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DEGENERATE DIFFUSIONS ARISING FROM GENE
DUPLICATION MODELS

BY RICK DURRETT1,2 AND LEA POPOVIC1,3

Cornell University and Concordia University

We consider two processes that have been used to study gene dupli-
cation, Watterson’s [Genetics 105 (1983) 745–766] double recessive null
model and Lynch and Force’s [Genetics 154 (2000) 459–473] subfunction-
alization model. Though the state spaces of these diffusions are two and six-
dimensional, respectively, we show in each case that the diffusion stays close
to a curve. Using ideas of Katzenberger [Ann. Probab. 19 (1991) 1587–1628]
we show that one-dimensional projections converge to diffusion processes,
and we obtain asymptotics for the time to loss of one gene copy. As a corol-
lary we find that the probability of subfunctionalization decreases exponen-
tially fast as the population size increases. This rigorously confirms a result
Ward and Durrett [Theor. Pop. Biol. 66 (2004) 93–100] found by simulation
that the likelihood of subfunctionalization for gene duplicates decays expo-
nentially fast as the population size increases.

1. Introduction. Studies have shown that a surprisingly large number of du-
plicated genes are present in all sequenced genomes, revealing that there is fre-
quent evolutionary conservation of genes that arise through local events that gen-
erate tandem duplications, larger-scale events that duplicate chromosomal regions
or entire chromosomes, or genome-wide events that result in complete genome
duplication (polyploidization). Analyses of the human genome by Li (1980) have
revealed that at least 15% of human genes are indeed duplicates, with segmental
duplications covering 5.2% of the genome; see Bailey (2002). For more see the
survey articles by Prince and Pickett (2002) and Taylor and Raes (2004).

Gene duplications are traditionally considered to be a major evolutionary source
of new protein functions. The conventional view, pioneered by Ohno (1970) holds
that gene duplication produces two functionally redundant, paralogous genes and
thereby frees one of them from selective constraints. This unconstrained paralogue
is then free to accumulate neutral mutations that would have been deleterious to
a unique gene. The most likely outcome of such neutral evolution is for one of
the paralogues to fix a null mutation and become a pseudogene, or to be deleted
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from the genome. A less frequently expected outcome is the fixation of mutations
that lead to a new function. However, mutations that lead to such novel gene func-
tions are extremely rare; see Walsh (1995), so the classical model predicts that few
duplicates should be retained in genomes over the long term.

In Force (1999), introduced a new explanation of the preservation of duplicates
called the duplication–degeneration–complementation (DDC) model. To explain,
suppose that a gene performs two functions under the control of two different
regulatory proteins that bind to the DNA upstream from the gene.

In the drawing the large rectangle is the gene, typically several hundred nu-
cleotides, while the two small rectangles are the transcription factor binding sites,
typically about 10 nucleotides. It is supposed that mutations which cause loss of a
regulatory site happen at rate μr while those which cause the gene to completely
lose function happen at rate μc. In order to have the outcome called subfunction-
alization in which the two genes specialize to do different functions, the first event
must be a loss of a regulatory unit.

After this occurs, mutations in the indicated regions lead to inactivation of one
gene copy, I , subfunctionalization, S, or are lethal L since one of the functions is
missing. It follows that the probability of subfunctionalization in a one lineage is

4μr

4μr + 2μc

· μr

2μr + μc

= 2
(

μr

2μr + μc

)2

.(1)

If we make the simple assumption that μr = μc this probability is 2/9, but if we
observe that the gene region may easily be 30 times as large as the regulatory
elements and set μc = 30μr then the probability is 1/512.

Lynch and Force (2000) did simulations to assess the probability of subfunc-
tionalization in a population with N diploids. Taking μc = 10−5, which represents
a gene with 1000 nucleotides and a per nucleotide per generation mutation rate
of 10−8 they found that for μr/μc = 3,1,0.3,0.1 the probability of subfunction-
alization, P(S) stayed constant at the value predicted by (1) until a population size
of about 10,000 and then decreased rapidly to 0.

In a Research Experiences for Undergraduate project at Cornell, Ward and Dur-
rett (2004) investigated the probability of subfunctionalization further using sim-
ulation and simple analytical computations. They found that if one plots the loga-
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rithm of P(S) versus population size N , instead of Lynch and Force’s plot of P(S)

versus logN , one finds a straight line indicating exponential decay of P(S). This
conclusion holds for all four combinations of haploid and diploid organisms, and
linked and unlinked duplicates.

Most multicellular organisms are diploid, but since simulations of Ward and
Durrett (2004) show that the haploid and diploid situations are similar, we will
stick with the simpler haploid case here. The linked case, where there is no re-
combination between the two gene copies, is relevant to tandem gene duplication
in which unequal crossing over between two homologous chromosomes leads to a
small region of the chromosome present in two copies. Ward and Durrett (2004)
show that in the haploid linked case, the stochastic system converges to a system
of differential equations, which always ends in a state in which one gene copy is
lost. Since, for large N , the stochastic system is a small perturbation of this de-
terministic system, it follows from results of Friedlin and Wentzell (1988) that the
probability of subfunctionalization decreases exponentially in N .

The unlinked case, in which there is free recombination between the two loci,
occurs when copies reside on different chromosomes. This case is relevant to or-
ganisms such as the frog Xenopus laevis [Hughes and Hughes (1993)], teleost
fishes [Bailey, Poulter and Stockwell (1978), Takahata and Maruyama (1979),
Kimura (1980), Li (1980)] and yeast [Wolfe and Shields (1997), Seoighe and
Wolfe (1998, 1999)], which have undergone whole genome duplication or
tetraploidization, followed by a return to diploid inheritance. In these species,
more than 25% of the duplicated genes have been preserved. Using simulation
Ward and Durrett (2004) also made the startling discovery that in the haploid un-
linked model the population frequencies of the various genetic states, which should
be a six-dimensional diffusion, stayed near a one-dimensional curve of equilibria
for the deterministic model.

The main point of this paper is to prove that observation. Our proof will show
that in directions perpendicular to the curve of equilibria, the system is a small
perturbation of a dynamical system with a strong push toward the curve. Since the
point corresponding to subfunctionalization is not near this curve, an appeal to the
results of Friedlin and Wentzell (1988) shows that the probability of subfunctional-
ization decays exponentially rapidly as the population size grows. This rigorously
confirms the results Ward and Durrett (2004) found by simulation. Our proof gives
no insight into the size of the constant in the exponential decay. Simulations sug-
gest a value of 0.0005 for the diploid unlinked case, so for a population size in the
millions, the probability of subfunctionalization will be extremely small.

A similar conclusion can be made about models in which the two gene copies
control more than 2 functions which are regulated by different transcription factors.
In the case of 3 functions the diffusion model becomes 14-dimensional. The equa-
tions for frequencies of all functional factors will again produce a one-dimensional
curve of equilibria. However, since it becomes unwieldy to compute this curve or
show that the 13-dimensional matrices associated with the linearization have all
negative eigenvalues, we shall not try to prove this case.
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As is often the case in work of this type, one can be certain of the truth of the
mathematical fact, but cannot conclusively demonstrate its relevance to biology,
because the result is based on assumptions which may or may not hold. In our
case, some suspicious assumptions are:

1. constant population size,
2. mutations have no selective advantage,
3. the duplicated gene is present in all individuals.

Taking these in the order given, two referees have pointed out that the duplications
that led to many gene families in Drosophila may have occurred well before the
divergence of insects and chordates, perhaps in conditions of smaller population
size. Of course, such gene families must be shared by all of these species, so this
explanation applies only to the small number of families shared by all of these
species. A second objection relevant to tetraploidization events is that these events
initially involved only a single individual, so subfunctionalization may have oc-
curred when the population is small. A third objection relevant to Drosophila is that
they undergo large seasonal fluctuations and have spatial structure, so mutations
may arise when the population size is large and become fixed in a subpopulation
when it becomes small. Thus subfunctionalization can occur when the population
size is small but this complements our result that it is unlikely when the population
size is large.

As for the second assumption, we have assumed, following the proposers of
the subfunctionalization explanation, that the mutations involved are neutral. In
some cases, subfunctionalization means that the two genes are expressed in differ-
ent tissues, and further mutations can improve the performance of the proteins. For
a concrete example, consider the genes CYPB1 and CYPB3 of the Black Swallow-
tail studied by Wen et al. (2006). These genes, which have adapted to metabolize
furanocoumarin found in different host plants are unlikely to be ancient duplicates
common to all insects and chordates, but show a large number of amino acid al-
tering mutations indicative of the action of positive selection (see Figure 2 in the
paper cited).

Having admitted that positive selection is possible, we should also add that re-
sults of Walsh (1995) mentioned earlier show that positive adaption explains very
few instances of gene duplication. As one referee pointed out, the probability of
subfunctionalization may indeed be small, but there are many genes and many at-
tempts, so there may be many successes anyway. One could object to this explana-
tion by noting that if the subfunctionalization probability was 5% then there would
be 19 failed duplicates in the genome for each success, and this is not observed.
However, this objection vanishes if the duplications occur in a single individual
and only become fixed in the population if it provides some benefit, since in this
scenario failed attempts do not accumulate in the genome.

In summary, our result does not sound the death knoll for the popular concept
of subfunctionalization. However, it does indicate that in order for it to be at work
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in a population which currently has a large population size, then it must be aided
by positive selection or demographic factors.

2. Gene duplication models. In this section we give precise statements on
how degenerate diffusions arise in two distinct gene duplication models. Sec-
tions 3 and 4 contain proofs of Theorems 1 and 2 for Watterson’s model in 2 di-
mensions. In Section 5 we give the proof of Theorem 3 for Lynch and Force’s
six-dimensional subfunctionalization model.

2.1. Watterson’s model. To prepare for the complexities of the six-dimension-
al model, it is useful to start with Watterson’s (1983) double recessive null model,
which can be thought of as a special case of the subfunctionalization model in
which the gene has only one function. Watterson considers a Wright–Fisher model
with unlinked loci and diploid individuals. Unlinked loci means that the two gene
copies are free to mutate independently and dependence only comes through via-
bility of the gametes. In generation n we have 2N letters that are either A (working
copy of gene 1) or a (nonfunctional copy) and 2N letters that are either B (work-
ing gene copy of gene 2) or b (nonfunctional copy). To build up generation n + 1
we repeat the following procedure until we have N successes:

• Pick with replacement two copies of gene 1 and two copies of gene 2.
• An A, that is picked may mutate to a with probability μ. Likewise a B , that is

picked may mutate to b with probability μ. The reverse mutation, which corre-
sponds to undoing a specific deleterious mutation is assumed to have probabil-
ity 0.

• If the result of our choices after mutation is not aabb then this is a success, and
the new individual is added to the collection.

Note that after forming the new individual we do not keep track of the copies that
reside in a single individual. This standard practice is referred to as the assumption
of a “random union of gametes.”

Letting x and y be the frequencies of a and b alleles, Kimura and King (1979)
derived the diffusion limit of this model to be

L1f = 1

2
x(1 − x)

∂2f

∂x2 + 2N(1 − x)(μ − x2y2)
∂f

∂x
(2)

+ 1

2
y(1 − y)

∂2f

∂y2 + 2N(1 − y)(μ − x2y2)
∂f

∂y
.

To explain the coefficients in (2) we note that if we have a one locus Wright–
Fisher model in which mutation from A to a occurs at rate μ and allele a has a
selective disadvantage s then when time is run at rate 2N the diffusion approxima-
tion is

1

2
x(1 − x)

∂2f

∂x2 + 2N [μ(1 − x) − sx(1 − x)]∂f
∂x

.
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In our case an A allele has fitness 1 and a allele has fitness 0 if it is paired with
another a and two b’s, so the selective disadvantage of an a allele is s = xy2.

This diffusion limit in (2) is unusual since it does not assume that s and μ are
of order 1/N . Since all individuals have fitness 1 or 0, it is not sensible to make
this assumption about s, but one can, as Watterson did, assume 4Nμ → θ . By
using arguments that were clever but not completely rigorous, Watterson (1983)
concluded that the mean time until loss of A or B had mean approximately

N [log(2N) − ψ(θ/2)],
where ψ is the digamma function. Here we will give a simple proof of a version of
his result. In our approach, we will assume that μ is a constant. Apart from simpli-
fying the mathematics, our motivation is that while multicellular organisms have
different population sizes, most have a mutation rate per nucleotide about 10−8, so
if we assume genes have 1000 nucleotides, μ = 10−5.

To state our results, we begin by observing that solutions of the ordinary differ-
ential equation (ODE)

dx

dt
= (1 − x)(μ − x2y2),

(3)
dy

dt
= (1 − y)(μ − x2y2)

have (1−yt )/(1−xt ) constant, so the solution moves along the line through (1,1)

until it hits the equilibrium curve xy = √
μ. Since the drift in the diffusion is

O(N) while its variance is only O(1), it should not be surprising that the diffusion
initially remains close to the ODE.

THEOREM 1. Let Zt = (Xt , Yt ) be the diffusion in (2) and Z0
t the solution

of (3) both starting from (X0, Y0). Let 0 < ε <
√

μ. There is a constant γ , which
depends on ε so that if N is large then for all (X0, Y0) ∈ [ε,1 − ε]2

E

(
sup

0≤t≤γ logN/N

|Zt − Z0
t |2

)
≤ N−1/2.

As the reader may have noticed this is not what the frequencies in the discrete
Wright–Fisher model do on this time scale. They take significant jumps on the
way to the curve. With more effort we could prove our results for the Wright–
Fisher model, however, for simplicity, we will, as Watterson did, study the diffu-
sion process.

With Theorem 1 established, it suffices to consider what happens when the dif-
fusion starts near the curve. Given (x, y) we define (x∗, y∗) by (1−y∗)/(1−x∗) =
(1 − y)/(1 − x) and x∗y∗ = √

μ. In words, �(x,y) = (x∗, y∗) is the point on the
equilibrium curve which we would reach by flowing according to the ODE starting
from (x, y). See Figure 1 for a picture.
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FIG. 1. Picture of the state space for the Watterson model showing the curve of equilibria x2y2 = μ

and the flow lines for the ordinary differential equation, which are the level curves for the projection
map.

THEOREM 2. Consider the diffusion (Xt , Yt ) in (2). Let τ = inf{t :Xt =
1 or Yt = 1} be the time to loss of A or B . Let 0 < δ < 1/2. Suppose |μ−X2

0Y
2
0 | ≤

N−δ . Then if N is large, with high probability we have |μ − X2
t Y

2
t | ≤ 2N−δ for

all t ≤ τ . Also, as N → ∞ the process X∗
t − Y ∗

t converges in distribution to a
diffusion process on the curve {xy = √

μ}, from which we obtain E0τ ∼ 2Nc2(μ).

The coefficients of the limiting diffusion process can be explicitly calculated by
applying Itô’s formula to h(�(Xt , Yt )) where h(x, y) = x − y, but they have very
complicated formulas. Figure 2 shows the drift b(z), variance a(z) of the limiting

FIG. 2. Diffusion coefficients for the limiting diffusion in the Watterson model.
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FIG. 3. Green’s function for the limiting diffusion in the Watterson model.

process and the quantity −2b(z)/a(z) which appears in derivative of its natural
scale

s ′(y) = exp
(
−

∫ y

0
−2b(z)/a(z) dz

)
,

when μ = 10−4. The Green’s function is shown in Figure 3. Recalling E0τ =
2

∫ 1−μ
0 G(0, x) dx and integrating numerically we see that in our concrete case

c2(μ) = 6.993302, so recalling how time is scaled we have E0τ ≈ 14N genera-
tions.

The result can be explained by noticing that the distance of the diffusion from
the curve φ(Xt , Yt ) = (μ − X2

t Y
2
t )2 is a Lyapunov function insuring exponential

stability for the ODE system (3). Near the curve the stability of the drift beats the
tendency of the diffusion to deviate from the curve, and forces (Xt , Yt ) to follow
where the flow would take it on the curve.

Watterson’s argument proceeds by making a change of variables ρ = 2N1/2xy

(we have s = 1 so his S = N ) and

η =

⎧⎪⎪⎨
⎪⎪⎩

x − y

1 − y
, if x ≥ y,

x − y

1 − x
, if x ≤ y.

Since his μ = θ/4N , ρ2 − θ measure the displacement from the curve x2y2 = μ,
and −1 ≤ η ≤ 1 gives the position along the curve. The change of variables that
defines η is not twice differentiable when x = y but by smoothing and passing to
the limit this is not a problem.

The major unresolved difficulty with Watterson’s argument is his assumption
that ρ, which runs on a faster time scale than η, stays in equilibrium as η evolves.
A significant technical problem in justifying this is that when η = 0 the diffu-
sion for ρ does not have a stationary distribution. Indeed, it is the time spent
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with η near 0 that results in the N logN asymptotics. Of course in his situation
μ = O(1/N), so the situation is somewhat more complicated. Our proof, in con-
trast, uses the smooth change of variables (x, y) → x∗ −y∗, and to obtain our limit
all we have to show is that the displacement from the curve stays close to 0.

2.2. Subfunctionalization. We turn now to the subfunctionalization model
for unlinked loci in haploid organisms. In Watterson’s model, the discrete-time
Wright–Fisher model leads to a process that makes deterministic jumps off of the
curve of equilibria. To avoid this, we will consider the Moran model version in
which individuals are replaced one at a time, and in which mutation happens in-
dependent of reproduction. The biology behind the last choice is that we are con-
sidering the pool of gametes that exist at time t in a population with overlapping
generations.

To introduce our model, consider first an infinitely large population for which
the allele frequency dynamics will be deterministic. Let 3 = 11, 2 = 10, 1 = 01,
and 0 = 00 denote the four possible states of each gene copy, where 1 and 0 in-
dicate presence or absence of the two functions, and let xi and yj denote the fre-
quencies of states i and j at the first and second copy with x0 = 1 − x3 − x2 − x1,
and y0 = 1 − y3 − y2 − y1. To simplify we will assume μr = μc = b. Let

w = x3 + y3 − x3y3 + x1y2 + x2y1(4)

be the mean fitness, that is, the probability the new individual chosen to replace
the old one is viable. To explain the formula for w, we note that if either gene is in
state 3, an event of probability x3 + y3 − x3y3, then the offspring is always viable,
whereas if neither gene is in state 3, the only viable combinations are (1,2) and
(2,1). We are assuming the copies are unlinked so the events are independent.

The diffusion limit of this model is

L2f = 1

2

∑
i,j=1,2,3

xi(δij − xj )
∂2f

∂xi ∂xj

+ 1

2

∑
i,j=1,2,3

yi(δij − yj )
∂2f

∂yi ∂yj

(5)
+ 2NF(x3, x2, x1, y3, y2, y1) · ∇f,

where F : R6 → R
6 is the vector field determining the evolution of the ODE system

dx3/dt = −x3w + x3 − 3bx3,

dx2/dt = −x2w + x2(y3 + y1) + bx3 − 2bx2,

dx1/dt = −x1w + x1(y3 + y2) + bx3 − 2bx1,
(6)

dy3/dt = −y3w + y3 − 3by3,

dy2/dt = −y2w + y2(x3 + x1) + by3 − 2by2,

dy1/dt = −y1w + y1(x3 + x2) + by3 − 2by1.
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If we let α = 1 − 3b, then the equations for x3 and y3 become

dx3

dt
= x3(α − w),

(7)
dy3

dt
= y3(α − w),

so the first and fourth equations for an equilibrium reduce to the single equation
w = α. Thus, if things are nice we will have a one-dimensional curve of equilibria.

To find one set of solutions we can begin by investigating the case in which
x2 = x1 = x and y2 = y1 = y which gives us four equations

dx3/dt = −x3w + x3 − 3bx3,

dx/dt = −xw + x(y3 + y) + bx3 − 2bx,

dy3/dt = −y3w + y3 − 3by3,

dy/dt = −yw + y(x3 + x) + by3 − 2by,

which after some algebra can be explicitly solved. See Figure 4 for a graph of the
solutions for x3, y3, x, y in the special case b = 0.001.

It turns out that, in addition to the curve of equilibria, there are no other equi-
libria except for the fixed points of the dynamical system near x2 = 1, y1 = 1 and
x1 = 1, y2 = 1, which correspond to subfunctionalization.

Equation (7) implies that if y3(0)/x3(0) = r then we will have y3(t)/x3(t) = r

for all t . Given z = (x3, x2, x1, y3, y2, y1), let z∗ = �(z) be the point on the curve
of equilibria with y∗

3/x∗
3 = y3/x3. Numerical results show that starting from any z

the ODE will converge to �(z), but we do not know how to prove this for the

FIG. 4. Picture of the solution of curve of equilibria in the subfunctionalization model where
x2 = x1 = x, y2 = y1 = y and the mutation rate has value b = 0.001—the values of (y3, x, y) are
shown against x3 which is on the horizontal axis.
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dynamical system, so we will only consider the situation when the process starts
close to the curve.

THEOREM 3. Suppose that the mutation rate b ≤ 0.01. Let τ = inf{t :X0(t) =
1 or Y0(t) = 1} be the time to loss of gene 1 or gene 2. Suppose |Z0 − Z∗

0 | ≤
1/N1/4. Then if N is large, with high probability we have |Zt − Z∗

t | ≤ 2/N1/4

for all t ≤ τ . Also, when run at rate 2N the process X∗
3(t) − Y ∗

3 (t) converges in
distribution to a diffusion process on the curve of stable equilibria of (6), from
which we get that E0τ ∼ 2Nc3(b).

The inspiration for our proof comes from Katzenberger (1991), who found con-
ditions for a sequence of processes to converge to a diffusion on a submanifold
of the original state space. While his result gives us the plan, it does not help
much with the details. The hard work is to obtain enough information about the
curve of equilibria to be able to check that the linearization of the drift in the five-
dimensional space perpendicular to the curve has all eigenvalues with negative real
part. (It is at this point we need the assumption that b ≤ 0.01.) Linear ODE’s of this
type have Lyapunov functions, so patching these together and using computations
in Section 3 of Katzenberger (1991) gives a Lyapunov function near the curve.

Once we know the diffusion stays near the curve, the coefficients of the limiting
diffusion can again be computed in terms of the derivatives of �(X3,X2,X1, Y3,

Y2, Y1) and h = x3 − y3 by using Itô’s formula. Figure 5 shows the drift b(z),
variance a(z) of the limit of X∗

3 −Y ∗
3 and the quantity −2b(z)/a(z) which appears

in derivative of the natural scale when b = 10−3. Even though the model is quite
different, the curves are similar to those in Figure 2. The Green’s function is shown
in Figure 6. Integrating we see that in our concrete example c3(b) = 3.284906, so
for the process run at rate 1 we have E0τ ≈ 6.5N . In the case of Drosophila who
have an effective population size of N = 106 this is 6.5 million generations or
650,000 years.

FIG. 5. Diffusion coefficients for the limiting diffusion in the subfunctionalization model.
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FIG. 6. Green’s function for the limiting diffusion in the subfunctionalization model.

3. Proof of Theorem 1. We will prove this result by using a standard estimate
from the Picard iteration proof of the existence of solutions of stochastic differen-
tial equations (SDE). We first consider a time rescaling Zt = (Xt/2N,Yt/2N), so
that the coefficients of the SDE for Zt become

b(z) = (
(1 − x)(μ − x2y2), (1 − y)(μ − x2y2)

)
,

σ (z) =
(√

x(1 − x)/2N 0
0

√
y(1 − y)/2N

)
.

Let bε(z) and σε(z) be the formulas that results when x and y are replaced by
(ε/2)∨ x ∧ (1 − ε/2) and (ε/2)∨ y ∧ (1 − ε/2). We do this so that bε and

√
2Nσε

are Lipschitz continuous with constant Kε .
Let Z0

t be the solution of the ODE starting from (X0, Y0) ∈ [ε,1 − ε]2 with
ε < μ. Since along the boundary of the square, the drift points into the square
except near the upper left and lower right corners, it is easy to see that

Z0
t − Z0

0 =
∫ t

0
bε(Z

0
s ) ds.

To begin the iteration to produce a solution of the modified SDE let

Z1
t = Z0

0 +
∫ t

0
σε(Z

0
s ) dBs +

∫ t

0
bε(Z

0
s ) ds,

where Bs is a standard two-dimensional Brownian motion. Since u(1 − u) ≤ 1/4
for all u ∈ [0,1], the L2 maximal inequality for submartingales implies

E

(
sup

0≤s≤t

|Z1
s − Z0

s |2
)

≤ 4E|Z1
t − Z0

t |2 ≤ t/N.

To continue we will use (2.3) on page 185 of Durrett (1996).
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LEMMA 1. If we let

Ũt = U0 +
∫ t

0
σε(Us) dBs +

∫ t

0
bε(Us) ds,

Ṽt = V0 +
∫ t

0
σε(Vs) dBs +

∫ t

0
bε(Vs) ds,

then for B = (8T + 64)K2
ε

E

(
sup

0≤s≤T

|Ũs − Ṽs |2
)

≤ 2E|U0 − V0|2 + BE

∫ T

0
|Us − Vs |2.(8)

Letting Zk
t = Z̃k−1

t , it follows by induction that for k ≥ 1

E

(
sup

0≤s≤T

|Zk
s − Zk−1

s |2
)

≤ Bk−1

N

T k

k! .

Using (2.6) on page 188 of Durrett (1996), we see that the solution Zt has

E

(
sup

0≤s≤T

|Zs − Z0
s |2

)
≤

( ∞∑
k=1

√
Bk−1

N

T k

k!
)2

≤ 1

N

( ∞∑
k=1

((8T + 64)Kε)
k

√
k!

)2

.(9)

The form of the right-hand side derives from the fact that it is the L2 norm
‖X‖2 = (EX2)1/2 that satisfies the triangle inequality. The right-hand side in-
creases rapidly with T , so we take T to be a constant to end up with a bound
of the form CT /N .

To extend the comparison to longer intervals of time, let Z
1,0
t and Z

1,1
t be so-

lutions of the ODE and SDE starting from Z0
T , and let Z

1,2
t be the solution of the

SDE starting from ZT . It follows from (9)

E

(
sup

0≤s≤T

|Z1,1
s − Z1,0

s |2
)

≤ CT /N.

Using (8) with Gronwall’s inequality [see (2.7) on page 188 of Durrett (1996)]

E

(
sup

0≤s≤T

|Z1,2
s − Z1,1

s |2
)

≤ 2CT

N
eBT .

Combining the two estimates using the triangle inequality gives

E

(
sup

0≤s≤T

|Z1,2
s − Z1,0

s |2
)

≤ CT

N

(
1 +

√
2eBT

)2
.

To continue for k ≥ 2 let Z
k,0
t and Z

k,1
t be solutions of the ODE and SDE

starting from Z0
kT = Z

k−1,0
T , and let Z

k,2
t be the solution of the SDE starting from
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Z
k−1,2
T . We will show by induction that

E

(
sup

0≤s≤T

|Zk,2
s − Zk,0

s |2
)

≤ CT

N

(
k∑

j=0

(2eBT )j/2

)2

.(10)

Our previous result shows that this hold for k = 1. It follows from (9)

E

(
sup

0≤s≤T

|Zk,1
s − Zk,0

s |2
)

≤ CT /N.

Using (8) with Gronwall’s inequality, and our induction assumption we get

E

(
sup

0≤s≤T

|Zk,2
s − Zk,0

s |2
)

≤ 2CT

N

(
k−1∑
j=0

(2eBT )j/2

)2

eBT .

Combining the two estimates gives (10). If we choose T so that 2eBT = 4, then(
k∑

j=0

(2eBT )j/2

)2

≤ (2eBT )k

[1 − (2eBT )−1/2]2 = 4k+1

and summing over k = 1, . . . ,m gives

E

(
sup

0≤s≤mT

|Zs − Z0
s |2

)
≤ CT

N

4m+1

1 − 1/4
= 16

3
CT N−2/3 ≤ N−1/2,

when we choose m = (logN)/(3 log 4). This proves Theorem 1 with γ =
T/(6 log 4) and time rescaled back to its original rate.

4. Proof of Theorem 2. The proof of Theorem 2 is given in four steps. We
first find the map �(x,y) that takes a point (x, y) to where the ODE trajectory
would take it on the curve; and apply Itô’s formula to find the SDE of �(Xt,Yt ).
We then use the exponential Lyapunov function for the ODE to show that the
diffusion stays close to the process �(Xt,Yt ); and finally use its SDE to obtain the
limiting process.

4.1. Projection map of the trajectory. Given x, y in the unit square the ODE
will take it to the point x∗, y∗ such that x∗y∗ = √

μ while (1 − y)/(1 − x) =
(1 − y∗)/(1 − x∗). Solving for x∗ gives a quadratic equation

(1 − y)(x∗)2 − (x − y)x∗ − √
μ(1 − x) = 0

and the root we want is

x∗ = 1

2

(
x − y

1 − y
+

√
(x − y)2

(1 − y)2 + 4
√

μ
1 − x

1 − y

)
.
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To get ready to differentiate this, we note (x − y)/(1 − y) = 1 − (1 − x)/(1 − y)

so we can write

x∗ = g

(
1 − x

1 − y

)
, where g(u) = (1 − u) +

√
(1 − u)2 + √

μbu

2
.

To start to understand the properties of g we note that⎛
⎜⎜⎝

(x, y) u = (1 − x)/(1 − y) g(u)

(1,
√

μ) 0 1
(μ1/4,μ1/4) 1 μ1/4

(
√

μ,1) ∞ √
μ

⎞
⎟⎟⎠ ,

where for the last evaluation we note that g(u) ≈ 1
2 [(1 − u) + u − (1 − 2

√
μ)] for

large u. Differentiating gives

∂x∗

∂x
= g′

(
1 − x

1 − y

) −1

1 − y
,

∂x∗

∂y
= g′

(
1 − x

1 − y

)
1 − x

(1 − y)2 ,

∂2x∗

∂x2 = g′′
(

1 − x

1 − y

)
1

(1 − y)2 ,

∂2x∗

∂y2 = g′′
(

1 − x

1 − y

)
(1 − x)2

(1 − y)4 + g′
(

1 − x

1 − y

)
2(1 − x)

(1 − y)3 ,

where

g′(u) = 1
2

(−1 + 1
2

(
(1 − u)2 + 4

√
μu

)−1/2(−2(1 − u) + 4
√

μ
))

,

g′′(u) = −1
8

(
(1 − u)2 + 4

√
μu

)−3/2(−2(1 − u) + 4
√

μ
)2

+ 1
4

(
(1 − u)2 + 4

√
μu

)−1/22.

4.2. Itô’s formula for the projection map. Now consider the behavior of
(X∗

t , Y
∗
t ) = �(Xt,Yt ). We conclude from Itô’s formula that

X∗
t − X∗

0 =
∫ t

0
g′

(
1 − Xs

1 − Ys

) −1

1 − Ys

dXs +
∫ t

0
g′

(
1 − Xs

1 − Ys

)
1 − Xs

(1 − Ys)2 dYs

+ 1

2

∫ t

0
g′′

(
1 − Xs

1 − Ys

)
1

(1 − Ys)2 Xs(1 − Xs)ds

+ 1

2

∫ t

0

[
g′′

(
1 − Xs

1 − Ys

)
(1 − Xs)

2

(1 − Ys)4 + g′
(

1 − Xs

1 − Ys

)
2(1 − Xs)

(1 − Ys)3

]

× Ys(1 − Ys) ds.
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Using (2) to get expressions for dXs, dYs , the drift terms in the first two integrals
which contain factors of 2N cancel leaving us with∫ t

0
g′

(
1 − Xs

1 − Ys

) −1

1 − Ys

√
Xs(1 − Xs)dB1

s

+
∫ t

0
g′

(
1 − Xs

1 − Ys

)
1 − Xs

(1 − Ys)2

√
Ys(1 − Ys) dB2

s

from which we see that the variance process is

〈X∗〉t − 〈X∗〉0 =
∫ t

0
g′

(
1 − Xs

1 − Ys

)2 1

(1 − Ys)2 Xs(1 − Xs)ds

+
∫ t

0
g′

(
1 − Xs

1 − Ys

)2 (1 − Xs)
2

(1 − Ys)4 Ys(1 − Ys) ds.

For computing Eτ , it is convenient to have a symmetric diffusion so we will
consider X∗

t − Y ∗
t . Analogously to x∗ we have

y∗ = (y − x) +
√

(y − x)2 + 4
√

μ(1 − x)(1 − y)

2(1 − x)
= g

(
1 − y

1 − x

)
,

so

∂y∗

∂y
= g′

(
1 − y

1 − x

) −1

1 − x
,

∂y∗

∂x
= g′

(
1 − y

1 − x

)
1 − y

(1 − x)2 ,

∂2y∗

∂y2 = g′′
(

1 − y

1 − x

)
1

(1 − x)2 ,

∂2y∗

∂x2 = g′′
(

1 − y

1 − x

)
(1 − y)2

(1 − x)4 + g′
(

1 − y

1 − x

)
2(1 − y)

(1 − x)3

and we conclude that X∗
t − Y ∗

t is a diffusion with two times the drift coefficient

2b(Xt , Yt )

= g′′
(

1 − Xt

1 − Yt

)
Xt(1 − Xt)

(1 − Yt )2 − g′′
(

1 − Yt

1 − Xt

)
Yt (1 − Yt )

(1 − Xt)2
(11)

+ g′′
(

1 − Xt

1 − Yt

)
(1 − Xt)

2Yt

(1 − Yt )3 + g′
(

1 − Xt

1 − Yt

)
2(1 − Xt)Yt

(1 − Yt )2

− g′′
(

1 − Yt

1 − Xt

)
(1 − Yt )

2Xt

(1 − Xt)3 − g′
(

1 − Yt

1 − Xt

)
2(1 − Yt )Xt

(1 − Xt)2
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and diffusion coefficient

a(Xt , Yt ) = g′
(

1 − Xt

1 − Yt

)2[
Xt(1 − Xt)

(1 − Yt )2 + (1 − Xt)
2Yt

(1 − Yt )3

]
(12)

+ g′
(

1 − Yt

1 − Xt

)2[
Yt (1 − Yt )

(1 − Xt)2 + (1 − Yt )
2Xt

(1 − Xt)3

]
.

4.3. Staying near the curve. To study the distance from the curve we will con-
sider φ(Xt , Yt ) = (μ − X2

t Y
2
t )2. It turns out that φ is a Lyapunov function for the

system (3). In other words, φ(x, y) = (μ − x2y2)2 ≥ 0, φ(x, y) = 0 iff (x, y) is a
fixed point of the deterministic system (3), and for all (x, y) in the neighborhood
of fixed points |μ − x2y2| ≤ N−δ the change in the direction of the strong drift is

∇φ · F = −4xy
(
y(1 − x) + x(1 − y)

)
φ ≤ −βφ,

where β = infx,y : |μ−x2y2|≤N−δ {4xy(y(1 − x) + x(1 − y))} > 0.
Using Itô’s formula we get

e2Nβtφ(Xt , Yt ) =
∫ t

0
e2Nβs

(
2Nβφ(Xs,Ys) + ∂φ

∂x
2N(1 − Xs)(μ − X2

s Y
2
s )

+ ∂φ

∂y
2N(1 − Ys)(μ − X2

s Y
2
s )

+ ∂2φ

∂x2 Xs(1 − Xs) + ∂2φ

∂2y

√
Ys(1 − Ys)

)
ds

+
∫ t

0
e2Nβs

(
∂φ

∂x

√
Xs(1 − Xs)dB1

s + ∂φ

∂y

√
Ys(1 − Ys) dB2

s

)

and collecting terms due to drift

φ(Xt , Yt ) = e−2Nβt2N

∫ t

0
e2Nβs

(
∇φ · F + βφ + ∂2φ

∂x2 Xs(1 − Xs)

+ ∂2φ

∂2y
Ys(1 − Ys)

)
ds

+ e−2Nβt
∫ t

0
e2Nβs

(
∂φ

∂x

√
Xs(1 − Xs)dB1

s + ∂φ

∂y

√
Ys(1 − Ys) dB2

s

)
.

For (x, y) within a compact set it is easy to see that for any sequence of random
times τN and T ≥ 0 the second integral is less than

C sup
0≤t≤T ∧τN

e−2Nβt

∣∣∣∣
∫ t

0
e2Nβs(dB1

s + dB2
s )

∣∣∣∣,
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which converges weakly to 0, likewise the third integral converges weakly to 0 as
well.

Let τN = inf{t ≥ 0 : |μ − X2
t Y

2
t | > N−δ}, then for all 0 ≤ t ≤ τN the first in-

tegral is negative, and since φ ≥ 0 this implies φ(Xt∧τN , Yt∧τN ) ⇒ 0. In other
words

(Xt∧τN , Yt∧τN ) − (X∗
t∧τN , Y ∗

t∧τN ) ⇒ 0.

4.4. Limit theorem. Our final step is to argue that as N → ∞, X∗
t − Y ∗

t con-
verges to the diffusion with coefficients b(X∗

t , Y
∗
t ) and a(X∗

t , Y
∗
t ). We have shown

that for each N the drift and diffusion coefficients are given by b(Xt , Yt ) and
a(Xt , Yt ) as defined in (11) and (12). Since the coefficients b and a are bounded in
a neighborhood of the curve of equilibria the sequence of processes is tight, and the
weak convergence (Xt∧τN , Yt∧τN )− (X∗

t∧τN , Y ∗
t∧τN ) ⇒ 0 that we have just shown

together with Theorem 5.4 in Kurtz and Protter (1991) implies for all 0 ≤ t ≤ τN

we have convergence of X∗
t − Y ∗

t to the desired diffusion process.

5. Proof of Theorem 3. We follow the same general outline as the proof of
Theorem 2, but there are some new steps which were trivial in the previous proof.
First, finding a usable expression for the curve of equilibria requires more work,
and to calculate the flow map requires the right change of variables to describe the
surface along which it is constant. Next, we were not able to find a global Lyapunov
function in this case, hence we linearize the system around the points on the curve,
and investigate the behavior of the eigenvalues of the linearized system. As the last
step we use the construction of Katzenberger to glue the local Lyapunov functions
into a global one for the whole neighborhood of the curve.

5.1. The curve of equilibria. Consider the equations in (6) restricted to x1 =
x2 = x, y1 = y2 = y.

dx3

dt
= −x3w + x3 − 3bx3 = x3(α − w),(13)

dx

dt
= −xw + x(y3 + y) + bx3 − 2bx = x(y3 + y − 2b − w) + bx3,(14)

dy3

dt
= −y3w + y3 − 3by3 = y3(α − w),(15)

dy

dt
= −yw + y(x3 + x) + by3 − 2by = y(x3 + x − 2b − w) + by3,(16)

where w = x3 + y3 − x3y3 + 2xy and α = 1 − 3b. Letting β = α + 2b = 1 − b,
fixed points satisfy three equations

x3 + y3 − x3y3 + 2xy = α,(17)

x(y3 − β) + xy + bx3 = 0,(18)

y(x3 − β) + xy + by3 = 0.(19)
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To solve it is convenient to let

� = x3 + y3 − x3y3 − α = −2xy.(20)

We can solve (17), (18), (19) for x and y

x = � − 2bx3

2(y3 − β)
, y = � − 2by3

2(x3 − β)
.(21)

Using these in (20) we have

2�(x3 − β)(y3 − β) + (� − 2bx3)(� − 2by3) = 0.(22)

Filling in the definition of �

2(−x3y3 + x3 + y3 − α)(x3y3 − βx3 − βy3 + β2)

+ (−x3y3 + x3(1 − 2b) + y3 − α
)(−x3y3 + x3 + y3(1 − 2b) − α

) = 0

and collecting terms gives

x2
3y2

3 [−2 + 1] + (x2
3y3 + x3y

2
3)[2β + 2b]

+ x3y3[−2β2 − 4β + (1 − 2b)2 + 1] + (x2
3 + y2

3)[−2β + (1 − 2b)]
+ (x3 + y3)[2β2 + 2αβ − 2α(1 − b)] + [α2 − 2αβ2] = 0,

which has the form
∑

i,j cij x
i
3y

j
3 , where ci,j = cj,i . Using β = 1 − b and α =

1 − 3b

c2,2 = −1,

c1,2 = c2,1 = 2β + 2b = 2,

c0,2 = c2,0 = −2β + (1 − 2b) = −1,

c1,1 = −2(1 − 2b + b2) − 4(1 − b) + (1 − 4b + 4b2) + 1 = −4 + 4b + 2b2,

c0,1 = c1,0 = 2β2 = 2 − 4b + 2b2,

c0,0 = α2 − 2αβ2 = α(α − 2β2) = (1 − 3b)(−1 + b − 2b2)

= −1 + 4b − 5b2 + 6b3.

To solve for y3 note our equation has the form d0 + d1y3 + d2y
2
3 = 0 where dj =∑

i cij x
i
3, so

y3 = −d1 ±
√

d2
1 − 4d0d2

2d2
.(23)
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To see which root we want, note that if x3 = 0 and x = 0 then w = y3 = α, so we
want

y3 = −c0,1 +
√

c2
0,1 − 4c0,0c0,2

c0,2

= −2β2 +
√

4β4 − 4(α2 − 2αβ2)(−1)

−2
= α = 1 − 3b.

5.2. Projection map. It follows from the equations for the ODE that

d

dt

y3

x3
= −y3

x2
3

dx3

dt
+ 1

y3

dy3

dt
= 0,

so y3/x3 is constant along solutions. This means that if y3/x3 = r then the trajec-
tory will flow the point on the curve of equilibria where u = x∗

3 has

(ru)2d2(u) + (ru)d1(u) + d0(u) = 0.

Differentiating with respect to r , and letting ei = (uidi)
′, where ′ indicates the

derivative with respect to u we have

2ru2d2 + r2e2
du

dr
+ ud1 + re1

du

dr
+ e0

du

dr
= 0.

Rearranging gives

du

dr
= − 2ru2d2 + ud1

r2e2 + re1 + e0
.(24)

From this it follows that

d

dx3
u(y3/x3) = −y3

x2
3

du

dr

d

dy3
u(y3/x3) = 1

x3

du

dr
,

d2

dx2
3

u(y3/x3) = y2
3

x4
3

d2u

dr2 + 2y3

x3
3

du

dr

d2

dy2
3

u(y3/x3) = 1

x2
3

d2u

dr2 .

To now compute d2u/dr2, we note that du/dr = −f (r)/g(r) with f ′(r) =
2u2d2 + (2re2 + e1)du/dr and g′(r) = 2re2 + e1 + (r2e′

2 + re′
1 + e′

0)(du/dr)

where e′
i is the derivative of ei with respect to r .

Let v = y∗
3 and q = x3/y3 = 1/r . To compute the derivatives of v we note that

if dj (z) = ∑
i cij z

i , then repeating the previous steps leads to

dv

dq
= − 2qv2d2(v) + vd1(v)

q2e2(v) + qe1(v) + e0(v)
(25)
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and it follows that

d

dx3
v(x3/y3) = 1

y3

dv

dq
,

d

dy3
v(x3/y3) = −x3

y2
3

dv

dq
,

d2

dx2
3

v(x3/y3) = 1

y2
3

d2v

dq2 ,
d2

dy2
3

v(x3/y3) = x2
3

y4
3

d2v

dq2 + 2x3

y3
3

dv

dq
.

To compute d2v/dq2, we note that dv/dq = −f2(q)/g2(q) with f ′
2(q) = 2v2d2 +

(2qe2 + e1) dv/dq and g′
2(q) = 2qe2 + e1 + (q2e′

2 + qe′
1 + e′

0)(dv/dq).

5.3. Itô’s formula for the projection map. Writing Rs = Y3(s)/X3(s) we con-
clude from Itô’s formula that

X∗
3(t) − X∗

3(0)

=
∫ t

0
u′(Rs) · −Y3(s)

X2
3(s)

dX3(s) +
∫ t

0
u′(Rs) · 1

X3(s)
dY3(s)

+ 1

2

∫ t

0

[
u′′(Rs) · Y 2

3 (s)

X4
3(s)

+ u′(Rs) · 2Y3(s)

X3
3(s)

]
X3(s)

(
1 − X3(s)

)
ds

+ 1

2

∫ t

0
u′′(Rs) · 1

X2
3(s)

Y3(s)
(
1 − Y3(s)

)
ds.

The drift terms in the first two integrals cancel leaving us with

∫ t

0
u′(Rs) · −Y3(s)

X2
3(s)

√
X3(s)

(
1 − X3(s)

)
dB1

s

+
∫ t

0
u′(Rs) · 1

X3(s)

√
Y3(s)

(
1 − Y3(s)

)
dB2

s ,

so the variance process

〈X∗
3〉t − 〈X∗

3〉0

=
∫ t

0
u′(Rs)

2 · Y 2
3 (s)

X4
3(s)

X3(s)
(
1 − X3(s)

)
ds

+
∫ t

0
u′(Rs)

2 · 1

X3(s)2 Y3(s)
(
1 − Y3(s)

)
ds.

Let Qs = X3(s)/Y3(s). Combining these with the corresponding formulas for
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Y ∗
3 (t) we see that X∗

3(t) − Y ∗
3 (t) is a diffusion with two times the drift equal to

2b(X3(t), Y3(t))

=
[
u′′(Rt ) · Y 2

3 (t)

X4
3(t)

+ u′(Rt ) · 2Y3(t)

X3
3(t)

]
X3(t)

(
1 − X3(t)

)

+ u′′(Rt ) · 1

X2
3(t)

Y3(t)
(
1 − Y3(t)

) − v′′(Qt) · 1

Y 2
3 (t)

X3(t)
(
1 − X3(t)

)

−
[
v′′(Qt) · X2

3(t)

Y 4
3 (t)

+ v′(Qt) · 2X3(t)

Y 3
3 (t)

]
Y3(t)

(
1 − Y3(t)

)

and variance

a(X3(t), Y3(t))

= u′(Rt )
2 ·

[
Y 2

3 (t)

X4
3(t)

X3(t)
(
1 − X3(t)

) + 1

X3(t)2 Y3(t)
(
1 − Y3(t)

)]

+ v′(Qt)
2 ·

[
1

Y3(t)2 X3(t)
(
1 − X3(t)

) + X2
3(t)

Y 4
3 (t)

Y3(t)
(
1 − Y3(t)

)]
.

5.4. Linearization. In order to show that the diffusion stays close to the curve
of equilibria, we will investigate the linearization of the ODE around these fixed
points. Recall from (6) the equations are

dx3/dt = −x3w + x3 − 3bx3,

dx2/dt = −x2w + x2(y3 + y1) + bx3 − 2bx2,

dx1/dt = −x1w + x1(y3 + y2) + bx3 − 2bx1,

dy3/dt = −y3w + y3 − 3by3,

dy2/dt = −y2w + y2(x3 + x1) + by3 − 2by2,

dy1/dt = −y1w + y1(x3 + x2) + by3 − 2by1

with w = x3 + y3 − x3y3 + x2y1 + x1y2.
We write the coordinates z = (z1, z2, z3, z4, z5, z6) = (x3, y3, x2, x1, y2, y1). If

we have a dynamical system of the form dzi/dt = Fi(z) and we let z = z∗ +
εp where z∗ is a fixed point, then comparing terms of order ε we see that the
linearization at the fixed point is

dpi

dt
= ∑

j

∂Fi

∂zj

(z∗)pj .
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To compute the linearization it is useful to note that ∇w = (1 − y3,1 −
x3, y1, y2, x1, x2) and that at z∗ we have w = α = 1 − 3b

∇F1(z
∗) = −x3∇w,

∇F2(z
∗) = −y3∇w,

∇F3(z
∗) = −x2∇w + (b, x2, y3 + y1 − 1 + b,0,0, x2),

∇F4(z
∗) = −x1∇w + (b, x1,0, y3 + y2 − 1 + b, x1,0),

∇F5(z
∗) = −y2∇w + (y2, b,0, y2, x3 + x1 − 1 + b,0),

∇F6(z
∗) = −y1∇w + (y1, b, y2,0,0, x3 + x2 − 1 + b).

On the curve of equilibria x2 = x1 = x and y2 = y1 = y, so the four-dimensional
space p3 = p4, p5 = p6 is invariant for the linearization, as is the orthogonal
two-dimensional subspace of vectors of the form: (0,0, u,−u, v,−v). Thus our
six-dimensional problem decomposes into a two-dimensional one and a four-
dimensional one. Taking the smaller one first, multiplying the linearization on the
right the linear map in this subspace is

(u, v) → (
u(y3 + y − 2b − w) − vx,−uy + v(x3 + x − 2b − w)

)
.

To simplify we note that in equilibrium y3 + y − 2b − w = −bx3/x and x3 + x −
2b − w = −by3/y so the matrix is(−bx3/x −x

−y −by3/y

)
.

For a 2 × 2 matrix M , trace(M) = λ1 + λ2 and det(M) = λiλ2, so the real
part �(λi) < 0 if and only if trace(M) < 0 and det(M) > 0. Clearly trace(M) =
−bx3/x − by3/y < 0. The sign of det(M) = b2x3y3/xy − xy is not so clear but as
it turns out (for the proof see Appendix).

LEMMA 2. bx3/x > y and by3/y > x so b2x3y3/xy > xy.

Turning to the four-dimensional subspace, we use coordinates (z1, z2, z3, z4) =
(x3, y3, x, y), and the linearization reduces to

F =

⎛
⎜⎜⎝

−x3(1 − y3) −x3(1 − x3) −2x3y −2x3x

−y3(1 − y3) −y3(1 − x3) −2y3y −2y3x

−x(1 − y3) + b −x(1 − x3) + x −2xy − bx3/x −2x2 + x

−y(1 − y3) + y −y(1 − x3) + b −2y2 + y −2xy − by3/y

⎞
⎟⎟⎠ ,

where we have again used y3 + y − 2b − w = −bx3/x and x3 + x − 2b − w =
−by3/y.

To simplify, we will change to a new basis v1, v2, v3, v4. To see how this will
affect the linearization, note that if V is the matrix with ith column vi then a vector
with coordinates q in terms of the new basis, is in the original coordinate system

pj = ∑
k

vj,kqk = V q.
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To return to the q system q = V −1p, so

dq

dt
= V −1F V q.

To cancel the multiples of ∇w that appear in all of the rows while preserving the
symmetry in the problem, we choose

V −1 =

⎛
⎜⎜⎝

1/x3 −1/y3 0 0
1/x3 1/y3 0 0

−x/x3 0 1 0
0 −y/y3 0 1

⎞
⎟⎟⎠ , V =

⎛
⎜⎜⎝

x3/2 x3/2 0 0
−y3/2 y3/2 0 0
x/2 x/2 1 0

−y/2 y/2 0 1

⎞
⎟⎟⎠ .

It is easy to check that V −1V = I . The left multiplication simplifies

V −1F =

⎛
⎜⎜⎝

0 0 0 0
−2(1 − y3) −2(1 − x3) −4y −4x

b x −bx3/x x

y b y −by3/y

⎞
⎟⎟⎠ ,

while the right multiplication make things a little messier,

V −1F V

=
⎛
⎜⎝

0 0 0 0
−x3(1 − y3) + y3(1 − x3) −x3(1 − y3) − y3(1 − x3) − 4xy −4y −4x

−x(y3 + y)/2 x(y3 + y)/2 −bx3/x x

y(x3 + x)/2 y(x3 + x)/2 y −by3/y

⎞
⎟⎠.

This matrix has one zero eigenvector corresponding to the direction along the
curve. To find conditions which guarantee that all of the eigenvalues of the three-
dimensional operator on the perpendicular subspace have negative real parts, we
turn to the Appendix 2 of Murray (1989). Given the characteristic polynomial

P(λ) = λn + a1λ
n−1 + · · · + an = 0

the Routh Hurwitz conditions in terms of the a’s are necessary and sufficient. For
a 3 × 3 matrix M = [mij ] these are

a1 > 0, a3 > 0, a1a2 − a3 > 0,

which in terms of b1 = trace(M), b3 = det(M), and

b2 = m22m33 + m11m33 + m11m22 − m23m32 − m12m21 − m13m31

= (m11m22 − m12m21) + (m22m33 − m23m32) + (m11m33 − m13m31)

are

trace(M) < 0, det(M) < 0, det(M) > trace(M)b2.(26)

Note that for this to be possible we must have b2 > 0.
Before trying to prove these three conditions, we computed them numerically

for the concrete example b = 0.001. In Figure 7 we have plotted the values. Since
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FIG. 7. Picture of the of coefficients determining the behavior of the linearization of the determin-
istic drift at the curve of equilibria in the subfunctionalization model.

the determinant turns out to be small, we have plotted the logarithm of − trace(M),
−det(M) and − trace(M)b2.

The eigenvalues of our 4 × 4 matrix V −1F V are a 0 and the eigenvalues of the
3 × 3 matrix

M =
⎛
⎝−x3(1 − y3) − y3(1 − x3) − 4xy −4y −4x

x(y3 + y)/2 −bx3/x x

y(x3 + x)/2 y −by3/y

⎞
⎠ .(27)

It is clear that trace(M) < 0. The determinant is

det(M) = (−x3(1 − y3) − y3(1 − x3) − 4xy
)[b2x3y3

xy
− xy

]

− 4y

[
x(y3 + y)

2

(
by3

y

)
+ xy(x3 + x)

2

]

− 4x

[
xy(y3 + y)

2
+

(
bx3

x

)
y(x3 + x)

2

]
,

so Lemma 2 implies det(M) < 0.
For the third condition, since m11 < 0 and since Lemma 2 implies that

b2x3y3/xy > xy, we have

b2 = −bx3

x
m11 + 2xy(y3 + y) +

(
b2x3y3

xy
− xy

)
(28)

− by3

y
m11 + 2xy(x3 + x) > 0,

which is necessary for det(M) > b2 trace(M). Once

LEMMA 3. det(M) > b2 trace(M).



40 R. DURRETT AND L. POPOVIC

Lemma 3 is proved (see the Appendix), we will have verified the third condition
in (26) and shown that all the eigenvalues have negative real part.

5.5. Staying near the curve. In order to construct a local Lyapunov function
in a neighborhood of the whole curve of equilibria with exponential convergence
properties we follow closely the arguments of Katzenberger. We present the outline
of the proof and refer the reader to Section 3 of Katzenberger (1991) for more
details.

To begin we consider a linear dynamical system

dx(t)

dt
= Ax(t).(29)

If things are nice, for example, if all eigenvalues are distinct, when we let V be the
matrix with columns equal to the eigenvectors of A, we will have

A = V �V −1,

where V is a diagonal matrix with �ii = λi the eigenvalues of A. Let etA =∑∞
k=0

(tA)k

k! . The solution of (29) can be written

x(t) = etAx(0) = V e�tV −1x(0).

Using a superscript T for transpose, a little linear algebra shows

‖V −1x(t)‖2 = x(0)T (V −1)T e2�tV −1x(0) = ∑
i

e2λi t (V −1x(0))2
i ,

so if all eigenvalues have negative real part ‖V −1x(t)‖ decreases exponentially.
To do this in general for a nonlinear dynamical system

dx(t)

dt
= F(x(t))

consider the linearized system with A = [ ∂Fi

∂zj
(z∗)]i,j along the curve of fixed

points z∗. If all of the eigenvalues of A have negative real part, then there is a δ > 0
so that they all lie in D(δ) = {z ∈ C : |δz + 1| < 1}. B = I + δA has spectral radius
ρ(B) < 1. ρ(B) = infQ∈Gl(d) |Q−1BQ| so there is an invertible matrix V with

‖V −1BV ‖ < 1.

Since A = (B − I )/δ and I and B commute, we have

etA = eBt/δe−t/δ

and a little linear algebra shows that ‖V −1x(t)‖ decreases exponentially at rate
α = 1 − ρ(B).

We now construct a Lyapunov function in the neighborhood of an arbitrary fixed
point x on the curve. Consider first the case that the curve of fixed points in the
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neighborhood W of any fixed point x is of form N ∩ W for some linear sub-
space N . Then N = Ker(A) and P = Ran(A) decompose the whole space, and the
spectral radius of B = I + A restricted to P is ρ(B)|P < 1. There is an invertible
matrix V on P with ‖V −1B|P V ‖ < 1. Extend V to the whole space by setting
V = V �P + �N with projection maps �P , and �N onto P and N , respectively.
Then ‖V −1�P x(t)‖ has an exponential decrease with rate α = 1 − ρ(B)|P .

Let θ(y) = F(y) − Ay, then Dθ(x) = [ ∂θi

∂xj
]i,j ≡ 0, and for ε > 0 there is a

neighborhood W ′ ⊂ W of x such that ‖V −1Dθ(y)V ‖ ≤ ε for all y ∈ W ′, and con-
sequently ‖V −1θ(x)‖ ≤ ε‖V −1�P x‖. Take ε < α, and let τ = inf{t ≥ 0 :x(t) /∈
W ′}. Integration by parts on e−Atx(t) gives

x(t) = eA(t−s)x(s) +
∫ t

s
eA(t−r)θ(x(r)) dr

hence

‖V −1�P x(t)‖ ≤ e−α(t−s)‖V −1�P x(s)‖ +
∫ t

s
e−α(t−r)‖V −1�P θ(x(r))‖dr

≤ e−α(t−s)‖V −1�P x(s)‖ + ε

∫ t

s
e−α(t−r)‖V −1�P x(r)‖dr.

Gronwall’s inequality implies

‖V −1�P x(t)‖ ≤ ‖V −1�P x(0)‖e−(α−ε)t .(30)

Since �NA = 0 and �NeA = �N ,

‖V −1�Nx(t) − V −1�Nx(0)‖
=

∫ t

0
‖V −1�Nθ(x(r)) dr‖

(31)

≤ ε

∫ t

0
‖V −1�Nx(r)‖dr ≤ ε‖V −1�P x(0)‖

∫ t

0
e−(α−ε)r dr

= ε

α − ε
‖V −1�P x(0)‖(

1 − e−(α−ε)t ).
Adding ε/(α − ε) times (30) to (31)

‖V −1�Nx(t)‖+ ε

α − ε
‖V −1�P x(t)‖ ≤ ‖V −1�Nx(0)‖+ ε

α − ε
‖V −1�P x(0)‖.

So, if ρ > 0 is such that W ′′ = {x :‖V −1�Nx‖+ ε
α−ε

‖V −1�P x‖ < ρ} ⊂ W ′, then
for any starting point in W ′′ the exit time τ = ∞. Let

f (x) = ‖V −1�Nx‖
ρ

, g(x) = ε

α − ε

‖V −1�P x‖
ρ

,

v(x) = g(x) +
√

f 2(x) + g2(x), u(x) = (
1 − v(x)

)3
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and W ′′′ = {x ∈ W ′′ :u(x) > 0}. On W ′′′ let φ(x) = g2(x)/u(x). Then,

v(x(t)) ≤ v(x(0)), φ(x(t)) ≤ e−2(α−ε)tφ(x(0)), ∇φ · F ≤ −2(α − ε)φ.

Note that φ satisfies φ ≥ 0 φ(x) = 0 if x is a fixed point, and the reason for using
the function u(x) in the construction is that φ(x) = ∞ for x outside W ′′′.

In general let N be the tangent space of the curve of fixed points at x. Then
N = Ker(A) and P = Ran(A) decompose the full space and there is a smooth
coordinate function η that will map any x ∈ N to η(x) ∈ P in such a way that
x + η(x) is a fixed point. Using this coordinate transformation we can construct a
Lyapunov function φ in a neighborhood of x in the analogous fashion to the one
above.

We can now patch these local Lyapunov functions together over the whole curve
of equilibria. If φ1 is a Lyapunov function constructed for the neighborhood W1
and φ2 for W2, define a function on W = W1 ∪W2 by φ(x) = 0 if x is a fixed point
and φ(x) = 1/(φ1(x) + φ2(x)) for any other point of W . It is easy to verify φ has
the same properties as the functions φi .

Given a local exponential Lyapunov function φ the proof that the diffusion
Z(t) = (X3(t), Y3(t),X2(t),X1(t), Y2(t), Y1(t)) converges weakly to the curve
of equilibria and the proof that the limiting process is characterized by an SDE
derived for �(Zt) follow by the same arguments as those described in Sec-
tions 3.3. and 3.4.

APPENDIX

PROOF OF LEMMA 2. In equilibrium w = α = 1 − 3b, so by (13)

0 < bx3/x = 1 − b − y3 − y, 0 < by3/y = 1 − b − x3 − x.

Thus if can show y3 + y2 + y1 < 1 − b (and hence by symmetry x3 + x2 + x1 <

1 − b) the desired result will follow. To do this we note that w = α = 1 − 3b so

dy0

dt
= by3 + 2by2 + 2by1 + x3y0 − y0(1 − 3b).

Thus in equilibrium b(1 − y0) + b(y1 + y2) = y0(1 − 3b − x3) and it follows that
y0 ≥ b/(1 − 2b − x3) > b. �

PROOF OF LEMMA 3. To check the condition det(M) > b2 trace(M) we re-
arrange the formula (28) for the determinant of M = [mij ] (27)

det(M) = m11

[
b2x3y3

xy
− xy

]
− by3

y
2xy(y3 + y) − bx3

x
2xy(x3 + x)

− y · 2xy(x3 + x) − x · 2xy(y3 + y).

The trace of M , consists of three negative terms mii , while b2 consists of five
positive terms which we will refer to as b2j where j is the order in (28). To prove
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the desired inequality it is enough to find terms smaller (i.e., more negative) than
the five parts of det(M), d1, . . . , d5, within the fifteen products in b2 trace(M). The
first three are easy: d1 = m11b23, d2 = m33b22, d3 = m22b25. For the final two we
will use the next lemma.

LEMMA A.1. If b ≤ 0.01 then in an equilibrium we have y3(1 − x3) ≥ x ≥ y

whenever x3 ≥ y3.

Using the result of Lemma A.1 we see that when x3 ≥ y3, m11(b22 + b25) <

−y3(1−x3)(b22 +b25) ≤ d4 +d5. Symmetry implies that when x3 ≤ y3, m11(b22 +
b25) < −x3(1 − y3)(b22 + b25) ≤ d4 + d5 as well. �

PROOF OF LEMMA A.1. We want to show that if b ≤ 0.01 then in equilibrium,

y3(1 − x3) ≥ x ≥ y,(32)

whenever x3 ≤ y3. Recall that if β = 1 − b and α = 1 − 3b, the fixed points satisfy
three equations

x3 + y3 − x3y3 + 2xy = α,(33)

x(y3 − β) + xy + bx3 = 0,(34)

y(x3 − β) + xy + by3 = 0.(35)

For the second inequality we note that taking the difference (34) minus (35):

x(y3 − β) − y(x3 − β) = b(y3 − x3).

Since x3 ≤ y3 < β = 1−b (recall that in the proof of Lemma 2 we showed y0 > b)
it follows that

y =
(

β − y3

β − x3

)
x − b(y3 − x3)

β − x3
≤ x.

To prove the first inequality in (32) we will show that y3(1 − x3) − x is a de-
creasing function h(x3) plus an error of O(b), and the value of h at the point
where x3 = y3 is positive and O(

√
b). Our equation (23) for y3 in terms of x3 has

the form

y3 = −d1 +
√

d2
1 − 4d0d2

2d2
,

where dj = ∑
i cij x

i
3, and in matrix form

ci,j =
⎛
⎝−1 + 4b − 5b2 + b3 2 − 4b + 2b2 −1

2 − 4b + 2b2 −4 + 4b + 2b2 2
−1 2 −1

⎞
⎠
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with the rows and columns in the order 0,1,2.

d2 = (−1 + 2x3 − x2
3) = −(1 − x3)

2,

d1 = (2 − 4x3 + 2x2
3) + b(−4 + 4x3) + 2b2(1 + x3)

= 2(1 − x3)
2 − 4b(1 − x3) + 2b2(1 + x3),

d0 = (−1 + 2x3 − x2
3) + b(4 − 4x3) − b2(5 − 2x3) + b3

= −(1 − x3)
2 + 4b(1 − x3) − b2(5 − 2x3) + b3.

If b = 0 then d0 + d2 = −d1 so

(1 − y3)(d0 − d2y3) = d0 + d1y3 + d2y
2
3

and y3 = 1. One can also see this from

d2
1 − 4d0d2 = d2

1 + 4(d1 + d2)d2 = (d1 + 2d2)
2 = 0.

Using the definitions of the di , we have

d2
1 = 4(1 − x3)

4 − 16b(1 − x3)
3 + 16b2(1 − x3)

2 + 8b2(1 − x3)
2(1 + x3)

− 16b3(1 − x3)(1 + x3) + 4b4(1 + x3)
2,

−4d2d0 = −4(1 − x3)
4 + 16b(1 − x3)

3 − 4b2(1 − x3)
2(5 − 2x3) + 4b3(1 − x3)

2.

Adding the last two equations gives

d2
1 − 4d0d2 = 16b2(1 − x3)

2 + 8b2(1 − x3)
2(1 + x3) − 4b2(1 − x3)

2(5 − 2x3)

− 16b3(1 − x3)(1 + x3) + 4b3(1 − x3)(1 − x3) + 4b4(1 + x3)
2

= 4b2(1 − x3)
2[1 + 4x3] − 4b3(1 − x3)[3 + 5x3] + 4b4(1 + x3)

2

= 4b2(1 − x3)
2[1 + 4x3] · M,

where the mess

M = 1 − b

(1 − x3)
· 3 + 5x3

(1 + 4x3)
+ b2

(1 − x3)2 · (1 + x3)
2

(1 + 4x3)
.

Using 2d2y3 = −d1 +
√

d2
1 − 4d0d2, we see that

−2(1 − x3)
2y3 = −2(1 − x3)

2 + 4b(1 − x3) − 2b2(1 + x3)

+ 2b(1 − x3)
√

1 + 4x3M
1/2

and we have

y3 = 1 − b

1 − x3

(
2 + √

1 + 4x3
)

+ b2

(1 − x3)2

(
1 + x3 − (1 − x3)

√
1 + 4x3

M1/2 − 1

b

)

≡ 1 − q(x3)b + r(x3, b)b2.
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Note that q(x3) → 3 as x3 → 0, which is consistent with our earlier calculation
that y3 → 1 − 3b and we have q(x3) ≥ 3 for x3 ∈ [0,1].

To find x using (21), we first compute

� = y3 + x3(1 − y3) − (1 − 3b)

= −qb + rb2 + x3(qb − rb2) + 3b

= b
(
3 − q(1 − x3)

) + rb2(1 − x3)

and then

x = � − 2bx3

2(y3 − β)
= b(3 − q(1 − x3)) + rb2(1 − x3) − 2bx3

2[1 − qb + rb2 − (1 − b)] .

Multiplying top and bottom by −1/b

x = q(1 − x3) + (2x3 − 3) + br(1 − x3)

2(q − 1) − 2rb
.(36)

To check the condition y3(1 − x3) > x now we note that ignoring terms of
order b:

y3(1 − x3) − x = 1 − x3 − q(1 − x3) + (2x3 − 3)

2(q − 1)

= 1 − x3 − 2 + √
1 + 4x3 + 2x3 − 3

2(1 + x3 + √
1 + 4x3)

· (1 − x3)

= (1 − x3)
3 + √

1 + 4x3

2(1 + x3 + √
1 + 4x3)

≡ h(x3).

It is not immediately obvious that h is decreasing but writing h = (1 − x3)f/(2g),
where f,g ≥ 0 on [0,1] we have

dh

dx3
= − f

2g
+ (1 − x3)

2
· (4/2)(1 + 4x3)

−1/2g − (1 + (4/2)(1 + 4x3)
−1/2)f

g2 .

The numerator of the final fraction is

2(1 + 4x3)
−1/2[

1 + x3 + √
1 + 4x3

] − [1 + 2(1 + 4x3)
−1/2](3 + √

1 + 4x3
)

= (2 + 2x3 − 6)(1 + 4x3)
−1/2 + 2 − 2 − 3 − √

1 + 4x3 < 0,

so dh/dx3 < 0. To complete the proof now, we will first approximately evaluate
h(x3) at the point where x3 = y3, and then investigate the errors in our approxima-
tions.

Solution when x3 = y3. We proceed by guessing and then verifying our answer.
From the previous calculation y3 = 1 − Qb/(1 − x3), where Q ≈ 2 + √

5. If x3 =
1 − u

√
b = y3, then

u = 2 + √
5

u
and hence u =

√
2 + √

5.
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From (36), since q is large, x3 ≈ 1, and q = u/
√

b

x ≈ q(1 − x3) − 1

2q
≈ 2 + √

5 − 1

2u/
√

b
,

so we have x = y = v
√

b with v = 1+√
5

2
√

2+√
5
.

To derive this from the equations for the equilibria, we note that when x3 = y3

and x = y, (33) implies:

1 − (1 − x3)
2 + 2x2 = 1 − 3b,

−u2b + 2v2b = −3b

or u2 − 2v2 = 3. Using (34) and dropping terms of order b3/2

x
(
x3 − (1 − b)

) + x2 + bx3 = 0,

−vub + v2b + b = 0.

The solution to the quadratic v2 − uv + 1 = 0 is

v = u ± √
u2 − 4

2
.

Taking u =
√

2 + √
5 and choosing the minus root gives

v =
√

2 + √
5 −

√√
5 − 2

2

= 2 + √
5 −

√
(
√

5 − 2)(2 + √
5)

2
√

2 + √
5

= 1 + √
5

2
√

2 + √
5
.

For the other equation we note that

u2 − 2v2 = 2 + √
5 − 2

6 + 2
√

5

4(2 + √
5)

= 9 + 4
√

5 − 3 − √
5

2 + √
5

= 3.

At x3 = y3 we have

y3(1 − x3) − x ≈ u
√

b − u2 − 1

2u

√
b = u2 + 1

2u

√
b > 0.

Error analysis. To evaluate the error, we write q = Q/(1 − x3) and r =
R/(1 − x3)

2. Taking the difference between the exact expression in (36) and the
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approximation obtained by setting b = 0 gives

= q(1 − x3) + (2x3 − 3) + br(1 − x3)

2(q − 1) − 2rb
= q(1 − x3) + (2x3 − 3)

2(q − 1)

= br[−(1 − x3)2(q − 1) + q(1 − x3) + (2x3 − 3)]
4(q − 1 − rb)(q − 1)

= bR[−Q − 1]
4(Q − 1 − Rb/(1 − x3))(Q − 1)

.

We have Q + 1 ≤ 3 + √
5. To bound R we begin by noting that if b ≤ 0.01 and

1 − x3 ≥ b1/2 then

1 ≥ M ≥ 1 − 3b/(1 − x3) and hence 0 ≤ (1 − x3)
1 − M1/2

b
≤ 3,

which implies 0 ≤ R ≤ 2 + 3
√

5 = 8.7082. Since R
√

b ≤ 1 it follows that when
1 − x3 ≥ b1/2 the absolute value of the error is

≤ b
(2 + 3

√
5)(3 + √

5)

8
= 19 + 7

√
5

8
= 4.331b.

To see if this is small enough, we note that u =
√

2 + √
5 = 2.05817 so (u2 −

1)/2u = 1.27202, and we do have 1.272
√

b > 3.906b when b < 0.01. The last
detail to check is that when x3 = b1/2 and b ≤ 0.01

y3 ≤ 1 − 3b1/2 + 8.7082b < 1 − 2b1/2,

so the assumption 1 − x3 ≥ b1/2 we used to bound M is valid. �
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