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Spatial heterogeneity in cells can be modelled using distinct compartments

connected by molecular movement between them. In addition to movement,

changes in the amount of molecules are due to biochemical reactions within

compartments, often such that some molecular types fluctuate on a slower

timescale than others. It is natural to ask the following questions: how sen-

sitive is the dynamics of molecular types to their own spatial distribution,

and how sensitive are they to the distribution of others? What conditions

lead to effective homogeneity in biochemical dynamics despite heterogen-

eity in molecular distribution? What kind of spatial distribution is optimal

from the point of view of some downstream product? Within a spatially

heterogeneous multiscale model, we consider two notions of dynamical
homogeneity (full homogeneity and homogeneity for the fast subsystem),

and consider their implications under different timescales for the motility

of molecules between compartments. We derive rigorous results for their

dynamics and long-term behaviour, and illustrate them with examples of

a shared pathway, Michaelis–Menten enzymatic kinetics and autoregulating

feedbacks. Using stochastic averaging of fast fluctuations to their quasi-

steady-state distribution, we obtain simple analytic results that significantly

reduce the complexity and expedite simulation of stochastic compartment

models of chemical reactions.
1. Introduction
Many important intracellular processes, from biochemical signalling to gene regu-

lation, are greatly affected by (i) stochasticity, and (ii) the location and motility of

molecular types involved. Proteins in the same interaction network may need to be

synthesized by a small number of mRNA molecules that are close to each other in

order to facilitate protein interactions and prevent cross-talk between different sig-

nalling modules [1]. The cellular plasma membrane is a domain in which the

molecules are far from well-mixed owing to raft domains [2] and actin cytoskeleton

compartments [3], and for which recent methods have enabled tracking of single

particle protein diffusion [4]. The stochastic nature of intracellular processes has

been observed in numerous experiments [5–9], depending on the particulars of

the reaction system stochastic fluctuations can have different effects on outcomes

of multistep reaction systems. Effects of spatial heterogeneity and molecular move-

ment on such biochemical systems are not yet fully understood [10,11]. Because

outcomes of multistep reaction systems are nonlinear in the input variables, impli-

cations of fluctuations from multiple sources of noise require careful analysis.

Spatial heterogeneity can either attenuate or enhance chemical fluctuations, and

molecular motility can be crucial in determining the outcome that is achieved.

We provide mathematical results that elucidate the consequences that spatial

heterogeneity and the speed of molecular motility have on reaction outcomes.

Simulating stochastic behaviour of cellular systems can be time-consuming,

with increasing complexity in the spatial resolution of the cell [12–14]. Micro-

scopic models simulate the motility of reactants either as molecules diffusing in

a continuum or as occupying sites on a discrete lattice and moving between
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them. Despite intensive numerical efforts, both have had only

moderate levels of success in reproducing the observed

chemical dynamics [15]. Recently, a number of intermediate

or two-regime methods have been developed in order to

reduce the computational complexity of problems [16–18]

employing a compartment approach and approximations.

Analytical results based on rigorous approximations provide

important model reduction tools and can be used to signifi-

cantly simplify the necessary steps in simulating stochasticity

of the process [19–22]. In addition, they yield general compari-

sons for the average behaviour of the process under different

scenarios for the speed of molecular motility [23].

Because the source of stochasticity is twofold, intrinsic

noise in biochemical reactions and movement of molecules in

space, we specifically focus on the interplay between them

and analyse the consequences on the macroscopic properties

of multistep reaction outcomes. Analytic methods are particu-

larly useful in case of intrinsic fluctuations of biochemical

reactions that occur on multiple timescales. In this case, the

speed of the movement of different molecular types is critical

in distinguishing the average behaviour of macroscopic out-

comes: which molecular types are highly motile and which

are relatively localized matters. The key determinant in the

effect of motility is whether the movement of a particular mol-

ecular type is on a slower or faster timescale than its

fluctuations owing to reactions measured relative to its overall

abundance [23]. In this manuscript, we apply results of the

latter paper in order to determine general conditions under

which the reaction system is insensitive to the precise speed

of motility of individual molecular types. Therefore, we intro-

duce two notions of dynamical homogeneity and derive a

rigorous way of approximating average behaviour of macro-

scopic outcomes in such multiscale heterogeneous systems.

Stochastic averaging tools [24] used in their derivation are

explained and illustrated in a step-by-step analysis of several

common examples of multistep biochemical reactions.
2. Mathematical model
2.1. Stochastic compartment model of a spatially

heterogeneous chemical reaction system
Consider a system of biochemical reactions, indexed by k,

n1kA1 þ � � � þ nmkAm 7!
kk
n01kA1 þ � � � þ n0mkAm

on m molecular types, with chemical constants kk and

net changes in the amounts of molecules (n01k � n1k, . . . ,

n0mk � nmk). Assume that reaction times are stochastic with inten-

sity rates in mass-action form: occurrence of the reaction above

has instantaneous probability given by

lk(x) ¼ kk

Ym
i¼1

xi
nik

� �

where x ¼ (x1, . . . , xm) are the molecular amounts of different

types. Assume the space is subdivided into D separate compart-

ments, with Xd ¼ (Xd,1, . . . , Xd,m) counting molecular amounts

in compartment d and S with Si ¼
P

d Xd,i counting the total

amount of different molecular types in the whole space. We

use the same system of reactions in each compartment, but

with possibly different chemical constants kkd (which also

allows for some reactions to be absent).
Example 2.1. (Signalling proteins/shared pathway, SP.)

Consider a system in which two different proteins A and B
are produced from a transcription factor R and are degraded,

and when A and B are combined together, they create a

product P of interest

;O
k01

k02
R, R!k

0
3 Rþ A, R!k

0
4 Rþ B,

A!k
0
5 ;, B!k

0
6 ;, Aþ B!k

0
7 Aþ Bþ P, P!k

0
8 ;

The reaction rates for the system in compartment d are

l1d ¼ k01d, lkd ¼ k0kdXd,R for k ¼ 2, 3, 4

l5d ¼ k05dXd,A, l6d ¼ k06dXd,B,

l7d ¼ k07dXd,AXd,B, l8d ¼ k08dXd,P:

Assume that movement of molecules relocates them indivi-

dually from one compartment to another. Specific details of

the stochastic movement do not have to be precise, because

only the long-term distribution of types (p1(d ), . . . pm(d ))

with
P

d pi(d) ¼ 1 will be important for our analysis (not

necessarily identical for different types of molecules).

If space was not compartmentalized and the whole

system had the same biochemical reactions, the dynamics in

S would have mass-action rates lk ¼ lkd using chemical con-

stants kk ¼ kkd. In space that is compartmentalized but in

which the motility of the molecules is faster than any reaction

fluctuations, the dynamics in the total amount S is equivalent

(in the sense of distributions of the resulting stochastic pro-

cess) to that in a system that is not compartmentalized and

has mass-action rates lk using averaged chemical constants

kk (theorem 3.7 and corollary 3.8 of [23])

kk ¼
X

d

kkd

Y
i

pi(d)nik : (2:1)

The system with extremely rapid molecular motility is called

well-stirred, and in this case, the dynamics of S is simple

because it is autonomous. In contrast, when molecular moti-

lity is not as rapid then, from the point of view of reaction

dynamics, compartments are isolated, and the dynamics of S
depends on the individual dynamics of all {Xd}d.

Comparing rates of reactions for the total amount of mol-

ecules S when motility is fast to when it is slow cannot be

done in general (except when there is only inflow and uni-

molecular reactions). If a heterogeneous system starts with

completely colocalized molecules, bimolecular reactions have

an instantaneous advantage (are more frequent) in the isolated

case. If a system starts with pairs of interacting molecules loca-

lized in completely distinct compartments, rapid motility

gives bimolecular reactions an advantage. However, these

advantages cannot hold in any extended window of time, as

molecular movement will decorrelate the co- or anti-localization

of interacting molecules.

2.2. Stochastic compartment model of chemical
reaction system with fluctuations on multiple
timescales

Many biochemical reaction systems have fluctuations of

relative amounts of molecules happening on multiple time-

scales. Suppose we can separate the molecular types in the

system into those whose fluctuations are effectively on a

longer timescale (call them ‘slow’ types As1
, As2

, . . .) and

those whose fluctuations are on a shorter timescale (call them
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‘fast’ types A f1 , A f2 , . . .). Effective here means that fluctua-

tions (net changes) are of the same order of magnitude as the

abundance of this molecular type.

This separation of timescales can happen in a number

of different ways (via combinations of molecular abundan-

ces and orders of magnitude of chemical constants (see

[19,20,22,23]). For the sake of simplicity, we consider here the

most common way: if a molecular type is present in high abun-

dance (given in terms of a scaling parameter N), then it will

need (at least) in the order of N reactions to have an effective

change, and will be a ‘slow’ type; if a type is present in small

abundance (relative to N), then it will need (only) one reaction

to have an effective change, and will be a ‘fast’ type. Let

Vs
d ¼ N�1Xs

d, Vf
d ¼ Xf

d

denote the vectors of rescaled amounts for slow and fast

fluctuating molecular types in compartment d, and

Ss ¼
X

d

Vs
d, Sf ¼

X
d

Vf
d

the rescaled total amounts over all compartments. Dynamics

will have two timescales if any reactions using slow molecular

types affect the amount of fast molecular types and vice versa.

The dynamics of fast species follows a fast fluctuating Markov

chain with dominant rates of O(N). The dynamics of slow

types will be well approximated by a system of ordinary differ-

ential equations and diffusion fluctuations of size 1=
ffiffiffiffi
N
p

(theorem 2.11 of [21] and examples of [19]). For the derivation

of the differential equation driving the slow species, a quasi-

steady-state assumption is used. On the fast timescale, Vs
d is

approximately constant, and therefore, Vf
d converges quickly

into their reaction equilibrium, which we call m(dvf
d). Then,

the effective reaction rate for the slow species based upon the

kth reaction is
Ð
lk(vs

d, vf
d)m(dvf

d). Finally, these effective rates

lead to the differential equation

@tvs
d ¼ f(vs

d)

for some function f.

Example 2.2. (SP continued.) Suppose the abundances of

the transcription factor R and the produced protein P are

high, O(N ), whereas the abundances of proteins A and B
are low, O(1), and suppose chemical constants satisfy

k0kd ¼ Nkkd, for k ¼ 1, 5, 6, 7 and k0jd ¼ k jd for the rest j ¼ 2,

3, 4, 8. This implies that fluctuations of rescaled amounts of

the transcription factor Vd,R ¼ N�1Xd,R and of the product

Vd,P ¼ N�1Xd,P are slow, and the fluctuations of proteins

Vd,A ¼ Xd,a, Vd,B ¼ Xd,B are fast. The fast species are changed

by reactions k ¼ 3, 4, 5, 6, and its fluctuations are produced by

a first-order subsystem (k ¼ 7 does not change molecular

amounts of A,B). On a short timescale, the rescaled abun-

dance of slow species R has approximately no effective

change, so if we condition on the value of Vd,R ¼ vd,R being

constant, the fast production and degradation of A, B in com-

partment d is approximately a birth–death Markov chain with

reaction equilibrium md of independent Poisson distribu-

tions for Xd,A and Xd,B with parameters vd,Rk3d/k5d and

vd,Rk4d/k6d, respectively. The dynamics of Vd,R and Vd,P can

be approximated by differential equations

@tvd,R ¼ k1d � k2dvd,R,

@tvd,P ¼ f(vd,R, vd,P),
where f is the convex function

f ¼
v2

d,Rk7dk3dk4d

k5dk6d � k8dvd,P
:

When movement of molecules is added, multiscale reaction

dynamics, as in the example above, requires more complex

analysis. Because the reaction dynamics is on different timescales

for fast and slow molecular types, movement of molecules also

affects them differently. Theoretical results (theorem 3.13 of

[23]) show that the only relevant factor is whether the speed of

motility of a particular molecular type is faster or slower than

its effective reaction dynamics. The speed of molecular types

of high abundance—typically these are the slow species—is irre-

levant (corollary 3.17 of [23]) as it is somewhat mixing ((ws) or

(ss) below), although its stationary distribution plays a role in

long-term distributions. However, the speed of fast molecular

types in general makes a difference, whereas its stationary distri-

bution plays no role at all (corollary 3.15 of [23]) due to the fact

that fast fluctuating amounts change owing to reactions before

this distribution is reached. This difference separates systems

into the following two cases

(ws) motility of all molecules is faster than fast fluctuations

and the system is well-stirred;

(ss) motility of ‘fast’ fluctuating molecular species is between

the two reaction timescales, and the system is semi-stirred:

‘fast’ fluctuating types are isolated in their compartments

prior to reacting on their timescale, whereas ‘slow’ types

are well-stirred prior to reacting on their timescale.

Because we scale slow molecular species by the factor N, and

we want non-negligible movement on any timescale, we

assume the speed of motility of ‘slow’ species at a rate of

order Nhs with hs . 0. Then, (ws) corresponds to the

speed of motility of ‘fast’ species at a rate of order Nhf with

hf . 1, whereas (ss) corresponds to 0 , hf , 1.

Looking for conditions that will ensure (ws) and (ss) are

the same for the dynamics of slow molecules Ss, regardless

of the speed of fast molecules leads one to consider notions

of dynamical homogeneity. If movement is in equilibrium, as

is the case in (ws) prior to any reaction dynamics, then

each compartment has the same reaction dynamics if

kkdp(d)�1
Y

i

pi(d)nik ¼ kk, 8d (H)

for some reference probability distribution p supported on all

of 1, . . . , D. In the special case when pi ¼ p, 8i this becomes

kkdp(d)jnk j�1 ¼ kk, 8d. Although the latter condition is more

physical (restriction of molecules to smaller compartments

leads to their closer proximity and a proportionally higher

chance of interactions between two or more molecules) and

has often been used to scale the reaction rates to account

for unequal volumes of different compartments [11,14,16],

this makes sense only if all of the molecular types move

and distribute in the same fashion, whereas the condition

(H) allows for more general distribution of molecules as

long as it is non-degenerate relative to a reference distribu-

tion p. (It is clear that it does not allow for any molecular

type to localize in a single compartment in the long run,

because pi(d ) . 0 is necessary for (H) to hold.)

Dynamical homogeneity is a combined assumption about

the chemical constants and long-time movement equilibria in
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different compartments, and allows for reactivity kkd to vary

over compartments. If kkd are the same for all d, then, (H) will

imply pi ¼ p for any type i involved in a mono-molecular reac-

tion (which then has nik¼ 1 and njk¼ 0 for j = i) and pj ¼ p for

any type j that has a bimolecular reaction with type i (which

then has nik¼ njk¼ 1 and ni’k ¼ 0 for all other i’). If movement

distributes all molecular types evenly, pi ¼ p ; 1=D, 8i, then

(H) will imply kkd ¼ kkDjnk j�1, 8d.

The dynamics of fast-fluctuating types Sf is not the same

under different motility speeds. However, under specific

assumptions, the nature of the fast-fluctuating reaction sub-

system can ensure that expected values of Sf in (ws) and

(ss) cases can be compared on the timescale of effective

change of slow molecules, and that reaction rates for Ss can

be approximated by rates in which the fast molecular

amounts Vf
d have been replaced by their expected value

Em[Vf
d] (see averaging results detailed in lemmas 2.7, 2.10,

2.12 of [23]).

Example 2.3. (SP continued.) In the well-stirred case, move-

ment of A, B molecules is on a faster timescale than

reactions (hA, hB . 1), whereas in the semi-stirred case,

their movement is on slower timescale than production and

degradation of A, B, but faster than production of P (0 ,

hA, hB , 1). In (ws) case—no matter if (H) holds—the

dynamics of SR, SA, SB, SP is the same as in a single compart-

ment with chemical constants kk, 8k. Hence, the production

of P is approximately a Poisson process with rate

(ws): f(SR, SP) ¼ k7Em[SASB]� k8SP ¼ S2
Rk7

k3k4

k5k6
� k8SP:

In the (ss) case in each compartment d, the reaction dyna-

mics of A, B is fastest and produces Emd
[Vd,AVd,B] ¼

v2
d,Rk3dk4d=k5dk6d. Movement of molecules then distributes

them across compartments according to pR, pP, hence the

overall production of P is a Poisson process with rate

(ss): f(SR, SP) ¼ S2
R

X
d

pR(d)2k7d
k3dk4d

k5dk6d
�
X

d

k8dpP(d)SP:

If (H) holds, we have p(d)k1 ¼ k1d, p(d)kk ¼ kkdpR(d) for

k ¼ 2, 3, 4, p(d)k5 ¼ k5dpA(d), p(d)k6 ¼ k6dpB(d), p(d)k7 ¼
k7dpA(d)pB(d) and p(d)k8 ¼ k8dpP(d) hence simple arithmetic

shows that

S2
R

X
d

pR(d)2k7d
k3dk4d

k5dk6d
�
X

d

k8dpP(d)SP ¼ S2
Rk7

k3k4

k5k6
� k8SP,

the production rate f of P is the same, regardless of the speed

of molecular motility.
3. Overview of results
Theorem 3.1 gives the general result for two timescale

reaction systems (see the electronic supplementary material).

Theorem 3.1. (Dynamic homogeneity and multiple timescale

reaction systems.) If (H) holds and fast fluctuating reactions are
of first-order in fast molecular types, then the dynamics of slow
molecular types Ss is the same, regardless of whether it is faster
(ws) or slower (ss) than fast reaction fluctuations as long as move-
ment of molecules is somewhat faster than the timescale of slow
reaction fluctuations.
The assumption of first-order reactions only restricts the

subset of reactions that fluctuate on the faster timescale to

be linear in terms of fast molecular types, which is true in

many important examples (see [25] for a list). It does allow

for an arbitrary degree of reactions in the slow molecu-

lar types, including their interactions with a single fast

molecular type.

The above result holds, regardless of whether the fast

fluctuating subsystem has some conserved quantities (as

long as we assume that all molecular types combining into

a single conserved quantity have the same movement equili-

brium), as can be seen in the following classical example

of enzymatic kinetics (see [21,26] for other results on the

multiscale stochastic fluctuations in this model).

Example 3.2. (Michaelis–Menten enzymatic kinetics.) Con-

sider the classical system of enzymatic kinetics consisting of

an enzyme E that is needed by a substrate to create an

enzyme–substrate complex ES which then gets converted

into a product P of interest

Eþ S O
k01

k0�1

ES, ES !k
0
2 Eþ P

The bound enzyme complex is less stable in that the rates

releasing the enzyme k0�1, k02 are an order of magnitude grea-

ter than the rate of binding it k01. The total number of free

enzymes and bound enzymes is conserved by the reaction

dynamics, Md denotes the amount of this conserved quantity

within a compartment d.

The substrate is often more abundant than the enzyme, and

we let Vd,S ¼ N�1Xd,S and Vd,P ¼ N�1Xd,P be the rescaled

amount of S and P, and Vd,E ¼ Xd,E be the amount of E in com-

partment d. Given the scaling parameter N, we now express

the chemical constants as k0�1d ¼ Nk�1d, k02d ¼ Nk2d with

k01d ¼ k1d. The mass-action rates (in terms of rescaled amounts)

are given by l1d ¼ Nk1dVd,EVd,S, l2d ¼ Nk�1d(Md � Vd,E),

l3d ¼ Nk2d(Md � Vd,E): As all the reaction rates are high, and

the change in enzymes is O(1) per reaction, whereas the

change in rescaled substrate is only O(N21), on the scale of effec-

tive changes, the free enzymes and bound enzymes are fast

molecular types with fluctuations on a timescale of size N21,

and substrates and products are slow molecular types with

fluctuations on a timescale of order 1.

On the timescale of fast fluctuations t, the effective change of

the rescaled amount of substrate is negligible, and in any time

interval of size o(N) around t can be approximated by vd,S ¼

Vd,S(t). The fast stochastic behaviour of free and bound enzymes

is an Ehrehfest urn with two bins (one for the free and one for

the bound state), with transition rates k1dvd,S (from free

to bound) and k21d þ k2d (from bound to free). Its stationary

distribution is a simple binomial distribution with parameters

n ¼Md and pd ¼ (k21d þ k2d)/(k21d þ k2d þ k1dvd,S).

When the system is completely well-stirred (speed of E
and ES is of the order Nh with h . 1), the sum totals SS and

SE have the reaction dynamics given by l1 ¼ Nk1SESS,

l2 ¼ Nk�1(M� SE), l3 ¼ Nk2(M� SE), where M ¼
P

d Md is

equal to the initial amount of free and bound enzymes in the

whole system. The fast fluctuations of SE have binomial (M, p)

stationary measure m with p ¼ (k�1 þ k2)=(k�1 þ k2 þ k1SS),

with Em[SE] ¼Mp. On the timescale Nt of slow fluctuations,

in any time interval of size O(N) around Nt, the rates of effective

change of SS are well approximated by using Em[SE] instead of

SE, and changes in amount N21 for each reaction have rates
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Nl
(ws)
1 ¼ Nk1MpSS, Nl

(ws)
2 ¼ Nk�1M(1� p): With a change of

time ~t ¼ Nt, this stochastic dynamics is well approximated

by ordinary differential (or integral) equations

(ws): SS(~t) ¼ SS(0)�
ð~t

0

Mk1k2SS(s)

k�1 þ k2 þ k1SS(s)
ds

which is the same as what the dynamics of substrates

would be in a single compartment system with rate constants

given by �k1 ¼
P

d pE(d)pS(d)k1d, �k�1 ¼
P

d pE(d)k�1d, �k2 ¼P
d pE(d)k�1d.

When the system is only semi-stirred (speed of E and ES is of

the order Nhwith 0 , h , 1), then on the timescale t, the free and

bound enzymes are isolated in their compartments. The station-

ary measure of their fast fluctuations�dmd is a product measure

of binomials (Md, pd) with Emd[VE,d] ¼Mdpd. On slower time-

scales, the rates of effective change of Vd,S will be well

approximated by using Emd[VE,d] instead of VE,d. On the next

timescale Nht, molecular movement mixes the total amounts of

free and bound enzymes to Md � binom(M,pE(d)), and rescaled

substrates to Vd,S � dpS(d)SS (the Dirac measure on pS(d)SS).

This implies that on a slower timescale the reaction rates are

averaged with respect to these two movement equilibria.

Because the rates are linear in the total amount of free plus

bound enzymes, they are replaced by their expectations Md �
pE(d)M. The rates are not linear in the amount of substrates;

however, because we are averaging with respect to a Dirac

measure, they are also replaced by Vd,S � pS(d)SS. Consequen-

tly, on the timescale Nt, the rates of effective change of SS are

approximately Nl
(ss)
1 ¼

P
d Nk1dpE(d)MpdpS(d)SS; Nl

(ss)
2 ¼P

d Nk�1dpE(d)M(1� pd), where now we have pd ¼
(k�1d þ k2d)=(k�1d þ k2d þ k1dpS(d)SS). Under a change of time
~t ¼ Nt, the dynamics of SS is close to the deterministic equation

(ss): SS(~t) ¼ SS(0)�
ð~t

0

X
d

pE(d)pS(d)k1dk2dMSS(s)

k�1d þ k2d þ pS(d)k1dSS(s)
ds

It is not difficult to see that this dynamics is, in general, different

from that of in the (ws) case. However, when the compartments

are homogeneous in the sense of (H), then the (ss) case (after

multiplying both the numerator and denominator by pE(d))

can easily be shown to reduce to the same equation as in the

well-stirred case.

Because notions of dynamic homogeneity do not allow

for long-run localization of any of the molecular types

(pi(d) . 0, 8d, 8i), we consider relaxing their assumptions

by focusing only on the dynamics of the fast subsystem

with the slow molecular types held constant. In this case,

compartments have the same stochastic dynamics of the

fast subsystem if

kkdp(d)�1Pip fi (d)n fi k ¼ ~kk, 8d (Hfast)

for some reference distributionp supported on all of {1, . . . , D}.

In the casepi ¼ p, 8i, kkdp(d)
P

i
n fi k�1 ¼ ~kk, 8d, where the index

in the summation or the product above is only over the fast

molecular types. This only prohibits fast species from localiz-

ing in a single compartment in the long run, allowing for an

arbitrary localization of the slow ones.

In the (ws) case, the distribution of slow molecular types is

first averaged with respect to movement distribution of the fast

ones, followed by reaction dynamics. In the (ss) case reaction,

dynamics happens first in each compartment individually, fol-

lowed by summing of results. Partial homogeneity of fast
molecular types (Hfast) will ensure that summing

over compartments is equivalent to averaging with respect to

p for each compartment in the overall expected change

f({kk}, Ss) ¼ @tE(Ss) of slow molecular types.

Example 3.3. (SP continued.) If we assume (Hfast) holds, then

p(d)~k1 ¼ k1d, p(d)~kk ¼ kkd for k ¼ 2,3,4, p(d)~k5 ¼ k5dpA(d),

p(d)~k6 ¼ k6dpB(d), p(d)~k7 ¼ k7dpA(d)pB(d), p(d)~k8 ¼ k8d.

Hence, k1 ¼ ~k1, kk ¼ ~kk
P

d pR(d)p(d) for k ¼ 2,3,4, k5 ¼ ~k5,

k6 ¼ ~k6, k7 ¼ ~k7, and k8 ¼ ~k8

P
d pP(d)p(d). Consequently,

the (ws) case becomes

(ws):f ¼ S2
R~k7

~k3~k4

~k5~k6

X
d

pR(d)p(d)

2

� ~k8SP

X
d

pP(d)p(d),

1
A

0
@

whereas the (ss) case becomes

(ss):f ¼ S2
R~k7

~k3~k4

~k5~k6

X
d

pR(d)2p(d)� ~k8SP

X
d

pP(d)p(d)

Simple use of Jensen’s inequality now shows that f(SR, SP)

is greater in the (ss) than in the (ws) case, with equality iff

pR; 1/D. The highest production rate of P occurs when

the movement of molecules is slow and if the reference

measure is as close to p ; dd* as possible (recall the constraint

p(d) . 0, 8d), where d* is chosen as argmax fpR(d )g. In other

words, the proteins A and B should be close to colocalized in

the compartment with the maximal average value of the tran-

scription factor R. These conclusions were already observed

in Batada et al. [3] using single molecule diffusion calculation.

In the long run, the rescaled abundance of R will converge

to an equilibrium s�R ¼ k1=k2 ¼ ~k1=(~k2

P
d pR(d)p(d)), regard-

less of the speed of molecular motility. On the other hand, the

production of P will settle into an equilibrium in (ws) case

(ws): s�P ¼ (s�R)2 ~k7~k3~k4

~k8~k5~k6

(
P
d
pR(d)p(d))2

P
d
pP(d)p(d)

or in the (ss) case

(ss): s�P ¼ (s�R)2 ~k7~k3~k4

~k8~k5~k6

P
d
pR(d)2p(d)

P
d
pP(d)p(d)

to which the same conclusions as above apply. The ratio

of equilibria in the (ss) and (ws) cases is given as

(
P

d pR(d)2p(d))=(
P

d pR(d)p(d))2. See also figures 1 and 2 for

some illustrations. For all our simulations, we used the exact

sampling method (also called the Gillespie algorithm) for indi-

vidual reactions via the R-package gillespieSSA by Mario

Pineda-Krch.

Next result gives a general conclusion for two time-scale

systems under (Hfast) and some additional conditions (see

the electronic supplementary material).

Theorem 3.4. (Fast-dynamic homogeneity and total changes

in system.) If (Hfast) holds and fast fluctuating reactions are
first-order in fast molecular types, then

(a) The change in the expected value of Ss is lower in the (ws)

than in the (ss) case when f is convex, whereas the opposite
holds when f is concave. Only if pSs

; 1=D, 8s, or if f is
linear, are the (2s) and (ss) cases the same.
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s P 
at
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m
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3

N0.2 N0.6 N1 N1.4 N1.8

0

1

2

3

equilibrium for (ss)

equilibrium for (ws)

Figure 1. We simulated the shared pathway system in D ¼ 2 compartments.
We used k1d ¼ � � � ¼ k8d ¼ 1, pA(1) ¼ pA(2) ¼ pB(1) ¼ pB(2) ¼
0.5 (note that these choices fulfil (H fast) with p(d ) ¼ 1/D), together with
pR(1) ¼ 0.9, pR(2) ¼ 0.1. (Note that ~k8ED�p[pP (D)] ¼ 1 in this case, no
matter what pP is.) In the simulations, we used N ¼ 1000. We have that
sP ¼ 2 for (ws), whereas sP ¼ D2ED�p[pR(D)2] ¼ 4 � 0:82 ¼ 3:28 for
(ss). Migration rate for R is N0.5. Dashed lines give theoretical values
for equilibria.
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Figure 2. We simulated the shared pathway system in two compartments and
different movement equilibria of R. The same parameters as in figure 1 were
used, except we fixed speed of movement of A, B to N0.5 and pR varies
along the x-axis. Dashed lines represent theoretical values for equilibria.
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(b) The extremal value of f (maximal for convex, minimal for con-
cave) in this case is achieved when in the long run Sf is as close
as possible to being localized in a single compartment for
which pSs

is maximal.

Positive and negative feedback loops are inherent in much of

cell regulation (see reference [27] for a survey of control in

systems biology). Spatial heterogeneity can have a mollifying

or enhancing effect on their mechanisms, even when a

protein is spatially localized, as shown in a simple model of

mutual activation.

Example 3.5. (Self-regulatory feedback mechanisms). Con-

sider the system in which a protein A is self-regulated by

its own product B via a negative feedback mechanism

Aþ B!k
0
1 B, A!k

0
2 Aþ B, ;O

k3

k04
B

A positively self-regulated system is similar except that

the first reaction is replaced by Aþ B!k1
2Aþ B. Suppose

the rates of creation and degradation of the product B are
much faster than the other reactions, and that the protein A
is generally much more abundant than B. We will assume

that movement of A and B is such that in the long run the

protein A can be localized, but its product B is distributed

evenly over the space. For some scaling parameter N, we let

Vd,A ¼ N�1Xd,A, and Vd,B ¼ Xd,B be the rescaled amounts of

molecules, and express k03d ¼ Nk3d, k04d ¼ Nk4d leaving

k01d ¼ k1d, k02d ¼ k2d as is. The mass-action rates (in terms of

rescaled amounts) are given by l1d ¼ Nk1dVd,EVd,S, l2d ¼
Nk2dVd,A, l3d ¼ Nk3d, l4d ¼ Nk4dVd,B

On a timescale of order 1, the relative change of rescaled

amounts Vd,A is negligible, whereas the fluctuations of Vd,B

are rapid with equilibrium that conditionally on Vd,A ¼ vd,A

is Poisson with mean (k3d þ k2dvd,A)/k4d. On a longer time-

scale of order N, the expected change of Vd,A is well

approximated by the equation

_Vd,A ¼ f({kkd}, Vd,A)

with the concave function

f({kkd}, Vd,A) ¼ �k1dVd,A(k3d þ k2dVd,A)

k4d
:

When movement of molecules has speed of order Nh with

h . 1, then the total amount of rescaled A molecules on the

timescale ~t ¼ Nt approximately satisfies

(ws): SA(~t) ¼ SA(0)�
ð~t

0

k1

k4
(k3SA(s)þ k2SA(s)2)ds

with rate constants k1 ¼
P

d k1dpA(d)pB(d), k2 ¼
P

d k2dpA(d),

k3 ¼
P

d k3d, k4 ¼
P

d k4dpB(d):

When movement of molecules has speed of order Nh

with 0 , h , 1, then molecules of B are isolated in their

compartments prior to their fluctuations. The total amount

of rescaled A molecules is then obtained as a sum of amounts

in individuals compartments, on the timescale ~t ¼ Nt
approximated by

(ss): SA(~t) ¼ SA(0)�
X

d

ð~t

0

k1d

k4d
(k3dpA(d)SA(s)

þ k2d(pA(d)SA(s))2)ds

If the system is partially homogeneous, so that reaction

constants and distribution of B molecules satisfy (Hfast),

then k1d=~k1 ¼ k4d=~k4 ¼ p(d)(pB(d))�1, k2d=~k2 ¼ k3d=~k3 ¼ D�1

and k1 ¼ ~k1

P
d pA(d)p(d), k2 ¼ ~k2

P
d pA(d)p(d), k3 ¼ ~k3,

k4 ¼ ~k4. Assume D � p then in (ws) case

SA(~t)� SA(0) ¼�
ð~t

0

~k1

~k4

X
d

p(d)pA(d)(~k3SA(s)

þ ~k2

X
d

p(d)pA(d)SA(s)2)ds

¼�
ð~t

0

~k1

~k4
(~k3E[pA(D)]SA(s)

þ ~k2(E[pA(D)]SA(s))2)ds

and in (ss) case

¼ �
ð~t

0

E
~k1

~k4
(~k3pA(D)SA(s)þ ~k2(pA(D)SA(s))2)

� �
ds:

Now, concavity of f implies that the gradient of change of

SA(~t) is greater (it is smaller in absolute value) in the well-

stirred than in the semi-stirred case. Only in the special
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time

S A

B moves slowly
B moves fast

Figure 3. The simulation of the negative feedback system shows that A mol-
ecules are less abundant if B molecules move slowly (i.e. h , 1). We chose
D ¼ 4, N ¼ 1000, p ¼ unif, pA(1) ¼ 5/8, pA(2) ¼ pA(3) ¼ pA(4) ¼
1/8. For slow movement of B, we have h ¼ 0.6, whereas h ¼ 1.3 for fast
B-movement.
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case when pA ; 1=D, the two dynamics reduce to the same.

For the positive feedback system, the gradient of change has

the exact same form except with a positive sign. Its convexity

implies that the gradient of change of SA(~t) is smaller in the

well-stirred than in the semi-stirred case. Importantly, all

above results are completely independent of the long-run

spatial distribution pA of A molecules. In figure 3, we have

implemented the negative feedback example in the (ws)

and (ss) case, which gives an illustration of the fact that A
degrades faster if B moves slowly.
4. Discussion
In cellular networks, stochasticity of reactions and a hetero-

geneous environment both affect concentration fluctuations.

Stochastic averaging methods provide powerful ways to

rigorously approximate spatially heterogeneous reaction sys-

tems fluctuating on multiple timescales with molecular

movement between compartments. Even if the spatial com-

ponent of a cell is simplified by using a compartment

model, full calculations accounting for changes owing to

both effects are cumbersome. Our results provide a simple

method for making conclusions for a general class of spatially

heterogeneous systems with reactions on multiple timescales

based on differential equations for the sum totals of each

slowly fluctuating molecular types within the system. They

provide answers to the question of sensitivity of long-term

dynamics of a downstream quantity of interest with respect

to molecular motility: only the speed of movement of

highly fluctuating molecular types is relevant and the level

of nonlinearity is reduced in case this speed is greater than
their fluctuations. Our results also rigorously show the

effect that the long-run spatial distribution of molecules

has. Localization of slowly fluctuating molecular types and

their even distribution over compartments are two extremal

measures achieving opposite effects in the behaviour of the

overall dynamics of interest. While our approach results in

differential equations for slowly fluctuating molecular types

based on quasi-steady-state assumptions, we could also ask

for the precise form of fluctuations of the sum totals of

slow molecular types. More effects can be expected here,

because slower movement of slow molecular types may

result in higher fluctuations.

Our assumption (Hfast) models a situation where space is

fully homogeneous from the viewpoint of fast fluctuating

species, whereas slow species may be localized in space.

Such a situation occurs when small molecules react fast and

have high motility through space, whereas slow fluctuating

molecules belong to specific cellular compartments and

have low motility and are therefore either colocalized (if

they belong to the same compartment) or isolated (if they

belong to different compartments). In the example of the

SP, our results under (Hfast) can be understood intuitively: if

RNA is moving slowly and makes molecules of A and B
which together produce P, the production of the latter is

more efficient if A and B move slower than they produce P,

because production of P requires colocalized molecules of A
and B. In the example of Michaelis–Menten kinetics, we

found the opposite behaviour. Here, fast movement of mol-

ecules leads to faster production of the product P from the

substrate S. This can also be explained intuitively: enzymes

turn S into P molecules via the enzyme/substrate complex;

in the extreme case, S is completely localized in one compart-

ment, enzymes can only turn them into product there; when

an enzyme moves slowly and moves away from the compart-

ment, it can, at most, release one P molecules and then has to

travel for a long time until it returns to the compartment

where it can turn S into P; if, however, the enzyme moves

quickly, its travel time before reaching the efficient compart-

ment is smaller and, therefore, production of P is more

efficient. Our results give the analytical framework for study-

ing spatially distributed multiscale systems, and rigorously

justify such intuitive conclusions.
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