−2r +
∫ r

0
e−2(r−s)V N

1 (a + N−2/3s) ds.
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To be specific, let

BN
s g(z, y) = 2.5V N

2 (s)
(
g(z + 1, y) − g(z, y)

)
+ 0.25z

(
g(z − 1, y) − g(z, y)

)
+ zN

(
g(z, y + N−1) − g(z, y)

)
+ 2yN

(
g(z, y − N−1) − g(z, y)

)
.

Then

MN
g (t) ≡ g

(
V N

1 (t),V N
3 (t)

) − g
(
Z1(τ

N
ε ),Z3(τ

N
ε )

)
− N2/3

∫ t

0
BN

s g
(
V N

1 (s),V N
3 (s)

)
ds

is a martingale, and defining an occupation measure �N by

�N(C × D × [0, t]) =
∫ t

0
1C(V N

1 (s))1D(V N
3 (s)) ds,

MN
g (t) = g

(
V N

1 (t),V N
3 (t)

) − g
(
Z1(τ

N
ε ),Z3(τ

N
ε )

)
(3.14)

− N2/3
∫

Z+×R+×[0,t]
BN

s g(z, y)�N(dz × dy × ds).

Let Lm ≡ Lm(Z+ ×R
+) denote the space of measures ν on Z

+ ×R
+ ×[0,∞)

such that ν(Z+ × R
+ × [0, t]) = t , topologized so that convergence is weak con-

vergence on Z
+ × R

+ × [0, t] for each t > 0. It is easy to verify that the sequence
(V N

2 ,�N) is relatively compact in DR+([0,∞)) × Lm, where DR+([0,∞)) is the
space of cadlag R

+-valued functions. Let (V2,�) be a limit point of the sequence.
Define

Bvg(z, y) = 2.5v
(
g(z + 1, y) − g(z, y)

) + 0.25z
(
g(z − 1, y) − g(z, y)

)
+ (z − 2y)

∂g

∂y
(z, y).

Noting that

lim
N→∞

(
BN

s g(z, y) − BV N
2 (s)g(z, y)

) = 0

and dividing (3.14) by N2/3 and letting N → ∞, we have∫
Z+×R+×[0,t]

BV2(s)g(z, y)�(dz × dy × ds) = 0.(3.15)

Differentiating (3.15) gives (3.10) at least for almost every t . (See [8] for more
details.)

From (3.10), we can easily obtain all the moments of the limiting joint distri-
bution. Let (Zs, Ys) be a random vector with the law µ13

s . Note that Zs is just a
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Poisson random variable with expectation 10V2(s). Hence, the marginal moments
of Zs are immediate. With g(z, y) = y in (3.10), we get∫

[z − 2y]µ13
s (dz, dy) = 0

and, hence,

E[Ys] = 1
2E[Zs] = 5V2(s).

With g(z, y) = zy, we get∫ [
z(z − 2y) + 5

2yV2(s) − 1
4yz

]
µ13

s (dz, dy) = 0,

E[ZsYs] = 4
9E[Z2

s ] + 10
9 V2(s)E[Ys] = 40

9 V2(s) + 50V2(s)
2.

With g(z, y) = y2, ∫
[2y(z − 2y)]µ13

s (dz, dy) = 0

and

E[Y 2
s ] = 1

2E[ZsYs].
In general, taking g(z, y) = znym, one gets the recursive equation

mE[Zn+1
s Ym−1

s ] − 2mE[Zn
s Ym

s ] + 5
2V2(s)

n−1∑
1

(
n

k

)
E[Zn−k

s Ym
s ]

(3.16)

+ 1
4

n−1∑
1

(
n

k

)
(−1)kE[Zn−k+1

s Ym
s ] = 0,

from which one can iteratively compute all the joint moments of (Zs, Ys). Note
that, in order to compute E[Zn

s Ym
s ], one first has to compute

E[Zn+m
s ], E[Zn+m−1

s Ys], E[Zn+m−2
s Y 2

s ], . . . ,E[Zn+1
s Ym−1

s ],
as well as all of {E[Zi

sY
j
s ] : 0 < i + j < n + m}. �

APPENDIX

A.1. Estimates.

LEMMA A.1. Suppose M is a martingale with quadratic variation [M] and
Z = supt |M(t) − M(t−)|. Then

P

{
sup
s≤t

|M(s)| ≥ c

}
≤ d + E[Z2]

c2 + P {[M]t > d}.
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PROOF. Let τ = inf{s : [M]s > d} and note that [M]τ∧t ≤ d + Z2. Then

P

{
sup
s≤t

|M(s)| ≥ c

}
≤ P

{
sup
s≤t

|M(τ ∧ s)| ≥ c

}
+ P {τ ≤ t},

and the result follows by Doob’s inequality. �

We need the following inequality.

LEMMA A.2. Let z(t) ≥ 0, t ≥ 0, F : [0,∞) → [0,∞) be nondecreasing, and
b > 0. Suppose that, for 0 ≤ r < t

z(t) − z(r) ≤
∫ t

r

(
F(z(s)) − bz(s)

)
ds.(A.1)

If z(0) ≤ z∗(0) and z∗ satisfies

z∗(t) = z∗(0) +
∫ t

0

(
F(z∗(s)) − bz∗(s)

)
ds,

then z(t) ≤ z∗(t), t ≥ 0. If, in addition, z∗(0) ≥ 1, c ≥ b, and for some k > 1,
F(u) ≤ cu(k−1)/k , u ≥ 1, then

z(t) ≤
(
z∗(0)1/ke−(b/k)t + c

b

(
1 − e−(b/k)t ))k

(A.2)

≤ z∗(0)e−(b/k)t + ck

bk

(
1 − e−(b/k)t ).

PROOF. Let z0 ≡ z, and let z1 satisfy

z1(t) = z(0) +
∫ t

0

(
F(z(s)) − bz(s)

)
ds −

∫ t

0
b
(
z1(s) − z(s)

) ∨ 0ds.(A.3)

Let � = {r : z1(r) ≥ z(r)}. For r ∈ �, (A.1) and t > r ,

z(t) ≤ z1(r) +
∫ t

r

(
F(z(s)) − bz(s)

)
ds.(A.4)

Let t∗ = sup{s < t : z1(s) ≥ z(s)}. The continuity of z1 and (A.4) imply that
z(t∗) ≤ z1(t

∗). If t > t∗, then z(s) > z1(s), for t∗ < s < t , and the last term in (A.3)
is zero, so

z(t) ≤ z1(t
∗) +

∫ t

t∗
(
F(z(s)) − bz(s)

)
ds = z1(t).

Consequently, z1(t) ≥ z0(t), for all t ≥ 0, and

z1(t) = z(0) +
∫ t

0

(
F(z0(s)) − bz1(s)

)
ds.
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For m > 0, define zm+1 recursively by requiring

zm+1(t) = z(0) +
∫ t

0

(
F(zm(s)) − bzm+1(s)

)
ds.

Then zm+1 ≥ zm and zm converges to the solution of

z∗(t) = z(0) +
∫ t

0

(
F(z∗(s)) − bz∗(s)

)
ds.

It follows that z∗ ≥ z.
Suppose F(u) ≤ cu(k−1)/k , u ≥ 1, c > b, z∗(0) ≥ 1, and z∗∗(t) satisfies

z∗∗(t) = z∗(0) +
∫ t

0

(
cz∗∗(s)(k−1)/k − bz∗∗(s)

)
ds.

Note that z∗∗(t) ≥ 1, t ≥ 0, so F(z∗∗(t)) ≤ cz∗∗(t)(k−1)/k , t ≥ 0, and z∗(t) ≤
z∗∗(t), t ≥ 0. Setting z∗∗(t) = y(t)k ,

y(t) = z∗(0)1/k + c

k
t −

∫ t

0

b

k
y(s) ds

and

y(t) = z∗(0)1/ke−(b/k)t + c

b

(
1 − e−(b/k)t ). �

LEMMA A.3. Let α,β ≥ 0. Suppose Z ≥ 0 is adapted to a filtration {Ft } and

Z(t) = N−β(
K0 + K1(t) − K2(t) − K3(t)

)
,

where K0 is an integer-valued random variable and K1, K2 and K3 are counting
processes with no simultaneous jumps and {Ft }-intensities NαU(t), µNαZ(t) and
λN(t), respectively. Then, there exists Ck > 0 such that

E[Z(t)k|Z(0)] ≤ (
Z(0)k ∨ 1

)
e−µNα−β t

(A.5)
+ Ck sup

s≤t
E

[(
U(s) + 1

)k](1 − e−µNα−β t ).
PROOF. Let Y be a unit Poisson process that is independent of the Ki , and let

Ẑ satisfy

Ẑ(t) = N−β

(
K0 + K1(t) − K2(t) − Y

(∫ t

0
µNα(

Ẑ(s) − Z(s)
)
ds

))
.

Then Z(t) ≤ Ẑ(t) and

K̂2(t) = K2(t) + Y

(∫ t

0
µNα(

Ẑ(s) − Z(s)
)
ds

)
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has intensity µNαẐ(t). We have

Ẑ(t)k = Z(0)k +
∫ t

0

((
Ẑ(s−) + N−β)k − Ẑ(s−)k

)
dK1(s)

+
∫ t

0

((
Ẑ(s−) − N−β)k − Ẑ(s−)k

)
dK̂2(s)

and

E[Ẑ(t)k|Z(0)]

= Z(0)k +
∫ t

0
Nα

k−1∑
l=0

(
k

l

)
E

[
U(s)Ẑ(s)lN−β(k−l)

+ µ(−1)k−lẐ(s)l+1N−β(k−l)|Z(0)
]
ds

= Z(0)k + Nα−β
∫ t

0

k−1∑
l=0

E
[
HN,k,l

(
U(s), Ẑ(s)|Z(0)

)]
ds

−
∫ t

0
µNα−βkE[Ẑ(s)k|Z(0)]ds,

where

HN,k,l

(
U(s), Ẑ(s)

)
=

((
k

l

)
U(s) − µ(−1)k−l

(
k

l − 1

)
N−β

)
N−β(k−l−1)Ẑ(s)l.

Applying the Hölder inequality, there exists ak,l > 0 not depending on N such that

E
[
HN,k,l

(
U(s), Ẑ(s)

)|Z(0)
]

≤ ak,lE
[(

U(s) + 1
)k|Z(0)

]1/k
E[Ẑ(s)k|Z(0)]l/k.

It follows that

E[Ẑ(t)k|Z(0)]
≤ Z(0)k + Nα−β

∫ t

0
E

[(
U(s) + 1

)k|Z(0)
]1/k

G(E[Ẑ(s)k|Z(0)]) ds

−
∫ t

0
µNα−βkE[Ẑ(s)k|Z(0)]ds,

where G(u) is a polynomial of degree k−1 in u1/k . It follows that, for u ≥ 1, there
is a constant ak such that G(u) ≤ aku

(k−1)/k . Applying (A.2) with b = µNα−βk

and appropriate choice of c gives (A.5). �
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LEMMA A.4. Suppose that β > 0 and that ZN(t) = N−βKN(t), where KN

is a counting process with intensity NβλN(t). Suppose that {∫ t
0 λN(s)2 ds} is sto-

chastically bounded for each t > 0. Then {ZN } is relatively compact as a sequence
of processes in the sense of convergence in distribution in DR[0,∞), and every
limit point has continuous sample paths.

PROOF. Since KN can be represented as Y(Nβ
∫ t

0 λN(s) ds) for a unit Pois-
son process Y , by the law of large numbers, it is enough to verify the relative
compactness of the sequence �N(t) = ∫ t

0 λN(s) ds. But for t < t + h ≤ T ,

|�N(t + h) − �N(t)| ≤ √
h

√∫ T

0
λN(s)2 ds,

which gives a uniform equicontinuity condition implying the relative compactness
of {�N } (see, e.g., Theorem 3.7.2 of [4]). �

A.2. Determining the scaling exponents. The scalings employed for the ex-
amples in Sections 2 and 3 were determined in part by examining the published
simulations. In particular, these simulations suggested the relationships among
the αk . That approach to the choice of the scalings, however, is still more art than
science and leaves open the question of whether slightly different, but equally rea-
sonable scalings would produce significantly different limiting approximations. In
this section we reconsider the model of Section 3 and give a more systematic iden-
tification of the scaling.

Recall that the basic model satisfies

X1(t) = X1(0) + Yb

(∫ t

0
κ2X2(s) ds

)
− Yd

(∫ t

0
κ4X1(s) ds

)
,

X2(t) = X2(0) + Ya

(∫ t

0
κ1X1(s) ds

)
− Yb

(∫ t

0
κ2X2(s) ds

)
− Yf

(∫ t

0
κ6X2(s)X3(s) ds

)
,

X3(t) = X3(0) + Yc

(∫ t

0
κ3X1(s) ds

)
− Ye

(∫ t

0
κ5X3(s) ds

)
− Yf

(∫ t

0
κ6X2(s)X3(s) ds

)
.

With reference to Section 1.2, we consider a general scaling ZN
i (t) = N−αiXi(t),

and replace κk by λkN
βk . Once the βk are selected, the λk are determined by setting

λk = κkN
−βk

0

for the rate constants κk given in Section 3 and some appropriate N0.
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The normalized system becomes

ZN
1 (t) = ZN

1 (0) + N−α1Yb

(∫ t

0
κ2N

α2ZN
2 (s) ds

)
− N−α1Yd

(∫ t

0
κ4N

α1ZN
1 (s) ds

)
,

ZN
2 (t) = ZN

2 (0) + N−α2Ya

(∫ t

0
κ1N

α1ZN
1 (s) ds

)
− N−α2Yb

(∫ t

0
κ2N

α2ZN
2 (s) ds

)
− N−α2Yf

(∫ t

0
κ6N

α2+α3ZN
2 (s)ZN

3 (s) ds

)
,

ZN
3 (t) = ZN

3 (0) + N−α3Yc

(∫ t

0
κ3N

α1ZN
1 (s) ds

)
− N−α3Ye

(∫ t

0
κ5N

α3ZN
3 (s) ds

)
− N−α3Yf

(∫ t

0
κ6N

α2+α3ZN
2 (s)ZN

3 (s) ds

)
.

Setting V N
k (t) = ZN

k (Nγ t) and replacing κi by λiN
βi ,

V N
1 (t) = V N

1 (0) + N−α1Yb

(∫ t

0
λ2N

γ+β2Nα2V N
2 (s) ds

)
− N−α1Yd

(∫ t

0
λ4N

γ+β4Nα1V N
1 (s) ds

)
,

V N
2 (t) = V N

2 (0) + N−α2Ya

(∫ t

0
λ1N

γ+β1Nα1V N
1 (s) ds

)
− N−α2Yb

(∫ t

0
λ2N

γ+β2Nα2V N
2 (s) ds

)
− N−α2Yf

(∫ t

0
λ6N

γ+β6Nα2+α3V N
2 (s)V N

3 (s) ds

)
,

V N
3 (t) = V N

3 (0) + N−α3Yc

(∫ t

0
λ3N

γ+β3Nα1V N
1 (s) ds

)
− N−α3Ye

(∫ t

0
λ5N

γ+β5Nα3V N
3 (s) ds

)
− N−α3Yf

(∫ t

0
λ6N

γ+β6Nα2+α3V N
2 (s)V N

3 (s) ds

)
.

We assume that (V N
1 (0),V N

2 (0),V N
3 (0)) → (V1(0),V2(0),V3(0)).
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The question is how to determine, in a systematic way, what the exponents αi ,
βk and γ should be. There are several conditions that help this determination. First,
we want the scaling to ensure that V N

i (t) = O(1). This requirement can be met
either by ensuring that the individual terms on the right are O(1) or by ensuring
that terms cancel. Second, it is natural to assume that the βk have the same order
as the κk , that is, we should have

β6 ≤ β2 ≤ β4 ≤ β1 ≤ β5 ≤ β3.(A.6)

As is clearly reasonable, we assume that β1 = 0. This last assumption is not really
a restriction, since if β1 �= 0, we can add β1 to γ and substract β1 from each of
the βk .

Finally, comparing the κk , it is also natural to assume that β3 > β5 and β6 < β2.
(We will see that the second of these assumptions is actually implied by other
considerations.) For the scaling used in Section 3, β1 = β4 = β5 = 0, β2 = −2/3,
β3 = 1 and β6 = −5/3.

Suppose, as is the case in Section 3, we also require that the scaling makes each
of the terms in the equation for V N

2 to be O(1). In particular, we look for a scaling
in which the nonlinear behavior is preserved. Then we must have

α2 = γ + α1,

α2 = γ + β2 + α2,

α2 = γ + β6 + α2 + α3.

In addition, for V N
1 to be O(1) without being asymptotically negligible, we must

have

α2 = γ + β2 + α2 = γ + β4 + α1.

Similarly, for V N
3 , we must have

γ + β3 + α1 ≥ γ + β5 + α3,

γ + β3 + α1 ≥ γ + β6 + α2 + α3 = α2,

with equality holding for at least one of the inequalities. Since we are assuming
that β3 > β5 ≥ 0, we must have

γ + β3 + α1 = γ + β5 + α3

and, hence, α3 > α1.
The above assumptions imply

α2 − α1 = β4 − β2 = γ = −β2 ≥ 0,

so α2 ≥ α1, β4 = 0, and

α3 = −γ − β6 = β2 − β6.
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These restrictions leave three cases of interest: α1 = α2 > 0 and β5 = 0, α1 =
α2 > 0 and β5 > 0, and α2 > α1 ≥ 0.

If α1 = α2 > 0, then β2 = β1 = β4 = 0 and α3 = −β6. If, in addition, β5 = 0,
then α3 = γ + β3 + α1 and as N → ∞, the system converges to the solution of

V1(t) = V1(0) +
∫ t

0

(
λ2V2(s) − λ4V1(s)

)
ds,

V2(t) = V2(0) +
∫ t

0

(
λ1V1(s) − λ2V2(s) − λ6V2(s)V3(s)

)
ds,

V3(t) = V3(0) +
∫ t

0

(
λ3V1(s) − λ5V3(s)

)
ds.

If α1 = α2 > 0 and β5 > 0, then

lim
N→∞

(∫ t

0

(
λ3V

N
1 (s) − λ5V

N
3 (s)

)
ds

)
= 0,(A.7)

and (V N
1 ,V N

2 ) converges to a solution of

V1(t) = V1(0) +
∫ t

0

(
λ2V2(s) − λ4V1(s)

)
ds

V2(t) = V2(0) +
∫ t

0

(
λ1V1(s) − λ2V2(s) − λ6λ3

λ5
V2(s)V1(s)

)
ds.

If α2 > α1, then β2 < 0 and γ > 0 and, consequently, γ + β4 > 0 and γ + β5 >

0. It follows that

lim
N→∞

(∫ t

0

(
λ4V

N
1 (s) − λ2V

N
2 (s)

)
ds

)
= 0(A.8)

and (A.7) hold. Then, as in the scaling in Section 3, V N
2 converges to the solution

of

V2(t) = V2(0) +
∫ t

0

((
λ1λ2

λ4
− λ2

)
V2(s) − λ6λ3λ2

λ5λ4
V2(s)

2
)

ds.(A.9)

Define λk = κkN
−βk

0 for some N0. Then

λ1λ2

λ4
− λ2 =

(
κ1κ2

κ4
− κ2

)
N

γ
0

and

λ6λ3λ2

λ5λ4
= κ6κ3κ2

κ5κ4
N−β6−β3−β2+β5

= κ6κ3κ2

κ5κ4
N

α2+γ
0 .
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Recalling that V
N0
2 (t) = N

−α2
0 X2(N

γ t), the convergence suggests approximating
X2(t) by V̂2(t) = N

α2
0 V2(N

−γ
0 t). But if V2 satisfies (A.9), then V̂2 satisfies

V̂2(t) = V̂2(0) +
∫ t

0

((
κ1κ2

κ4
− κ2

)
V̂2(s) − κ6κ3κ2

κ5κ4
V̂2(s)

2
)

ds,(A.10)

so the approximation does not depend on the choice of the scaling parameters
beyond the restrictions identified above and the assumption that α2 > α1.

The behavior of the V N
1 and V N

3 depends primarily on whether α1 > 0 or α1 =
0. If α1 > 0, then (A.7) and (A.8) can be strengthened to

lim
N→∞ sup

ε≤s≤t

(|λ3V
N
1 (s) − λ5V

N
3 (s)| + |λ4V

N
1 (s) − λ2V

N
2 (s)|) = 0

for each 0 < ε < t .
If α1 = 0, then the behavior of V N

1 is essentially the same as in Section 3. If, in
addition, β5 = 0, then the joint behavior of V N

1 and V N
3 is essentially the same as

in Section 3. If α1 = 0 and β5 > 0, then

lim
N→∞

∫ t

0
|λ3V

N
1 (s) − λ5V

N
3 (s)|ds = 0,(A.11)

and for each t > 0, (V N
1 (t),V N

3 (t)) ⇒ (V1(t),
λ3
λ5

V1(t)), where V1(t) is Poisson

distributed with parameter λ2V2(t)
λ4

.
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