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CENTRAL LIMIT THEOREMS AND DIFFUSION
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Ordinary differential equations obtained as limits of Markov processes
appear in many settings. They may arise by scaling large systems, or by av-
eraging rapidly fluctuating systems, or in systems involving multiple time-
scales, by a combination of the two. Motivated by models with multiple time-
scales arising in systems biology, we present a general approach to proving a
central limit theorem capturing the fluctuations of the original model around
the deterministic limit. The central limit theorem provides a method for de-
riving an appropriate diffusion (Langevin) approximation.

1. Introduction. There are two classical kinds of Gaussian limit theorems
associated with continuous time Markov chains as well as more general Markov
processes. The first of these considers a sequence {XN } of Markov chains that con-
verges to a deterministic function X and gives a limit for the rescaled deviations
UN = rN(XN − X); see, for example, Kurtz (1971), Kurtz (1977/78), van Kam-
pen (1961). The second considers an ergodic Markov process Y with stationary
distribution π and gives a limit for

ZN(t) = 1√
N

∫ Nt

0
h
(
Y(s)

)
ds = √

N

∫ t

0
h
(
Y(Ns)

)
ds

for h satisfying
∫

hdπ = 0; see, for example, Bhattacharya (1982) for a general
result of this type.

There are many proofs for theorems like these. In particular, results of both
types can be proved using the martingale central limit theorem (Theorem A.1).
For example, in the first case, there is typically a sequence of functions FN such
that

MN(t) = XN(t) − XN(0) −
∫ t

0
FN (

XN(s)
)
ds

Received August 2012; revised March 2013.
1Supported in part by NSF FRG Grant DMS 05-53687.
2Supported in part by NSF Grant DMS 11-06424.
3Supported by NSERC Discovery grant.
MSC2010 subject classifications. 60F05, 92C45, 92C37, 80A30, 60F17, 60J27, 60J28, 60J60.
Key words and phrases. Reaction networks, central limit theorem, martingale methods, Markov

chains, scaling limits.

721

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/13-AAP934
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


722 H.-W. KANG, T. G. KURTZ AND L. POPOVIC

is a martingale, FN → F , Ẋ = F(X) and FN(xN)−F(x) ≈ ∇F(x)(xN −x), for
xN converging to x. If the martingale central limit theorem gives rNMN ⇒ M and
UN(0) ⇒ U(0), then (ignoring technicalities) UN should converge to the solution
of

U(t) = U(0) + M(t) +
∫ t

0
∇F

(
X(s)

)
U(s) ds.(1.1)

In the second case, the assumption that
∫

hdπ = 0 suggests that there should be
a solution of the Poisson equation Af = −h, where A is the generator for Y , and
then

ZN(t) = 1√
N

(
f

(
Y(Nt)

) − f
(
Y(0)

) −
∫ Nt

0
Af

(
Y(s)

)
ds

)

− 1√
N

(
f

(
Y(Nt)

) − f
(
Y(0)

))
.

The first term on the right is a martingale and the second should go to zero, so if
the martingale central limit theorem applies to the first, then ZN should converge.

This paper addresses situations of the first type [V N
0 ⇒ V0 for a determinis-

tic V0, and we want to verify convergence of UN = rN(V N
0 − V0)] in which both

approaches are required. Specifically, the function FN giving the martingale, MN ,
depends not only on V N

0 but also on another process V N
1 [think V N

1 (t) = V1(Nt)],
so

MN,1(t) = V N
0 (t) − V N

0 (0) −
∫ t

0
FN (

V N
0 (s),V N

1 (s)
)
ds

is a martingale, FN “averages” to F in the sense that∫ t

0

(
FN (

V N
0 (s),V N

1 (s)
) − F

(
V N

0 (s)
))

ds → 0,

(V N
0 ,V N

1 ) is Markov with generator AN and there exist HN such that ANHN ≈
(FN − F). [Note that HN will be a vector of functions in the domain of AN ,
D(AN).] Assuming that

MN,2(t) = HN

(
V N

0 (t),V N
1 (t)

) − HN

(
V N

0 (0),V N
1 (0)

)
−

∫ t

0
ANHN

(
V N

0 (s),V N
1 (s)

)
ds

is a martingale, and again ignoring all the technicalities, we have

rN
(
V N

0 (t) − V0(t)
)

= rN
(
V N

0 (0) − V0(0)
) + rNMN,1(t) − rNMN,2(t)

+
∫ t

0
rN

(
F

(
V N

0 (s)
) − F

(
V0(s)

))
ds(1.2)
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+ rN
(
HN

(
V N

0 (t),V N
1 (t)

) − HN

(
V N

0 (0),V N
1 (0)

))
+ rN

∫ t

0

(
FN (

V N
0 (s),V N

1 (s)
) − F

(
V N

0 (s)
)

− ANHN

(
V N

0 (s),V N
1 (s)

))
ds.

If the last two terms on the right go to zero, the martingale terms converge,

rNMN,1 − rNMN,2 ⇒ M

and F is smooth, then we again should have UN ⇒ U satisfying (1.1).
The work to be done to obtain theorems of this type is now clear. We need to

identify FN and F , find an approximate solution to the Poisson equation ANHN ≈
FN −F , verify that the martingales satisfy the conditions of the martingale central
limit theorem, and verify that the error terms [the last two terms in (1.2)] converge
to zero. We will make this analysis more specific in stages. We are essentially
considering situations in which the process V N

1 is evolving on a faster time scale
than V N

0 and “averages out” to give the convergence of V N
0 to V0. But V N

1 itself
may evolve on more than one time scale. In the first stage of our development, we
will replace V N

1 by (V N
1 ,V N

2 ) with V N
1 and V N

2 evolving on different (fast) time
scales. Once the analysis for two fast time scales is carried out, the extension of
the general results to more than two fast time scales should be clear. In the second
stage, we consider multiply scaled, continuous-time Markov chains of a type that
arises naturally in models of chemical reaction networks. For these models, many
of the conditions simplify, but the notation becomes more complex.

Outline: In Section 2 we state and prove the functional central limit Theo-
rem 2.11, and specify a sequence of Conditions 2.1–2.10 that need to be verified
for it to apply. In Section 3 we additionally give a diffusion approximation im-
plied by Theorem 2.11. Our aim is to apply these results to Markov chain models
for chemical reactions. In Section 4 we identify specific aspects of the multi-scale
behavior of a reaction network that one needs in order to apply Theorem 2.11 to
the chemical species with a deterministic limit on the slowest time scale. Section 5
provides several examples of chemical networks (the first two evolving on two, the
last one on three time-scales), and shows how to verify the conditions and obtain
a diffusion approximation.

2. A central limit theorem for a system with deterministic limit and three
time scales. We identify a set of conditions on a three time-scale process V N =
(V N

0 ,V N
1 ,V N

2 ) that guarantee UN = rN(V N
0 − V0) converges to a diffusion. As

suggested earlier, we write UN in the form

UN(t) = UN(0) + rN
(
MN,1(t) − MN,2(t)

)
+ rN

∫ t

0

(
F

(
V N

0 (s)
) − F

(
V0(s)

))
ds(2.1)
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+ rN

∫ t

0

(
FN (

V N(s)
) − F

(
V N(s)

))
ds

+ rN

∫ t

0

(
F

(
V N(s)

) − F
(
V N

0 (s)
) − ANHN

(
V N(s)

))
ds

+ rN
(
HN

(
V N(t)

) − HN

(
V N(0)

))
,

where MN,1,MN,2 are martingales, V0 is the deterministic limit of the process
V N

0 , F is its infinitesimal drift and HN is an approximate solution to a Poisson
equation. Our conditions insure each individual term has a well behaved limit.

We assume that V N
i takes values in E

N
i ⊂ R

di , i = 0,1,2, and that EN
i con-

verges in the sense that there exists Ei ⊂ R
di such that EN

i ⊂ Ei and for each
compact K ⊂R

di ,

lim
N→∞ sup

x∈Ei∩K

inf
y∈EN

i

|x − y| = 0.

We will refer to AN as the “generator” for the process V N = (V N
0 ,V N

1 ,V N
2 ),

but all we require is that AN is a linear operator on some space D(AN) of measur-
able functions on E

N ≡ E
N
0 ×E

N
1 ×E

N
2 and that for h ∈ D(AN),

h
(
V N(t)

) − h
(
V N(0)

) −
∫ t

0
ANh

(
V N(s)

)
ds

is a local martingale.
We first identify the time scales of the process V N with two sequences of pos-

itive numbers {r1,N }, {r2,N }, and introduce a sequence of scaling parameters {rN }
for UN with the following properties.

CONDITION 2.1 (Scaling parameters). The scaling parameters rN → ∞ and
{r1,N }, {r2,N } are sequences of positive numbers satisfying

lim
N→∞

rN

r1,N

= 0,

(2.2)
lim

N→∞
r1,N

r2,N

= 0.

We next identify the “generators” for the effective dynamics of V N
0 ,V N

1 and V N
2

on time scales t, tr1,N , and tr2,N , respectively. L0, L1, L2 will be linear operators
defined on sufficiently large domains, D(L0) ⊂ M(E0), D(L1) ⊂ M(E0 ×E1) and
D(L2) ⊂ M(E0 ×E1 ×E2), and taking values in M(E0 ×E1 ×E2). The require-
ments that determine what is meant by “sufficiently large” will become clear, but
we will assume that the domains contain all C∞ functions having compact support
in the appropriate space. We will use the notation E= E0 ×E1 ×E2.
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CONDITION 2.2 (Multiscale convergence). For each compact K ⊂
R

d0+d1+d2 ,

lim
N→∞ sup

v∈K∩EN

∣∣ANh(v) − L0h(v)
∣∣ = 0, h ∈ D(L0),

lim
N→∞ sup

v∈K∩EN

∣∣∣∣ 1

r1,N

ANh(v) − L1h(v)

∣∣∣∣ = 0, h ∈ D(L1)

and

lim
N→∞ sup

v∈K∩EN

∣∣∣∣ 1

r2,N

ANh(v) − L2h(v)

∣∣∣∣ = 0, h ∈ D(L2).

REMARK 2.3. Similar conditions are considered in Ethier and Nagylaki
(1980). See also Ethier and Kurtz (1986), Section 1.7. There may be only two
time-scales, in which case d2 = 0, L2h = 0 and E = E0 × E1 (equivalently, E2
consists of a single point) in what follows.

The next condition ensures the uniqueness of the conditional equilibrium distri-
butions of the fast components V N

2 and V N
1 , whose “generators” are L2 and L1.

CONDITION 2.4 (Averaging condition). For each (v0, v1) ∈ E0 ×E1, there ex-
ists a unique μv0,v1 ∈ P(E2) such that

∫
L2h(v0, v1, v2)μv0,v1(dv2) = 0 for every

h ∈ D(L2) ∩ B(E). For each v0 ∈ E0, there exists a unique μv0 ∈P(E1) such that∫
L1h(v0, v1, v2)μv0,v1(dv2)μv0(dv1) = 0 for every h ∈ D(L1) ∩ B(E0 ×E1).

With this condition in mind, we define

L1h(v0, v1) =
∫

L1h(v0, v1, v2)μv0,v1(dv2).

Our first convergence condition insures that the slow component V N
0 has a

deterministic limit. Essentially it implies that its “generator” L0h = F · ∇h, for
h ∈ C∞

c (E0). It also identifies the intrinsic fluctuations of the slow component via
a martingale MN,1. For an R

d0 -valued process Y , we use [Y ]t to denote the matrix
of covariations [Yi, Yj ]t .

CONDITION 2.5 (First convergence condition). There exist FN ∈ M(EN,

R
d0) and F,G0 ∈ C(E,Rd0) such that

MN,1(t) = V N
0 (t) − V N

0 (0) −
∫ t

0
FN (

V N(s)
)
ds(2.3)

is a local martingale, [V N
0 ]t ⇒ 0, and for each compact K ⊂ E,

lim
N→∞ sup

v∈K∩EN

∣∣rN (
FN(v) − F(v)

) − G0(v)
∣∣ = 0.(2.4)



726 H.-W. KANG, T. G. KURTZ AND L. POPOVIC

We next turn to the relevant Poisson equations based on the conditional equilib-
rium distributions of the fast components and the limiting drift of the slow compo-
nent. Suppose that there exist h1 ∈ D(L1)

d0 and h2, h3 ∈ D(L2)
d0 such that

L1h1(v0, v1) =
∫

F(v0, v1, v2)μv0,v1(dv2)

−
∫ ∫

F(v0, v1, v2)μv0,v1(dv2)μv0(dv1),

(2.5)
L2h2(v0, v1, v2) = F(v0, v1, v2) −

∫
F(v0, v1, v2)μv0,v1(dv2),

L2h3(v0, v1, v2) = L1h1(v0, v1) − L1h1(v0, v1, v2).

Define

F 1(v0, v1) =
∫

F(v0, v1, v2)μv0,v1(dv2),

F (v0) =
∫ ∫

F(v0, v1, v2)μv0,v1(dv2)μv0(dv1)

and

HN = 1

r1,N

h1 + 1

r2,N

(h2 + h3).(2.6)

Note that for HN of this form

ANHN ≈ L1h1 + L2(h2 + h3) = F − F .

In what follows, HN does not have to be given by (2.6). That form simply suggests
the possibility of finding HN with the desired properties. Specifically, we assume
the existence of HN ∈D(AN) satisfying the following convergence condition.

CONDITION 2.6 (Second convergence condition). Assume that there exists
G1 ∈ C(E,Rd0) such that for each compact K ⊂ E,

lim
N→∞ sup

v∈K∩EN

∣∣rN (
F(v) − F(v0) − ANHN(v)

) − G1(v)
∣∣ = 0.(2.7)

REMARK 2.7. The critical requirements for HN are (2.7), (2.10) and (2.11).
In fact, because of the possibility of large fluctuations by V N

1 and V N
2 , even if h1,

h2 and h3 satisfying Condition 2.5 can be found, it may be necessary to define HN

using a sequence of truncations of h1, h2 and h3.

This now identifies the fluctuations of the slow component due to convergence of
the fast components to their conditional equilibrium distributions via a martingale
MN,2. For V0(0) ∈ R

d0 , let V0 satisfy

V0(t) = V0(0) +
∫ t

0
F

(
V0(s)

)
ds,(2.8)
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and define

MN,2(t) = HN

(
V N(t)

) − HN

(
V N(0)

) −
∫ t

0
ANHN

(
V N(s)

)
ds.

The following condition is then needed for application of the martingale central
limit theorem, Theorem A.1, to the process MN,1 − MN,2, composed of MN,2

above and MN,1 from (2.3). Essentially it says that the jumps of both the slow
component and solutions to the Poisson equations are appropriately small, and
that the quadratic variation of MN,1 − MN,2 converges.

CONDITION 2.8 (Converegence of covariation). There exists G ∈ C(E,

M
d0×d0) such that for each t > 0,

lim
N→∞E

[
sup
s≤t

rN
∣∣V N

0 (s) − V N
0 (s−)

∣∣] = 0,(2.9)

sup
s≤t

rNHN

(
V N(s)

) ⇒ 0(2.10)

and

(rN)2[
V N

0 − HN ◦ V N ]
t −

∫ t

0
G

(
V N(s)

)
ds ⇒ 0.(2.11)

We can now account for all the terms in the expansion (2.1) of UN = rN(V N
0 −

V0),

UN(t) = UN(0) + rN
(
MN,1(t) − MN,2(t)

)
+ rN

∫ t

0

(
F

(
V N

0 (s)
) − F

(
V0(s)

))
ds

+ rN

∫ t

0

(
FN (

V N(s)
) − F

(
V N(s)

))
ds

+ rN

∫ t

0

(
F

(
V N(s)

) − F
(
V N

0 (s)
) − ANHN

(
V N(s)

))
ds

+ rN
(
HN

(
V N(t)

) − HN

(
V N(0)

))
.

Conditions 2.1–2.8 insure that all the terms will have a limit as N → ∞. The limit
of the second term on the right is guaranteed by (2.9), (2.10) and (2.11) in Condi-
tion 2.8. Assuming that F is smooth, the third term on the right is asymptotic to∫ t

0 ∇F(V0(s)) · UN(s) ds. The fourth term is controlled by (2.4) of Condition 2.5,
the fifth by (2.7) of Condition 2.6. The order of time scale parameters (2.2) from
Condition 2.1 and the form of HN in (2.6) suggests that the sixth term goes to zero,
but we will explicitly assume that in the statement of the theorem.

Finally, we now only need a condition to ensure relative compactness of the
sequence. If E is unbounded, let ψ :E → [1,∞) be locally bounded and satisfy
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limv→∞ ψ(v) = ∞, or let ψ :E → [1,∞) be such that ∀M < ∞, {v ∈ E :ψ(v) ≤
M} is relatively compact in E, and let Dψ denote the collection of continuous
functions f satisfying

sup
v∈E

|f (v)|
ψ(v)

< ∞, lim
k→∞ sup

v∈E,|v|>k

|f (v)|
ψ(v)

= 0.

For sequences of space–time random measures, the notion of convergence that
we will use is that discussed in Kurtz (1992).

LEMMA 2.9. Let V N be a sequence of E-valued processes, and define the
occupation measure

�N

(
D × [0, t]) =

∫ t

0
1D

(
V N(s)

)
ds.(2.12)

Suppose that for each t > 0

sup
N

E

[∫ t

0
ψ

(
V N(s)

)
ds

]
< ∞.(2.13)

Then {�N } is relatvely compact, and if �N ⇒ �, then for f1, . . . , fm ∈ Dψ ,(∫ ·
0

f1
(
V N(s)

)
ds, . . . ,

∫ ·
0

fm

(
V N(s)

)
ds

)
⇒

(∫
E

f1(v)�
(
dv × [0, ·]), . . . ,∫

E

fm(v)�
(
dv × [0, ·]))

in CRm[0,∞).

PROOF. Relative compactness of {�N } follows from Lemma 1.3 of Kurtz
(1992). Relative compactness in CRm[0,∞) follows from relative compactness of
each component. To see that for f ∈ Dψ , the sequence XN = ∫ ·

0 f (V N(s)) ds is
relatively compact, it is enough to approximate the sequence by sequences known
to be relatively compact. For ε > 0, there exists a compact Kε ⊂ E and C > 0, such
that |f | ≤ (C1Kε + ε)ψ . Define XN

ε = ∫ ·
0 1Kε(V

N(s))f (V N(s)) ds. Note that XN
ε

is Lipschitz with Lipschitz constant supv∈Kε
|f (v)|, so {XN

ε } is relatively compact.
For δ > 0,

sup
N

P
{
sup
s≤t

∣∣XN(s) − XN
ε (s)

∣∣ ≥ δ
}

≤ ε

δ
sup
N

E

[∫ t

0
ψ

(
V N(s)

)
ds

]
,

and relative compactness of {XN } follows; see Problem 3.11.18 of Ethier and
Kurtz (1986).

Assuming that �N ⇒ �, the convergence of
∫ ·

0 f (V N(s)) ds to
∫
E×[0,·] f (v) ×

�(dv × ds) follows by the same type of approximation. �

The final condition insures relative compactness of V N .
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CONDITION 2.10 (Tightness). If E is unbounded, there exists a locally
bounded ψ :E→ [1,∞) satisfying limv→∞ ψ(v) = ∞ such that for each t > 0,

sup
N

E

[∫ t

0
ψ

(
V N(s)

)
ds

]
< ∞(2.14)

and all of the following functions are in Dψ : supN |FN |, supN |rN(FN −
F)|, supN |rN(F − F − ANHN)|, |G|, supN |ANh| for h ∈ D(L0) ∩ B(E0),
supN | 1

r1,N
ANh| for h ∈ D(L1) ∩ B(E0 × E1), and supN | 1

r2,N
ANh| for h ∈

D(L2) ∩ B(E).

Assuming the above conditions and defining

G(v0) =
∫ ∫

G(v0, v1, v2)μv0,v1(dv2)μv0(dv1),(2.15)

and similarly for G0 and G1, we have the following functional central limit theo-
rem.

THEOREM 2.11. Under the above conditions, suppose that
limN→∞ UN(0) = U(0), that F is continuously differentiable and that the so-
lution (necessarily unique) of (2.8) exists for all time. Then for each t > 0,

sup
s≤t

∣∣V N
0 (s) − V0(s)

∣∣ ⇒ 0,

rN(MN,1 − MN,2) ⇒ M , where M has Gaussian, mean-zero, independent incre-
ments with

E
[
M(t)MT (t)

] =
∫ t

0
G

(
V0(s)

)
ds,(2.16)

and UN ⇒ U satisfying

U(t) = U(0) + M(t) +
∫ t

0

(∇F
(
V0(s)

)
U(s) + G0

(
V0(s)

) + G1
(
V0(s)

))
ds.

Assuming G = σσT , we can write

U(t) = U(0) +
∫ t

0
σ

(
V0(s)

)
dW(s)

(2.17)

+
∫ t

0

(∇F
(
V0(s)

)
U(s) + G0

(
V0(s)

) + G1
(
V0(s)

))
ds.

REMARK 2.12. As noted above, the corresponding theorem for systems with
two time-scales is obtained by assuming E2 consists of a single point so L2f ≡ 0.
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PROOF OF THEOREM 2.11. Let �N be the occupation measure defined as
in (2.12). Then by Lemma 2.9, {�N } is relatively compact. Assume, for simplicity
that �N ⇒ �. We will show that � is uniquely determined.

Condition 2.5, equation (2.9) and the martingale central limit theorem, Theo-
rem A.1, imply MN,1 ⇒ 0, and Lemma 2.9 then implies V N

0 ⇒ V ∞
0 , where

V ∞
0 (t) = V0(0) +

∫
E×[0,t]

F(v)�(dv × ds).(2.18)

Condition 2.10, the definition of L2, and Lemma 2.9 imply

1

r2,N

(
h
(
V N(t)

) − h
(
V N(0)

) −
∫ t

0
ANh

(
V N(s)

)
ds

)
⇒

∫
E×[0,t]

L2h(v)�(dv × ds)

for every h ∈ C∞
c (E). The uniform integrability implied by (2.14) implies that the

limit is a continuous martingale with sample paths of finite variation and hence is
identically zero. Condition 2.4 then implies [see Example 2.3 of Kurtz (1992)] that
� can be written

�(dv × ds) = μv0,v1(dv2)�
0,1(dv0 × dv1 × ds).

A similar argument gives

0 =
∫
E×[0,t]

L1h(v)�(dv × ds)

=
∫
E0×E1×[0,t]

L1h(v0, v1)�
0,1(dv0 × dv1 × ds),

which implies

�0,1(dv0 × dv1 × ds) = μv0(dv1)�
0(dv0 × ds).

But the convergence of V N
0 to V ∞

0 implies �0(dv0 × ds) = δV ∞
0 (s)(dv0) ds.

Now (2.18) can be rewritten

V ∞
0 (t) = V0(0) +

∫ t

0
F

(
V ∞

0 (s)
)
ds,(2.19)

and it follows that V ∞
0 = V0.

Similarly, (2.11) now becomes

(rN)2[
V N

0 − HN ◦ V N ]
t ⇒

∫ t

0
G

(
V0(s)

)
ds,

and it follows that rN(MN,1 − MN,2) ⇒ M as desired.
Finally, the uniform integrability implied by (2.14) and Condition 2.10 allows

interchange of limits and integrals in the expansion of UN given in (2.1), and the
convergence of UN to U follows. �
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3. Diffusion approximation. The functional central limit theorem, Theo-
rem 2.11, suggests approximating V N

0 by V0 + 1
rN

U . In turn, that observation

and (2.17) suggest approximating V N
0 by a diffusion process given by the Itô equa-

tion

DN(t) = V N
0 (0) + 1

rN

∫ t

0
σ

(
DN(s)

)
dW(s)

(3.1)

+
∫ t

0

(
F

(
DN(s)

) + 1

rN
G0

(
DN(s)

) + 1

rN
G1

(
DN(s)

))
ds.

The approximation

V N
0 ≈ D̂N ≡ V0 + 1

rN
U

is, of course, justified by Theorem 2.11. Justification for the approximation V N
0 ≈

DN is less clear, since DN is not produced as a limit. Noting, however, that

D̂N(t) = V N
0 (0) + 1

rN

∫ t

0
σ

(
V0(s)

)
dW(s)

+
∫ t

0

(
F

(
V0(s)

) + 1

rN
∇F

(
V0(s)

)
U(s) + 1

rN
G0

(
V0(s)

)
+ 1

rN
G1

(
V0(s)

))
ds,

assuming smoothness of F , G0 and G1, we see that r2
N(DN − D̂N) converges to

Û satisfying

Û (t) =
∫ t

0
∇σ

(
V0(s)

)
U(s) dW(s)

+
∫ t

0

(
∇F

(
V0(s)

)
Û (s) + 1

2
UT (s)∂2F

(
V0(s)

)
U(s)

+ (∇G0
(
V0(s)

) + ∇G1
(
V0(s)

))
U(s)

)
ds,

and since the central limit theorem demonstrates that the fluctuations of V N are of
order O(r−1

N ), we see that the difference between the two approximations DN and
D̂N is negligible compared to these fluctuations.

4. Markov chain models for chemical reactions. A reaction network is a
chemical system involving multiple reactions and chemical species. The kind of
stochastic model for a network that we will consider treats the system as a contin-
uous time Markov chain whose state X is a vector giving the number of molecules
Xi of each species of type i ∈ I present. Each reaction is modeled as a possible
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transition for the state. The model for the kth reaction, for each k ∈ K, is deter-
mined by a vector of inputs νk specifying the numbers of molecules of each chem-
ical species that are consumed in the reaction, a vector of outputs ν′

k specifying
the numbers of molecules of each species that are produced in the reaction, and
a function of the state λk(x) that gives the rate at which the reaction occurs as a
function of the state. Specifically, if the kth reaction occurs at time t , the change
in X is a vector of integer values ζk = ν′

k − νk .
Let Rk(t) denote the number of times that the kth reaction occurs by time t .

Then Rk is a counting process with intensity λk(X(t)) (called the propensity in the
chemical literature) and can be written as

Rk(t) = Yk

(∫ t

0
λk

(
X(s)

)
ds

)
,

where the Yk are independent unit Poisson processes. The state of the system at
time t can be written as

X(t) = X(0) + ∑
k

ζkRk(t) = X(0) + ∑
k

ζkYk

(∫ t

0
λk

(
X(s)

)
ds

)
.

In the stochastic version of the law of mass action, the rate function is propor-
tional to the number of ways of selecting the molecules that are consumed in the
reaction, that is,

λk(x) = κ ′
k

∏
i

νik!
∏
i

(
xi

νik

)
= κ ′

k

∏
i

xi(xi − 1) · · · (xi − νik + 1).

Of course, physically, |νk| = ∑
i νik is usually assumed to be less than or equal to

two, but that does not play a significant role in the analysis that follows.
A reaction network may exhibit behavior on multiple scales due to the fact

that some species may be present in much greater abundance than others, and
the rate functions may vary over several orders of magnitude. Following Kang
and Kurtz (2013), we embed the model of interest in a sequence of models in-
dexed by a scaling parameter N . The model of interest corresponds to a particular
value of the scaling parameter N0. For each species i ∈ I = {1, . . . , s}, we spec-
ify a parameter αi ≥ 0 and normalize the number of molecules by N

αi

0 defining

Z
N0
i (t) = N

−αi

0 Xi(t) so that it is of O(1). For each reaction k ∈ K, we specify

another parameter βk and normalize the reaction rate constant as κ ′
k = κkN

βk

0 so
that κk is of O(1). One can observe this model on different time scales as well, by
replacing t by tN

γ
0 , for some γ ∈ R. The model then becomes a Markov chain on

E
N0 = N

−α1
0 Z+ × · · · × N

−αs

0 Z+ which, when N = N0, evolves according to

ZN
i (t) = ZN

i (0) + ∑
k

N−αi ζikYk

(∫ t

0
Nνk ·α+βk+γ λN

k

(
ZN(s)

)
ds

)
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with

λN
k (z) = κk

∏
i

zi

(
zi − N−αi

) · · · (zi − (νik − 1)N−αi
)
.

If for some i, αi > 0 and νik > 1, then λN
k varies with N but converges as N → ∞.

To simplify notation, we will write λk(z) rather than λN
k , but one should check

that the N -dependence is indeed negligible in the analysis that we do. Defining
�N = diag(N−α1, . . . ,N−αs ), so ZN = �NX, let

ANf (z) = ∑
k

Nρkλk(z)
(
f (z + �Nζk) − f (z)

)
,

where ρk = νk · α + βk + γ . Since the change of time variable from t to tNγ is
equivalent to scaling the generator by a factor of Nγ , we initially take γ to be zero.
We subsequently consider the behaviour of ZN on different time-scales ZN(·Nγ ).

To be precise regarding the domain of AN , note that because the jumps of ZN

are uniformly bounded, if we define τN
r = inf{t : |ZN(t)| ≥ r}, then for every con-

tinuous function f ,

f
(
ZN (

t ∧ τN
r

)) − f
(
ZN(0)

) −
∫ t∧τN

r

0
ANf

(
ZN(s)

)
ds

is a martingale.
For notational simplicity, assume that the αi satisfy 0 ≤ α1 ≤ · · · ≤ αs , and let

d◦ ≥ 0 satisfy αi = 0, i ≤ d◦ and αi > 0, i > d◦.
To apply the results of Section 2, we identify rN, r1,N , r2,N from the reaction

network and the parameters {αi}, {βk} as follows. Let

m2 = max{ρk − αi : ζik �= 0},
and define r2,N = Nm2 . Then there exists a linear operator L2 such that for each
compact K ⊂ R

s ,

lim
N→∞ sup

z∈K∩EN

∣∣∣∣ 1

r2,N

ANh(z) − L2h(z)

∣∣∣∣ = 0, h ∈ D(L2) = C1(
R

s).
Depending on the relationship between ρk and αi for ζik �= 0 and the time-scale
parameter γ , the limiting operator L2 is either the generator for a Markov chain,
a differential operator, or a combination of the two, which would be the generator
for a piecewise deterministic Markov process (PDMP). We classify the reactions
by defining

K2,◦ = {k ∈ K :ρk = m2}
and

K2,• = {k ∈ K :ρk − αi = m2 for some i with αi > 0, ζik �= 0}.
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For each k ∈ K2,◦ ∪K2,• define

ζ2,k = lim
N→∞Nρk−m2�Nζk ∈ Z.

Note that throughout the paper ζ2,k will denote the limiting reaction vector, not to
be confused with the single matrix entry ζik . Then, for h ∈ C1(Rs)

L2h(z) = ∑
k∈K2,◦

λk(z)
(
h(z + ζ2,k) − h(z)

) + ∑
k∈K2,•

λk(z)∇h(z) · ζ2,k.(4.1)

Note that, although λk(z) depends on all species types, the dynamics defined by L2
makes changes only due to reactions K2,◦ ∪K2,•. In other words, only the subnet-
work defined by reactions K2,◦ ∪K2,• is relevant on the time-scale corresponding
to γ = −m2. If K2,• is empty, the process corresponding to L2 is a Markov chain,
and if K2,◦ is empty, the process is just the solution of an ordinary differential
equation. If both are nonempty, the process is piecewise deterministic in the sense
of Davis (1993).

The process corresponding to L2 can be obtained as the solution of

V2(t) = V2(0) + ∑
k∈K2,◦

ζ2,kYk

(∫ t

0
λk

(
V2(s)

)
ds

)
+ ∑

k∈K2,•
ζ2,k

∫ t

0
λk

(
V2(s)

)
ds,

and assuming that V2 does not hit infinity in finite time, ZN(·N−m2) ⇒ V2.
The central limit theorem in Section 2 assumes that the state space is a product

space and that the fast process “averages out” one component. The state space
on which functions in the domain of L1 in Condition 2.2 are defined is such that
every function on it is contained in the kernal of L2. In order to separate the state
space in this way, we need to identify the combinations of species variables whose
change on the fastest time-scale γ = −m2 is less than O(1). This can be done with
a change of basis of the original state space as follows.

Let SK be a matrix whose columns are ζk, k ∈ K for some subset K⊂ K. Then
SK is the stoichiometric matrix associated with the reaction subnetwork K. For
the species types whose behavior is discrete, SK gives the possible jumps, while
for the species whose behavior evolves continuously, SK determines the possible
paths. We will let R(SK) = span{ζk, k ∈ K} ⊂ R

s denote the range of SK, called
the stoichiometric subspace of the chemical reaction subnetwork K, and we will
let

N
(
ST
K

) =
{
θ ∈ R

s :
∑
i∈I

θiζik = 0 ∀k ∈K
}

denote the null space of ST
K which is the othogonal complement of R(SK). For

each initial value z0 of the reaction system, z0 +R(SK) defines the stoichiometric
compatibility class of the system. Then both stochastically and deterministically
evolving components of the system must remain in the stoichiometric compati-
bility class for all time t > 0. The linear combinations of the species θ · X for
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θ ∈ N (ST
K) are conserved quantities; that is, they are constant along the trajecto-

ries of the evolution of the reaction subnetwork K.
On the time scale γ = −m2, the fast subnetwork determined by L2 has the

stoichiometric matrix S2 whose columns are {ζ2,k, k ∈ K2,◦ ∪K2,•}. Define N (ST
2 )

as above, and note that θ · V2, θ ∈ N (ST
2 ), are conserved quantities for the fast

subnetwork, that is, θ · V2(t) does not depend on t . Let s2 denote the dimension of
R(S2), and s′

1 = s − s2 be the dimension of N (ST
2 ). We now replace the natural

state space of the process by N (ST
2 )×R(S2), mapping the original processes onto

this product space by the orthogonal projection �N (ST
2 ) × �R(S2), that is,(

V ′N
1 (t),V N

2 (t)
) = (

�N (ST
2 )Z

N(t),�R(S2)Z
N(t)

)
.

Note that the original coordinates have different underlying state spaces N−αiZ;
however, the change of basis will combine only those coordinates with the same
scaling parameter αi . To see that this is the case, note that by the definition of ζ2,k ,
ζ2,ik �= 0 and ζ2,jk �= 0 implies αi = αj . It follows that there is a basis θ1, . . . , θs′

1

for N (ST
2 ) such that θil �= 0 and θjl �= 0 implies αi = αj , and we can take this

basis to be orthonormal. We denote the common scaling parameter by αθl
. Let �1

be the matrix with rows θT
1 , . . . , θT

s′
1

so that (�1z)
T = (θ1 · z, . . . , θs′

1
· z)T and the

orthogonal projection is given by

�N (ST
2 ) = �T

1 �1 =
s′
1∑

l=1

θlθ
T
l .

On the next time scale we only need to consider the dynamics of the pro-
jection of the original process that is unaffected by the fast subnetwork V ′N

1 =
�N (ST

2 )�NX. Since �N (ST
2 )�N = �N�N (ST

2 ), we have

V ′N
1 (t) = �N (ST

2 )Z
N(0) + �N

∑
k

�N (ST
2 )ζkYk

(
Nρk

∫ t

0
λN

k

(
ZN(s)

)
ds

)
.

Note that �R(S2)ζk is not necessarily equal to ζ2,k , nor is the other projection
�N (ST

2 )ζk = ζk −�R(S2)ζk necessarily equal to ζk − ζ2,k . To identify the next time
scale let

m1 = max{ρk − αθl
: θl · ζk �= 0} = max

{
ρk − αi : (�N (ST

2 )ζk)i �= 0
}
,

and define r1,N = Nm1 . Note that m1 < m2. Then there exists a linear operator L1

such that for each compact K ⊂ R
s′
1 ,

lim
N→∞ sup

z∈K∩EN

∣∣∣∣ 1

r1,N

ANh(z) − L1h(z)

∣∣∣∣ = 0,(4.2)
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where h ∈ D(L1) satisfies h(z) = f (θ1 · z, . . . , θs′
1
· z) for f ∈ C1(Rs′

1). Define

K1,◦ =
{
k ∈ K :ρk = m1,max

l
|θl · ζk| > 0

}
and

K1,• = {k ∈ K :ρk − αθl
= m1 for some l with αθl

> 0, θl · ζk �= 0}.
Let �

�1
N = diag(N−αθ1 , . . . ,N

−αθ
s′1 ), and for each k ∈ K1,◦ ∪K1,• define

ζ θ
1,k = lim

N→∞Nρk−m1�
�1
N �1ζk = lim

N→∞Nρk−m1
(
N−αθ1 θ1 ·ζk, . . . ,N

−αθ
s′1 θs′

1
·ζk

)T
.

Then for h(z) = f (�1z) with f ∈ C1(Rs′
1)

L1h(z) = ∑
k∈K1,◦

λk(z)
(
f

(
�1z + ζ θ

1,k

) − f (�1z)
) + ∑

k∈K1,•
λk(z)∇f (�1z) · ζ θ

1,k.

If V1 denotes the process corresponding to L1, then assuming that V1 does not hit
infinity in finite time, V ′N

1 (·N−m1) = �N (ST
2 )Z

N(·N−m1) ⇒ V1.
To separate the state space in terms of the next time scale (if there is one), define

ζ1,k = lim
N→∞Nρk−m1�N�N (ST

2 )ζk.

In other words, ζ1,k = �T
1 ζ θ

1,k is embedded in the original space, and ζ θ
1,k = �1ζ

1
k .

On the time scale γ = −m1, the subnetwork determined by L1 has the stoichio-
metric matrix S1 with columns {ζ1,kk ∈ K1,◦ ∪K1,•}. Define the subspace N (ST

1 )

as before, and let s1 denote the dimension of R(S1) and s0 = s′
1 − s1 be the di-

mension of N (ST
1 ). As before we need to map the processes V ′N

1 onto this prod-
uct space by the orthogonal projection �N (ST

1 ) × �R(S1). Since ζ1,k ∈ N (ST
2 ) =

span(θ1, . . . , θs′
1
), we can assume that the θl are selected so that

R(S1) = span(θs0+1, . . . , θs′
1
) = span(ζ1,1, . . . , ζ1,s1).

Define

�0 =
s0∑

l=1

θlθ
T
l = �N (ST

1 ), �1 =
s′
1∑

l=s0+1

θlθ
T
l = �R(S1) and �2 = �R(S2).

On the next time scale we need only consider the projection �0Z
N of the origi-

nal process which is unaffected by either of the faster subnetworks. To identify the
next time scale, let

m0 = max{ρk − αθl
: θl · ζk �= 0,1 ≤ l ≤ s0} = max

{
ρk − αi : (�0ζk)i �= 0

}
,

and define r0,N = Nm0 . Note that if 1 ≤ s2,1 ≤ s1,1 ≤ s0 (s0 + s1 + s2 = s), m0 <

m1 < m2. Without loss of generality, we can assume that time is scaled so that
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m0 = 0. Then, there exists a linear operator L0 such that for each compact K ⊂
R

s0 ,

lim
N→∞ sup

z∈K∩EN

∣∣ANh(z) − L0h(z)
∣∣ = 0,

where h ∈ D(L0) satisfies h(z) = f (θ1 · z, . . . , θs0 · z) for f ∈ C1(Rs0). Define

K0,◦ =
{
k ∈ K :ρk = 0,max

l
|θl · ζk| > 0

}
and

K0,• = {k ∈ K :ρk − αθl
= 0 for some l with αθl

> 0, θl · ζk �= 0,1 ≤ l ≤ s0}.
As before, let �0 be the matrix with rows θT

1 , . . . , θT
s0

, and let �
�0
N = diag(N−αθ1 ,

. . . ,N
−αθs0 ), so that �0 = �N (ST

1 ) = �T
0 �0 and for each k ∈ K0,◦ ∪K0,• define

ζ
θ,0
k = lim

N→∞Nρk�
�0
N �0ζk = lim

N→∞Nρk
(
N−αθ1 θ1 · ζk, . . . ,N

−αθs0 θs0 · ζk

)T
.

For h(z) = f (�0z) with f ∈ C1(Rs0)

L0h(z) = ∑
k∈K0,◦

λk(z)
(
f

(
�0z + ζ

θ,0
k

) − f (�0z)
) + ∑

k∈K0,•
λk(z)∇f (�0z) · ζ θ,0

k .

To relate the above calculations to the results of Section 2, we assume that K0,◦ =
∅ so that

L0h(z) = ∑
k∈K0,•

λk(z)∇f (�0z) · ζ θ,0
k .

Let V N = T ZN ≡ (�0Z
N,�1Z

N,�2Z
N), so V N = (V N

0 ,V N
1 ,V N

2 ) ∈
N (ST

1 ) × R(S1) × R(S2), and note that T is invertible so that the intensities can
be written as functions of v ∈ N (ST

1 ) ×R(S1) ×R(S2), that is, λk(T
−1v). Since

�0z = ∑s0
l=1(θl · z)θl and �1z = ∑s′

1
l=s0+1(θl · z)θl , the process V N

0 = �0Z
N is

the embedding of �0Z
N , and similarly (V N

0 ,V N
1 ) = (�0Z

N,�N
1 ZN) is just the

embedding of �1Z
N . Let E0, E1, and E2 denote the limit of the state spaces for

V N
0 , V N

1 and V N
2 .

The function FN in (2.3) is given by

FN(v) = ∑
k

Nρk�
�0
N λk

(
T −1v

)
�0ζk(4.3)

and

F(v) = lim
N→∞FN(v) = ∑

k∈K0,•
λk

(
T −1v

)
ζ

θ,0
k .
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To satisfy Condition 2.4 we will assume that L2 is such that for each (v0, v1) ∈
E0 × E1 there exists a unique conditional equilibrium distribution μv0,v1(dv2) ∈
P(E2) for L2. Then L1h(v0, v1) = ∫

L1h(v0, v1, u2)μv0,v1(du2) is

L1h(v0, v1) = ∑
k∈K1,◦

λk(v0, v1)
(
f

(
(v0, v1) + ζ θ

1,k

) − f (v0, v1)
)

(4.4)
+ ∑

k∈K1,•
λk(v0, v1)∇f (v0, v1) · ζ θ

1,k,

where λk(v0, v1) = ∫
λk(T

−1(v0, v1, v2))μv0,v1(dv2). For Condition 2.4 to be met,
we also need to assume that for each v0 ∈ E0 there exists a unique conditional
equilibrium distribution μv0(dv1) ∈ P(E1) for L1.

We further need to assume that there are functions h1 ∈ D(L1) :E0 × E1 �→
R

|E0| and h2, h3 ∈ D(L2) :E �→R
|E0| that solve the following Poisson equations:

L1h1 = F 1 − F, L2h2 = F − F 1, L2h3 = L1h1 − L1h1,

where

F 1(v0, v1) =
∫

F(v0, v1, u2)μv0,v1(du2), F (v0) =
∫

F 1(v0, u1)μv0(du1)

in order for Condition 2.6 to be met. We refer the reader to Glynn and Meyn (1996)
for results on sufficient conditions for the existence of solutions to a Poisson equa-
tion for a general class of Markov processes. For the class of general piecewise
deterministic processes see also Costa and Dufour (2003). For the examples con-
sidered in Section 5, we were able to explicitly compute the desired functions. In
general, however, explicit computation may not be possible, so results that ensure
the existence of these functions may be useful.

We now need to identify rN , which will be of the form rN = Np , for some
0 < p < m1. Assuming that there is no cancellation among the terms in the sum
in (4.3), for (2.4) to hold, we must have

p ≤ max{αθl
− ρk : θl · ζk �= 0, ρk < αθl

,1 ≤ l ≤ s0}.(4.5)

Then

θl · G0(v) = lim
N→∞ rNθl · (

FN(v) − F(v)
) = ∑

k : αθl
−ρk=p

λk

(
T −1v

)
θl · ζk

and

G0(v) =
s0∑

l=1

∑
k:αθl

−ρk=p

λk

(
T −1v

)
θl · ζkθl.

Now let HN = r−1
1,Nh1 + r−1

2,N (h2 + h3). To ensure that the limit in (2.7) exists,
with reference to the definition of L2, we must have

p ≤ min{αi + m2 − ρk : ζik �= 0, αi + m2 − ρk > 0}(4.6)
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and

p ≤ min{2αi + m2 − ρk : ζik �= 0, αi > 0},(4.7)

and with reference to the definition of L1, we must have

p ≤ min{αθl
+ m1 − ρk : θl · ζk �= 0, αθl

+ m1 − ρk > 0}(4.8)

and

p ≤ min{2αθl
+ m1 − ρk : θl · ζk �= 0, αθl

> 0}.(4.9)

Note that (4.5) implies the minimum in (4.8) and (4.9) only needs to be taken over
s0 + 1 ≤ l ≤ s ′

1.
Assuming that h1, h2 and h3 are sufficiently smooth, these assumptions insure

that there exists G1 :E �→R
|E0|

G1(v) = lim
N→∞

(
rN

(
AN

r2,N

− L2

)
(h2 + h3) + rN

(
AN

r1,N

− L1

)
h1

)
= G12(v) + G11(v).

To identify G12, define

ζ̃2,k = lim
N→∞Np(

Nρk−m2�Nζk − ζ2,k

)
,

ξ̃2,kij = lim
N→∞Np+ρk−m2−αi−αj ζikζkj

and

Kp
2,◦ = {k ∈ K : θl · ζk �= 0 for some l with αθl

= 0,m2 − ρk = p},
Kp

2,• = {k ∈ K \K2,• : θl · ζk �= 0 for some l with αθl
> 0,m2 − ρk + αθl

= p}.
Then setting h(z) = h2(T z) + h3(T z), G12(v) = H12(T

−1v), where

H12(z) = ∑
k∈K2,◦

λk(z)∇h(z + ζ2,k) · ζ̃2,k + ∑
k∈K2,•∪Kp

2,•

λk(z)∇h(z) · ζ̃2,k

+ ∑
k∈K2,•

λk(z)
1

2

∑
ij

∂zi
∂zj

h(z)̃ξ2,kij + ∑
k∈Kp

2,◦

λk(z)
(
h(z + ζ̃2,k) − h(z)

)
.

Similarly, to identify G11, define

ζ̃ θ
1,k = lim

N→∞Np(
Nρk−m1�

�1
N �1ζk − ζ θ

1,k

)
,

ξ̃ θ
1,kll′ = lim

N→∞N
p+ρk−m1−αθl

−αθ
l′ ζ θ

1,klζ
θ
1,kl′
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and

Kp
1,◦ = {k ∈ K : θl · ζk �= 0 for some l with αθl

= 0,m1 − ρk = p},
Kp

1,• = {
k ∈ K \K1• : θl · ζk �= 0 for some l with αθl

> 0,m1 − ρk + αθl
= p

}
Then G11(v) = H11(T

−1v), where

H11(z) = ∑
k∈K1,◦

λk(z)∇h1
(
�1z + ζ θ

1,k

) · ζ̃ θ
1,k

+ ∑
k∈K1,•∪Kp

1,•

λk(z)∇h1(�1z) · ζ̃ θ
1,k

+ ∑
k∈K1,•

λk(z)
1

2

∑
ij

∂l ∂l′h1(�1z)̃ξ
θ
1,kll′

+ ∑
k∈Kp

1,◦

λk(z)
(
h1

(
�1z + ζ̃ θ

1,k

) − h1(�1z)
)
.

We now need to identify G :E → M
|E0|×|E0| satisfying (2.11) in Condition 2.8.

Let

RN
k (t) = Yk

(
Nρk

∫ t

0
λk

(
ZN(s)

)
ds

)
and H̃N(V N) = �0Z

N − HN(V N) = V N
0 − HN(V N). Then denoting z⊗2 = zzT ,

N2p[
H̃N

(
V N )]

t

= ∑
k

N2p
∫ t

0

(
H̃N

(
V N(s−) + T �Nζk

) − H̃N

(
V N(s−)

))⊗2
dRN

k (s),

which is asymptotic to∑
k

N2p+ρk

∫ t

0

(
H̃N

(
V N(s−) + T �Nζk

) − H̃N

(
V N(s−)

))⊗2
λk

(
ZN(s)

)
ds.

Taking the limit as N → ∞ and integrating with respect to μv0,v1(dv2) and
μv0(dv1) then gives the value of G.

5. Examples. We now apply the central limit theorem to several examples of
chemical reaction networks with multiple scales.

5.1. Three species viral model. Ball et al. (2006) considered asymptotics for a
model of an intracellular viral infection originally given in Srivastava et al. (2002)
and studied further in Haseltine and Rawlings (2002). The model includes three
time-varying species, the viral template, the viral genome and the viral structural
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protein, involved in six reactions,

(1) T + stuff
κ1
⇀ T + G,

(2) G
κ2
⇀ T ,

(3) T + stuff
κ3
⇀ T + S,

(4) T
κ4
⇀ ∅,

(5) S
κ5
⇀ ∅,

(6) G + S
κ6
⇀ V ,

whose reaction rates (propensities) are of mass-action kinetics form λk(x) =
κ ′
k

∏
i x

νki

i with constants

κ ′
1 1 1,

κ ′
2 0.025 2.5N

−2/3
0 ,

κ ′
3 1000 N0,

κ ′
4 0.25 0.25,

κ ′
5 2 2,

κ ′
6 7.5 × 10−6 0.75N

−5/3
0 ,

here expressed in terms of N0 = 1000.
We denote T , G, S as species 1, 2 and 3, respectively, and let Xi(t) denote the

number of molecules of species i in the system at time t . The stochastic model
is

X1(t) = X1(0) + Y2

(∫ t

0
0.025X2(s) ds

)
− Y4

(∫ t

0
0.25X1(s) ds

)
,

X2(t) = X2(0) + Y1

(∫ t

0
X1(s) ds

)
− Y2

(∫ t

0
0.025X2(s) ds

)
− Y6

(∫ t

0
7.5 · 10−6X2(s)X3(s) ds

)
,

X3(t) = X3(0) + Y3

(∫ t

0
1000X1(s) ds

)
− Y5

(∫ t

0
2X3(s) ds

)
− Y6

(∫ t

0
7.5 · 10−6X2(s)X3(s) ds

)
.
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We take

α1 = 0, α2 = 2/3, α3 = 1.

The scaling of the rate constants gives
k κk βk ρk

1 1 0 0
2 2.5 −2/3 0
3 1 1 1
4 0.25 0 0
5 2 0 1
6 0.75 −5/3 0.

Changing time t → N2/3t , the normalized system becomes

ZN
1 (t) = ZN

1 (0) + Y2

(∫ t

0
N2/32.5ZN

2 (s) ds

)
− Y4

(∫ t

0
N2/30.25ZN

1 (s) ds

)
,

ZN
2 (t) = ZN

2 (0) + N−2/3Y1

(∫ t

0
N2/3ZN

1 (s) ds

)
− N−2/3Y2

(∫ t

0
N2/32.5ZN

2 (s) ds

)
−N−2/3Y6

(∫ t

0
N2/30.75ZN

2 (s)ZN
3 (s) ds

)
,

ZN
3 (t) = ZN

3 (0) + N−1Y3

(∫ t

0
N5/3ZN

1 (s) ds

)
− N−1Y5

(∫ t

0
N5/32ZN

3 (s) ds

)
−N−1Y6

(∫ t

0
N2/30.75ZN

2 (s)ZN
3 (s) ds

)
.

We assume that the initial value for ZN
2 is chosen to satisfy Z2(0) =

limN→∞ ZN
2 (0) ∈ (0,∞).

In this model, there are only two time-scales, so we set

m1 = max{ρk − αi : ζik �= 0} = max
{2

3 − 0, 2
3 − 2

3 , 5
3 − 1, 2

3 − 1
} = 2

3 ,

and we have r1,N = N2/3. We have ζ1,1 = 0, ζ1,2 = e1, ζ1,3 = e3, ζ1,4 = −e1,

ζ1,5 = −e3, ζ1,6 = 0. The operator L1 = limN→∞ N−2/3AN is given by

L1h(z) = λ2(z)
(
h(z + e1) − h(z)

) + λ4(z)
(
h(z − e1) − h(z)

)
+ (

λ3(z) − λ5(z)
)
∂z3h(z)

and note that for smooth h,

N−2/3ANh = L1h + O
(
N−2/3)

.(5.1)
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Functions h ∈ ker(L1) are functions of the coordinate z2 only, E1 = R(S1) =
span{e1, e3} and E0 =N (ST

1 ) = span{e2}. Taking h ∈D(L0) = C1(E0),

L0h(z) = lim
N→∞ANh(z) = (

λ1(z) − λ2(z) − λ6(z)
)
∂z2h(z2).

Setting V N
0 = ZN

2 and V N
1 = (ZN

1 ,ZN
3 ), the compensator for V N

0 is

FN(z) = λ1(z) − λ2(z) − λ6(z),

so F(z) = FN(z) and G0(z) ≡ 0 in Condition 2.5.
The process corresponding to L1 is piecewise deterministic with Z1 discrete

and Z3 continuous. For fixed z2, with reference to Condition 2.4, the conditional
equilibrium distribution satisfies∫ [

2.5z2
(
g(z1 + 1, z3) − g(z1, z3)

)
+ 0.25z1

(
g(z1 − 1, z3) − g(z1, z3)

)
(5.2)

+ (z1 − 2z3)
∂g

∂z3
(z1, z3)

]
μz2(dz1, dz3) = 0.

Note that the marginal for Z1 is Poisson(10z2), so∫
z1μz2(dz1, dz3) = 10z2.

Taking g(z1, z3) = z3 in (5.2), we see∫
z3μz2(dz1, dz3) = 5z2.

These calculations imply that the averaged value for the drift F is

F(z2) =
∫ (

λ1(z) − λ2(z) − λ6(z)
)
μz2(dz1, dz3) = 7.5z2 − 3.75z2

2,

with ∇F(z2) = 7.5 − 7.5z2. For the current example, we will see that F and G

in (2.15) can be obtained without explicitly computing with μz2 .
With reference to (2.5), we look for a solution h1 to the Poisson equation

L1h1(z) = (z1 − 2.5z2 − 0.75z2z3) − (
7.5z2 − 3.75z2

2
)
.(5.3)

Trying h1 of the form h1(z) = z1u1(z2) + z3u3(z2), we have

L1h1(z) = u1(z2)(2.5z2 − 0.25z1) + u3(z2)(z1 − 2z3)

and equating the factors multiplying z1 and z3, we get u1(z2) = 1.5z2 − 4
and u3(z2) = 0.375z2. Thus h1(z) = z1(1.5z2 − 4) + z3(0.375z2) and HN(z) =
N−2/3h1(z).
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Since the solution of (5.3) is exact and (as we shall see) rN = N1/3, by (5.1), we
have G1 = 0 in Condition 2.6. With reference to Condition 2.8, (2.9) and (2.10)
are immediate.

The only restriction that remains to determine rN is the asymptotic behavior of
the quadratic variation of ZN

2 − HN(ZN) = ZN
2 − N−2/3h1(Z

N). Direct calcula-
tion shows that to get a nontrivial G in (2.11) we must take rN = N1/3. We then
have

N2/3[
ZN

2 − HN (
ZN )]

t

=
6∑

k=1

N−2/3
∫ t

0

(
ζ2k + h1

(
ZN(s−)

) − h1
(
ZN(s−) + �Nζk

))2
dRN

k (s)

≈
∫ t

0
ZN

1 (s) ds +
∫ t

0

(−1 − 1.5ZN
2 (s) + 4

)22.5ZN
2 (s) ds

+
∫ t

0

(
1.5ZN

2 (s) − 4
)20.25ZN

1 (s) ds +
∫ t

0
0.75ZN

2 (s)ZN
3 (s) ds,

where we observe that jumps by RN
3 and RN

5 do not contribute to the limit. Divid-
ing the equation for ZN

1 by N2/3, we observe that∫ t

0
ZN

1 (s) ds ≈
∫ t

0
10ZN

2 (s) ds.

Similarly, dividing the equation for ZN
3 by N2/3 we see that∫ t

0
ZN

3 (s) ds ≈ 1

2

∫ t

0
ZN

1 (s) ds ≈
∫ t

0
5ZN

2 (s) ds,

which in turn implies ∫ t

0
ZN

2 (s)ZN
3 (s) ds ≈

∫ t

0
5ZN

2 (s)2 ds.

It follows that G(z2) is

10z2 + (3 − 1.5z2)
22.5z2 + (4 − 1.5z2)

22.5z2 + 3.75z2
2

= 72.5z2 − 48.75z2
2 + 11.25z3

2.

Let Z2 be the solution of

Z2(t) = Z2(0) +
∫ t

0

(
7.5Z2(s) − 3.75Z2

2(s)
)
ds

and UN = N1/3(ZN
2 − Z2). Then

sup
s≤t

∣∣ZN
2 (s) − Z2(s)

∣∣ ⇒ 0 and UN ⇒ U,
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where, for W a standard Brownian motion, U satisfies

U(t) = U(0) +
∫ t

0

√
72.5Z2(s) − 48.75Z2(s)2 + 11.25Z2(s)3 dW(s)

+
∫ t

0

(
7.5 − 7.5Z2(s)

)
U(s) ds.

The corresponding diffusion approximation is

DN(t) = ZN
2 (0)

+ N−1/3
∫ t

0

√
72.5DN(s) − 48.75DN(s)2 + 11.25DN(s)3 dW(s)

+
∫ t

0

(
7.5DN(s) − 3.75DN(s)2)

ds.

We compare simulations for the original value of the amount of genome X2(·)
with the approximations given by the Gaussian approximation N2/3Z2(·N−2/3) +
N1/3U(·N−2/3), and the diffusion approximation N2/3DN(·N−2/3). For com-
parison we also give the deterministic value given by N2/3Z2(·N−2/3). We use
N = 1000 and a time interval on the scale γ = 2/3. The initial values are set to
X1(0) = X3(0) = 0,X2(0) = 10 and 500 realizations are performed for each of
the three stochastic processes. Figure 1 shows the mean and one standard devia-
tion above and below the mean for each of the three processes, and Figure 2 shows
five trajectories for the three processes.

For the diffusion process, these plots use only sample paths that hit one
(= 100/N

2/3
0 ) before they hit zero. For small initial values, the diffusion approxi-

FIG. 1. Mean and standard deviation of the amount of genome in the three species model [500 sim-
ulations with parameters N0 = 1000, γ = 2/3, X1(0) = 0, X2(0) = 10, X3(0) = 0].
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FIG. 2. Five trajectories of the amount of genome in the three species model (same parameters as
in Figure 1).

mation does not give a good approximation of the probability of hitting zero (and
hence absorbing at zero), before (e.g.) hitting one. Let

τN
Z = inf

{
t > 0 :ZN

2 (t) = 0 or ZN
2 (t) ≥ 1

}
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and

τN
D = inf

{
t > 0 :DN(t) = 0 or DN(t) ≥ 1

}
.

It is shown in Ball et al. (2006) that

lim
N→∞P

{
ZN (

τN
Z

) = 0|ZN(0) = N−2/3k
} = 4−k

while a standard calculation for the diffusion process gives

lim
N→∞P

{
DN (

τN
D

) = 0|DN(0) = N−2/3k
} = e−(6/29)k.

5.2. Michaelis–Menten enzyme model. A basic model for an enzymatic reac-
tion includes three time-varying species, the substrate, the free enzyme and the
substrate-bound enzyme, involved in three reactions:

(1) S + E
κ ′

1
⇀ SE,

(2) SE
κ ′

2
⇀ S + E,

(3) SE
κ ′

3
⇀ P + E,

with mass-action kinetics and with rate constants such that κ ′
2, κ

′
3 � κ ′

1. To be
precise, let κ ′

2 = κ2N , κ ′
3 = κ3N , and κ ′

1 = κ1.
We denote E, S, P as species 1, 2 and 3, respectively, and let Xi(t) be the

number of molecules of species i in the system at time t . Note that the total number
of unbound and substrate-bound enzyme molecules is conserved, and we let M

denote this amount. The stochastic model is

X1(t) = X1(0) − Y1

(∫ t

0
κ ′

1X1(s)X2(s) ds

)
+ Y2

(∫ t

0
κ ′

2
(
M − X1(s)

)
ds

)
+ Y3

(∫ t

0
κ ′

3
(
M − X1(s)

)
ds

)
,

X2(t) = X2(0) − Y1

(∫ t

0
κ ′

1X1(s)X2(s) ds

)
+ Y2

(∫ t

0
κ ′

2
(
M − X1(s)

)
ds

)
,

X3(t) = X3(0) + Y3

(∫ t

0
κ ′

3
(
M − X1(s)

)
ds

)
.

If the initial amount of substrate is O(N) � M , then the normalizations of the
species abundances are given by

α1 = 0, α2 = 1, α3 = 1,

and the scaling exponents for the rate constants are

β1 = 0, β2 = 1, β3 = 1.
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The normalized system becomes

ZN
1 (t) = ZN

1 (0) − Y1

(∫ t

0
Nκ1Z

N
1 (s)ZN

2 (s) ds

)
+ Y2

(∫ t

0
Nκ2

(
M − ZN

1 (s)
)
ds

)
+Y3

(∫ t

0
Nκ3

(
M − ZN

1 (s)
)
ds

)
,

ZN
2 (t) = ZN

2 (0) − N−1Y1

(∫ t

0
Nκ1Z

N
1 (s)ZN

2 (s) ds

)
+ N−1Y2

(∫ t

0
Nκ2

(
M − ZN

1 (s)
)
ds

)
,

ZN
3 (t) = ZN

3 (0) + N−1Y3

(∫ t

0
Nκ3

(
M − ZN

1 (s)
)
ds

)
.

Again, there are only two time-scales with the fast time-scale m1 = 1 giving
r1,N = N . Then ζ1,1 = −e1, ζ1,2 = ζ1,3 = e1, and the operator L1 is given by

L1h(z) = κ1z1z2
(
h(z − e1) − h(z)

) + (κ2 + κ3)(M − z1)
(
h(z + e1) − h(z)

)
,

and for smooth h,

N−1ANh = L1h + O
(
N−1)

.(5.4)

Functions h ∈ ker(L1) are functions of coordinates z2 and z3 only. Thus E1 =
{z1e1 : z1 = 0, . . . ,M} ⊂ R(S1) and E0 = N (ST

1 ) = {(z2e2, z3e3) : z2, z3 ≥ 0}. For
h ∈ D(L0) = C1(E0),

L0h(z) = (
κ2(M − z1) − κ1z1z2

)
∂z2h(z) + κ3(M − z1)∂z3h(z).

Taking V N
0 = (ZN

2 ,ZN
3 ), the compensator for V N

0 in (2.3) is

FN(z) = (
κ2(M − z1) − κ1z1z2, κ3(M − z1)

)T
,

so F(z) = FN(z) and G0(z) ≡ 0.
On the fast time-scale, the process whose generator is L1 is a Markov chain on

E1 describing the dynamics of an urn scheme with a total of M molecules, and for
a fixed value of z2, z3, with transition rates κ1z2 for outflow and κ2 +κ3 for inflow.
Its stationary distribution μz2,z3(z1) is binomial(M,p(z2)) for

p(z2) = κ2 + κ3

κ2 + κ3 + κ1z2
,

so
∫

z1μz2,z3(dz1) = Mp(z2).
This observation implies that the averaged value for the drift F is

F(z2, z3) =
(
−M

κ1κ3z2

κ2 + κ3 + κ1z2
,M

κ1κ3z2

κ2 + κ3 + κ1z2

)T

= −κ3M
(
1 − p(z2)

)(
1

−1

)
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with

∇F = −M
κ1κ3(κ2 + κ3)

(κ2 + κ3 + κ1z2)2

(
1 0

−1 0

)
,

and we need to solve the Poisson equation

L1h1(z) =
(
κ2(M − z1) − κ1z1z2 + M

κ1κ3z2

κ2 + κ3 + κ1z2
,

κ3(M − z1) − M
κ1κ3z2

κ2 + κ3 + κ1z2

)T

for h1. Trying h1 of the form h1(z) = (z1u1(z2), z1u2(z2))
T , we have

L1h1(z) = (−κ1z1z2u1(z2) + (κ2 + κ3)(M − z1)u1(z2),−κ1z1z2u2(z2)

+ (κ2 + κ3)(M − z1)u2(z2)
)T

,

and equating terms with the same power of z1, we get u1(z2) = (κ1z2 +
κ2)/(κ1z2 + κ2 + κ3) and u2(z2) = κ3/(κ1z2 + κ2 + κ3). Note that u1(z2) +
u2(z2) = 1. Thus

h1(z) =
(

z1(κ1z2 + κ2)

(κ1z2 + κ2 + κ3)
,

z1κ3

(κ1z2 + κ2 + κ3)

)T

= z1
(
u1(z2),1 − u1(z2)

)T
,

and HN(z) = N−1h1(z).
Examining the quadratic variation of V N

0 − HN ◦ V N , we see that rN must be
N1/2, and by (5.4), it follows that G1 = 0 in (2.7).

Finally, letting z⊗2 = zzT ,

N
[
V N

0 − HN ◦ V N ]
t

= N−1
3∑

k=1

∫ t

0

(
�0ζk + h1

(
ZN(s−)

) − h1
(
ZN(s−) + �Nζk

))⊗2
dRN

k (s)

≈
∫ t

0

(
−

(
1
0

)
+

(
u1

(
ZN

2 (s)
)

1 − u1
(
ZN

2 (s)
)))⊗2

κ1Z
N
1 (s)ZN

2 (s) ds

+
∫ t

0

((
1
0

)
−

(
u1

(
ZN

2 (s)
)

1 − u1
(
ZN

2 (s)
)))⊗2

κ2
(
M − ZN

1 (s)
)
ds

+
∫ t

0

((
0
1

)
−

(
u1

(
ZN

2 (s)
)

1 − u1
(
ZN

2 (s)
)))⊗2

κ3
(
M − ZN

1 (s)
)
ds

≈
∫ t

0

( (
1 − u1

(
ZN

2 (s)
))2 −(

1 − u1
(
ZN

2 (s)
))2

−(
1 − u1

(
ZN

2 (s)
))2 (

1 − u1
(
ZN

2 (s)
))2

)
κ1Z

N
1 (s)ZN

2 (s) ds
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+
∫ t

0

( (
1 − u1

(
ZN

2 (s)
))2 −(

1 − u1
(
ZN

2 (s)
))2

−(
1 − u1

(
ZN

2 (s)
))2 (

1 − u1
(
ZN

2 (s)
))2

)
κ2

(
M − ZN

1 (s)
)
ds

+
∫ t

0

(
u1

(
ZN

2 (s)
)2 −u1

(
ZN

2 (s)
)2

−u1
(
ZN

2 (s)
)2

u1
(
ZN

2 (s)
)2

)
κ3

(
M − ZN

1 (s)
)
ds,

and averaging ZN
1 gives

lim
N→∞N

[
V N

0 − HN ◦ V N ]
t =

∫ t

0
G

(
Z(s)

)
ds

=
∫ t

0

(
g
(
Z2(s)

) −g
(
Z2(s)

)
−g

(
Z2(s)

)
g
(
Z2(s)

) )
ds,

where Z = (Z2,Z3) satisfies

Z(t) = Z(0) +
∫ t

0
M

κ1κ3Z2(s)

κ2 + κ3 + κ1Z2(s)

(−1
1

)
ds

and

g(z2) = M
(
1 − u1(z2)

)2(
κ1p(z2)z2 + κ2

(
1 − p(z2)

))
+ Mu1(z2)

2κ3
(
1 − p(z2)

)
.

Let UN = N1/2(ZN
2 − Z2,Z

N
3 − Z3)

T . Then

sup
s≤t

∣∣(ZN
2 (s) − Z2(s),Z

N
3 (s) − Z3(s)

)∣∣ ⇒ 0 and UN ⇒ U,

where U = (U2,U3)
T satisfies

U(t) = U(0) +
∫ t

0

(−1
1

)√
g
(
Z2(s)

)
dW(s)

+
∫ t

0

Mκ1κ3(κ2 + κ3)

(κ2 + κ3 + κ1Z2(s))2 U2(s)

(−1
1

)
ds

for W a standard scalar Brownian motion.
The corresponding diffusion approximation is(

DN
2 (t)

DN
3 (t)

)
=

(
ZN

2 (0)

ZN
3 (0)

)
+ N−1/2

∫ t

0

(−1
1

)√
g
(
DN

2 (s)
)
dW(s)

+
∫ t

0
M

κ1κ3D
N
2 (s)

κ2 + κ3 + κ1D
N
2 (s)

(−1
1

)
ds.

We compare simulations for 500 realizations of the original model with 500
realizations of the Gaussian approximation N0Z2(·) + N

1/2
0 U2(·),N0Z3(·) +

N
1/2
0 U3(·) and of the diffusion approximation N0D

N0
2 (·),N0D

N0
3 (·). For com-

parison we also give the deterministic value given by N0Z2(·),N0Z3(·). We use
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FIG. 3. Mean and standard deviation of the amount of substrate in the Michaelis–Menten model
[500 simulations with parameters N0 = 100, γ = 0, X1(0) = X3(0) = 0, X2(0) = 50, M = 5,
κ ′

1 = 0.1, κ ′
2 = 500, κ ′

3 = 100].

N0 = 100 and a time interval on the scale γ = 0. The initial values are set to
X1(0) = X3(0) = 0,X2(0) = 50 and M = 5, κ ′

1 = 0.1, κ ′
2 = 500 and κ ′

3 = 100.
Figure 3 shows the mean and one standard deviation above and below the mean
for each of the three processes, and Figure 4 shows five trajectories for the three
processes. In this example, both Gaussian and diffusion approximations give good
approximations for the means and the standard deviations of the pair of pro-
cesses X2(·),X3(·).

5.3. Another enzyme model. Another model for an enzymatic reaction in-
cludes an additional form for the enzyme which cannot bind to the substrate. There
are now four species, substrate, active enzyme, enzyme-substrate complex and in-
active enzyme, involved in five reactions:

(1) S + E
κ ′

1
⇀ SE,

(2) SE
κ ′

2
⇀ S + E,

(3) SE
κ ′

3
⇀ P + E,

(4) F
κ ′

4
⇀ E,

(5) E
κ ′

5
⇀ F ,

with mass-action kinetics and rate constants such that κ ′
1 = O(1), κ ′

2, κ
′
3 = O(N),

κ ′
4, κ

′
5 = O(N2) so that κ ′

1 = κ1, κ ′
2 = κ2N , κ ′

3 = κ3N , κ ′
4 = κ4N

2, κ ′
5 = κ5N

2.
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FIG. 4. Five trajectories of the amount of substrate in the Michaelis–Menten model (parameters as
in Figure 3).

We denote E, S, F as species 1, 2 and 3, respectively, and let Xi(t) be the
number of molecules of species i in the system at time t . The total number M of
active, inactive and substrate-bound enzyme molecules is conserved. The stochas-
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tic model is

X1(t) = X1(0) − Y1

(∫ t

0
κ ′

1X1(s)X2(s) ds

)
+ Y2

(∫ t

0
κ ′

2
(
M − X1(s) − X3(s)

)
ds

)
+ Y3

(∫ t

0
κ ′

3
(
M − X1(s) − X3(s)

)
ds

)
+ Y4

(∫ t

0
κ ′

4X3(s) ds

)
− Y5

(∫ t

0
κ ′

5X1(s) ds

)
,

X2(t) = X2(0) − Y1

(∫ t

0
κ ′

1X1(s)X2(s) ds

)
+ Y2

(∫ t

0
κ ′

2
(
M − X1(s) − X3(s)

)
ds

)
,

X3(t) = X3(0) − Y4

(∫ t

0
κ ′

4X3(s) ds

)
+ Y5

(∫ t

0
κ ′

5X1(s) ds

)
.

If the initial amount of substrate is O(N) � M , then the scaling exponents for the
species abundances are

α1 = 0, α2 = 1, α3 = 0,

and the scaling exponents for the rate constants are

β1 = 0, β2 = 1, β3 = 1, β4 = 2, β5 = 2.

The normalized system becomes

ZN
1 (t) = ZN

1 (0) − Y1

(∫ t

0
Nκ1Z

N
1 (s)ZN

2 (s) ds

)
+ Y2

(∫ t

0
Nκ2

(
M − ZN

1 (s) − ZN
3 (s)

)
ds

)
+ Y3

(∫ t

0
Nκ3

(
M − ZN

1 (s) − ZN
3 (s)

)
ds

)
+ Y4

(∫ t

0
N2κ4Z

N
3 (s) ds

)
− Y5

(∫ t

0
N2κ5Z

N
1 (s) ds

)
,

ZN
2 (t) = ZN

2 (0) − N−1Y1

(∫ t

0
Nκ1Z

N
1 (s)ZN

2 (s) ds

)
+ N−1Y2

(∫ t

0
Nκ2

(
M − ZN

1 (s) − ZN
3 (s)

)
ds

)
,

ZN
3 (t) = ZN

3 (0) − Y4

(∫ t

0
N2κ4Z

N
3 (s) ds

)
+ Y5

(∫ t

0
N2κ5Z

N
1 (s) ds

)
.
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The fastest time-scale has m2 = 2 and r2,N = N2, with ζ2,4 = e1 − e3, ζ2,5 =
−e1 + e3. The operator L2 is

L2h(z) = κ4z3
(
h(z + e1 − e3) − h(z)

) + κ5z1
(
h(z − e1 + e3) − h(z)

)
,

with ker(L2) consisting of functions of coordinates z2 and z1 +z3 only. To simplify
our calculations we make a change of variables to (v0, v1, v2) = (z2, z1 + z3, z3),
so in this system of variables ζ2,4 = ẽ2, ζ2,5 = −ẽ2 with the operator L2

L2h(v) = κ4v2
(
h(v − ẽ2) − h(z)

) + κ5(v1 − v2)
(
h(v + ẽ2) − h(v)

)
.

Functions h(v) ∈ ker(L2) are now functions of v0, v1 only. Thus E2 = R(S2) =
span{̃e2} and E1 ×E0 = N (ST

2 ) = span{̃e1, ẽ0}.
The next time-scale has m1 = 1, r1,N = N and ζ1,1 = (0,−1), ζ1,2 = ζ1,3 =

(0,1). Also

L1h(v) = κ1v0(v1 − v2)
(
h
(
(v0, v1 − 1) − h(v0, v1)

))
+ (κ2 + κ3)(M − v1)(h

(
(v0, v1 + 1) − h(v0, v1)

)
with ker(L1) consisting of functions of v0 only. Thus E1 = R(S1) = span{̃e1} and
E1 = N (ST

1 ) = span{̃e0}.
Finally, L0 is

L0h(v) = −κ1v0(v1 − v2)∂v0h(v0) + κ2(M − v1)∂v0h(v0).

The conditional stationary distribution μv0,v1(dv2) of Markov chain with gen-
erator L2 is such that ρ0(v0, v1) = ∫

v2μv0,v1(dv2) = v1κ5
κ4+κ5

, thus

L1h(v) = κ1v0
v1κ4

κ4 + κ5

(
h
(
(v0, v1 − 1) − h(v0, v1)

))
+ (κ2 + κ3)(M − v1)(h

(
(v0, v1 + 1) − h(v0, v1)

)
,

which has conditional stationary distribution μv0(dv1) such that

ρ1(v0) =
∫

v1μv0(dv1) = M(κ4 + κ5)(κ2 + κ3)

κ1κ4v0 + (κ4 + κ5)(κ2 + κ3)
,

ρ2(v0) =
∫

v2μv0,v1(dv2)μv0(dv1) = Mκ5(κ2 + κ3)

κ1κ4v0 + (κ4 + κ5)(κ2 + κ3)
.

The compensator for the process V N
0 is FN(v) = κ2(M − v1) − κ1v0(v1 − v2) =

F(v), and averaging F gives F 1(v0, v1) = κ2(M − v1) − κ1v0(v1 − ρ0(v0, v1)),
and

F(v0) = κ2
(
M − ρ1(v0)

) − κ1v0
(
ρ1(v0) − ρ2(v0)

)
= − Mκ1κ3κ4v0

κ1κ4v0 + (κ4 + κ5)(κ2 + κ3)
,
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so

∇F(v0) = − Mκ1κ3κ4(κ4 + κ5)(κ2 + κ3)

(κ1κ4v0 + (κ4 + κ5)(κ2 + κ3))2 .

Setting

u1(v0) = κ1κ4v0 + κ2(κ4 + κ5)

κ1κ4v0 + (κ2 + κ3)(κ4 + κ5)
, u2(v0) = κ1v0

κ4 + κ5
,

and

u3(v0) = − κ1v0

κ4 + κ5
u1(v0) = − (κ1κ4v0 + κ2(κ4 + κ5))κ1v0

(κ1κ4v0 + (κ2 + κ3)(κ4 + κ5))(κ4 + κ5)
,

the solutions to the Poisson equations are given by functions

h1(v) = v1u1(v0), h2(v) = −v2u2(v0), h3(v) = −v2u3(v0),

and HN = 1
N

h1 + 1
N2 (h2 + h3).

Let rN = N1/2 and observe that 1
N2 (h2 +h3) makes a negligible contribution to

the quadratic variation. Consequently,

N
[
V N

0 − HN ◦ V N ]
t

≈
5∑

k=1

N−1
∫ t

0

(
ζk2 + h1

(
V N(s−)

) − h1
(
V N(s−) + T �Nζk

))2
dRN

k (s)

≈
∫ t

0

(−1 + u1
(
V N

0
))2

κ1V
N
0

(
V N

1 − V N
2

)
ds

+
∫ t

0

(
1 − u1

(
V N

0
))2

κ2
(
M − V N

1
)
ds +

∫ t

0
u1

(
V N

0
)2

κ3
(
M − V N

1
)
ds.

Hence

G(v) = ((
κ3(κ4 + κ5)

)2(
κ1v0(v1 − v2) + κ2(M − v1)

)
+ (

κ1κ4v0 + κ2(κ4 + κ5)
)2(

κ3(M − v1)
))

/
((

κ1κ4v0 + (κ2 + κ3)(κ4 + κ5)
)2)

and

G(v0) = Mκ1κ3κ4v0(κ3(κ4 + κ5)
2(2κ2 + κ3) + (κ1κ4v0 + κ2(κ4 + κ5))

2)

(κ1κ4v0 + (κ2 + κ3)(κ4 + κ5))3 .

If V0 is the solution of

V0(t) = V0(0) −
∫ t

0

Mκ1κ3κ4V0(s)

κ1κ4V0(s) + (κ4 + κ5)(κ2 + κ3)
ds,
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then, since G0 = G1 ≡ 0, UN = N1/2(V N
0 − V0) ⇒ U where

U(t) = U(0) +
∫ t

0

√
G

(
V0(s)

)
dWs

−
∫ t

0

Mκ1κ3κ4(κ4 + κ5)(κ2 + κ3)

(κ1κ4V0(s) + (κ4 + κ5)(κ2 + κ3))2 U(s) ds.

The corresponding diffusion approximation is

DN(t) = ZN
2 (0) + N−1/2

∫ t

0

√
G

(
DN(s)

)
dW(s)

−
∫ t

0

Mκ1κ3κ4D
N(s)

κ1κ4DN(s) + (κ4 + κ5)(κ2 + κ3)
ds.

Finally, we compare simulations for 500 realizations of the original model X2

with 500 realizations of the Gaussian approximation N0V0(·) + N
1/2
0 U(·) and the

diffusion approximation N0D
N0
2 (·). For comparison we also give the deterministic

value given by N0V0(·). We use N0 = 100, a time interval on the scale γ = 0, and
initial values are set to X1(0) = X3(0) = 0,X2(0) = 50 as in the previous example.
Here the additional parameters are set to M = 5, κ ′

1 = 0.5, κ ′
2 = 500, κ ′

3 = 100 and
κ ′

4 = κ ′
5 = 5000. Figure 5 shows the mean and one standard deviation above and

below the mean for each of the three processes, and Figure 6 five trajectories for the
three processes. Again, both Gaussian and diffusion approximations give a good
approximation for the mean and the standard deviation from the mean of X2(·).

FIG. 5. Mean and standard deviations of the amount of substrate in the three time-scale enzyme
model [500 simulations with N0 = 100, M = 5, γ = 0, X1(0) = 0, X2(0) = 50, X3(0) = 0, κ ′

1 = 0.5,
κ ′

2 = 500, κ ′
3 = 100, κ ′

4 = κ ′
5 = 5000].
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FIG. 6. Five trajectories for the amount of substrate in the three time-scale enzyme model (same
parameters as in Figure 5).

APPENDIX

A.1. Martingale central limit theorem. Various versions of the martingale
central limit have been given by McLeish (1974), Rootzén (1977, 1980), Gänssler
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and Häusler (1979) and Rebolledo (1980) among others. The following version is
from Ethier and Kurtz (1986), Theorem 7.1.4.

THEOREM A.1. Let {Mn} be a sequence of Rd -valued martingales. Suppose

lim
n→∞E

[
sup
s≤t

∣∣Mn(s) − Mn(s−)
∣∣] = 0(A.1)

and [
Mi

n,M
j
n

]
t → ci,j (t)

for all t ≥ 0, where C = ((ci,j )) is deterministic and continuous. Then Mn ⇒ M ,
where M is Gaussian with independent increments and E[M(t)M(t)T ] = C(t).

REMARK A.2. Note that C(t) − C(s) is nonnegative definite for t ≥ s ≥ 0.
If C is absolutely continuous, then the derivative will also be nonnegative definite
and will have a nonnegative definite square root. Suppose Ċ(t) = σ(t)2 where σ

is symmetric. Then M can be written as

M(t) =
∫ t

0
σ(s) dW(s),

where W is d-dimensional standard Brownian motion.
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