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Abstract

We obtain large deviation results for a two time-scale model of jump-diffusion processes. The processes
on the two time scales are fully inter-dependent, the slow process has small perturbative noise and the fast
process is ergodic. Our results extend previous large deviation results for diffusions. We provide concrete
examples in their applications to finance and biology, with an explicit calculation of the large deviation rate
function.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

For a number of processes in finance and biology the appropriate stochastic modeling is done
in terms of multi-scale Markov processes with fully dependent slow and fast fluctuating variables.
The most common examples of such multi-scale processes (random evolutions, diffusions, state
dependent Markov chains) are all particular cases of jump-diffusions. The law of large numbers
limit, central limit theorem, and the corresponding large deviations behavior of these models are
all of interest in applications.
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One case of their use in finance is in multi-factor stochastic volatility models, which are used
to capture the smiles and skews of implied volatility. The separation of time scales is helpful
for calibration, since it allows one to reduce the number of group parameters. The rate function
from the large deviation principle for the stock price process can be used to obtain the price of
short maturity options, as well as the limit of the at-the-money implied volatility. These have
been explicitly calculated for models in which the logarithm of the stock price and the stochastic
volatility are driven by diffusions [18,17]. However, much of the empirical evidence [6,26] sug-
gests that mean-reverting jump-diffusions would be a more appropriate model for the problem.

In biology one case of their use is in models of intracellular biochemical reactions. Due to
low copy numbers of various key molecular types and varying strengths in chemical bonds,
normalized copy numbers of different types of molecules are processes on multiple time-scales
(see [2,24] for references to the biology literature). Changes in molecular compositions are
modeled by state-dependent Markov chains, and on the slower time scale are well approximated
by diffusions with small noise or piecewise deterministic Markov chains [25]. The rate function
from the large deviation principle for slowly fluctuating molecular species is used to calculate
the propensity for switching in a network that has multiple stable equilibria. Since intracellular
processes are also subject to other sources of ‘extrinsic’ noise, multiple time-scale diffusions
may include jumps from additional sources. For example, there can be errors during cell division
[22,21]; a stochastic model combining both reactions and cell division was analyzed in [27].

Large deviation results for multi-scale diffusions have been studied by Freidlin (see [20]
Chapter 7), Veretennikov [30], Dupuis et al. [14], and Puhalskii [28]. For the multi-scale Markov
chains where the slow process is a piecewise deterministic Markov processes and the fast process
is a Markov chain on a finite state space explicit results were obtained by Faggionato et al.
[16,15]. For jump-diffusions there are very few large deviation results. On a single time scale,
there are results by Imkeller et al. [23] for first exit times for SDEs driven by symmetric stable
and exponentially light-tail symmetric Lévy processes. An approach based on control theory and
the variational representation was developed by Budhiraja et al. in [7] and extended to infinite
dimensional versions [8] (that is, SPDEs rather than SDEs driven by a Poisson random measure).
It is not easy to see how to use these results in a multi-scale model of jump-diffusions. A special
case of a multi-scale process where the slow process is a diffusion and the fast process is a mean-
reverting process driven by a Levy process was studied by Bardi et al. [4], and the authors use
PDE methods to prove asymptotics of an optimal control problem.

A general method for Markov processes based on non-linear semigroups and viscosity
methods was developed by Feng and Kurtz in [19]. However, verifying the abstract conditions
needed to apply this method to multi-scale jump-diffusions is a non-trivial task. In this paper we
give a proof of large deviations for two time-scale jump-diffusions, using a technique developed
by Feng et al. in [18]. The advantage of this method is that it is constructive and, with some
effort, can be tailored to different multi-scale processes. Our proof follows the steps of [18],
extending it to processes with jumps and full dependence of the slow and fast components. It is
based on viscosity solutions to the Cauchy problem for a sequence of partial integro-differential
equations and uses a construction of the sub- and super-solutions to related Cauchy problems as
in [18]. Our results hold for slow and fast jump-diffusions which are fully inter-dependent, and
where the fast processes are ergodic but not necessarily symmetric. In case the evolution of both
processes is spatially homogeneous in the slow variables, we can also provide a more explicit
(than a solution to a variational problem) formula for the rate function.
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2. Two time-scale jump-diffusion

Consider the following system of stochastic differential equations:

d Xϵ,t = b(Xϵ,t−, Yϵ,t−)dt + ϵb0(Xϵ,t−, Yϵ,t−)dt +
√
ϵσ (Xϵ,t−, Yϵ,t−)dW (1)

t

+ ϵ


k(Xϵ,t−, Yϵ,t−, z)Ñ

1
ϵ
.(1)(dz, dt), (1a)

dYϵ,t =
1
ϵ

b1(Xϵ,t−, Yϵ,t−)dt +
1

√
ϵ
σ1(Xϵ,t−, Yϵ,t−)


ρdW (1)

t +


1 − ρ2dW (2)

t


+


k1(Xϵ,t−, Yϵ,t−, z)Ñ

1
ϵ
.(2)(dz, dt), (1b)

Xϵ,0 = x0, Yϵ,0 = y0,

where N
1
ϵ
.(1)(·, ·), N

1
ϵ
.(2)(·, ·) are independent Poisson random measures with intensity measures

ν1(dz) ×
1
ϵ
dt, ν2(dz) ×

1
ϵ
dt ; the Lévy measures ν1 and ν2 satisfy


R(1 ∧ z2)ν2(dz) < ∞ and

R(1 ∧ z2)ν2(dz) < ∞; the centered versions are defined as

Ñ
1
ϵ
.(1)(·, ·) = N

1
ϵ
.(1)(·, ·)− ν1(dz)×

1
ϵ

dt,

Ñ
1
ϵ
.(2)(·, ·) = N

1
ϵ
.(2)(·, ·)− ν2(dz)×

1
ϵ

dt

and W (1),W (2) are independent Brownian motions independent of N
1
ϵ
.(1)(·, ·), N

1
ϵ
.(2)(·, ·).

To ensure existence and uniqueness of solutions to the system (1) we assume

Assumption 2.1 (Lipschitz Condition). There exists K1 > 0 such that ∀(x1, y1), (x2, y2) ∈ R2

|b(x2, y2)− b(x1, y1)|
2
+ |b0(x2, y2)− b0(x1, y1)|

2
+ |b1(x2, y2)− b1(x1, y1)|

2

+ |σ(x2, y2)− σ(x1, y1)|
2
+ |σ1(x2, y2)− σ1(x1, y1)|

2

+


|k(x2, y2, z)− k(x1, y1, z)|2ν1(z)dz

+


|k1(x2, y2, z)− k1(x1, y1, z)|2ν2(z)dz

≤ K1(|x2 − x1|
2
+ |y2 − y1|

2). (2)

Assumption 2.2 (Growth Condition). There exists K2 > 0 such that ∀(x, y) ∈ R2

|b(x, y)|2 + |b0(x, y)|2 + |b1(x, y)|2 + |σ(x, y)|2 + |σ1(x, y)|2

+


|k1(x, y, z)|2ν2(z)dz +


|k(x, y, z)|2ν1(z)dz ≤ K2(1 + x2

+ y2). (3)

Define

V (y; x, p) := b(x, y)p +
1
2
σ 2(x, y)p2

+

 
epk(x,y,z)

− 1 − pk(x, y, z)

ν1(z)dz. (4)



4 R. Kumar, L. Popovic / Stochastic Processes and their Applications ( ) –

For each x and p in R there exists Kx,p > −∞ such that

V (y; x, p) ≥ Kx,p ∀y ∈ R. (5)

If existence and uniqueness of solutions to (1a) + (1b) can be established by other means, we
will only assume the growth condition i.e. Assumption 2.2, that the coefficients are continuous,
and the lower bound (5) on V .

The infinitesimal generator of (Xϵ, Yϵ) is for f ∈ C2
b(R × R) defined by

Lϵ f (x, y) = b(x, y)∂x f (x, y)+ ρσ(x, y)σ1(x, y)∂2
xy f (x, y)

+ ϵb0(x, y)∂x f (x, y)+
ϵ

2
σ 2(x, y)∂2

xx f (x, y)

+
1
ϵ


( f (x + ϵk(x, y, z), y)− f (x, y)− ϵk(x, y, z)∂x f (x, y)) ν1(z)dz

+
1
ϵ


b1(x, y)∂y f (x, y)+

1
2
σ 2

1 (x, y)∂2
yy f (x, y)

+

 
f (x, y + k1(x, y, z))− f (x, y)− k1(x, y, z)∂y f (x, y)


ν2(z)dz


. (6)

Fix x ∈ R and let Y x denote the process satisfying the SDE

dYt = b1(x, Yt−)dt + σ1(x, Yt−)


ρdW (1)

t +


1 − ρ2dW (2)

t


+


k1(x, Yt−, z)Ñ (2)(dz, dt), Y x

0 = y0. (7)

This is the SDE (1b) where ϵ is set equal to 1 and Xϵ,t is set equal to x . Let Lx
1 denote the

generator of Y x , then, for f ∈ C2
b(R),

Lx
1 f (y) := b1(x, y)∂y f (y)+

1
2
σ 2

1 (x, y)∂2
yy f (y)

+

 
f (y + k1(x, y, z))− f (y)− k1(x, y, z)∂y f (x, y)


ν2(z)dz. (8)

For fixed p ∈ R define the perturbed Lx,p
1 generator for f ∈ C2

b(R
2) by

Lx,p
1 f (y) := [ρσ(x, y)σ1(x, y)p + b1(x, y)] ∂y f (y)+

1
2
σ 2

1 (x, y)∂2
yy f (y)

+

 
f (y + k1(x, y, z))− f (y)− k1(x, y, z)∂y f (x, y)


ν2(z)dz, (9)

and let Y x,p be the process corresponding to the generator Lx,p
1 . For each x, p ∈ R we assume

the following about Y x,p.

Assumption 2.3 (Ergodicity Condition). The process Y x,p is Feller continuous with transition
probability px,p

t (y0, dy), which at t = 1 has a positive density px,p
1 (y0, y) with respect to some

reference measure α(dy).

Assumption 2.4 (Lyapunov Condition). There exists a positive function ζ(·) ∈ C2(R), such that
ζ has compact finite level sets, and for each compact set Γ ⊂ R, θ ∈ (0, 1] and l ∈ R, there
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exists a compact set Al,θ,Γ ⊂ R such that

{y ∈ R : −θe−ζ Lx,p
1 eζ (y)− (|V (y; x, p)| + |b0(x, y)p| + σ 2(x, y)) ≤ l} ⊂ Al,θ,Γ ,

∀p ∈ Γ , ∀x ∈ R. (10)

Remark 2.1. In the case where the domain of Y is compact, we can define ζ ≡ 0 which will
satisfy Assumption 2.4.

Remark 2.2. Some arguments are simpler in the special case Y x,p in addition has a unique
invariant probability measure π p(x, ·) with respect to which px,p

t (y0, y) is symmetric and
π p(x, ·) is reversible, that is

y∈R
Lx,p

1 f (y)π p(x, y)dy = 0, ∀ f ∈ C∞
c (R)

and 
f (y)Lx,p

1 g(y)π p(x, y)dy =


g(y)Lx,p

1 f (y)π p(x, y)dy, ∀ f, g ∈ C2(R).

2.1. Examples

We give some examples of Y that satisfy Assumption 2.3 as well as a multiplicative ergodicity
condition of the form

e−ζ̃ Lx,p
1 eζ̃ (y) ≤ −ζ̃ (y)+ d

for ζ̃ with compact level sets and some constant d > 0. One needs to know the coefficients of
the process X to know whether these examples also satisfy Assumption 2.4. Define Ṽ p(x, y) :=

V (y; x, p) + |b0(x, y)| + σ 2(x, y). If Ṽ p(·, ·) is a bounded function for bounded p, then the
multiplicative ergodicity condition is sufficient for Assumption 2.4 to hold. If Ṽ p(x, y) is an
unbounded function but has compact level sets, and if the Ṽ -multiplicative ergodicity condition
of the form

e−ζ Lx,p
1 eζ (y) ≤ −cṼ p(x, y)+ d, or some c > 1, d > 0

is met for ζ with compact finite level sets, then it may be possible to use this condition in place
of Assumption 2.4 and obtain all the same results (see Example 4.1 and Remark 4.1).

Example 2.1. Let ρ = 0, b1(x, y) = −b1(x)y, σ1(x, y) = σ1(x) and k1(x, y, z) =
σ1(x)√
b1(x)

z − y,

where b1(x), σ1(x) > 0 are continuous. Let ν2(z) = exp{−z2
}. Since the intensity measure ν1

is a bounded measure, we use N (2) instead of the compensated Poisson process Ñ (2). For each
x ∈ R, the solution to

dY x
t = −b1(x)Y

x
t dt + σ1(x)dW (2)

t +


R−{0}


σ1(x)

√
b1(x)

z − Y x
t


N (2)(dz, dt)

has unique invariant probability distribution π(x, dy) =


b1(x)
πσ 2

1 (x)
exp{−

b1(x)y2

σ 2
1 (x)

}dy and Y x is

symmetric with respect to it. Geometric ergodicity is satisfied by ζ̃ (y) :=
b1(x)

2σ 2
1 (x)

y2.
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Example 2.2. Take ρ = 0 and let α ∈ (1, 2). Let Z t be a 1-dimensional symmetric Levy process
whose Levy measure is ν2(z)dz = |z|−(1+α)1|z|>1dz. Its infinitesimal generator is the truncated

fractional Laplacian −(−∆)α/2>1 defined as

−(−∆)α/2>1 f (y) =


|z|>1

( f (y + z)− f (y))
1

|z|1+α
dz, for f ∈ C2

c (R).

Let σ1(x, y) := a(x)σ1(y) where a(·), σ1(·) > 0 are such that a(·) is continuous and σ1(·) is
locally 1/α-Hölder continuous and lim inf|y|→∞

σ1(y)
|y|

> 0. Let

dY x
t = σ1(x, Y x

t−)d Z t .

Then from Theorem 1.7(i) in [9], π(x, dy) :=
σ1(y)−αdy
σ1(y)−αdy

is the unique invariant probability

measure for the Y x process and Y x is π(x, ·)-reversible. From Lemma 3.2 in [9], we get
ζ̃ (y) := ln(1 + |y|

θ ) for θ ∈ (0, 1) satisfies the geometric ergodicity condition. The special
case of this example with σ1 ≡ 1 is also considered in [4].

Example 2.3. Let c(z, z′) be a non-symmetric function such that 0 < c0 ≤ c(z, z′) ≤ c1,
c(z, z′) = c(z,−z′) and |c(z, z′′)− c(z′, z′′)| ≤ c2|z − z′

|
β for some β ∈ (0, 1). Let α ∈ (0, 2),

and Z t be a 1-dimensional non-symmetric process whose infinitesimal generator is defined by

Lα
c f (y) = lim

δ→0


|z|>δ

( f (y + z)− f (y))
c(y, y + z)

|z|1+α
dz, for f ∈ C2

c (R).

Let

dYt = −Yt dt + d Z t .

Heat kernel estimates from [10] imply this non-symmetric jump diffusion is Feller continuous
with a positive transition density pt (y0, y),∀t > 0.

Example 2.4. Let Y x be a birth–death Markov chain with birth rate r+(y) = λ(x) and death rate
r−(y) = µ(x)y, satisfying λ(x), µ(x) > 0. Since its state space is countable its transition density
is positive, with a unique reversible invariant distribution π(x, y) = e−λ(x)/µ(x) (λ(x)/µ(x))y

y!
,

y ∈ {0, 1, . . .}.

3. Large deviation principle

We prove a large deviation principle for {Xϵ,t }ϵ>0 as ϵ → 0 using the viscosity solution
approach to verify convergence of a sequence of exponential generators. Define

uh
ϵ (t, x, y) := ϵ ln E


e

h(Xϵ,t )
ϵ |Xϵ,0 = x, Yϵ,0 = y


, (11)

where h ∈ Cb(R), the space of bounded uniformly continuous functions on R. It can be shown
(see [19]) that for each h ∈ Cb(R), uh

ϵ is a viscosity solution of the Cauchy problem:

∂t u = Hϵu in (0, T ] × R × R,
u(0, x, y) = h(x), for (x, y) ∈ R × R, (12)
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where the non-linear operator is the exponential generator:

Hϵu(x, y) := ϵe−u/ϵLϵe
u/ϵ

= b(x, y)∂x u(x, y)+ ρσ(x, y)σ1(x, y)∂2
xyu(x, y)+

1
2
σ 2(x, y)(∂x u(x, y))2

+ ϵ


b0(x, y)∂x u(x, y)+

1
2
σ 2(x, y)∂2

xx u(x, y)


+

 
e

u(x+ϵk(x,y,z),y)−u(x,y)
ϵ − 1 − k(x, y, z)∂x u(x, y)


ν1(z)dz

+
1
ϵ


ρσ(x, y)σ1(x, y)∂x u(x, y)∂yu(x, y)+ b1(x, y)∂yu(x, y)

+
1
2
σ 2

1 (x, y)∂2
yyu(x, y)


+

 
e

u(x,y+k1(x,y,z))−u(x,y)
ϵ − 1 −

k1(x, y, z)

ϵ
∂yu(x, y)


ν2(z)dz

+
1

2ϵ2 σ
2
1 (x, y)(∂yu(x, y))2. (13)

In systems with averaging under the law of large number scaling we can identify the limiting
non-linear operator H0 as the solution to an eigenvalue problem for the driving process Y x

obtained from Yϵ with Xϵ = x and ϵ = 1.

We first identify u0, the limit of uϵ as ϵ → 0, using heuristic arguments. Assume

uϵ(t, x, y) = u0(t, x)+ ϵu1(t, x, y)+ ϵ2u2(t, x, y)+ · · · . (14)

Using the ϵ expansion of uϵ , (14), in Eq. (12), and collecting terms of O(1), we get

∂t u0(t, x) = b(x, y)∂x u0(t, x)+
1
2
σ 2(x, y)(∂x u0(t, x))2

+

 
e∂x u0(t,x)k(x,y,z) − 1 − k(x, y, z)∂x u0(t, x)


ν1(z)dz

+ ρσ(x, y)σ1(x, y)∂x u0(t, x)∂yu1(t, x, y)+ b1(x, y)∂yu1(t, x, y)

+
1
2
σ 2

1 (x, y)∂2
yyu1(t, x, y)

+

 
eu1(t,x,y+k1(x,y,z))−u1(t,x,y) − 1 − k1(x, y, z)∂yu1(t, x, y)


ν2(z)dz

+
1
2
σ 2

1 (x, y)(∂yu1(t, x, y))2. (15)

Please note that as this is merely a formal derivation, we have ignored some technical details
(such as justifying interchanging the limit and integral to get the second line in the above
equation). The rigorous proof that follows shows that this formal derivation is indeed correct.
Denote ∂x u0(t, x) by p and ∂t u0(t, x) by λ. Fix t, x and hence p and λ. Using the perturbed L1
generator (9), Eq. (15) can be written as an eigenvalue problem:

Lx,p
1 + V (y; x, p)


eu1 = λeu1 , (16)
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where V is as defined in (4). Note that the eigenvalue λ depends on x and p, and that if we write
H0(x, p) := λ then u0 satisfies

∂t u0(t, x) = H0(x, ∂x u0(t, x)).

In the rigorous proof that follows, we identify the limiting operator H0 to be as defined in (18)
which is shown in [12] to be the principal eigenvalue λ in (16). By the expansion (14), it is clear
that u0(0, x) = h(x).

The approach of [19] for obtaining the large deviation principle is to prove convergence
of nonlinear semigroups associated with the nonlinear operators Hϵ . In [19] the first step is
identifying the limit operator H0. Existence and uniqueness of the limiting semigroup is obtained
by verifying the ‘range condition’ for the limit operator. This amounts to showing existence
of solutions to the equation (I − αH0) f = h for small enough α > 0 and sufficiently
large class of functions h. Since the range condition is difficult to verify, a viscosity method
approach is adopted and the range condition is replaced with a comparison principle condition for
(I −αH0) f = h. In the viscosity method, existence of the limiting semigroup is by construction,
while uniqueness is obtained via the comparison principle.

The approach in this paper uses convergence of viscosity solutions to the Cauchy problem
for PIDEs (12), and to show existence and uniqueness of the limit one then needs to verify the
comparison principle for the Cauchy problem ∂t u0(t, x) = H0(x, ∂x u0(t, x)), with u0(0, x) =

h(x).
In the proof of the comparison principle we will also use a Donsker–Varadhan variational

representation [12] for H0 as follows. Let P(R) denote the space of probability measures on R.
Define the rate function J (·; x, p) : P(R) → R ∪ {+∞} by

J (µ; x, p) := − inf
g∈D++(Lx,p

1 )


R

Lx,p
1 g

g
dµ, (17)

where D++(Lx,p
1 ) ⊂ Cb(R) denotes the domain of Lx,p

1 with functions that are strictly bounded
below by a positive constant. Then [12] implies that the principal eigenvalue H0(x, p) = λ in
(16) is also given by

H0(x, p) = sup
µ∈P(R)


V (y; x, p)dµ(y)− J (µ; x, p)


, (18)

where V (y; x, p) = b(x, y)p +
1
2σ

2(x, y)p2
+
 

epk(x,y,z)
− 1


ν1(z)dz.

Remark 3.1. In the special case Y x,p also has a reversible invariant measure π p(x, ·), we can
use the Dirichlet form representation for J . Define the Dirichlet form associated with Y x,p by

E x,p( f, g) := −


f (y)Lx,p

1 g(y)dπ p(x, dy).

Then, Theorem 7.44 in Stroock [29] implies that

J (µ; x, p) =

E x,p


dµ

dπ p(x, ·)
,


dµ

dπ p(x, ·)


if µ(·) ≪ π p(x, ·)

+∞ if µ(·) ≪̸ π p(x, ·).

(19)
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The variational formula (18) then reduces to the classical Rayleigh–Ritz formula

H0(x, p) = sup
f ∈L2(π p),| f |2=1


V (y; x, p) f 2(y)dπ p(x, y)dy + ⟨Lx,p

1 f, f ⟩


. (20)

To sum up, we will prove that:

Lemma 1. Let H0 be as defined in (18), and suppose the comparison principle holds for the
nonlinear Cauchy problem:

∂t u0(t, x) = H0(x, ∂x u0(t, x)), for (t, x) ∈ (0, T ] × R;

u0(0, x) = h(x).
(21)

Under Assumptions 2.1–2.4, the sequence of functions {uh
ϵ }ϵ>0 defined in (11) converges

uniformly over compact subsets of [0, T ] × R × R as ϵ → 0 to the unique continuous viscosity
solution uh

0 of (21).

Lemma 2. The sequence of processes {Xϵ,t }ϵ>0 is exponentially tight.

Theorem 3. Let Xϵ,0 = x0, and suppose all the assumptions from Lemma 1 hold. Then,
{Xϵ,t }ϵ>0 satisfies a large deviation principle with speed 1/ϵ and good rate function

I (x, x0, t) = sup
h∈Cb(R)

{h(x)− uh
0(t, x0)}. (22)

Proof. By Bryc’s theorem (Theorem 4.4.2 in [11]), Lemmas 1 and 2 give us a large deviation
principle for {Xϵ,t }ϵ>0 as ϵ → 0 with speed 1/ϵ and good rate function I given by (22). �

One of the key conditions for Lemma 1 requires one to check that the comparison principle
holds for H0. This condition cannot be established using only the general Assumptions 2.1–
2.4, and needs to be verified on a case by case basis. However, standard theory of comparison
principles for viscosity solutions (Theorem 3.7 and Remark 3.8 in Chapter II of [3]) implies that it
does hold for (21) as soon as H̄0 is uniformly continuous in x, p on compact sets (see Lemma 10
of the Appendix). In some cases H̄0 can be explicitly calculated (see Example 4.2) and continuity
directly verified. In other cases one may need to resort to proving that the expression as on the
right-hand side of (A.37) is non-positive, using the specifics for the case at hand.

Corollary 4. Any of the following separate sets of conditions are sufficient for the comparison
principle for the non-linear Cauchy problem (21) to hold:

(i) H̄0 is uniformly continuous in x, p on compact sets;
(ii) the coefficients b1(x, y), σ1(x, y), k1(x, y, z) are independent of x, the coefficients

b(x, ·), σ (x, ·) are bounded (bounded functions of y) for each x, and ρ = 0 i.e. the
correlation between the Brownian motions driving X and Y is 0.

Proof. For (i) see Lemma 10 of the Appendix which is based on Theorem 3.7 and Remark 3.8
in Chapter II of [3].

For (ii) we can directly verify that under these conditions H0(x, p), given in (18), is uniformly
continuous on compact sets of x and p. For this, first observe that under the conditions in (ii)
the rate function J in (18) will be independent of x and p. Additionally,


V (y; x, p)dµ(y)
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is uniformly Lipschitz in x and p (uniform over all µ ∈ P(R)), over compact sets of x and
p. Finally, since the supremum of uniformly Lipschitz functions is uniformly continuous over
compact sets, we have the result. �

Note that in Corollary 4, condition (i) is a more general condition and (ii) is a sufficient condition
(on the coefficients of the model) under which condition (i) holds.

In very special cases, we can further simplify the expression for the rate function:

Corollary 5. If the coefficients in the SDE (1) are independent of x, then H0(x, p) becomes
H0(p) and by Lemma D.1 in [18], we get

I (x, ; x0, t) = t L0


x0 − x

t


, (23)

where L0(·) is the Legendre transform of H0(·).

The proof of Lemma 1 takes up the bulk of the paper, and consists of the following steps.

(Sec 3.1) • By taking appropriate limits of solutions uh
ϵ to the Cauchy problem (12) we construct

upper-semicontinuous and lower-semicontinuous functions uh and uh , respectively;
• Using an indexing set α ∈ Λ, we construct a family of operators H0(· ;α) and

H1(· ;α), in such a way that the upper-semicontinuous function uh is a subsolution
to the Cauchy problem for the operator infα∈Λ{H0(· ;α)}, and the lower-
semicontinuous function uh is a supersolution to the Cauchy problem for the
operator supα∈Λ{H1(· ;α)}.

(Sec 3.2) • We prove a comparison principle between subsolutions of infα∈Λ{H0(· ;α)} and
supersolutions supα∈Λ{H1(· ;α)} above;

• We show that this comparison principle implies convergence of solutions uh
ϵ to the

Cauchy problem (12) for Hϵ to solutions uh
0 to the Cauchy problem (21) for H0.

The proof of Lemma 2 uses the estimates obtained in the proof of Lemma 1 (Section 3.3).

3.1. Convergence of viscosity solutions of PIDEs

In Lemma 1 we use notions of viscosity solutions, subsolutions and supersolutions. For the
standard meaning of these terms, as well as for the definition of the comparison principle, we
refer the reader to Definition 4.1 in [18]. Their extension to partial integro-differential equations
(PIDEs) was obtained already in [1] and can be found in [5].

The proof of convergence of uh
ϵ to uh

0 follows the same steps as Lemma 4.1 in [18] which
carries over directly to viscosity solutions of PIDEs. Because we will need to verify that the
conditions there are met, we restate Lemma 4.1 from [18] for viscosity solutions of PIDEs.

Let {Hϵ}ϵ>0 denote a family of integro-differential operators defined on the domain of
functions D̄+ ∪ D̄− where

D̄+ := { f : f ∈ C2(R2), lim
r→∞

inf
|z|>r

f (z) = +∞}

D̄− := {− f : f ∈ C2(R2), lim
r→∞

inf
|z|>r

f (z) = +∞}.

Define domains D+, D− analogously replacing R2 by R. Consider a class of compact sets in
R × R defined by

Q := {K × K̃ : compact K , K̃ ⊂⊂ R}.
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Let uh
ϵ be the viscosity solution of the Cauchy problem ∂t u = Hϵu for the above operator Hϵ ,

with initial value h, and define

Definition 3.1.

uh
↑
(t, x) := sup{lim sup

ϵ→0+

uh
ϵ (tϵ, xϵ, yϵ) :∃(tϵ, xϵ, yϵ) ∈ [0, T ] × K × K̃ ,

(tϵ, xϵ) → (t, x), K × K̃ ∈ Q},

uh
↓
(t, x) := inf{lim inf

ϵ→0+

uh
ϵ (tϵ, xϵ, yϵ) :∃(tϵ, xϵ, yϵ) ∈ [0, T ] × K × K̃ ,

(tϵ, xϵ) → (t, x), K × K̃ ∈ Q}.

Define uh to be the upper semicontinuous regularization of uh
↑

, and uh the lower semicontinuous

regularization of uh
↓

.

Finally, define the limiting operators (which will be first-order differential operators) H0, H1
on domains D+ and D− respectively, as follows. Let Λ be some indexing set, and

Hi (x, p;α) : R × R → R, α ∈ Λ, i = 0, 1.

Define H0 f (x) := H0(x, ∂x f (x)), for f ∈ D+ and H1 f (x) := H1(x, ∂x f (x)), for f ∈ D−,
where

H0(x, p) := inf
α∈Λ

H0(x, p;α),

H1(x, p) := sup
α∈Λ

H1(x, p;α).

Henceforth, with slight abuse of notation, we will refer to Hi (·, ·) as operators.
Suppose the following conditions hold:

Condition 3.1 (Limsup Convergence of Operators). For each f0 ∈ D+ and α ∈ Λ, there exists
f0,ϵ ∈ D̄+ (which may depend on α) such that

1. for each c > 0, there exists K × K̃ ∈ Q satisfying

{(x, y) : Hϵ f0,ϵ(x, y) ≥ −c} ∩ {(x, y) : f0,ϵ(x, y) ≤ c} ⊂ K × K̃ ;

2. for each K × K̃ ∈ Q,

lim
ϵ→0

sup
(x,y)∈K×K̃

| f0,ϵ(x, y)− f0(x)| = 0; (24)

3. whenever (xϵ, yϵ) ∈ K × K̃ ∈ Q satisfies xϵ → x,

lim sup
ϵ→0

Hϵ f0,ϵ(xϵ, yϵ) ≤ H0(x,∇ f0(x);α). (25)

Condition 3.2 (Liminf Convergence of Operators). For each f1 ∈ D− and α ∈ Λ, there exists
f1,ϵ ∈ D̄− (which may depend on α) such that

1. for each c > 0, there exists K × K̃ ∈ Q satisfying

{(x, y) : Hϵ f1,ϵ(x, y) ≤ c} ∩ {(x, y) : f1,ϵ(x, y) ≥ −c} ⊂ K × K̃ ;
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2. for each K × K̃ ∈ Q,

lim
ϵ→0

sup
(x,y)∈K×K̃

| f1(x)− f1,ϵ(x, y)| = 0;

3. whenever (xϵ, yϵ) ∈ K × K̃ ∈ Q, and xϵ → x,

lim inf
ϵ→0

Hϵ f1,ϵ(xϵ, yϵ) ≥ H1(x,∇ f1(x);α).

In this case the following convergence results for uh
ϵ as ϵ → 0 hold.

Lemma 6. Suppose the viscosity solutions uh
ϵ to the partial integro-differential equation

∂t u = Hϵu, u(0, x) = h(x)

are uniformly bounded, supϵ>0 ∥uh
ϵ∥ < ∞. Then, under Condition 3.1, uh is a subsolution of

∂t u(t, x) ≤ H0(x,∇u(t, x)) (26)

and, under Condition 3.2, uh is a supersolution of

∂t u(t, x) ≥ H1(x,∇u(t, x)) (27)

with the same initial conditions.

As the proof is the same as the proof of Lemma 4.1 in [18] we omit it here. We do need to check
Conditions 3.1 and 3.2 hold for our problem. This involves identifying the right indexing set Λ,
the family of operators H0(·;α) and H1(·;α), and the appropriate test functions f0,ϵ and f1,ϵ ,
for each given f0 and f1, respectively.

Verifying Condition 3.1: As in [18], we let

Λ := {(ξ, θ) : ξ ∈ C2
c (R), 0 < θ < 1}

and we define the sequence of operators Hϵ as in (13) on the domain

D+ := { f ∈ C2(R) : f (x) = φ(x)+ γ log(1 + x2);φ ∈ C2
c (R), γ > 0}.

Define the family of operators H0(x, p; ξ, θ) for (ξ, θ) ∈ Λ by

H0(x, p; ξ, θ)

:= sup
y∈R


b(x, y)p +

1
2
σ 2(x, y)p2

+

 
epk(x,y,z)

− 1 − pk(x, y, z)

ν1(z)dz

+ (1 − θ)e−ξLx,p
1 eξ (y)+ θe−ζ Lx,p

1 eζ (y)


. (28)

For any f ∈ D+ and (ξ, θ) ∈ Λ define a sequence of functions

f0,ϵ(x, y) := f (x)+ ϵg(y), where g(y) := (1 − θ)ξ(y)+ θζ(y),

and ζ is the Lyapunov function on R satisfying Assumption 2.4. Then,

Hϵ f0,ϵ(x, y) = b(x, y)∂x f (x)+
1
2
σ 2(x, y)(∂x f (x))2

+ ϵ


b0(x, y)∂x f (x)+

1
2
σ 2(x, y)∂2

xx f (x)


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+

 
e

f (x+ϵk(x,y,z),y)− f (x,y)
ϵ − 1 − k(x, y, z)∂x f (x)


ν1(z)dz

+ e−g Lx,∂x f (x)
1 eg(y)

≤ b(x, y)∂x f (x)+
1
2
σ 2(x, y)(∂x f (x))2

+ ϵ


b0(x, y)∂x f (x)+

1
2
σ 2(x, y)∂2

xx f (x)


+

 
e

f (x+ϵk(x,y,z),y)− f (x,y)
ϵ − 1 − k(x, y, z)∂x f (x)


ν1(z)dz

+ (1 − θ)e−ξLx,∂x f (x)
1 eξ (y)+ θe−ζ Lx,∂x f (x)

1 eζ (y) (29)

so, for any sequence (xϵ, yϵ) such that xϵ → x

lim sup
ϵ→0

Hϵ f0,ϵ(xϵ, yϵ) ≤ H0(x, ∂x f (x); ξ, θ),

thus verifying Condition 3.1.3 holds.
By choice of D+, f ∈ D+ has compact level sets in R. Also note that ∥∂x f ∥+∥∂2

xx f ∥ < ∞.
Assumption 2.4 ensures that −Hϵ f0,ϵ(x, ·) has compact level sets for all x in compact sets. This
proves Condition 3.1.1 holds. Condition 3.1.2 is obvious by choice of functions f0,ϵ .

Verifying Condition 3.2: is exactly the same as verifying Condition 3.1, except that the
sequence of operators Hϵ are now defined on the domain

D− := { f ∈ C2(R) : f (x) = φ(x)− γ log(1 + x2);φ ∈ C2
c (R), γ > 0};

the family of operators H1(x, p; ξ, θ) for (ξ, θ) ∈ Λ is defined by

H1(x, p; ξ, θ)

:= inf
y∈R


b(x, y)p +

1
2
σ 2(x, y)p2

+

 
epk(x,y,z)

− 1 − pk(x, y, z)

ν1(z)dz

+ (1 + θ)e−ξLx,p
1 eξ (y)− θe−ζ Lx,p

1 eζ (y)


; (30)

and for any f ∈ D− and ξ, θ ∈ Λ the sequence f1,ϵ is defined as

f1,ϵ(x, y) := f (x)+ ϵg(y), for g(y) := (1 + θ)ξ(y)− θζ(y),

so that for any sequence (xϵ, yϵ) such that xϵ → x we now have

lim inf
ϵ→0

Hϵ f1,ϵ(xϵ, yϵ) ≥ H1(x, ∂x f (x); ξ, θ)

verifies Condition 3.2.3 holds. Conditions 3.2.1, 3.2.2 hold by the same arguments as above.

3.2. Comparison principle

The rest of the claim of Lemma 1 requires proving uniqueness of solutions to ∂t u = H0u,
with initial value h. This can be verified using the comparison principle on the subsolutions and
supersolutions of the constructed limiting operators H0 and H1, and the variational representation
of H0 from (18). We use the following Lemma 4.2 from [18].
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Lemma 7. Let uh and uh be defined as in Definition 3.1. If a comparison principle between
subsolutions of (26) and supersolutions of (27) holds, that is, if every subsolution v1 of (26) and
every supersolution v2 of (27) satisfy v1 ≤ v2, then uh

= uh and uh
ϵ (t, x, y) → uh

0(t, x), where
uh

0 := uh
= uh , as ϵ → 0, uniformly over compact subsets of [0, T ] × R × R.

Proof. The comparison principle gives uh
≤ uh , while by construction we have uh

≤ uh . This
gives uniform convergence of uh

ϵ → u0 := uh
= uh over compact subsets of [0, T ]×R×R. �

We next prove the comparison principle for subsolutions of (26) and supersolutions of (27),
that is every subsolution of

∂t u(t, x) ≤ H0(x, p) := inf
0<θ<1,ξ∈C2

c (R)
H0(x, p; ξ, θ),

where H0 is as defined in (28), is less than or equal to every super solution of

∂t u(t, x) ≥ H1(x, p) := sup
0<θ<1,ξ∈C2

c (R)
H1(x, p; ξ, θ)

where H1 is as defined in (30). We follow the steps in Section 5.2 in [18] with some modifications.
The key step is proving

Operator inequality:

inf
0<θ<1,ξ∈C2

c (R)
H0(x, p; θ, ξ) ≤ H0(x, p) ≤ sup

0<θ<1,ξ∈C2
c (R)

H1(x, p; θ, ξ), (31)

where H0(x, p) is as defined in (18).
Recall the definition of the rate function J from (17) and variational representation of H0 as

H0(x, p) = sup
µ∈P(R)


V (y; x, p)dµ(y)− J (µ; x, p)


.

Following steps of Lemma 11.35 of [19] (which relies on Assumption 2.3) we get that

inf
0<θ<1,ξ∈C2

c (R)
H0(x, p : θ, ξ) ≤ H0(x, p).

From the proof of Lemma B.10 in [19], we have

sup
0<θ<1,ξ∈C2

c (R)
H1(x, p : θ, ξ) ≥ inf

µ∈P(R)
lim inf
t→∞

t−1 ln Eµ

e
 t

0 V (Y x,p
s ;x,p)ds


.

Thus, we need to show that, irrespective of the initial distribution,

lim inf
t→∞

t−1 ln E

e
 t

0 V (Y x,p
s ;x,p)ds


≥ H0(x, p).

The proof of this claim depends on Assumption 2.3. We define the occupation measures of the
Y x,p process:

µ
x,p
t (·) :=

1
t

 t

0
1Y x,p

s
(·)ds.

Recall that P(R) is a separable metric space under the Prokhorov metric and that weak
convergence of measures is equivalent to convergence in the Prokhorov metric. Let Qt,y0 denote
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the probability measure on P(R) induced by the occupation measure µt of Y when Y0 = y0. In
other words, for A ∈ B(P(R)) (the borel sigma-algebra on P(R)),

Qt,y0(A) = P(µt (·) ∈ A|Y0 = y0).

Lemma 8. infµ∈P(R) lim inft→∞ t−1 ln Eµ

e
 t

0 V (Y x,p
s ;x,p)ds


≥ H0(x, p).

Proof. Define φ : P(R) → R by φ(µ) =


V (y; x, p)µ(dy). Take ν̃1 ∈ P(R), and let B(ν̃1, r)
denote the open ball in P(R) of radius r , centered at ν̃1. Fix ν1 ∈ P(R), then there exists a
compact set K in R such that ν1(K ) > 0. The key ingredient in the proof is the uniform LDP
lower bound for the occupation measures:

lim inf
t→∞

1
t

log


inf
y0∈K

Qt,y0(B(ν̃1, r))


≥ −J (ν̃1; x, p). (32)

This is obtained from Theorem 5.5 in [13] under Assumption 2.3. While the statement of
Theorem 5.5 in [13] is in terms of a process level LDP, by the contraction principle it ensures the
uniform LDP lower bound (32) for the occupation measures µx,p

t .
We now compute

lim inf
t→∞

1
t

log Eν1

e
 t

0 V (Y x,p
s ;x,p)ds


= lim inf

t→∞

1
t

log Eν1

etφ(µx,p

t )


≥ lim inf
t→∞

1
t

log Eν1

etφ(µx,p

t )1{Y0∈K }


≥ lim inf

t→∞

1
t

log


inf
y0∈K

E y0


etφ(µx,p
t )


+ lim inf
t→∞

1
t

log ν1(K )

= lim inf
t→∞

1
t

log


inf
y0∈K


µ∈P(R)

etφ(µ)d Qt,y0(µ)


≥ lim inf

t→∞

1
t

log


inf
y0∈K


µ∈B(ν̃1,r)

etφ(µ)d Qt,y0(µ)


≥ inf
µ∈B(ν̃1,r)

φ(µ)+ lim inf
t→∞

1
t

log


inf
y0∈K

Qt,y0(B(ν̃1, r))


≥ inf
µ∈B(ν̃1,r)

φ(µ)− J (ν̃1; x, p)

by (32). By Lemma 9 (see Appendix), φ is a lower semi-continuous function, and so φ(ν̃1) ≤

limr→0 infµ∈B(ν̃1,r) φ(µ). Thus taking limit as r → 0 we get

lim inf
t→∞

1
t

log Eν1

e
 t

0 V (Y x,p
s ;x,p)ds


≥ φ(ν̃1)− J (ν̃1)

(note that since V is bounded below, φ(µ) > −∞, and so φ(ν̃1) − J (ν̃1; x, p) is well defined
and not −∞ + ∞). Since ν̃1 is arbitrary, we get

lim inf
t→∞

1
t

log Eν1

e
 t

0 V (Y x,p
s ;x,p)ds


≥ sup
ν̃1∈P(R)

{φ(ν̃1)− J (ν̃1; x, p)}.
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This holds for every ν1 ∈ P(R) and so

inf
ν1∈P(R)

lim inf
t→∞

1
t

log Eν1

e
 t

0 V (Y x,p
s ;x,p)ds


≥ sup
ν̃1∈P(R)

{φ(ν̃1)− J (ν̃1; x, p)}.

This concludes the proof of the Operator Inequality (31). �

Remark 3.2. In the special case Y x,p also has a reversible invariant measure π p(x, ·) we could
also follow the arguments for Lemma 5.4 in [18] using the Dirichlet form representation of J
(19).

Proof of Lemma 1. By Lemma 6 and Operator Inequality (31), it follows that uh is a subsolution
and uh a supersolution of the Cauchy problem (21): ∂t u(t, x) = H0(x, ∂x u(t, x)) with u(0, x) =

h(x). If the comparison principle holds for the Cauchy problem (21), then Lemma 7 gives us
uh

= uh and that uh
ϵ → uh

0 ≡ uh
= uh uniformly over compact subsets of [0, T ] × R × R. �

3.3. Exponential tightness

Proof of Lemma 2. We prove exponential tightness using the convergence of Hϵ and appealing
to supermartingale arguments (see Section 4.5 of [19]).

Let f (x) := ln(1 + x2), so f (x) → ∞ as |x | → ∞, and also ∥ f ′
∥ + ∥ f ′′

∥ < ∞. Define
fϵ(x, y) := f (x)+ ϵζ(y) where ζ is the positive Lyapunov function satisfying Assumption 2.4
(with θ = 1). Then, for any c > 0, there exists a compact Kc ⊂ R such that fϵ(x, y) > c,
∀y ∈ R, ∀x ∉ Kc.

Observe that by (29) (with θ = 1)

Hϵ fϵ(x, y) = ϵe− fϵ/ϵLϵe
fϵ/ϵ

≤ b(x, y)∂x f (x)+
1
2
σ 2(x, y)(∂x f (x))2 + ϵ


b0(x, y)∂x f (x)+

1
2
σ 2(x, y)∂2

xx f (x)


+


(e

f (x+ϵk(x,y,z),y)− f (x,y)
ϵ − 1 − pk(x, y, z))ν1(z)dz + e−ζ Lx,∂x f (x)

1 eζ (y).

By choice of f , growth conditions on the coefficients and Assumption 2.4, we get there exists
C > 0 such that

sup
x∈R,y∈R

Hϵ fϵ(x, y) ≤ C < ∞, ∀ϵ > 0.

Since e( fϵ(Xϵ,t ,Yϵ,t )− fϵ(Xϵ,0,Yϵ,0))/ϵ−
 t

0 Hϵ fϵ(Xϵ,s ,Yϵ,s )ds is a non-negative local martingale, by
optional stopping

P(Xϵ,t ∉ Kc)e
(c− fϵ(x0,y0)−tC)/ϵ

≤ E


exp


fϵ(Xϵ,t , Yϵ,t )

ϵ
−

fϵ(x0, y0)

ϵ
−

 t

0
Hϵ fϵ(Xϵ,s, Yϵ,s)ds


≤ 1.

Therefore for each c > 0

ϵ ln P(Xϵ,t ∉ Kc) ≤ tC − fϵ(x0, y0)− c.

As C is fixed and independent of c (which we can choose), {Xϵ,t }ϵ>0 is exponentially tight.

Remark 3.3. A similar argument can be used to verify the exponential compact containment
condition in Corollary 4.17 in [19], which would give us {Xϵ,·}ϵ>0 is exponentially tight. �
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4. Examples

4.1. Model for stock price with stochastic volatility

We consider the stochastic volatility model for stock price suggested by Barndorff-Nielson
and Shephard [6]. Let X t denote the logarithm of stock price and Yt the stochastic volatility.

d X t =


r −

1
2

Yt


dt +


Yt dWt

dYt = −
Yt

δ
dt + d Z1/δ

t ,

where Wt is a standard Brownian motion and Z1/δ
t is an independent non-Gaussian Lévy

process with intensity 1
δ
ν(dz); the parameter 0 < δ ≪ 1 denotes the mean-reversion time

scale in stochastic volatility. The process Z is often referred to as the background driving Lévy
process(BDLP). If we are interested in pricing options on the stock which are close to maturity,
we will only be interested in small-time asymptotics of the model. We thus scale time by a
parameter 0 < ϵ ≪ 1, to get

d Xϵ,t = ϵ


r −

1
2

Yϵ,t


dt +

√
ϵ


Yϵ,t dWt

dYϵ,t = −
ϵ

δ
Yϵ,t dt + d Z1/δ

ϵt ,

(33)

The multi scale structure comes from the fast mean reversion in stochastic volatility and the
small time to maturity. We are interested in the situation where time to maturity (ϵ) is small, but
large compared to mean-reversion time (δ) of stochastic volatility. The interesting regime as seen
in [18] is when δ = ϵ2. The generator of (Xϵ, Yϵ) is given by:

Lϵ f (x, y) = ϵ


(r −

1
2

y)∂x f (x, y)+
1
2

y∂2
xx f (x, y)


+

1
ϵ


−y∂y f (x, y)+


( f (x, y + z)− f (x, y)) ν(dz)


,

for f ∈ C2
b(R

2).
For this example, since the coefficients are x-independent, the perturbed operator Lx,p

1 is the
same as L1, the generator of Y :

L1 f (y) = −y f ′(y)+


( f (y + z)− f (y)) ν(dz), for f ∈ C2

b(R).

We can obtain the limiting Hamiltonian H0 by solving the eigenvalue problem (16). Here
V (y; x, p) ≡ V (y; p) =

1
2 yp2. H0(p) is the eigenvalue λ of the eigenvalue problem

−y f ′(y)+


( f (y + z)− f (y)) ν(dz)+

1
2

yp2 f (y) = λ f (y).

Note that f (y) = e
p2

2 y and λ(p) =
 

e
p2

2 z
− 1


ν(dz) satisfy the eigenvalue problem. So

H0(p) = λ(p) =
 

e
p2

2 z
− 1


ν(dz). In this example, in the absence of a Lyapunov function
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ζ satisfying Assumption 2.4, we give a slightly altered proof as follows. The following proof
assumes H0(p) is finite.

To verify Condition 3.1, for f ∈ D+ and 0 < θ < 1, we define f0,ϵ := f (x) +

ϵ((1 − θ)g(x, y) + θ ζ̃ (y)), where g(x, y) :=
1
2 ( f ′(x))2 y (logarithm of the eigenfunction) and

ζ̃ (y) := C2 y, C := supx | f ′(x)|. Then we get

Hϵ f0,ϵ(x, y) ≤
1
2

y( f ′(x))2 + ϵ


r −

y

2


f ′(x)+

1
2

y f ′′(x)


+ (1 − θ)e−g L f ′(x)

1 eg

+ θe−ζ̃ L f ′(x)
1 eζ̃

= (1 − θ)λ( f ′(x))+ θ


−y(C2

−
1
2
( f ′(x))2)+


(eC2z

− 1)ν(dz)


+ ϵ


r −

y

2


f ′(x)+

1
2

y f ′′(x)


.

Thus Hϵ f0,ϵ satisfies Condition 3.1.1. Condition 3.1.2 is immediate and

lim sup
ϵ→0

Hϵ f0,ϵ ≤ inf
0<θ<1


(1 − θ)λ( f ′(x))

+ θ sup
y


−y(C2

−
1
2
( f ′(x))2)+


(eC2z

− 1)ν(dz)


≤ lim sup

θ→0


(1 − θ)λ( f ′(x))

+ θ sup
y


−y(C2

−
1
2
( f ′(x))2)+


(eC2z

− 1)ν(dz)


= λ( f ′(x)) =: H0( f ′(x)).

Similarly, to verify Condition 3.2, define f1,ϵ := f (x) + ϵ((1 + θ)g(x, y) − θ ζ̃ (y)). It is
unnecessary to verify any operator inequality as the limiting operators H0 and H1 coincide and
equal H0.

Remark 4.1. Recall the definition of Ṽ at the beginning of Section 2.1, Ṽ p(x, y) := V (y;

x, p) + |b0(x, y)| + σ 2(x, y). In general, in case we have a solution to the eigenvalue problem
defining the Hamiltonian H0, then the exact same proof as above using f0,ϵ = f (x) +

ϵ((1 − θ)g(x, y)+ θ ζ̃ (y)), with g(x, y) the logarithm of the eigenfunction and ζ̃ satisfying the
Ṽ -multiplicative ergodicity condition

e−ζ̃ Lx,p
1 eζ̃ (y) ≤ −cV p(x, y)+ d, for c > 1, d > 0

is enough to conclude our large deviation results (provided Ṽ has compact finite level sets, as it
was above).

In Barndorff-Nielsen and Shephard [6], the BDLP, Z , is assumed to have only positive
increments. A simple example of such a Lévy process is a jump process taking finitely many
jumps that is the Lévy measure is ν(zi ) > 0 where zi > 0, i = 1, 2, . . . , k. We can then
explicitly compute H0(p) and its Legendre transform L̄(p). As seen in [18] (Lemma D.1 in [18]),
since H0(p) is not state dependent, we get the rate function to be I (x, x0, t) = t L̄

 x0−x
t


. In

finance, a common example is where Z is a gamma process, in which case ν(dz) =
a
z e−bzdz,
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a, b > 0. Then

H0(p) =

a ln


1 +
p2

2b − p2


if −

√
2b < p <

√
2b

∞ if p2 > 2b,

and the rate function is given by I (x; x0, t) = t L̄
 x0−x

t


, where

L̄(q) =


−a +


a2 + 2bq2 − a ln 2b + a ln


−2a2

q2 +
2a

q2


a2 + 2bq2


if q > 0

0 if q = 0

−a −


a2 + 2bq2 − a ln 2b + a ln


−2a2

q2 −
2a

q2


a2 + 2bq2


if q < 0.

This rate function then gives the asymptotic behavior of a European Call option on the stock. Let
K denote the strike price and Sϵ,t = eXϵ,t , then for S0 = ex0 < K (out-of-the-money call),

lim
ϵ→0

ϵ log E

Sϵ,t − K

+
= −I (log K ; x0, t),

where maturity time T = ϵt . This follows from Corollary 1.3 in [17].

4.2. Model for self-regulating protein production

The simplest model for translation of protein from DNA is the system below, with a gene
that is either in its “on” state G1, or in its “off” state G0, and in which the protein activates the
changes from “off” to “on” state:

(1) G0 + P
κ ′

1
⇀ G1 + P (3) G1

κ ′

2
⇀ G1 + P

(2) G1 + P
κ ′

−1
⇀ G0 + P (4) P

κ ′

3
⇀ ∅.

Suppose the amount of protein P is of order 1/ϵ, whose rate of production κ ′

2 = 1/ϵ κ2, while
its rate of degradation κ ′

3 = κ3; where κ2, κ3 are of O(1). The amount of genes in the “on”- and
“off”-state is ∈ {0, 1}, their total amount always equaling 1, and suppose the rates of changes of
the gene from the “on”-state to the “off”-state and back are very rapid due to its regulation by
the large amounts of protein κ ′

1 = κ1, κ
′

−1 = κ−1, where κ1, κ−1 are of O(1). This system is
characteristic of eukaryotes, where the gene switching noise dominates over the transcriptional
and translational noise. We can represent the changes in the system using the process Xϵ for the
count of protein molecules normalized by ϵ, and Yϵ for the (unnormalized) count of “on”-gene
molecules. A diffusion process is a good approximation for the evolution of Xϵ as long as the
count of proteins is not too small, that is, the unnormalized count is ≫ ϵ and Xϵ ∼ O(1) ([25]
gives a rigorous justification of diffusion approximations for Markov chain models that apply in
stochastic reaction kinetics). This diffusion solves d Xϵ,t = b(Xϵ,t , Yϵ,t )dt+

√
ϵσ (Xϵ,t , Yϵ,t )dWt

with drift b(x, y) = κ2 y−κ3x (protein production has only two possible values: it will be 0 when
y = 0, or κ2 when y = 1), with diffusion coefficient σ 2(x, y) = κ2 y + κ3x , and initial value
Xϵ,0 = x0 > 0. Changes in the amount of proteins due to other independent sources of noise,
such as errors after cell splitting, can be modeled by an additional jump term for Xϵ where the
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jump measure ν1(dx) can be as simple as ν1(z) =
1
2δ−1(z)+

1
2δ+1(z), producing

d Xϵ,t = (κ2Yϵ,t − κ3 Xϵ,t )dt +

ϵ(κ2Yϵ,t + κ3 Xϵ,t )dWt + ϵ


1Xϵ>ϵz Ñ

1
ϵ (dz, dt).

The amount of genes G1 in the “on”-state is a rapidly fluctuating two-state Markov chain Y on
{0, 1} with rates r0→1(x) =

1
ϵ
κ1x and r1→0(x) =

1
ϵ
κ−1x that depend on the normalized amount

of protein (note that the amount of genes G0 in the “off”-state is 1 − Y ). This chain is reversible,
and for each x > 0 it has a unique stationary distribution π x (1) = 1 − π x (0) = κ1/(κ1 + κ−1).

Signaling proteins such as morphogens have to be in the right range of concentrations to
avoid triggering the expression of genes at the wrong times. The probabilities of their amounts
being out of range are given by the Large Deviation Principle for Xϵ as ϵ → 0, for which we
need to obtain the solution to the eigenvalue problem for the operator V (y; x, p) + Lx where
Lx f (y) = r0→1(x)


f (y + 1)− f (y)


1y=0 + r1→0(x)


f (y − 1)− f (y)


1y=1.

In order to solve (V (y; x, p) + Lx )eu1 = λeu1 for λ, let eu1(x,1) = a1(x), eu1(x,0) = a0(x),
for some a1, a0 strictly positive functions. Then

(κ2 − κ3x)pa1(x)+ (κ2 + κ3x)p2a1(x)

+
1
2
(ep

+ e−p
− 2)a1(x)+ κ−1x(a0(x)− a1(x)) = λa1(x)

−κ3xpa0(x)+ κ3xp2a0(x)+
1
2
(ep

+ e−p
− 2)a0(x)+ κ1x(a1(x)− a0(x)) = λa0(x)

equivalently, with a(x) = a1(x)/a0(x),

(κ2 − κ3x)p + (κ2 + κ3x)p2
+ κ−1x


1

a(x)
− 1


= −κ3xp + κ3xp2

+ κ1x(a(x)− 1)

which, since a(x) has to be positive, gives

a(x) =
−B +

√
B2 − 4AC

2A
,

A = κ1x, B = −κ2 p − κ2 p2
+ (κ−1 − κ1)x, C = −κ−1x

and consequently, using notation above,

H̄0(x, p) = −κ3xp + κ3xp2
+ κ1x(a(x)− 1)+

1
2
(ep

+ e−p
− 2).

Note that when κ−1 = κ1 then

a(x) =
κ2 p(1 + p)+


(κ2 p(1 + p))2 + (2κ1x)2

2κ1x

and

H̄0(x, p) = −κ3 p(1 − p)x +
1
2
κ2 p(1 + p)+

1
2


(κ2 p(1 + p))2 + (2κ1x)2 − κ1x

+
1
2
(ep

+ e−p
− 2).

Note that H̄0(x, p) is both convex in p and continuous in x .
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If one were to use an approximation of the evolution of the normalized protein amount Xϵ by
a piecewise deterministic process then (without additional noise)

d X PDMP
ϵ,t = (κ2Yϵ,t − κ3 Xϵ,t )dt

while Yϵ is the same fast Markov chain on {0, 1}. In this case V (y; x, p) = (κ2 − κ3x)p and the
Hamiltonian (when κ1 = κ−1) becomes

H̄ PDMP
0 (x, p) = −κ3 px +

1
2
κ2 p +

1
2


(κ2 p)2 + (2κ1x)2 − κ1x

which is easy to compare to the Hamiltonian H̄0 of the diffusion process Xϵ taking into account
the small perturbative noise arising from randomness in the timing of chemical reactions and
from randomness in the outcomes of cell splitting.
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Appendix

Lemma 9. Fix x, p ∈ R and let φ : P(R) → R be defined by φ(µ) =


V (y; x, p)µ(dy).
Then, φ is a lower semi-continuous (l.s.c.) function on P(R).

Proof. For the rest of the proof, we will write V (y) for V (y; x, p). Let VM := V · 1V ≤M + M ·

1V ≥M , for M ≥ infy V (y). To show that φ(µ) is l.s.c, it is sufficient to show that if µn −→ µ

weakly, then φ(µ) ≤ lim infn→∞ φ(µn). Assume µn −→ µ weakly. Then
VM dµ = lim

n→∞


VM dµn,

by definition of weak convergence of measures, since VM is a bounded function. By the
monotone convergence theorem we get

φ(µ) =


V dµ = lim

M→∞


VM dµ

= lim
M→∞

lim
n→∞


VM dµn

= sup
M

lim
n→∞


VM dµn

≤ lim inf
n→∞

sup
M


VM dµn

= lim inf
n→∞


V dµn

by Monotone convergence theorem

= lim inf
n→∞

φ(µn). �
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Lemma 10. Let u1 be a bounded, upper semicontinuous (u.s.c.), viscosity subsolution and u2 a
bounded, lower semicontinuous (l.s.c.), viscosity supersolution of ∂t u(t, x) = H0(x, ∂x u(t, x))
respectively. If u1(0, ·) ≤ u2(0, ·), and H̄0 is uniformly continuous on compact sets, then u1 ≤ u2
on [0, T ] × R for any T > 0.

Proof. Suppose

sup
t≤T,x

{u1(t, x)− u2(t, x)} > A ≥ δ > 0. (A.34)

Let g(t, x) = ln(1 + x2)+ t2. Define

ψ(t, x, s, y) = u1(t, x)− u2(s, y)−
1
2

ln


1 +
|x − y|

2
+ |t − s|2

ϵ


−β (g(t, x)+ g(s, y))− At.

Fix β > 0 and let (t̄ϵ, x̄ϵ, s̄ϵ, ȳϵ) denote the point of maximum ofψ in ([0, T ]×R×[0, T ]×R) for
ϵ > 0. Since u1, u2 are bounded, for fixed β > 0, there exists an Rβ > 0 such that |x̄ϵ |, |ȳϵ | ≤ Rβ
for all ϵ > 0.

Using

ψ(t̄ϵ, x̄ϵ, t̄ϵ, x̄ϵ)+ ψ(s̄ϵ, ȳϵ, s̄ϵ, ȳϵ) ≤ 2ψ(t̄ϵ, x̄ϵ, s̄ϵ, ȳϵ),

we get

1
2

ln


1 +
|x̄ϵ − ȳϵ |2 + |t̄ϵ − s̄ϵ |2

ϵ


≤ A(s̄ϵ − t̄ϵ)+ u1(t̄ϵ, x̄ϵ)− u1(s̄ϵ, ȳϵ)+ u2(t̄ϵ, x̄ϵ)− u2(s̄ϵ, ȳϵ)

≤ 2AT + 2∥u1∥ + 2∥u2∥ =: C < ∞,

which gives us

|x̄ϵ − ȳϵ |
2
+ |t̄ϵ − s̄ϵ |

2
≤ ϵe2C .

Therefore |x̄ϵ − ȳϵ |, |s̄ϵ − t̄ϵ | → 0 as ϵ → 0.
Let

φ1(t, x) := u2(s̄ϵ, ȳϵ)+
1
2

ln


1 +
|x − ȳϵ |2 + |t − s̄ϵ |2

ϵ


+ β (g(t, x)+ g(s̄ϵ, ȳϵ))+ At

and

φ2(s, y) := u1(t̄ϵ, x̄ϵ)−
1
2

ln


1 +
|x̄ϵ − y|

2
+ |t̄ϵ − s|2

ϵ


− β


g(t̄ϵ, x̄ϵ)+ g(s, y)


− At̄ϵ .

Then (t̄ϵ, x̄ϵ) is a point of maximum of u1(t, x)− φ1(t, x) and (s̄ϵ, ȳϵ) is a point of minimum of
u2(s, y)−φ2(s, y). Since u1 and u2 are sub and super solutions respectively, by the definition of
sub and super solutions we get

t̄ϵ−s̄ϵ
ϵ

1 +
|x̄ϵ−ȳϵ |2+|t̄ϵ−s̄ϵ |2

ϵ

+ A + 2β t̄ϵ ≤ H0


x̄ϵ,

x̄ϵ−ȳϵ
ϵ

1 +
|x̄ϵ−ȳϵ |2+|t̄ϵ−s̄ϵ |2

ϵ

+
2β x̄ϵ

1 + x̄2
ϵ


, (A.35)
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and

t̄ϵ−s̄ϵ
ϵ

1 +
|x̄ϵ−ȳϵ |2+|t̄ϵ−s̄ϵ |2

ϵ

− 2β s̄ϵ ≥ H0


ȳϵ,

x̄ϵ−ȳϵ
ϵ

1 +
|x̄ϵ−ȳϵ |2+|t̄ϵ−s̄ϵ |2

ϵ

−
2β ȳϵ

1 + ȳ2
ϵ


. (A.36)

Subtracting (A.36) from (A.35), we get

A + 2β(t̄ϵ + s̄ϵ) ≤ H0


x̄ϵ,

x̄ϵ−ȳϵ
ϵ

1 +
|x̄ϵ−ȳϵ |2+|t̄ϵ−s̄ϵ |2

ϵ

+
2β x̄ϵ

1 + x̄2
ϵ



− H0


ȳϵ,

x̄ϵ−ȳϵ
ϵ

1 +
|x̄ϵ−ȳϵ |2+|t̄ϵ−s̄ϵ |2

ϵ

−
2β ȳϵ

1 + ȳ2
ϵ


. (A.37)

Since H0(·, ·) is uniformly continuous over compact sets, and since |x̄ϵ − ȳϵ | → 0 as ϵ → 0
(for fixed β), the right-hand side of the above inequality goes to 0 as ϵ → 0 and β → 0 (note

that the terms
x̄ϵ−ȳϵ
ϵ

1+
|x̄ϵ−ȳϵ |2+|t̄ϵ−s̄ϵ |2

ϵ

, 2x̄ϵ
1+x̄2

ϵ
and 2ȳϵ

1+ȳ2
ϵ

are bounded and that |x̄ϵ |, ȳϵ | ≤ Rβ for each β).

Taking ϵ → 0 and then β → 0, we get

A ≤ 0,

which contradicts (A.34). Therefore we must have

sup
t,x

{u1(t, x)− u2(t, x)} ≤ 0

which gives us u1 ≤ u2. �
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