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SCALING LIMITS OF SPATIAL COMPARTMENT MODELS FOR
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Albert-Ludwigs-Universität Freiburg and Concordia University

We study the effects of fast spatial movement of molecules on the dy-
namics of chemical species in a spatially heterogeneous chemical reaction
network using a compartment model. The reaction networks we consider are
either single- or multi-scale. When reaction dynamics is on a single-scale,
fast spatial movement has a simple effect of averaging reactions over the dis-
tribution of all the species. When reaction dynamics is on multiple scales, we
show that spatial movement of molecules has different effects depending on
whether the movement of each type of species is faster or slower than the ef-
fective reaction dynamics on this molecular type. We obtain results for both
when the system is without and with conserved quantities, which are linear
combinations of species evolving only on the slower time scale.

1. Introduction. When chemical species react, they are present in some (open
or closed) system with a spatial dimension. Most models of chemical reaction sys-
tems describe the evolution of the concentration of chemical species and ignore
both stochastic and spatial effects inherent in the system. This can be justified by
law of large number results when both: the number of species across all molecu-
lar types is large, and when the movement of molecules within the system is much
faster than the chemical reactions themselves. In applications where these assump-
tions hold, the system is spatially homogeneous, and the use of the deterministic
law of mass action kinetics is approximately appropriate [Kurtz (1970)].

However, in biological cells, low numbers of certain key chemical species in-
volved in the reaction systems result in appreciable noise in gene expression and
many regulatory functions of the cell, and lead to cell–cell variability and different
cell fate decisions [McAdams and Arkin (1997), Elowitz et al. (2002)]. In order
to understand the key effects of intrinsic noise in chemical reaction networks on
the overall dynamics, one needs to derive new approximations of stochastic mod-
els describing the evolution of molecular counts of chemical species. Furthermore,
the cell is not a spatially homogeneous environment, and it has been repeatedly
demonstrated that spatial concentration of certain molecules plays an important
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role in many cellular processes [Howard and Rutenberg (2003), Takahashi, Tanase-
Nicola and Ten Wolde (2010)]. Deterministic spatial models (reaction–diffusion
PDEs) are insufficient for this purpose, since local fluctuations of small molec-
ular counts can have propagative effects, even when the overall total number of
molecules in the cell of the relevant species is high.

Numerical simulations of biochemical reactions are indispensable since the
stochastic spatial dynamics of most systems of interest is analytically intractable.
A number of different simulation methods have been developed for this purpose,
ranging from exact methods (accounting for each stochastic event) to approxi-
mate methods (replacing exact stochastics for some aspects of the system with ap-
proximate statistical distributions); see, for example, Fange et al. (2010), Drawert
et al. (2010), Jeschke, Ewald and Uhrmacher (2011). For effective computations,
a mesoscopic form of the full stochastic spatial reaction model is necessary. These
are compartment models in which a heterogeneous system is divided into homo-
geneous subsystems in each of which a set of chemical reactions are performed.
Molecular species are distributed across compartments and their diffusion is mod-
eled by moves between neighboring compartments [Burrage et al. (2011)].

An important mathematical feature of models of biochemical reactions lies in
the essential multi-scale nature of the reaction processes. In some cases, all chem-
ical species are present in a comparable amount and change their concentrations
on the same temporal scale. We call this a single-scale reaction network. However,
if at least one chemical species changes its abundance (relative to its abundance)
on a much faster time scale, we call this a multi-scale reaction network. The fast
change of the concentrations of some chemical species then has an impact on the
dynamics of the slow species. When one adds spatial movement of species into
the system, then the species with fast movement can have an averaging effect on
the dynamics as well. The overall dynamics depends on how these two averaging
factors interact, and subsequently determines the evolution of the slow species on
the final time scale of interest.

In this paper, we analyze the effects of movement of molecules on the dynamics
of the molecular counts of chemical species. We consider a finite number of com-
partments in which different reactions can happen, with species moving between
compartments, and derive results for the evolution of the sum total of molecules in
all compartments. We consider the following for chemical reactions within com-
partments: (i) single-scale chemical reactions, (ii) multi-scale chemical reactions
without conserved quantities and (iii) multi-scale chemical reactions with con-
served quantities. We focus on the derivation of simplified models obtained as
limits of rescaled versions of the original model [in the spirit of Kang, Kurtz and
Popovic (2014), Ball et al. (2006), Franz, Liebscher and Zeiser (2012)]. We stress
that our results are for mesoscopic models of spatial systems, as opposed to mod-
els in which the number of compartments increases and the size of compartments
shrinks [Blount (1994), Kouritzin and Long (2002), Kotelenez (1988)].
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Our goal is to find reduced models that capture all relevant stochastic features
of the original model, while focusing only on the quantities that are easy to mea-
sure (sum total of molecular numbers for each species) in the system. Our results
for this reduced dynamics make stochastic simulations almost trivial, while at the
same time differentiating (being able to detect) between different cases of system
heterogeneity and between different relative time scales of species movement.

1.1. Outline of results. After introducing a model for chemical reactions in
Section 2.1, we provide results in nonspatial systems which we need later for spa-
tial results: asymptotics for a single-scale reaction network (Lemma 2.4), asymp-
totics for two-scale systems without (Lemma 2.7) and with conserved quantities
on the fast time scale (Lemma 2.12), as well as extensions to three-scale systems
(Lemma 2.10). Examples of each type of system are provided as well (Exam-
ples 2.5, 2.8, 2.13). In Section 3, we give results for spatial compartment models:
for single-scale spatial systems (Theorem 3.7), for two-scale spatial systems (The-
orem 3.13) in the absence of conserved quantities, and in the presence of conserved
quantities (Theorem 3.23). We also place the earlier examples in a spatial setting
(Examples 3.10, 3.19, 3.27). We conclude the paper with a discussion of possible
implications and extensions.

REMARK 1.1 (Notation). For some Polish space E, we denote the set of con-
tinuous (bounded and continuous, continuous with compact support), real-valued
functions by C(E) [Cb(E), Cc(E)]. In general, we write x := (xk)k for vectors and
x := (xik)i,k for matrices. In addition, xi· is the ith line and x·k is the kth column
of x. We denote by D(I ;E) the space of càdlàg functions I ⊆ R → E, which is
equipped, as usual, with the Skorohod topology, metrized by the Skorohod metric,
dSk . For sets F,F ′ ⊆ E, we write F − F ′ := {f ∈ F :f /∈ F ′}.

2. Chemical reactions in a single compartment. Before we present our
main results on spatial systems in the next section, we provide basic results on
reaction networks in a single compartment, which are special cases of theorems
given in Kang and Kurtz (2013). Our results for the spatial case both rely on them
and are proved using similar techniques.

We consider a set I of different chemical species, involved in K different reac-
tions of the form

(νik)i∈I → (
ν′
ik

)
i∈I(2.1)

with ν = (νik)i∈I,k∈K, ν′ = (ν′
ik)i∈I,k∈K ∈ Z

I×K+ and νik = l if l molecules of the
chemical species i take part in reaction k and ν′

ik = l if reaction k produces l

molecules of species i. In the chemical reaction literature, ζ = ν′ − ν is called
the stoichiometric matrix of the system, and

∑
i∈I νik the order of reaction k. In

addition, we set ζ ·k := (ζik)i∈I .
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2.1. The Markov chain model and the rescaled system. Denoting by Xi(t)

the number of molecules of species i at time t , we assume that (X(t))t≥0 with
X(t) = (Xi(t))i∈I is solution of

Xi(t) = Xi(0) + ∑
k∈K

ζikYk

(∫ t

0
�CR

k

(
X(u)

)
du

)
,(2.2)

where the Yk’s are independent (rate 1) Poisson processes and �CR
k (X(u)) is the

reaction rate of reaction k at time u, k ∈ K. We will assume throughout the follow-
ing.

ASSUMPTION 2.1 (Dynamics of unscaled single compartment reaction net-
work). The reaction network dynamics satisfies the following conditions:

(i) The reaction rate x �→ �CR
k (x) is a nonnegative locally Lipshitz, locally

bounded function and �CR
k �= 0, k ∈ K.

(ii) Given (Yk)k∈K, the time-change equation (2.2) has a unique solution.

The most important chemical reaction kinetics is given by mass action, that is,

�CR
k (x) = κ ′

k

∏
i∈I

νik!
(

xi

νik

)
(2.3)

for constants κk . In other words, the rate of reaction k is proportional to the number
of possible combinations of reacting molecules. Solutions to (2.2) can be guaran-
teed by using, for example, Ethier and Kurtz (1986), Theorem 6.2.8; see also their
Remark 6.2.9(b). Note, however, that Assumption 2.1(i) does not suffice to guar-
antee a global solution to (2.2), since it has to be certain—usually by imposing
some growth condition—that the solution does not become infinite in finite time.

Chemical reaction networks in many applications involve chemical species with
vastly differing numbers of molecules and reactions with rate constants that also
vary over several orders of magnitude Ball et al. (2006), Examples. This wide
variation in number and rate yield phenomena that evolve on very different time
scales. Recognizing that the variation in time scales is due both to variation in
species number and to variation in rate constants, we normalize species numbers
and rate constants by powers of a parameter N which we assume to be large, and
consider a sequence of models, parametrized by N ∈ N. Rescaled versions of the
original model, under certain assumptions, have a limit as N → ∞. We will use
stochastic equations of the form (2.2) driven by independent Poisson processes to
show convergence, exploiting the law of large numbers and martingale properties
of the Poisson processes. We rely heavily on the stochastic averaging methods
that date back to Khasminskii, for which we follow the formalism in terms of
martingale problems from Kurtz (1992).
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We rescale the system as follows: consider the solution (XN(t))t≥0 of (2.2) with
the chemical reaction rates �CR

k replaced by �
CR,N
k . For real-valued

α = (αi)i∈I, β = (βk)k∈K, γ(2.4)

with αi ≥ 0, i ∈ I , we denote the (α,β, γ )-rescaled system by

V N
i (t) := N−αiXN

i

(
Nγ t

)
, λ

CR,N
k (v) := N−βk�

CR,N
k

((
Nαivi

)
i∈I

)
,(2.5)

where (α,β, γ ) is chosen so that: V N
i = O(1), i ∈ I , for all time (a.s. does not

go infinity in finite time, but also does not have a.s. zero limit for all time),
and λ

CR,N
k = O(1), k ∈ K (for all values of v when it is not equal to zero). We

will restrict to the case γ = 0 which can always be achieved when consider-
ing β ′

k = βk + γ, k ∈ K. From (2.2), we see that the (α,β, γ )-rescaled system
V N := (V N(t))t≥0 is a solution to the system of stochastic equations

V N
i (t) = V N

i (0) + ∑
k∈K

N−αi ζikYk

(
Nβk+γ

∫ t

0
λ

CR,N
k

(
V N(u)

)
du

)
,(2.6)

which has a unique solution thanks to Assumption 2.1. In vector notation, we use
the diagonal matrix N−α with ith diagonal entry N−αi and write

V N(t) = V N(0) + ∑
k∈K

N−αζ ·kYk

(
Nβk+γ

∫ t

0
λ

CR,N
k

(
V N(u)

)
du

)
.(2.7)

The reaction rates satisfy the following.

ASSUMPTION 2.2 (Dynamics of scaled single compartment reaction network).
There exist locally Lipshitz functions λCR

k :RI+ →R+, k ∈ K with

N−βk�
CR,N
k

((
Nαivi

)
i∈I

) N→∞−→ λCR
k (v)(2.8)

uniformly on compacts. [Without loss of generality, we will assume that conver-
gence in (2.8) is actually an identity; our results easily generalize by the assumed
uniform convergence on compacts.]

In the special case of mass action kinetics (2.3), if αi = 1 for all i ∈ I and
κk = κ ′

kN
−(

∑
i νik)+1 with βk = 1 and some κ ′

k > 0 for all k ∈ K, then

N−βk�
CR,N
k

((
Nαivi

)
i∈I

) N→∞−→ κ ′
k

∏
i∈I

v
νik

i .

The polynomial on the right-hand side is known in the literature for deterministic
chemical reaction systems as the mass action kinetic rate.
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2.2. Single scale systems. For i ∈ I , the set of reactions which change the
number of species i is

Ki := {k ∈ K : ζik �= 0}
(a reaction of the form A+B → A+C does not change the number of species A).
A chemical reaction network is a single scale system if (α,β, γ ) from (2.4) satisfy

max
k∈Ki

βk + γ = αi, i ∈ I.(2.9)

For i ∈ I , let K∗
i ⊆ Ki be the set of reactions such that βk + γ = αi , and let

K∗ = ⋃
i∈I K∗

i . Define ζ ∗ by

ζ ∗
ik = lim

N→∞N−αiNβk+γ ζik.

Then ζ ∗ is the matrix whose i ∈ I, k ∈ K∗
i entries are ζik and its i ∈ I, k ∈ Ki −K∗

i

entries are zero. Let I◦ be the subset of species with αi = 0, called the discrete
species, and let K∗◦ = ⋃

i∈I◦ K∗
i , called the slow reactions. Let I• be the subset

of species with αi > 0, called the continuous species, and let K∗• = ⋃
i∈I• K∗

i ,
called the fast reactions. Then K∗ = K∗◦ ∪ K∗• . Note that by definition I◦ and
I• are disjoint, and by definition of K∗

i (and as reaction rates come with a sin-
gle scaling Nβk+γ ), K∗◦ and K∗• are also disjoint. In the limit of the rescaled
system, the species indexed by I◦ are Z+-valued (hence the name discrete
species), while the species indexed by I• are R+-valued (continuous species).
See Table 1 for an overview of these definitions. We next assume the follow-
ing.

TABLE 1
An overview of different sets and possibilities in the case γ = 0. The set I is split into discrete (I◦)

and continuous (I•) chemical species, while the set K∗ is split into slow (K∗◦) and fast (K∗•)
reactions. The gray boxes give the reactions which still appear in the limit dynamics. A special

feature of single-scale systems is that discrete species are exactly changed through slow reactions,
and continuous species are changed by fast reactions. In particular, discrete species are not

changed by fast reactions. This is different in multi-scale networks; see Table 2

Slow reactions Fast reactions
k ∈K∗◦,βk = 0 k ∈K∗•,βk > 0

Discrete species,
αi = 0, i ∈ I◦ ζ∗

ik

{ �= 0, k ∈K∗
i ,

= 0, else
ζik = ζ∗

ik = 0

Continuous species,
αi > 0, i ∈ I• ζik = 0 or βk + γ − αi < 0

⇒ ζ∗
ik = 0

ζ∗
ik

{ �= 0, k ∈K∗
i ,

= 0, else
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TABLE 2
As in the single-scale case, the set I is split into discrete and continuous chemical species. In

addition, discrete and continuous species are either changed on the fast or slow time scale. (This

means that If◦ ,If• ,Is◦,Is• are disjoint sets.) The set of reactions is split into several categories,

which can overlap. Here, k ∈Kf◦ is a reaction which changes a discrete species on the fast time
scale, etc. Note that such a reaction can as well change a continuous species on the slow time scale.

The separation of fast and slow time scales is determined by (2.11) with ε = 1. As in Table 1, we
mark the cells which finally determine the dynamics of the limiting object

Fast time scale N dt

Reactions of
discrete species on

fast scale
k ∈Kf◦ ,βk = 1

Reactions of
continuous species

on fast scale
k ∈Kf• , βk > 1

Other reactions

k ∈ K−Kf◦ −Kf• ,
βk ≥ 0

Discrete species,

αi = 0, i = If◦
ζ
f
ik

{
�= 0, k ∈ Kf

i ,

= 0, else
ζik = ζ

f
ik = 0 ζ

f
ik = 0

Continuous species,

αi > 0, i = If•
ζik = 0 or

βk − αi − 1 < 0

⇒ ζ
f
ik = 0

ζ
f
ik

{
�= 0, k ∈ Kf

i ,

= 0, else

ζik = 0 or
βk − αi − 1 > 0

⇒ ζ
f
ik = 0

Slow time scale dt

Reactions of discrete species on
slow scale k ∈Ks◦,βk = 0

Reactions of continuous species on
slow scale k ∈Ks•,βk > 0

Discrete species,
αi = 0, i = Is◦ ζ s

ik

{ �= 0, k ∈Ks
i

= 0, else
ζik = ζ s

ik = 0

Continuous species,
αi > 0, i = Is•

ζik = 0 or
βk − αi < 0
⇒ ζ s

ik = 0

ζ s
ik

{ �= 0, k ∈Ks
i ,

= 0, else

ASSUMPTION 2.3 (Dynamics of the reaction network). For Poisson processes
(Yk)k∈K∗◦ , the time-change equation

V (t) = V (0) + ∑
k∈K∗◦

ζ ∗
·kYk

(∫ t

0
λCR

k

(
V (u)

)
du

)
(2.10)

+ ∑
k∈K∗•

ζ ∗
·k

∫ t

0
λCR

k

(
V (u)

)
du

has a unique solution V := (V (t))t≥0.

Actually, the last display is shorthand notation for

Vi(t) = Vi(0) + ∑
k∈K∗◦

ζ ∗
ikYk

(∫ t

0
λCR

k

(
V (u)

)
du

)
, i ∈ I◦,
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Vi(t) = Vi(0) + ∑
k∈K∗•

ζ ∗
ik

∫ t

0
λCR

k

(
V (u)

)
du, i ∈ I•.

LEMMA 2.4 (Convergence of single-scale reaction networks). Let V N be the
vector process of rescaled species amounts for the reaction network which is the
unique solution to (2.6). Assume (α,β, γ ) from (2.5) satisfy the single scale system
assumptions (2.9), and Assumptions 2.2 and 2.3 for the rescaled reaction network
are satisfied. Then, if V N(0) ⇒ V (0), the process of rescaled amounts V N con-
verges weakly to the solution V of (2.10) in the Skorohod topology.

The proof of Lemma 2.4 is an extension of the classical theorem for convergence
of Markov chains to solutions of ODEs; see Kurtz (1970, 1981), or Ethier and
Kurtz (1986). It is essentially shown in Kang and Kurtz (2013), Theorem 4.1. For
other recent related results, see Franz, Liebscher and Zeiser (2012).

EXAMPLE 2.5 (Self-regulating gene). We give a simple example of a single-
scale reaction network which leads to a piecewise deterministic solution [similar
to Franz, Liebscher and Zeiser (2012), Section 5]. Consider a self-regulating gene
modeled by the set of reactions

1 : G + P
κ ′
1−→G′ + P,

2 : G′ κ ′
2−→G,

3 : G′ κ ′
3−→G′ + P,

4 : P
κ ′
4−→∅,

where G is the inactivated gene, G′ is the activated gene (hence G,G′ sums to 1
and is conserved by the reactions), and P is the protein expressed by the gene.
Here, 1 describes activation of the gene by the protein, 2 is spontaneous deacti-
vation of the gene, 3 is production of the protein by the activated gene and 4 is
degradation of the protein. Let x = (xG, xG′, xP ) = (1 − xG′, xG′, xP ) and let the
reaction rates be

�CR
1 (x) = κ ′

1xGxP = κ ′
1(1 − xG′)xP , �CR

2 (x) = κ ′
2xG′,

�CR
3 (x) = κ ′

3xG′, �CR
4 (x) = κ ′

4xP

with scaling αG = αG′ = 0, αP = 1, that is, I◦ = {G,G′} and I• = {P }, as well as

β1 = 0, β2 = 0, β3 = 1, β4 = 1,

κ ′
1 = N−1κ1, κ ′

2 = κ2, κ ′
3 = Nκ3, κ ′

4 = κ4.
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Then vG = xG = 1 − vG′, vG′ = xG′, vP = N−1xP , and see (2.8),

λCR
1 (v) = κ1vGvP = κ1(1 − vG′)vP , λCR

2 (v) = κ2vG′,

λCR
3 (v) = κ3vG′, λCR

4 (v) = κ4vP .

Here, K∗◦ =KG =KG′ = {1,2} and K∗• = KP = {3,4}. In this example, the matri-
ces ζ and ζ ∗ are given by

ζ = ζ ∗ =
G

G′
P

⎛
⎝−1 1 0 0

1 −1 0 0
0 0 1 −1

⎞
⎠ .

Moreover, according to Lemma 2.4, the limit (V (t))t≥0 of (V N(t))t≥0 solves

VG′(t) = VG′(0) + Y1

(
κ1

∫ t

0

(
1 − VG′(u)

)
VP (u)du

)
− Y2

(
κ2

∫ t

0
VG′(u) du

)
,

VP (t) = VP (0) + κ3

∫ t

0
VG′(u) du − κ4

∫ t

0
VP (u)du.

2.3. Multi-scale systems.

Two-scale systems. We say that the chemical network (2.1) is a two scale sys-
tem if (α,β, γ ) from (2.4) are such that: there is a partition of I into (disjoint) If ,
called the fast species, and Is , called the slow species, such that, for some ε > 0,

max
k∈Ki

βk + γ = αi + ε, i ∈ If ,

(2.11)
max
k∈Ki

βk + γ = αi, i ∈ Is .

Without loss of generality, we assume that γ = 0, and that our choice of N is such
that ε = 1 in (2.11), so the relative change of fast species happens at rate O(N)

and the relative change of slow species happens at rate O(1).
We first consider what happens on the faster time scale N dt . For each i ∈ If ,

let Kf
i ⊆ Ki be the set of reactions with βk = αi + 1. Define

Kf = {
k ∈ K :∃i ∈ If :k ∈ Ki , βk = αi + 1

}
,(2.12)

and a matrix ζ f with |If | rows and |Kf | columns defined by

ζ
f
ik = lim

N→∞N−(αi+1)Nβkζik, i ∈ If , k ∈ Kf
i .(2.13)

This matrix identifies a subnetwork of reactions and their effective change on the
faster time scale N dt . Let If◦ ⊆ If be the subset of fast species for which αi = 0,
and let Kf◦ = ⋃

i∈If◦ Kf
i be the subset of reactions changing these fast discrete

species on this time scale. Let If• ⊆ If be the subset of fast species for which αi >
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0, which are continuous species on the fast time scale, and let Kf• = ⋃
i∈If• Kf

i be

the subset of reactions changing continuous species on this time scale. Since If◦
and If• are disjoint in If = If◦ ∪ If• , and since βk is unique for each reaction in
Kf =Kf◦ ∪Kf• , it follows that Kf◦ and Kf• are disjoint as well.

We next consider what happens on the slower time scale dt . For each i ∈ Is , let

Ks = {
k ∈ K :∃i ∈ Is, βk = αi

}
,(2.14)

be the set of reactions such that βk = αi , and ζ s = (ζ s
ik)i∈Is ,k∈Ks defined by

ζ s
ik = lim

N→∞N−αiNβkζik, i ∈ Is, k ∈ Ks
i .(2.15)

This matrix identifies the subnetwork of reactions and their effective change on
the slower time scale dt . Let Is◦ ⊆ Is be the subset of (discrete) slow species for
which αi = 0, and Ks◦ = ⋃

i∈Is◦ K
s
i the subset of reactions changing discrete species

on this time scale. Let Is• ⊆ I be the subset of (continuous) slow species for which
αi > 0, and Ks• = ⋃

i∈Is• K
s
i the subset of reactions changing continuous species on

this time scale. As before, Is◦ and Is• being disjoint in Is = Is◦ ∪ Is• implies that
Ks◦ and Ks• are disjoint in Ks = Ks◦ ∪Ks• as well.

Note, however, that there is no reason for Ks to be disjoint from Kf . In fact,
there may be reactions in Ks with parameter βk that make an effective change on
the time scale dt in a slow species of high enough abundance αi = βk , that also
effectively change some fast species on the time scale N dt , that is, for some j ∈
If with βk = αj + 1. The important factor for limiting results is that we identify
contributions from reactions on each of the two scales independently, and make
assumptions on their stability.

Our initial division of species into fast and slow may include some conserved
quantities, that is, linear combinations of fast species that remain unchanged on the
faster time scale N dt . Let N ((ζ f )T) be the null space of (ζ f )T. If its dimension is
>0 it is formed by all the linear combinations of species conserved by the limiting
fast subnetwork, meaning that they see no effective change on the time scale N dt .
In spatial systems, the fast species are counts of species in a single compartment
(which evolves due to both, movement and chemical reactions) while conserved
quantities are the sum total of the coordinates in all compartments (which evolves
only according to chemical reactions). For now—unless stated otherwise—we as-
sume that the basis for the species is such that dim(N ((ζ f )T)) = 0.

Define the fast process V N
f := (V N

f (t))t≥0 as V N
f (t) := (V N

i (t))i∈If and the

slow process V N
s := (V N

s (t))t≥0 as V N
s (t) := (V N

i (t))i∈Is . We give necessary
assumptions on the dynamics of V N

f on the time scale N dt conditional on

V N
s (t) ≡ vs being constant, on the dynamics of V N

s , and on the overall behav-
ior of V N in order to obtain a proper limiting dynamics of slow species, V N

s .



3172 P. PFAFFELHUBER AND L. POPOVIC

ASSUMPTION 2.6 (Dynamics of a two-scale reaction network). Recall λCR
k

from (2.8). The two-scale reaction network (2.11) with effective change ζ f as

in (2.13) on time scale N dt and ζ s as in (2.15) on time scale dt satisfies the
following conditions:

(i) For each vs ∈ R
|Is |
+ there exists a well-defined process V f |vs

, giving the dy-
namics of the fast species given the vector of slow species, that is, the solution
of

V f |vs
(t) = V f |vs

(0) + ∑
k∈Kf◦

ζ f
·kYk

(∫ t

0
λCR

k

(
V f |vs

(u), vs

)
du

)
(2.16)

+ ∑
k∈Kf•

ζ f
·k

∫ t

0
λCR

k

(
V f |vs

(u), vs

)
du

with a unique stationary probability measure μvs
(dz) on R

|If |
+ , such that

λ̄CR
k (vs) =

∫
R

|If |
+

λCR
k (z, vs)μvs

(dz) < ∞, k ∈Ks .(2.17)

(ii) There exists a well-defined process V s that is the solution of

V s(t) = V s(0) + ∑
k∈Ks◦

ζ s
·kYk

(∫ t

0
λ̄CR

k

(
V s(u)

)
du

)
(2.18)

+ ∑
k∈Ks•

ζ s
·k

∫ t

0
λ̄CR

k

(
V s(u)

)
du

with λ̄CR
k given by (2.17).

(iii) There exists a locally bounded function ψ :R|I|
+ → R, ψ ≥ 1 such that

ψ(x) → ∞ as x → ∞, and
(iii-a) for each t > 0

sup
N

E

[∫ t

0
ψ

(
V N(u)

)
du

]
< ∞;

(iii-b) for all k ∈ K

lim
K→∞ sup

|x|>K

λCR
k (x)

ψ(x)
= 0.

LEMMA 2.7 (Convergence of two-scale reaction networks). Let V N be the
vector process of rescaled species amounts for the reaction network which is the
unique solution to (2.6) [or (2.7)]. Assume that (α,β, γ = 0) satisfy the two-scale
system assumptions (2.11) for some If ,Is and ε = 1, and the Assumptions 2.6 are
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satisfied. Then, if V N
s (0)

N→∞⇒ V s(0), the process of rescaled amounts of the slow
species V N

s (·) converges weakly to the solution V s(·) of (2.18) with rates given by
(2.17) in the Skorokhod topology.

The proof of Lemma 2.7 is given in Kang and Kurtz (2013), Theorem 5.1.

EXAMPLE 2.8 (Production from a fluctuating source). We present here an
example of a reaction network with two time scales with no conserved species
on the fast time scale. In our example, two species A and B react and produce
species C. Source B fluctuates as it is quickly transported into the system and
degrades very fast. We have the set of reactions

1 : A + B
κ ′
1−→C, 2 : ∅

κ ′
2−→B, 3 : B

κ3′−→∅.

Here, the sum of the numbers of molecules A and C is constant (but both will
turn out to be slow species), so we only need to consider the dynamics of the
A molecules. We denote molecules numbers by xA and xB , respectively, set x =
(xA, xB) and consider the reaction rates as given by mass action kinetics,

�CR
1 (x) = κ ′

1xAxB, �CR
2 (x) = κ ′

2, �CR
3 (x) = κ ′

3xB.(2.19)

For the scaled system, we use αA = αC = 1, αB = 0. So, setting the rescaled
species counts vA = N−1xA, vB = xB and

β1 = 0, β2 = 1, β3 = 1,(2.20)

κ1 = κ ′
1, κ2 = N−1κ ′

2, κ3 = N−1κ ′
3,(2.21)

we write

λCR
1 (v) = κ1vAvB, λCR

2 (v) = κ2, λCR
3 (v) = κ3vB.(2.22)

Now, the process V N = (V N
A ,V N

B ) is given by (2.6) as

V N
A (t) = V N

A (0) − N−1Y1

(
N

∫ t

0
κ1V

N
A (u)V N

B (u)du

)
,

V N
B (t) = V N

B (0) − Y1

(
N

∫ t

0
κ1V

N
A (u)V N

B (u)du

)
+ Y2(Nκ2t)(2.23)

− Y3

(
N

∫ t

0
κ3V

N
B (u)du

)
.

From this representation, it should be clear that VB is fast while VA is a slow
species. For γ = 0, ε = 1, we have Ks = {1}, Kf = {1,2,3} (in particular Ks ∩
Kf �= ∅), KA = {1}, KB = {1,2,3} and If = I◦

f = {B}, Is = I•
s = {A}. The

matrices describing the reaction dynamics on both scales are

ζ = A

B

(−1 0 0
−1 1 −1

)
, ζ f = B (−1 1 −1 ) , ζ s = A (−1 ) ,
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where the three columns in ζ and ζ f give reactions 1,2 and 3, and ζ s is a 1 × 1-

matrix since there is only one reaction where A is involved. Note that N ((ζ f )t ) =
{0}, indicating that there are no conserved quantities on the fast time scale. In
order to study the dynamics of the slow species, V s := VA, we apply Lemma 2.7
and have to check Assumption 2.6. Here, for Poisson processes Y1, Y2 and Y3, and
fixed V s = VA = vA, from (2.16),

VB|vA
(t) − VB|vA

(0) = −Y1

(∫ t

0
κ1vAVB|vA

(u) du

)
+ Y2(κ2t)

− Y3

(∫ t

0
κ3VB|vA

(u) du

)
d= Y2(κ2t) − Y1+3

(∫ t

0
(κ1vA + κ3)VB|vA

(u) du

)
for some Poisson process Y1+3 which is independent of Y2. Note that VB|vA

(·) is a
birth–death process with constant birth rate κ2 and linear death rates, proportional

to κ1vA + κ3. It is well known that in equilibrium, VB|vA

d= X with

X ∼ Poi
(

κ2

κ3 + κ1vA

)
,

which gives the desired μvA
(dvB). Hence, (2.17) gives

λ̄CR
1 (vA) = E[κ1vAX] = κ1κ2vA

κ3 + κ1vA

.

Finally, Lemma 2.7 implies that in the limit N → ∞, we obtain the dynamics

VA(t) = VA(0) −
∫ t

0
λ̄CR
1

(
V s(u)

)
du = VA(0) −

∫ t

0

κ1κ2VA(u)

κ3 + κ1VA(u)
du.

Three time scales. Chemical reaction networks with more than two time scales
also appear in the literature; see E, Liu and Vanden-Eijnden (2007) for a simulation
algorithm for such systems. One example is the heat shock response in Escherichia
coli, introduced by Srivastava, Peterson and Bentley (2001) and studied in detail by
Kang (2012). Here, we state an extension of Lemma 2.7 to reaction networks with
more than two time scales [see Kang, Kurtz and Popovic (2014)]. Namely, suppose
that for some γ ∈ R the parameters α,β in (2.5) and (2.8) are such that: there is a
partition of I into disjoint sets If ,Im,Is such that, for some ε2 > ε1 > 0,

max
k∈Ki

βk + γ = αi + ε2, i ∈ If ,

max
k∈Ki

βk + γ = αi + ε1, i ∈ Im,(2.24)

max
k∈Ki

βk + γ = αi, i ∈ Is .
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We will assume, as before, that γ = 0, and that our choice of N is such that ε2 = 1
in (2.24), so the relative change of fastest species If happens at rate O(N), the
relative change of the middle species Im happens at rate O(Nε1), 0 < ε1 < 1, and
the relative change of slow species Is happens at rate O(1).

Again, we need to consider what happens on each single time scale separately.
In addition to earlier definitions, for each i ∈ Im we let Km

i ⊆ K be the set of
reactions with βk = αi + ε1, Km = ⋃

i∈Im Km
i , and a matrix ζm with |Im| rows

and |Km| columns defined by

ζm
ik = lim

N→∞N−(αi+ε1)Nβkζik, i ∈ Im, k ∈ Km
i ,(2.25)

which identifies a subnetwork of reactions and their effective change on the middle
time scale Nε1 dt , and we let Im◦ ⊂ Im be the subset of middle species for which
αi = 0, Im• ⊆ Im be the subset of fast species for which αi > 0, and finally Km◦ =⋃

i∈Im◦ Km
i , and Km• = ⋃

i∈Im• Km
i . We now need an additional set of assumptions

on the dynamics of V N
f on the time scale N dt conditional on (V N

m(t),V N
s (t)) =

(vm, vs) being constant, and on the dynamics of V N
m on the time scale Nε1 dt

conditional on V N
s (t) = vs being constant.

ASSUMPTION 2.9 (Dynamics of a three-scale reaction network). The three
time scale reaction network (2.24) with effective change (2.13) on time scale N dt ,
(2.25) on time scale Nε1 dt and (2.15) on time scale dt satisfies the following
conditions:

(i-a) For each (vm, vs) ∈ R
|Im|+|Is |
+ there exists a well-defined process that is

the solution of

V f |(vm,vs)
(t) = V f |(vm,vs)

(0) + ∑
k∈Kf◦

ζ f
·kYk

(∫ t

0
λCR

k

(
V f |(vm,vs)

(u), vm, vs

)
du

)

+ ∑
k∈Kf•

ζ f
·k

∫ t

0
λCR

k

(
V f |(vm,vs)

(u), vm, vs

)
du

with a unique stationary probability measure μ(vm,vs)
(dz) on R

|If |
+ , such that

λ̃CR
k (vm, vs) =

∫
R

|If |
+

λCR
k (z, vm, vs)μ(vm,vs)

(dz) < ∞, k ∈ Km.(2.26)

(i-b) For each vs ∈ R
|Is |
+ there exists a well-defined process that is the solution

of

V m|vs
(t) = V m|vs

(0) + ∑
k∈Km◦

ζm
·kYk

(∫ t

0
λ̃CR

k

(
V m|vs

(u), vs

)
du

)

+ ∑
k∈Km•

ζm
·k

∫ t

0
λ̃CR

k

(
V m|vs

(u), vs

)
du,
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which has a unique stationary probability measure μvs
(dvm) on R

|Im|, such that

λ̄CR
k (vs) =

∫
R

|Im|
+

λ̃CR
k (vm, vs)μvs

(dvm) < ∞, k ∈Ks .(2.27)

(ii) There exists a well-defined process that is the solution of (2.18) with λ̄CR
k

given by (2.27).
(iii) see Assumption 2.6(iii).

The extension of Lemma 2.7 then becomes the following.

LEMMA 2.10 (Convergence of three-scale reaction networks). Let V N be the
vector process of rescaled species amounts for the reaction network which is the
unique solution to (2.6) [or (2.7)]. Assume that (α,β, γ = 0) satisfy the three time
scale system assumptions (2.24) for some If ,Im,Is and 0 < ε1 < ε2 = 1, and the

Assumptions 2.9 are satisfied. Then, if V N(0)
N→∞⇒ V (0), the process of rescaled

amounts of the slow species V N
s converges weakly to the solution V s of (2.18) with

rates given by (2.27) in the Skorokhod topology.

The proof of Lemma 2.10 is along the same lines as the proof of Lemma 2.7,
this time applying the stochastic averaging twice; see Kang (2012) for the same
approach.

Conserved quantities. We turn now to the problem of conserved quantities.
Suppose we have a two-scale reaction network with dim(N ((ζ f )T)) =: nf > 0.

Then there exist linearly independent R-valued vectors θci = (θ
ci

1 , . . . , θ
ci

|If |), i =
1, . . . , nf such that t �→ 〈θci , V f |vs

(t)〉 where V f |vs
from (2.16) is constant. In

other words, the change of 〈θci , V N
f (t)〉 on the time scale N dt goes to 0. We set

f := (θci )i=1,...,nf , that is,

N
((

ζ f )T) = span
(
f )

(2.28)

and note that the construction implies that θci has a unique parameter αi associated
with it, which we denote by αci

, i = 1, . . . , |f | (all the species in the support of
θci must have the same scaling parameter αci

, as any species with a greater value
of the scaling parameter does not effectively contribute to the conservation law in
the limit).

We assume that the effective changes for these combinations are on the time
scale dt , that is, supk∈K : 〈θci ,ζ ·,k〉�=0 βk ≤ αci

. In other words, we exclude the pos-

sibility that they create a new time scale, or that they effectively remain constant
as then we do not need to worry about their dynamics. This will be all we need
for our main results on the compartment model of multi-scale reaction networks.
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If they change on the time scale dt , we need to consider their behavior together
with that of the slow species.

We let V N
c = (V N

ci
)i=1,...,|f | be the vector of rescaled conserved quantities. For

each i = 1, . . . , |f |, let Kθci be the set of slow reactions such that βk = αci
and

〈θci , ζ ·k〉 �= 0, and let Kc := ⋃|f |
i=1 Kθci . Note that Kc ∩Kf = ∅ by construction.

Let ζ c be the matrix with |f | rows and |Kc| columns defined by

ζ c

θci k
= lim

N→∞N−αci Nβk
〈
θci , ζ ·k

〉
, i = 1, . . . , |f |, k ∈Kc

i .(2.29)

Let 
f◦ ⊆ f be the subset of conserved quantities for which αci

= 0, Kc◦ =⋃
θci ∈

f◦ Kθci . Let 
f• ⊆ f be the subset of conserved quantities for which

αci
> 0, Kc• = ⋃

θci ∈
f• Kθci . As before, Kc◦ and Kc• are disjoint.

We extend our results, under obvious modifications of our earlier assumptions
below. Note that the dynamics of conserved quantities depends on that of the fast
species in the same way as the dynamics of the slow species does.

ASSUMPTION 2.11 (Dynamics of a two-scale reaction network with conserved
quantities). The two-scale reaction network (2.11) with effective change (2.13)
on time scale N dt and (2.15) and (2.29) on time scale dt satisfies the following
conditions:

(i) For each (vs;vc) ∈ R
|Is |+|f |
+ , vc := (vci

)i=1,...,|f |, there exists a well-
defined process that is the solution of

V f |(vs ;vc)
(t) = V f |(vs ;vc)

(0)

+ ∑
k∈Kf◦

ζ f
·kYk

(∫ t

0
λCR

k

(
V f |(vs;vc)

(u), vs

)
du

)

+ ∑
k∈Kf•

ζ f
·k

∫ t

0
λCR

k

(
V f |(vs ;vc)

(u), vs

)
du,

which satisfies the constraints〈
θci , V f |(vs;vc)

〉 = vci
, θci ∈ f ,(2.30)

and which has a unique stationary probability measure μ(vs;vc)
(dz) on R

|If |
+ [con-

centrated on the linear subspace such that (2.30) is satisfied], such that

λ̄CR
k (vs, vc) =

∫
R

|If |
+

λCR
k (z, vs, vc)μ(vs ;vc)

(dz) < ∞, k ∈ Ks .(2.31)
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(ii) In addition to a well-defined solution of (2.18), there exists a well-defined
process that is the solution of

V c(t) = V c(0) + ∑
k∈Kc◦

ζ c
·kYk

(∫ t

0
λ̄CR

k

(
V s(u),V c(u)

)
du

)
(2.32)

+ ∑
k∈Kc•

ζ c
·k

∫ t

0
λ̄CR

k

(
V s(u),V c(u)

)
du,

that is,

Vci
(t) = Vci

(0) + ∑
k∈Kc◦

ζ c
θci kYk

(∫ t

0
λ̄CR

k

(
V s(u),V c(u)

)
du

)
(2.33)

+ ∑
k∈Kc•

ζ c
θci k

∫ t

0
λ̄CR

k

(
V s(u),V c(u)

)
du,

where the rates in both (2.18) and (2.32), (2.33) are given by (2.31).
(iii) Same as in Assumptions 2.6.

The following Lemma 2.12 is again in Theorem 5.1 of Kang and Kurtz (2013).

LEMMA 2.12 (Convergence of two-scale reaction networks with conserved
fast quantities). Let V N be the process of rescaled species amounts (2.6) for
a two-scale reaction network, with α,β satisfying (2.11), γ = 0, ε = 1, and
with conserved quantities f = (θci )i=1,...,|f | [which is a basis of the null
space of ((ζik)i∈If ,k∈Kf )T] whose effective change is on time scale dt , with

Assumptions 2.11 satisfied. Then, if V N(0)
N→∞⇒ V (0), we have joint conver-

gence of the process of rescaled amounts of the slow and conserved quantities

(V N
s (·),V N

c (·))N→∞⇒ (V s(·),V c(·)) in the Skorohod topology, with V s the solu-
tion of (2.18) and V c the solution of (2.32) with rates given by (2.31).

It is clear that the result on the limiting dynamics of the conserved quantities
which change on the time scale dt holds even if we do not have any slow species on
this time scale. We then only have the dynamics of conserved quantities following
(2.33) with the rates λ̄CR

k obtained using the stationary probability measure for the
fast species μvc

(·) which depends on the conserved quantities only. Analogously,
it is possible that the dynamics of conserved species on time scale dt is trivial in
which case we have the dynamics of slow quantities following (2.18) with V c(u) =
vc, u > 0. Furthermore, if we have a reaction network on three scales, it is obvious
how to write the analogous result for the conserved quantities on whichever slower
time scale their dynamics is. Both of these situations appear in the dynamics of
compartment reaction network models, and the above lemmas provide all the tools
we need for our results on models with movement between compartments.
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EXAMPLE 2.13 (Michaelis–Menten kinetics). One of the simplest multi-scale
reaction systems with conserved quantities on the fast time scale leads to the well-
known Michaelis–Menten kinetics. A substrate S is transformed into a product P

with the help of an enzyme E via a complex ES formed by enzyme and substrate.
The set of reactions is

1 : E + S
κ ′
1−→ES,

−1 : ES
κ ′−1−→E + S,(2.34)

2 : ES
κ ′
2−→E + P.

The sum of numbers of free and bound enzymes E,ES is a constant, which will be
denoted m (also the sum of numbers S,ES,P molecules is a constant but S,P will
be more abundant and they will not effectively contribute to a conserved quantity
on the fast time scale). We denote molecules numbers by xS, xE, xES and xP , let
x = (xS, xE, xES, xP ) and let the reaction rates be given by mass action kinetics,

�CR
1 (x) = κ ′

1xSxE, �CR−1(x) = κ ′−1xES, �CR
2 (x) = κ ′

2xES.(2.35)

For the scaled system, we use αS = αP = 1, αE = αES = 0. Setting the rescaled
species counts vS = N−1xS, vE = xE, vES = xES, vP = N−1xP , and

β1 = 0, β−1 = 1, β2 = 1,
(2.36)

κ1 = κ ′
1, κ−1 = N−1κ ′−1, κ2 = N−1κ ′

2,

we write

λCR
1 (v) = κ1vSvE, λCR−1(v) = κ−1vES, λCR

2 (v) = κ2vES.

Note that the rescaling gives that V N
S + V N

P = O(1), such that we only need to
describe V N

S . The process V N = (V N
S ,V N

E ,V N
ES) is given by

V N
S (t) = V N

S (0) − N−1Y1

(
N

∫ t

0
κ1V

N
S (u)V N

E (u)du

)

+ N−1Y−1

(
N

∫ t

0
κ−1V

N
ES(u)du

)
,

V N
E (t) = V N

E (0) − Y1

(
N

∫ t

0
κ1V

N
S (u)V N

E (u)du

)
+ Y−1

(
N

∫ t

0
κ−1V

N
ES(u)du

)

+ Y2

(
N

∫ t

0
κ2V

N
ES(u)du

)
,

V N
ES(t) = V N

ES(0) + Y1

(
N

∫ t

0
κ1V

N
S (u)V N

E (u)du

)
− Y−1

(
N

∫ t

0
κ−1V

N
ES(u)du

)

− Y2

(
N

∫ t

0
κ2V

N
ES(u)du

)
.
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From this, we see VE,VES are fast while VS,VP are slow species. For γ = 0,
ε = 1, we have Kf = Ks = {1,−1,2}, KS = {1,−1}, KE = KES = {1,−1,2},
KP = {2} and If = I◦

f = {E,ES}, Is = I•
s = {S,P }. The matrices describing the

reaction dynamics on both scales are

ζ =
S

E

ES

P

⎛
⎜⎜⎝

−1 1 0
−1 1 1
1 −1 −1
0 0 1

⎞
⎟⎟⎠ , ζ f = E

ES

(−1 1 1
1 −1 −1

)
,

(2.37)

ζ s = S

P

(−1 1 0
0 0 1

)
,

where the three columns give reactions 1,−1 and 2. Note that N ((ζ f )t ) =
span((1,1)), indicating that Vc := VE + VES is constant (at least on the fast time
scale). In order to study the dynamics of the slow species, V s := (VS,VP ), we have
to check Assumption 2.11 and apply Lemma 2.12. Here, for Poisson processes Y1
and Y−1, and fixed V s = (VS,VP ) = (vS, vP ) = vs and Vc = VE + VES =: m,
from (2.16),

VE|(vs ,vc)(t) − VE|(vs ,vc)(0)

= −Y1

(∫ t

0
κ1vSVE(u)du

)
+ Y−1

(∫ t

0
κ−1VES(u)du

)

+ Y2

(∫ t

0
κ2VES(u)du

)
d= −Y1

(∫ t

0
κ1vSVE(u)du

)
+ Y−1+2

(∫ t

0
(κ−1 + κ2)VES(u)du

)
,

VES|(vs ,vc)(t) − VES|(vs ,vc)(0)

= Y1

(∫ t

0
κ1vSVE(u)du

)
+ Y−1+2

(∫ t

0
(κ−1 + κ2)VES(u)du

)

for some Poisson process Y−1+2 which is independent of Y1. Note that
(VE|(vs ,vc)(·),VES|(vs ,vc)(·)) behaves like an Ehrenfest urn with two compartments,
where each E turns to ES at rate κ1vS , and each ES turns to E at rate (κ−1 + κ2).

It is well known that (VE|(vs ,vc), VES|(vs ,vc))
d= (X,m − X) has an equilibrium

X ∼ Binom
(
m,

κ−1 + κ2

κ−1 + κ2 + κ1vS

)
,

which gives the desired μ(vs,m)(dvE, dvES) concentrated on Vc = VE +VES = m.
The conserved species Vc do not change even on the time scale dt (this will no
longer be the case in a heterogeneous compartment model in the next section).
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Hence, (2.31) gives

λ̄1(vs) = E[κ1vSX] = κ1vS

m(κ−1 + κ2)

κ−1 + κ2 + κ1vS

,

λ̄−1(vs) = E
[
κ−1(m − X)

] = κ−1

mκ1vS

κ−1 + κ2 + κ1vS

,

λ̄2(vs) = E
[
κ2(m − X)

] = κ2
mκ1vS

κ−1 + κ2 + κ1vS

.

Lemma 2.12 implies that in the limit N → ∞, we obtain the dynamics

VS(t) = VS(0) −
∫ t

0
λ̄1

(
V s(u)

)
du +

∫ t

0
λ̄−1

(
V s(u)

)
du

(2.38)

= VS(0) −
∫ t

0

mκ1κ2VS(u)

κ−1 + κ2 + κ1VS(u)
du,

for VS , which is the classical Michaelis–Menten kinetics.

3. Chemical reactions in multiple compartments. We now assume that the
chemical system is separated into a set of D compartments, and chemical species
can migrate within these compartments. For species i ∈ I , movement happens from
compartment d ′ to d ′′ at rate �M

i,d ′,d ′′ .

3.1. The Markov chain model. Denoting by Xid(t) the number of molecules
of species i in compartment d at time t , we assume that (X(t))t≥0 with X(t) =
(Xid(t))i∈I,d∈D is solution of

Xid(t) = Xid(0) + ∑
k∈K

ζikYkd

(∫ t

0
�CR

kd

(
X·d(u)

)
du

)
(3.1)

+ ∑
d ′,d ′′∈D

(
δd ′′(d) − δd ′(d)

)
Yi,d ′,d ′′

(∫ t

0
�M

i,d ′,d ′′Xid ′(u) du

)
,

where δd(·) is a Dirac delta function, X·d = (Xid)i∈I and all the Y·’s are indepen-
dent (rate 1) Poisson processes. We assume the following.

ASSUMPTION 3.1 (Dynamics of un-scaled multi-compartment reaction net-
work). The reaction network dynamics satisfies the following conditions:

(i) Same as Assumption 2.1(i) in each compartment and for all k there is at
least one d with �CR

kd �= 0.
(ii) Given (Ykd)k∈K,d∈D, and (Yi,d ′,d ′′)i∈I,d ′,d ′′∈D , the time change equa-

tion (3.1) has a unique solution.
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For Xi(t) := ∑
d∈D Xid(t),

Xi(t)
d= Xi(0) + ∑

k∈K
ζikYk

(∫ t

0

∑
d∈D

�CR
kd

(
X·d(u)

)
du

)
,

for some independent (rate 1) Poisson processes (Yk)k∈K. However, since the rate∑
d∈D �CR

kd (X·d(s)) depends on all entries in X(s), the process ((Xi(t))i∈I)t≥0 is
not in general Markov.

3.2. The rescaled system. Consider the solution of (3.1) with the chemical
reaction rates �CR

kd and movement rates �M
i,d ′,d ′′ replaced by �

CR,N
kd and �

M,N
i,d ′,d ′′ ,

respectively. For real-valued

α = (αi)i∈I, β = (βk)k∈K, γ, η = (ηi)i∈I,

with αi ≥ 0, i ∈ I , we denote the (α,β, γ, η)-rescaled system by

V N
id (t) := N−αiXN

id

(
Nγ t

)
, i ∈ I, d ∈ D,

λ
CR,N
k (v) := N−βk�

CR,N
k

((
Nαivi

)
i∈I

)
, k ∈ K,

λ
M,N
i,d ′,d ′′(v) := N−ηi�

M,N
i,d ′,d ′′

((
Nαivi

)
i∈I

)
, i ∈ I, d ′, d ′′ ∈ D,

where α,β, γ, η is chosen so that V N
id = O(1), λ

CR,N
k = O(1), λ

M,N
i,d ′,d ′′ = O(1) (re-

actions of the same type and species of the same type are scaled by the same
parameters in each compartment). Again, we will restrict to the case γ = 0.

ASSUMPTION 3.2 (Dynamics of scaled multiple compartment reaction net-
work). In addition to Assumption 2.2 within each compartment, there exist
λM

i,d ′,d ′′ , i ∈ I, d ′, d ′′ ∈ D with

N−ηi�
M,N
i,d ′,d ′′

N→∞−→ λM
i,d ′,d ′′ .(3.2)

Again, we will assume that this convergence is actually an identity.

The (α,β, γ, η)-rescaled system V N(t) = N−αX(Nγ t) is the unique solution
to the system of stochastic equations

V N
id (t) = V N

id (0) + ∑
k∈K

N−αi ζikYkd

(
Nβk+γ

∫ t

0
λCR

kd

(
V N·d(u)

)
du

)
(3.3)

+ ∑
d ′,d ′′∈D

N−αi
(
δd ′′(d) − δd ′(d)

)
Yi,d ′,d ′′

(
Nαi+ηi+γ

∫ t

0
λM

i,d ′,d ′′V N
id ′(s)

)
.

In addition, define

SN = (
SN

i

)
i∈I with SN

i := ∑
d∈D

V N
id ,(3.4)
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then SN
i solves

SN
i (t) = SN

i (0) + ∑
k∈K

N−αi ζik

∑
d∈D

Ykd

(
Nβk+γ

∫ t

0
λCR

kd

(
V N·d(u)

)
du

)
.(3.5)

REMARK 3.3 (Heterogeneity of the reaction network). Our set-up does not
preclude the option that different compartments may have different reaction net-
works all together. We contain all possible reactions in the stoichiometric matrix ζ ,

then setting individual compartment rates λCR
kd to zero in desired compartments can

achieve this.

3.3. Spatial single-scale systems. We can now examine the effect of het-
erogeneity on the chemical reaction systems via compartmental models. We as-
sume that (2.9) holds within every compartment. The sets I,I◦,I• and K,K∗◦,K∗•
and ζ ∗ are used as in Section 2. We assume that movement of species is fast,
ηi > 0, i ∈ I and it has a unique equilibrium.

ASSUMPTION 3.4 (Equilibrium for movement). For each species i ∈ I , the
movement Markov chain, given through the jump rates λM

i,d ′,d ′′ from d ′ to d ′′, has
a unique stationary probability distribution denoted by (πi(d))d∈D .

LEMMA 3.5 (Movement equilibrium). Let Assumption 3.4 hold.

(1) Let i ∈ I be such that αi = 0 (i.e., i ∈ I◦). Consider the Markov chain of
only the movement of molecules of species i, that is, the solution of

Vid(t) = Vid(0) + ∑
d ′,d ′′∈D

(
δd ′′(d) − δd ′(d)

)
Yi,d ′,d ′′

(∫ t

0
λM

i,d ′,d ′′Vid ′(u) du

)

started with
∑

d∈D Vid(0) = si . Then, the unique equilibrium probability distribu-
tion of this Markov chain is given as the multinomial distribution with parameters
(si; (πi(d))d∈D).

(2) Let i ∈ I be such that αi > 0 (i.e., i ∈ I•). Consider the limiting determin-
istic process of only the movement of molecules of species i, that is, the solution
of

Vid(t) = Vid(0) + ∑
d ′∈D

∫ t

0

(
λM

i,d ′,dVid ′(u) − λM
i,d,d ′Vid(u)

)
du

started with
∑

d∈D Vid(0) = si . Then the unique equilibrium of this process is given
by (siπi(d))d∈D .

We denote the equilibrium probability distribution of movement of all species,
started in (si)i∈I by Ps and by Es the corresponding expectation operator. From
the above, Ps is a product of multinomial and point mass distributions.
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PROOF. In (1), we have an Ehrehfest urn model with |D| boxes; due its re-
versibility it is easy to check we have the correct equilibrium. In (2), we have a
deterministic system of |D| equations whose equilibrium is equally easy to obtain.

�

We start with the simplest results for chemical reaction networks which are on
a single scale, and describe the effect of mixing on the heterogeneous chemical
reaction system.

ASSUMPTION 3.6 (Dynamics of the spatial single-scale reaction network).
The spatial single-scale reaction network on time scale dt , where Assumption 3.4
holds, satisfies the following conditions:

(i) Given (Yk)k∈K∗◦ , the time change equation

S(t) = S(0) + ∑
k∈K∗◦

ζ ∗
·kYk

(∫ t

0
λ̄CR

k

(
S(u)

)
du

)
(3.6)

+ ∑
k∈K∗•

ζ ∗
·k

∫ t

0
λ̄CR

k

(
S(u)

)
du

has a unique solution S := (S(t))t≥0, where

λ̄CR
k (s) := Es

[∑
d∈D

λCR
kd (V ·d)

]
.(3.7)

(ii) Same as (iii) in Assumption 2.6 for all d ∈ D.

THEOREM 3.7 (Heterogeneous single-scale system). Let V N be the vector
process of rescaled species amounts for the reaction network which is the unique
solution to (3.3). Assume that (α,β, γ = 0) satisfy single scale assumption (2.9)
within compartments and ηi = η > 0, i ∈ I . Let SN(t) = (SN

i (t))i∈I be SN
i (t) :=∑

d∈D V N
id (t), and suppose Assumptions 3.4 and 3.6 for the rescaled network hold.

If SN(0)
N→∞⇒ S(0), then the process of rescaled sums SN(·) converges weakly to

the unique solution S(·) of (3.6) in the Skorohod topology.

PROOF. In the heterogeneous reaction network, we have |I| × |D| species;
one for each type and each compartment, with rescaled amounts V N

id . Movement
between compartments can be viewed as (at most) |D| × |D| first-order reactions
involving only species of the same type i ∈ I in different compartments, with net
change in compartment d of (δd ′′(d)−δd ′(d))(d ′,d ′′)∈D×D at rate {�M

i,d ′,d ′′, d ′, d ′′ ∈
D}. This set of reactions together with the original reactions within each compart-
ment give an overall network in which all the species V N

id with (i, d) ∈ I ×D are
fast, whose conserved quantities is a vector of sums over all the compartments for
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each species type, which are given by SN
i := ∑

d∈D V N
id , i ∈ I . Since ηi > 0, i ∈ I

the movement reactions change all the species amounts on the time scale Nη dt ,
and its effective changes on this time scale are still (δd ′′(d ′) − δd ′(d ′′))(d ′,d ′′)∈D×D
while the original within compartment reactions effectively change only the con-
served sum quantities on the time scale dt and its effective changes on this time
scale are given by ζ ∗.

In order to apply Lemma 2.12, set ε := η and we need to check Assump-
tions 2.11. In this special case, there are no slow species only fast species and
conserved quantities. Condition (i) is simply the requirement that—in the limit
N → ∞—for fixed given vector of sums of species movement leads to a well-
defined process on the species amounts in different compartments, which for each
value of the vector of sums s has a unique stationary probability measure Ps , which
is concentrated on

∑
d∈D vid = si . This is exactly implied by Lemma 3.5 under

Assumption 3.4. Conditions (ii) and (iii) in Assumptions 2.11 is assumed in the
statement of the theorem.

Let us consider the dynamics of the conserved quantities. Here, θci =
(1j=i )j∈I,d∈D is the ith conserved quantity. On the time scale dt , the reaction
dynamics of these conserved sums is a Markov chain whose effective change is
given by the matrix ζ c = ζ ∗ with overall rate equal to a sum of the individual
compartment rates.

Since the equilibrium for the movement dynamics Ps is given by

Ps(dv) = ∏
i∈I◦

(
si

vi1 · · ·vi|D|

)
πi(1)vi1 · · ·πi

(|D|)vi|D|

(3.8)
× ∏

i∈I•
δπi(1)si (dvi1) · · · δπi(D)si (dvi|D|),

the averaged rates for reaction dynamics in each compartment under the equilib-
rium probability measure as considered in (3.7) are exactly of the form (2.31),

λ̄CR
k (s) = ∑

v1· :
∑

d v1d=s1

· · · ∑
v|I|· :

∑
d v|I|d=s|I|

∑
d∈D

λCR
kd (v·d)

× ∏
i∈I◦

(
si

vi1 · · ·vi|D|

)
πi(1)vi1 · · ·πi

(|D|)vi|D|

(3.9)
× ∏

i∈I•
δπi(1)si (vi1) · · · δπi(|D|)si (vi|D|)

= ∑
d∈D

Es

[
λCR

kd (V ·d)
]
.

�
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COROLLARY 3.8 (Mass-action kinetics). Let α,β, γ, η be as in Theorem 3.7.
If the reaction rates are given by mass action kinetics for some κkd, k ∈K, d ∈ D

λCR
kd (v·d) = κkd

∏
i∈I◦

νik!
(

vid

νik

)
· ∏
i∈I•

v
νik

id ,(3.10)

then the limit of SN(·) in the Skorohod topology is the solution of (3.6) with rates
given by

λ̄CR
k (s) = ∑

d∈D
κkd

∏
i∈I◦

νik!
(

si
νik

)
πi(d)νik · ∏

i∈I•

(
πi(d)si

)νik .

If αi = 0 for all i ∈ I , the limit process for the sums is a Markov chain model for
reaction networks with mass action kinetics (2.3) whose rate parameters are

κ̄k = ∑
d∈D

κkd

∏
i∈I

πi(d)νik .(3.11)

If αi > 0 for all i ∈ I , the limit process for the sums is the deterministic solution
to an ordinary differential equation

dS(t) = ∑
k∈K

ζ ∗
·kλ̄

CR
k

(
S(t)

)
dt

with mass action kinetics (2.3) whose rate parameters are (3.11).

REMARK 3.9 (Different time scales for the movement). From the point of
view of the limit on time scale dt , the parameters for time scale of movement of
different species types do not have to all be equal ηi = η; as long as ηi > 0 for all
i ∈ I , it is easy to show that the limit dynamics of SN(·) is as above.

PROOF OF COROLLARY 3.8. We plug (3.10) into (3.9). This gives

λ̄CR
k (s) = ∑

x1· :
∑

d x1d=s1

if α1=0

· · · ∑
x|I|· :

∑
d x|I|d=s|I|

if α|I|=0

∑
d∈D

κkd

× ∏
i∈I◦

νik!
(

xid

νik

)(
si

xi1 · · ·xi|D|

)
πi(1)xi1 · · ·πi

(|D|)xi|D|

× ∏
i∈I•

(
πi(d)si

)νik

= ∑
d∈D

κkd

∑
x1d=0,...,s1

if α1=0

· · · ∑
x|I|d=0,...,s|I|

if α|I|=0

× ∏
i∈I◦

νik!
(

si
xid

)(
xid

νik

)
πi(d)xid

(
1 − πi(d)

)si−xid · ∏
i∈I•

(
πi(d)si

)νik
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= ∑
d∈D

κkd

∏
i∈I◦

νik!
(

si
νik

)
πi(d)νik

∑
x1d=0,...,s1

if α1=0

· · · ∑
x|I|d=0,...,s|I|

if α|I|=0

× ∏
i∈I◦

(
si − νik

xid − νik

)
πi(d)xid−νik

(
1 − πi(d)

)si−xid · ∏
i∈I•

(
πi(d)si

)νik

= ∑
d∈D

κkd

∏
i∈I◦

νik!
(

si
νik

)
πi(d)νik · ∏

i∈I•

(
πi(d)si

)νik .

When αi = 0 for all i ∈ I only the first sum in (3.6) exists, whereas when αi > 0
for all i ∈ I only the second sum in (3.6) exists. �

EXAMPLE 3.10 (Self-regulating gene in multiple compartments). We place
the reaction kinetics from Example 2.5 in a spatial multi-compartment setting.
Let the dynamics initiate with SG(0) + SG′(0) = 1 active and inactive genes and
SP (0) = sP proteins in the whole space. If ηG,ηG′, ηP > 0, the movement is faster
than any effective reaction dynamics, and the limiting dynamics of the rescaled
sums in the whole system solves

SG′(t) = SG′(0) + Y1

(
κ̄1

∫ t

0

(
1 − SG′(u)

)
SP (u)du

)
− Y2

(
κ̄2

∫ t

0
SG′(u) du

)
,

SP (t) = SP (0) + κ̄3

∫ t

0
SG′(u) du − κ̄4

∫ t

0
SP (u)du,

where κ̄k are given by (3.11) and πG,πG′, πP are the equilibrium distributions
of the movement of G,G′ and P , respectively. Given the values of system sums
SG′(t), SP (t) the molecules of G′,P will then be distributed in compartments ac-
cording to

VG′d(t) ∼ Multinom
(
SG′(t),πG′(d)

)
, VP d(t) ∼ δSP (t)πP (d).

3.4. Spatial multi-scale systems. We next consider heterogeneous reaction
networks on multiple time scales, with interplay between time scales on which
the reaction network dynamics evolves and time scales on which the species move
between compartments. We give results for chemical reactions on two time scales,
extensions to more are obvious.

We stick to our notation from Section 2.3. In particular, we assume the reaction
dynamics (within each compartment) has a separation of time scales (2.11) with
ε = 1, γ = 0. We set Kf and Ks as in (2.12) and (2.14), respectively, and If

and Is for the sets of fast and slow species, if only chemical reactions within
compartments are considered. The scaling parameters for movement of all fast
species is ηi = ηf for i ∈ If while for all slow species is ηi = ηs, i ∈ Is . We
assume both ηf , ηs > 0. In order to assess the interplay of dynamics on different
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time scales, we need to consider all possible orderings of ε = 1, ηf and ηs . In the
sequel, we assume that ηf , ηs �= 1 for simplicity. Moreover, the cases ηs ≤ ηf < 1
and ηf < ηs < 1, as well as 1 < ηs ≤ ηf and 1 < ηf < ηs lead to the same limiting
behavior, because the movement processes occurring on the time scale Nηf dt and
Nηs dt are independent (a movement of one species type on a time scale that is
different from that of reactions depends only on its own molecular counts and is
independent of other species types). Therefore, we are left with the four cases

(1) 1 < ηs, ηf ; (2) ηs < 1 < ηf ;
(3.12)

(3) ηf < 1 < ηs; (4) ηf , ηs < 1.

As in the nonspatial situation, we also need to distinguish the cases when (i)
there are no conserved quantities on the time scale of fast species [meaning that
N ((ζ f )T) is the null space], and (ii) when some quantities are conserved [i.e.,

N ((ζ f )T) = span(f ), where f = (θci )i=1,...,nf is a linearly independent fam-

ily of R
|If |-valued vectors]. In the latter case, the quantities 〈θci , (V N

id (·))i∈If 〉
also change on the time scale Nηf dt for d ∈ D by movement of the fast species,
but 〈θci , (SN

i (·))i∈If 〉 is constant on the time scale Nηf dt . We start with the case
of N ((ζ f )T) = null space.

No conserved quantities on the fast time scale. We need to consider different
processes of possible effective reaction dynamics for fast species and their sums,
conditional on knowing the values of the slow species. In each of the four cases
above we need to consider different intermediate processes and assumptions on
them. We write here, distinguishing fast and slow species, v = (v

f
, v

s
) with v

f
=

(vid)i∈If ,d∈D , v
s

= (vid)i∈Is ,d∈D , as well as s = (sf , ss), sf = (si)i∈If , ss =
(si)i∈Is .

ASSUMPTION 3.11 (Dynamics of the spatial multi-scale reaction network). In
each case (1)–(4), the spatial two-scale reaction network on time scale N dt , where
Assumption 3.4 holds, satisfies the following conditions:

(i) (1) Given (Yk)k∈Kf◦ , the time-change equation of the dynamics of Sf given
the value of Ss = ss

Sf |ss
(t) = Sf |ss

(0) + ∑
k∈Kf◦

ζ f
·kYk

(∫ t

0
λ̃

CR(1)
k

(
Sf |ss

(u), ss

)
du

)
(3.13)

+ ∑
k∈Kf•

ζ f
·k

∫ t

0
λ̃

CR(1)
k

(
Sf |ss

(u), ss

)
du
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has a unique solution, where for all sf , ss

λ̃
CR(1)
k (sf , ss) =

∫
R

|If |×|D|
+

×R
|Is |×|D|
+

∑
d∈D

λCR
kd (v·d,f , v·d,s)P(sf ,ss)

(dv
f
, dv

s
)

(3.14)
< ∞,

where v·d,f = (vid)i∈If , v·d,s = (vid)i∈Is , for P(sf ,ss )
a product of multinomial

and point mass probability distributions for both v
f

and v
s

defined in (3.8). In

addition, Sf |ss
(·) has a unique stationary probability measure μss

(dsf ) on R
|If |
+ .

(2) Given (Yk)k∈Kf◦ , the time-change equation of the dynamics of Sf given the
value of V

s
= v

s

Sf |v
s
(t) = Sf |v

s
(0) + ∑

k∈Kf◦

ζ f
·kYk

(∫ t

0
λ̃

CR(2)
k

(
Sf |v

s
(u), v

s

)
du

)
(3.15)

+ ∑
k∈Kf•

ζ f
·k

∫ t

0
λ̃

CR(2)
k

(
Sf |v

s
(u), v

s

)
du

has a unique solution, where for all sf , v
s

λ̃
CR(2)
k (sf , v

s
) =

∫
R

|If |×|D|
+

∑
d∈D

λCR
kd (v·d,f , v·d,s)Psf

(dv
f
) < ∞(3.16)

for Psf
a product of multinomial and point mass probability distributions as

in (3.8), where I is replaced by If , s by sf and v by v
f

. In addition, Sf |v
s
(·)

has a unique stationary probability measure μv
s
(dsf ) on R

|If |
+ .

(3) Given (Ykd)
k∈Kf◦ ,d∈D , the time-change equation of the dynamics of V

f

given the value of Ss = ss

V ·d,f |ss
(t) = V ·d,f |ss

(0) + ∑
k∈Kf◦

ζ f
·kYkd

(∫ t

0
λ̃

CR(3)
kd

(
V ·d,f |ss

(u), ss

)
du

)
(3.17)

+ ∑
k∈Kf•

ζ
f
ik

∫ t

0
λ̃

CR(3)
kd

(
V ·d,f |ss

(u), ss

)
du

has a unique solution, where for all v
f
, ss

λ̃
CR(3)
kd (v·d,f , ss) =

∫
R

|Is |×|D|
+

λCR
kd (v·d,f , v·d,s)Pss

(dv
s
) < ∞(3.18)

for Pss
a product of multinomial and point mass probability distributions as

in (3.8), where I is replaced by Is , s by ss and v by v
s
. In addition, V

f |ss
(·) =
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(Vid,f |ss
(·))i∈If ,d∈D has a unique stationary probability measure μss

(dv
f
) on

R
|If |×|D|
+ .
(4) Given (Ykd)

k∈Kf◦ ,d∈D , the time-change equation of the dynamics of V
f

given the value of V
s
= v

s

V ·d,f |v
s
(t) = V ·d,f |v

s
(0)

+ ∑
k∈Kf◦

ζ f
·kYkd

(∫ t

0
λ̃

CR(4)
kd

(
V ·d,f |v

s
(u), v·d,s

)
du

)
(3.19)

+ ∑
k∈Kf•

ζ
f
ik

∫ t

0
λ̃

CR(4)
kd

(
V ·d,f |v

s
(u), v·d,s

)
du

has a unique solution with unique stationary probability measure μv
s
(dv

f
) on

R
|If |×|D|
+ . Here, we set

λ̃
CR(4)
kd := λCR

kd .(3.20)

(ii) There exists a well-defined process Ss(·) that is the unique solution of

Ss(t) = Ss(0) + ∑
k∈Ks◦

ζ s
·kYk

(∫ t

0
λ̄

CR(�)
k

(
Ss(u)

)
du

)
(3.21)

+ ∑
k∈Ks•

ζ s
·k

∫ t

0
λ̄

CR(�)
k

(
Ss(u)

)
du,

where rates (λ̄
CR(�)
k )�=1,2,3,4 are given from (λ̃

CR(�)
k )�=1,2,3,4 in each case as

λ̄
CR(1)
k (ss) =

∫
R

|If |
+

λ̃
CR(1)
k (sf , ss)μss

(dsf )

(3.22)
= ∑

d∈D

∫∫
λCR

kd (v·d,f , v·d,s)P(sf ,ss )
(dv

f
, dv

s
)μss

(dsf ) < ∞;

λ̄
CR(2)
k (ss) =

∫
R

|Is |×|D|
+

∫
R

|If |
+

λ̃
CR(2)
k (sf , v

s
)μv

s
(dsf )Pss

(dv
s
)

(3.23)
= ∑

d∈D

∫∫∫
λCR

kd (v·d,f , v·d,s)Psf
(dv

f
)μv

s
(dsf )Pss

(dv
s
) < ∞;

λ̄
CR(3)
k (ss) = ∑

d∈D

∫
R

|If |×|D|
+

λ̃
CR(3)
kd (v

f
, ss)μss

(dv
f
)

(3.24)
= ∑

d∈D

∫∫
λCR

kd (v·d,f , v·d,s)Pss
(dv

s
)μss

(dv
f
) < ∞;
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λ̄
CR(4)
k (ss) = ∑

d∈D

∫
R

|Is |×|D|
+

∫
R

|If |×|D|
+

λ̃
CR(4)
k (v

f
, v

s
)μv

s
(dv

f
)Pss

(dv
s
)

(3.25)
= ∑

d∈D

∫∫
λCR

kd (v·d,f , v·d,s)μv
s
(dv

f
)Pss

(dv
s
) < ∞.

(iii) Same as (iii) in Assumption 2.6 in each compartment.

REMARK 3.12 (Equivalent formulation). For the dynamics under the above
assumption, the following is immediate: In each case (1)–(4), the spatial two-scale
reaction network on time scale dt , where Assumption 3.11 holds, satisfies the fol-
lowing condition: given (Yk)k∈Ks◦ , the time-change equation (3.21) has a unique
solution, where for all ss

λ̄
CR(�)
k (ss) := Ess

[∑
d∈D

λCR
kd (V ·d)

]
< ∞(3.26)

and the distribution of (Vid)i∈I,d∈D in (3.26) depends on the parameters ηs, ηf as
follows:

(�) = (1) Pss
(dv

f
, dv

s
) =

∫
R

|If |
+

μss
(dsf )P(sf ,ss )

(dv
f
, dv

s
),(3.27)

(�) = (2) Pss
(dv

f
, dv

s
) = Pss

(dv
s
)

∫
R

|If |
+

μv
s
(dsf )Psf

(dv
f
),(3.28)

(�) = (3) Pss
(dv

f
, dv

s
) = Pss

(dv
s
)μss

(dv
f
),(3.29)

(�) = (4) Pss
(dv

f
, dv

s
) = Pss

(dv
s
)μv

s
(dv

f
).(3.30)

We can now state our results for the limiting behavior of SN
f := (SN

i , i ∈ If )

and SN
s := (SN

i , i ∈ Is) on the time scales N dt and dt .

THEOREM 3.13 (Two-scale system without conserved fast quantities). Let
V N be the vector process of rescaled species amounts for the reaction network
which is the unique solution to (3.3). Assume that (α,β, γ = 0) satisfy two-scale
system assumption (2.11) for some If ,Is with ε = 1 and N ((ζ f )T) = 0 [with

ζ f from (2.13)] within compartments without conserved quantities on the fast time

scale. In addition, ηi = ηf > 0 for all i ∈ If and ηi = ηs > 0 for all i ∈ Is , one

of the cases (1)–(4) holds, and Assumption 3.11 holds. Then, if SN(0)
N→∞⇒ S(0),

the rescaled sums of slow species SN
s (·) from (3.4) converges weakly to the unique

solution Ss(·) of (3.21) in the Skorohod topology.

REMARK 3.14 (Interpretation). The rates in Theorem 3.13 have an intuitive
interpretation. In order to compute Es[λCR

kd (V ·d)], we have to know the distribution
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of V given Ss . Consider case (1) as an example: since movement of particles are
the fastest reactions in the system, given the value of Ss = ss , (i) V

s
are distributed

according to Pss
(dv

s
) from (3.8), and (ii) Sf is distributed according to the prob-

ability measure μss
(dsf ) from Assumption 3.11(i)(1); then, given the value of

Sf = sf , the values of V
f

are distributed according to Psf
(dv

f
) from (3.8). In

case (3), fast reactions within compartments intertwine with movement between
them: given the value of Ss = ss , (i) V

s
are again distributed according to Pss

from (3.8), but (ii) V
f

are distributed according to μss
(dv

f
).

PROOF OF THEOREM 3.13. The proof relies on use of Lemmas 2.10 and 2.12.
Let us first consider the case (1): ηf , ηs > 1. In this case on the two fastest time
scales Nηf dt and Nηs dt , we have movement of fast and slow species, respec-
tively, whose sums are unchanged on any time scale faster than N dt . We view
these two fastest time scales as one, since dynamics of movement of fast and slow
species are in this case independent of each other and can be combined. Regarding
all of the movement as a set of first-order reactions as in proof of Theorem 3.7, we
have a three time scale dynamics: movement of all species is the fast process on
time scales Nηf dt,Nηs dt , effective change of fast species is the medium process
on time scale N dt , and effective change of slow species is the slow process on the
time scale dt . The fast process of movement of all species has a stationary prob-
ability measure that is a product of multinomial and point mass probability distri-
butions P(sf ,ss )

from (3.8). Arguments from Lemma 2.12 imply that on the time

scale N dt all rates for the reaction network dynamics λ̃
CR(1)
k are sums over com-

partments of rates averaged with respect to P(sf ,ss )
as in (3.14), and the medium

process of the sums of fast species Sf has effective change given by ζ f . Condi-
tion (i)(1) of Assumption 3.11 ensures that on time scale N dt the medium process
Sf (·) is well defined and has a unique stationary probability distribution μss

(dsf ).
Condition (ii) of Assumption 3.11 then ensures that, in addition to conditions (i-a)
and (i-b), also condition (ii) in the assumptions for Lemma 2.10 is met, and con-
sequently the limiting dynamics of the slow process Ss(·) with effective change
given by ζ f is well defined and given by the solution of (3.21) with rates as in
(3.22).

Next, consider the case (2): ηf > 1, ηs < 1. In this case we have a four time
scale dynamics: movement of fast species is the fast process on time scale Nηf dt ,
effective change of fast species is the medium-fast process on time scale N dt ,
movement of slow species is the medium-slow process on time scale Nηs dt , and
finally effective change of slow species is the slow process on time scale dt . The
fast process on time scale Nηf dt of movement of all species has a stationary prob-
ability measure that is Psf

(3.8) (over i ∈ If only). Lemma 2.12 implies that on

the next time scale N dt rates λ̃
CR(2)
k are averaged with respect to Psf

as in (3.16),

and the medium-fast process Sf has an effective change given by ζ f . We now have
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that this process is well defined and has a unique stationary probability distribution
μv

s
(dsf ). Furthermore, on the next time scale Nηs dt we only have the movement

of slow species, which has a stationary probability measure that is Pss
from (3.8)

(over i ∈ Is only). Finally, the limiting dynamics of the slow process Ss(·) on time
scale dt , by an extension of Lemma 2.10 to four time scales, is well defined and
given by the solution of (3.21) with rates as in (3.23).

Let us next consider the case (3): ηf < 1, ηs > 1. We again have a four time
scale dynamics: movement of slow species is the fast process on time scale Nηs dt ,
effective change of fast species is the medium-fast process on time scale N dt ,
movement of fast species is the medium-slow process on time scale Nηf dt , and
finally effective change of slow species is the slow process on time scale dt .
Lemma 2.12 implies that on the medium-fast time scale N dt rates λ̃

CR(3)
kd are aver-

aged with respect to Pss
(3.8) (over i ∈ Is only) as in (3.18), and the medium-fast

process V
f

has an effective change given by ζ f in each compartment d ∈ D.
This process is well defined and has a unique stationary probability distribution
μss

(dv
f
). On the next time scale Nηs dt we only have the movement of slow

species, which has a stationary probability measure that is Psf
(3.8) (over i ∈ If

only). Finally, on time scale dt , Lemma 2.10 extended to four time-scales implies
the limiting dynamics of the slow process Ss(·) is well defined and given by the
solution of (3.21) with rates as in (3.24).

Finally, we consider case (4): ηf < 1, ηs < 1. On the fast time scale N dt in
each compartment d ∈ D, independently we have reaction dynamics of the fast
species, with a unique equilibrium μv

s
(v

f
) that must be a product distribution

over the different compartments. Similarly, to case (1) when all the movement is
fastest, now all the movement is on the medium time scale, and the movement of
all molecules (fast and slow) is independent and can be viewed as combined on
one time scale with unique stationary probability distribution P(sf ,ss )

(3.8) (over
all i ∈ I). This implies that on the slow time scale dt , the effective change of Ss is
due to reaction dynamics with rates λ̃

CR,4
kd (vN

f
, vN

s
) that have been averaged over

P(sf ,ss )
, and is given by ζ s . Lemma 2.10 implies that Ss(·) is well defined and

given by the solution of (3.21) with rates as in (3.25). �

If the movement of fast species is slower than fast reactions [i.e., we consider
cases (3) or (4)], the equilibria for reactions is always attained before movement
of fast species can change this equilibrium, as stated in the next corollary.

COROLLARY 3.15 (Irrelevance of movement of fast species). In cases (3)
or (4) of Theorem 3.13, the limiting dynamics of Ss is independent of Psf

.

PROOF. The assertion can be seen directly from (3.29) and (3.30), since the
right-hand sides do not depend on Psf

. �
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If all slow species are continuous, the limiting dynamics for cases (1), (2) and
(3), (4) are equal. The key to this observation is the following lemma.

LEMMA 3.16. In the situation of Theorem 3.13, assume all slow species are
continuous, Is◦ = ∅, and let πs

s
:= (πi(d)si)i∈Is ,d∈D .

(i) For stationary probability measures μss
(dsf ) of Sf |ss

from Assump-
tion 3.11(i)(1) and μv

s
(dsf ) of Sf |v

s
from (i)(2), we have

μss
(dsf ) = μπs

s
(dsf ).

(ii) Likewise, for stationary probability measures μss
(dv

f
) of V

f |ss
from (i)(3)

and μv
s
(dv

f
) of V

f |v
s

from (i)(4), we have

μss
(dv

f
) = μπs

s
(dv

f
).

PROOF. (i) It suffices to show that μπs
s

is a stationary probability measure for
the process Sf |ss

(·) from (3.13), since we assumed that this process has a unique
stationary probability distribution. Note that, by independence of the movement of
fast and slow species, for k ∈ Kf ,

λ̃
CR(1)
k (sf , ss) =

∫ ∑
d∈D

λCR
kd (v·d,f , v·d,s)P(sf ,ss )

(dv
f
, dv

s
)

=
∫ ∑

d∈D
λCR

kd (v·d,f , v·d,s)Psf
(dv

f
)Pss

(dv
s
)

=
∫

λ̃
CR(2)
k (sf , v

s
)Pss

(dv
s
)

= λ̃
CR(2)
k (sf ,πs

s
).

Since these rates are equal, the corresponding equilibrium distributions must be
equal as well. In other words, the equilibrium distribution μss

(dsf ) from Assump-
tion 3.11(i)(1) must equal the equilibrium distribution μπs

s
(dsf ) from Assump-

tion 3.11(i)(2). (ii) follows along similar lines. �

COROLLARY 3.17. Suppose in Theorem 3.13 all slow species are continuous,
Is◦ = ∅. Then, the dynamics of (3.21) is the same among the first two cases (1)
and (2), and among the last two cases (3) and (4).

PROOF. Since Pss
(dv

s
) is the delta-measure on πs

s
, all assertions can be read

directly from (3.27)–(3.30) together with Lemma 3.16. �

We note that the case (1) (where all species move faster than the fast reactions
occur) plays a special role under mass action kinetics.
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COROLLARY 3.18 (Homogeneous mass action kinetics). Suppose that in The-
orem 3.13 the reaction rates are given by mass action kinetics with constants sat-
isfying the homogeneity condition

κk := |D|κkd

∏
i∈I

πi(d)νik .

Then the dynamics of Ss in case (1) is the same as for the system regarded as a
single compartment.

PROOF. For (1) from (3.14), we only need to calculate the average with respect
to equilibrium of the movement dynamics for both slow and fast species. The same
calculation as for mass action kinetics in Corollary 3.8 we get the first equality in

λ̃
CR(1)
k (sf , ss) = ∑

d∈D

∫
λCR

kd (v·d,f , v·d,s)P(sf ,ss )
(dv

f
, dv

s
)

= ∑
d∈D

κkd

∏
i∈I◦

νik!
(

si
νik

)
πi(d)νik · ∏

i∈I•

(
πi(d)si

)νik

= κk

∏
i∈I◦

νik!
(

si
νik

) ∏
i∈I•

s
νik

i .

Since the right-hand side gives the reaction rates for mass action kinetics within a
single compartment, as given through V f |vs

from (2.16), the equilibrium μvs
(dz)

from Assumption 2.6(i) and μss
(dsf ) from Assumption 3.11(i)(1) must be the

same and the assertion follows. �

EXAMPLE 3.19 (Production from fluctuating source in multiple compartments).
We consider reaction kinetics from Example 2.8 and extend it to a spatial multi-
compartment setting. Recall that the chemical reaction network is given (within
compartments) by the set of reactions

1 : A + B
κ ′
1d−→C, 2 : ∅

κ ′
2d−→B, 3 : B

κ ′
3d−→∅.

We consider �CR
k (x) as in (2.19) with κ ′

k replaced by κ ′
kd , k ∈ {1,2,3}. We have

x = (x·d)d∈D , x·d = (xAd, xBd), and the dynamics are given by

�CR
1d (x·d) = κ ′

1dxAdxBd, �CR
2d (x·d) = κ ′

2d, �CR
3d (x·d) = κ ′

3dxBd.

Movement of species is given as in (3.3). Scaling in each compartment is as in the
nonspatial setting (2.20), (2.21) and (2.22), so rescaled species counts are

vAd = N−1xAd, vBd = xBd,

and rates are

λCR
1d (v·d) = κ1dvAdvBd, λCR

2d (v·d) = κ2d, λCR
3 (v·d) = κ3dvBd.
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The process V N = (V N
Ad,V N

Bd) is given as in (2.23) and additional movement
terms. We set ηs = ηA for movement of slow species and ηf = ηB for movement
of fast species. We assume (as in Assumption 3.4) that movement of species A,B

have stationary probability distributions (πA(d))d∈D and (πB(d))d∈D . We derive
the dynamics of SA as

SA(t) = SA(0) −
∫ t

0
λ̄CR(

SA(u)
)
du

for appropriate λ. Since the slow species A are continuous, we are in the regime
of Corollary 3.17 and we distinguish the following two cases:

Dynamics in the cases (1) + (2). We have

SB|sA(t) − SB|sA(0)

= −Y1

(∫ t

0

∫ ∑
d∈D

κ1dvAdvBdP(sA,SB|sA(u))(dvA, dvB)du

)

+ Y2

(∑
d∈D

κ2d t

)
− Y3

(∫ t

0

∫ ∑
d∈D

κ3dvBdP(sA,SB|sA(u))(dvA, dvB)du

)

d=−Y1+3

(∫ t

0

(∑
d∈D

κ1dπA(d)πB(d)

︸ ︷︷ ︸
=:κ̄1

sA + ∑
d∈D

κ3dπB(d)

︸ ︷︷ ︸
=:κ̄3

)
SB|sA(u) du

)

+ Y2

(∑
d∈D

κ2d

︸ ︷︷ ︸
=:κ̄2

t

)
.

Hence, the equilibrium of the above process is as in Example 2.8 given by

X ∼ μsA(dsB) = Pois
(

κ̄2

κ̄3 + κ̄1sA

)
.

We can now compute λ̄
CR(1)+(2)
1 from (3.22) as

λ̄CR(1)+(2)
1 (sA) = −

∫ ∑
d∈D

κ1dπA(d)sAπB(d)sBμsA(dsB)

(3.31)

= − ∑
d∈D

κ1dπA(d)sAπB(d)
κ̄2

κ̄3 + κ̄1sA
= − κ̄1κ̄2sA

κ̄3 + κ̄1sA
.

Dynamics in the cases (3) + (4). We have in each compartment d ∈ D

VBd |sA(t) − VBd |sA(0)

= −Y1

(∫ t

0

∫
κ1dvAdVBd |sA(u)PsA(dvAd

) du

)
+ Y2(κ2d t)
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− Y3

(∫ t

0

∫
κ3dVBd |sA(u)PsA(dvAd

) du

)
d=−Y1+3

(∫ t

0

(
κ1dπA(d)sA + κ3d

)
VBd |sA(u) du

)
+ Y2(κ2d t).

Hence, the equilibrium of the above process is

X ∼ μsA(dvBd
) = Pois

(
κ2d

κ3d + κ1dπA(d)sA

)

and for λ̄
CR(3)+(4)
1 from (3.24) we have

λ̄CR(3)+(4)
1 (sA) = − ∑

d∈D

∫
κ1dvAdvBdμsA(dvBd

)PsA(dvAd
)

(3.32)

= − ∑
d∈D

κ1dκ2dπA(d)sA

κ3d + κ1dπA(d)sA
.

Note that we are in the regime of Corollary 3.15, which shows that λ̄
CR(3)+(4)
1 is

independent of πB .
Comparison of dynamics in cases (1) + (2) and (3) + (4). Let us compare the

case (1) + (2), when the turnover rate of A is given by (3.31), and (3) + (4),
when the rate is given by (3.32). First note that even when the network is spa-
tially homogeneous (the chemical constants satisfy assumption in Corollary 3.18)
there is a marked difference between the dynamics of cases (1) + (2) (as in sin-
gle compartment case) and cases (3) + (4) depending on the movement equilibria
πA and πB . However, if we additionally suppose the slow species A are equidis-
tributed πA(d) = 1/|D| then all four cases have the same dynamics.

Conserved quantities on the fast time scale. Now, we include conserved quan-
tities in our two-scale system in multiple compartments, that is, we have a two-
scale reaction network with dim(N ((ζ f )T)) =: nf > 0. We will use the same

notation as in Section 2.3. In particular, f := (θcj )j=1,...,nf are linearly indepen-
dent vectors which span the null space of (ζ f )T. Every θcj has a unique parameter

αi associated with it, j = 1, . . . , |f | = nf . Here, 
f◦ is the subset of conserved

quantities for which αcj
= 0, and 

f• is the subset of conserved quantities for
which αcj

> 0. Conservation means that t �→ 〈θcj , Sf |ss
(t)〉 with Sf |ss

from (3.13)

is constant, j = 1, . . . , |f |. We let SN
cj

= 〈θcj , SN
f 〉 and SN

c = (SN
cj

)i=1,...,|f | be
the vector of rescaled conserved quantities. Again, Kθ

cj is the set of reactions such

that βk = αcj
and 〈θcj , ζ ·k〉 �= 0, and let Kc := ⋃|f |

j=1 Kθci , Kc◦ := ⋃|f◦ |
j=1 Kθ

cj and

Kc• := ⋃|f• |
j=1 Kθ

cj . We still let ζ c be the matrix defined by (2.29).
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Again, we consider the four cases as given in (3.12). In addition, we assume that
〈θcj , SN 〉 changes on the time scale dt . We write here, distinguishing fast species,
conserved quantities and slow species, v = (v

f
, v

c
, v

s
) with v

f
= (vid)i∈If ,d∈D ,

v
c
= (〈θcj , v·d,f 〉)j=1,...,|f |,d∈D , v

s
= (vid)i∈Is ,d∈D , as well as s = (sf , sc, ss),

sf = (si)i∈If , sc = (〈θcj , sf 〉)j=1,...,|f |, and ss = (si)i∈Is .

REMARK 3.20 (Conserved quantities as new species). In light of the previ-
ous results, one would guess that conserved quantities on the fast time scale can be
handled as if they are new chemical species, evolving on the slow time scale. How-
ever, an important distinction between slow species and conserved quantities does
exist: movement of conserved quantities occurs on the time scale Nηf dt rather
than on the time scale Nηs dt , on which it occurs for the slow species. This implies
an important distinction between slow species and conserved quantities occurs in
cases (2) and (3); the averaging measures over the intermediate time scales treat
conserved and slow species differently.

Although what follows resembles our previous results, in order to be able to use
them, we do have to state the assumptions and results for systems with conserved
species explicitly. We omit all the proofs as they follow analogous steps to those
for systems without conserved species.

ASSUMPTION 3.21 (Dynamics of the spatial multi-scale reaction network with
conserved quantities). In each case (1)–(4), the spatial two-scale reaction net-
work on time scale N dt , where Assumption 3.4 holds, satisfies the following con-
ditions:

(i) (1) Given (Yk)k∈Kf◦ , the time-change equation of the dynamics of Sf given
the values of Ss = ss and Sc = sc, denoted (Sf |(ss ,sc)

(t))t≥0, given by (3.13)

with Sf |ss
replaced by Sf |(ss ,sc)

, has a unique solution, where λ̃
CR(1)
k (sf , ss)

is given by (3.14). In addition, Sf |(ss ,sc)
(·) has a unique stationary probabil-

ity measure μ(ss,sc)
(dsf ) on R

|If |
+ with 〈θcj , sf 〉 = scj

, μ(ss,sc)
-almost surely,

j = 1, . . . , |f |.
(2) Given (Yk)k∈Kf◦ , the time-change equation of the dynamics of Sf given

the value of V
s

= v
s

and Sc = sc, denoted (Sf |(v
s
,sc)

(t))t≥0, given by (3.15)

with Sf |v
s

replaced by Sf |(v
s
,sc)

, has a unique solution, where λ̃
CR(2)
k (sf , v

s
)

is given by (3.16). In addition, Sf |(v
s
,sc)

(·) has a unique stationary probabil-

ity measure μ(v
s
,sc)

(dsf ) on R
|If |
+ with 〈θcj , sf 〉 = scj

, μ(v
s
,sc)

-almost surely,

j = 1, . . . , |f |.
(3) Given (Ykd)

k∈Kf◦ ,d∈D , the time-change equation of the dynamics of V
f

given the values of Ss = ss and V
c

= v
c
, denoted by (V

f |(ss ,vc
)
(t))t≥0, given
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by (3.17) with V ·d,f |ss
replaced by V ·d,f |(ss ,vc

), has a unique solution, where

λ̃
CR(3)
kd (v

f
, ss) is given by (3.18). In addition, V

f |(ss ,vc
)
(·) has a unique station-

ary probability measure μ(ss,vc
)(dv

f
) on R

|If |×|D|
+ with 〈θcj , v

f
〉 = vcj

, μ(ss,vc
)-

almost surely, j = 1, . . . , |f |.
Moreover, given ss and sc, the movement dynamics of V

c|(ss ,sc)
is a unique

solution V
c|(ss ,sc)

(·) = (V ·d,c|(ss ,sc)
)d∈D of the time-change equations

〈
θcj ,V ·d,f

〉
|(ss ,sc)

(t) − 〈
θcj ,V ·d,f

〉
|(ss ,sc)

(0)

= ∑
i∈If◦

θ
cj

i

∑
d ′,d ′′∈D

(
δd ′′(d) − δd ′(d)

)

× Yi,d ′,d ′′
(∫ t

0
λM

i,d ′,d ′′
∫

vid ′μ(ss,V c|(ss ,sc)
(u))(dv

f
) du

)
,

θcj ∈ f◦ ,(3.33)〈
θcj ,V ·d,f

〉
|(ss ,sc)

(t) − 〈
θcj ,V ·d,f

〉
|(ss ,sc)

(0)

= ∑
i∈If•

θ
cj

i

∑
d ′∈D

∫ t

0

∫ (
λM

i,d ′,dvid ′ − λM
i,d,d ′vid

)

× μ(ss,V c|(ss ,sc)
(u))(dv

f
) du, θcj ∈ f• ,

with an equilibrium probability distribution of movement P(ss ,sc)
(dv

c
) with∑

d∈D v·d,c = sc, P(ss ,sc)
(dv

c
)-almost surely.

(4) Given (Ykd)
k∈Kf◦ ,d∈D , the time-change equation of the dynamics of V

f

given the values of V
s
= v

s
and V

c
= v

c
, denoted by (V

f |(v
s
,v

c
)
(t))t≥0, given

by (3.19) with V ·d,f |v
s

replaced by V ·d,f |(v
s
,v

c
), has a unique solution, where

λ̃
CR(4)
kd (v

f
, v

s
) is given by (3.20). In addition, V

c|(v
s
,v

c
)

has a unique stationary

probability measure μ(v
s
,v

c
)(dv

f
) with 〈θcj , v

f
〉 = vcj

, μ(v
s
,v

c
)-almost surely,

j = 1, . . . , |f |.
Moreover, given v

s
and sc, the movement dynamics of V

c|(v
s
,sc)

is a unique

solution V
c|(v

s
,sc)

= (V ·d,c|(v
s
,sc)

)d∈D of the time-change equations (3.33) with

V
c|(ss ,sc)

replaced by V
c|(v

s
,sc)

with an equilibrium probability distribution of

movement P(v
s
,sc)

(dv
c
) with

∑
d∈D v·d,c = sc, P(v

s
,sc)

-almost surely.

(ii) From {λ̃CR(�)
k }�=1,2,3,4, we set in each case

λ̄
CR(1)
k (ss, sc) =

∫
R

|If |
+

λ̃
CR(1)
k (sf , ss)μ(ss,sc)

(dsf );(3.34)



3200 P. PFAFFELHUBER AND L. POPOVIC

λ̄
CR(2)
k (ss, sc) =

∫
R

|Is |×|D|
+

∫
R

|If |
+

λ̃
CR(2)
k (sf , v

s
)μ(v

s
,sc)

(dsf )Pss
(dv

s
);(3.35)

λ̄
CR(3)
k (ss, sc) =

∫
R

|f |×|D|
+

∫
R

|If |×|D|
+

λ̃
CR(3)
k (v

f
, ss)μ(ss,vc

)(dv
f
)

(3.36)
× P(ss ,sc)

(dv
c
);

λ̄
CR(4)
k (ss, sc) =

∫
R

|Is |×|D|
+

∫
R

|f |×|D|
+

∫
R

|If |×|D|
+

λ̃
CR(4)
k (v

f
, v

s
)μ(v

s
,v

c
)(dv

f
)

(3.37)
× P(v

s
,sc)

(dv
c
)Pss

(dv
s
).

For j = 1,2,3,4, there exists a well-defined process (Ss(·), Sc(·)) that is the
unique solution of

Ss(t) = Ss(0) + ∑
k∈Ks◦

ζ s
·kYk

(∫ t

0
λ̄

CR(�)
k

(
Ss(u), Sc(u)

)
du

)
(3.38)

+ ∑
k∈Ks•

ζ s
·k

∫ t

0
λ̄

CR(�)
k

(
Ss(u), Sc(·)

)
du,

and for j = 1, . . . , |f |,
Scj

(t) = Scj
(0)

+ ∑
k∈Kc◦

∑
i∈If

θ i
cj

ζ s
ik

Yk

(∫ t

0
λ̄

CR(�)
k

(
Ss(u), Sc(u)

)
du

)
(3.39)

+ ∑
k∈Kc•

∑
i∈If

θ i
cj

ζ s
ik

∫ t

0
λ̄

CR(�)
k

(
Ss(u), Sc(u)

)
du.

(iii) Same as (iii) in Assumption 2.6 in each compartment.

REMARK 3.22 (Equivalent formulation). For the dynamics under the above
assumption, the following is immediate: In each case (1)–(4), the spatial two-scale
reaction network on time scale dt , where Assumption 3.21 holds, satisfies the fol-
lowing condition: given (Yk)k∈Ks◦∪Kc◦ , the time change equations (3.38) and (3.39)
have a unique solution, with

λ̄
CR(�)
k (ss) := E(ss ,sc)

[∑
d∈D

λCR
kd (V ·d)

]
< ∞.(3.40)

The distribution of (Vid)i∈I,d∈D in (3.40) depends on the parameters ηs, ηf as
follows:

(1) P(ss ,sc)
(dv

f
, dv

s
) = Pss

(dv
s
)

∫
R

|If |
+

Psf
(dv

f
)μ(ss ,sc)

(dsf ),
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(2) P(ss ,sc)
(dv

f
, dv

s
) = Pss

(dv
s
)

∫
R

|If |
+

Psf
(dv

f
)μ(v

s
,sc)

(dsf ),

(3) P(ss ,sc)
(dv

f
, dv

s
) = Pss

(dv
s
)

∫
R

|f |×|D|
+

μ(ss,vc
)(dv

f
)P(ss ,sc)

(dv
c
),

(4) P(ss ,sc)
(dv

f
, dv

s
) = Pss

(dv
s
)

∫
R

|f |×|D|
+

μ(v
s
,v

c
)(dv

f
)P(v

s
,sc)

(dv
c
).

THEOREM 3.23 (Heterogeneous two-scale system with conserved fast quan-
tities). Let V N be the vector process of rescaled species amounts for the re-
action network which is the unique solution to (3.3). Assume that (α,β, γ = 0)

satisfy two-scale system assumptions (2.11) for some If ,Is with ε = 1 and
N ((ζ f )T) = span(f ) [with ζ f from (2.13) and f from (2.28)] within compart-

ments with conserved quantities (θcj )i=1,...,|f | on the fast time scale. In addition,
ηi = ηf > 0, i ∈ If , ηi = ηs > 0, i ∈ Is , one of the cases (1)–(4) holds and As-

sumption 3.21 holds. Then, if (SN
s (0), SN

c (0))
N→∞⇒ (Ss(0), Sc(0)), we have joint

convergence of the process of rescaled amounts of slow and conserved quantities
(SN

s (·), SN
c (·)) to (Ss(·), Sc(·)) in the Skorohod topology, with Ss the solution of

(3.38) and Sc the solution of (3.39) with rates given by (3.34)–(3.37).

Results analogous to Corollary 3.15 stating the irrelevance of the movement of
fast species in cases (3) and (4) does not carry over to the case with conserved
quantities, since on the time scale Nηf dt conserved quantities are still preserved
and their movement equilibria affects the end result.

LEMMA 3.24. In the situation of Theorem 3.23, assume Is◦ = ∅, that is, all
slow species are continuous, and let πs

s
:= (πi(d)si)i∈Is ,d∈D .

(i) For stationary probability measures μ(ss,sc)
(dsf ) of Sf |(ss ,sc)

from As-
sumption 3.21(i)(1) and μ(v

s
,sc)

(dsf ) of Sf |(v
s
,sc)

from (i)(2), we have

μ(ss,sc)
(dsf ) = μ(πs

s
,sc)

(dsf ).

(ii) Likewise, for stationary probability measures μ(ss,vc
)(dv

f
) of V

f |(ss ,vc
)

from (i)(3) and μ(v
s
,v

c
)(dv

f
) of V

f |(v
s
,v

c
)

from (i)(4), we have

μ(ss,vc
)(dv

f
) = μ(πs

s
,v

c
)(dv

f
).

COROLLARY 3.25. Suppose in Theorem 3.23 all slow species are continuous,
Is◦ = ∅. Then dynamics of (3.38) is the same in cases (1), (2) and also in cases (3),
(4).
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COROLLARY 3.26 (Homogeneous mass action kinetics). Corollary 3.18 car-
ries over to the same situation as in Theorem 3.23.

EXAMPLE 3.27 (Michaelis–Menten kinetics in multiple compartments). We
place Michaelis–Menten reaction kinetics from Example 2.13 in a spatial multi-
compartment setting. The chemical reaction network is given (within compart-
ments) by the set of reactions from (2.34), with κ ′

k replaced by κ ′
kd in compart-

ment d . We have x = (x·d)d∈D , x·d = (xSd, xEd, xESd, xPd), and the dynamics
in each compartment d is given by rates (2.35) with κ ′

k replaced by κ ′
kd . Move-

ment of species is given as in (3.3). Again, we set αS = αP = 1, αE = αES = 0,
and κ1d = κ ′

1d , κ−1d = N−1κ ′−1d and κ2d = N−1κ ′
2d as in (2.37) so, setting the

rescaled species counts

vSd = N−1xSd, vEd = xEd, vESd = xESd, vPd = N−1xPd,

and β1 = 1, β−1 = 1, β2 = 1 as in (2.36). We write

λCR
1d (v·d) = κ1dvSdvEd, λCR−1d(v·d) = κ−1dvESd, λCR

2d (v·d) = κ2dvESd .

The process V N = (V N
Sd,V N

Ed,V N
ESd,V N

Pd) is given as in Example (2.13) plus ad-
ditional movement terms. We set ηs = ηS = ηP for movement of slow species and
ηf = ηE = ηES for movement of fast species. We assume (as in Assumption 3.4)
that movement of species i has a stationary probability distribution (πi(d))d∈D .
We have If = If◦ = {E,ES} and Is = Is• = {S,P } and Kf = Ks = {1,−1,2},
KS = {1,−1}, KE =KES =K and ζ , ζ f , ζ s as in (2.37). For conserved quantities
within compartments, we set VCd := VEd + VESd and note that while movement
changes the values of VCd the overall sum SC = ∑

d∈D VCd := m is a conserved
quantity for all times, and thus, the dynamics of SC is trivial.

We derive the dynamics of SS (as in Example 2.13, SS + SP is a conserved
quantity on the slow time scale). We have from (3.21) that

SS(t) = SS(0) −
∫ t

0
λ̄CR(

SS(u)
)
du

for appropriate λ̄. Since all slow species are continuous, we are in the regime of
Corollary 3.25 and we only need to distinguish the following two cases:

Dynamics in cases (1) + (2). From (3.13) with Sf |ss
replaced by Sf |(ss ,sc)

, we
have

SE|sS (t) − SE|sS (0)

= −Y1

(∫ t

0

∫ ∑
d∈D

κ1dvSdvEdP(sS,SE|sS (u))(dvS, dvE)du

)

+ Y−1+2

(∫ t

0

∫ ∑
d∈D

(κ−1d + κ2d)vESdP(m−SE|sS (u))(dvES) du

)



SCALING LIMITS OF SPATIAL COMPARTMENT MODELS 3203

= −Y1

(∫ t

0

(∑
d∈D

κ1dπS(d)πE(d)

︸ ︷︷ ︸
=:κ̄1

)
sSSE|sS (u) du

)

+ Y−1+2

(∫ t

0

(∑
d∈D

(κ−1d + κ2d)πES(d)

︸ ︷︷ ︸
=:κ̄−1+κ̄2

)(
m − SE|sS (u)

)
du

)
.

Hence, the equilibrium of the above process is as in Example 2.13 given by X ∼
μ(sS,m)(dsE) where

X ∼ Binom
(
m,

κ̄−1 + κ̄2

κ̄−1 + κ̄2 + κ̄1sS

)

and SES|sS has equilibrium m − X. We next compute λ̄CR(1)+(2) from (3.34) as

λ̄CR(1)+(2)(sS) = λ̄CR(1)+(2)
1 (sS) − λ̄

CR(1)+(2)
−1 (sS)

= ∑
d∈D

∫ (
κ1dπS(d)πE(d)sSsE

− κ−1dπES(d)(m − sE)
)
μ(sS,m)(dsE)

= ∑
d∈D

κ1dπS(d)πE(d)sSm
κ̄−1 + κ̄2

κ̄−1 + κ̄2 + κ̄1sS

− κ−1dπES(d)m
κ̄1sS

κ̄−1 + κ̄2 + κ̄1sS

= mκ̄1κ̄2sS

κ̄−1 + κ̄2 + κ̄1sS
.

Comparing this with (2.38), we see that in cases (1) + (2) Michaelis–Menten ki-
netics in multiple compartments equals the same kinetics in a single compartment,
when κi is exchanged by κ̄i, i = −1,1,2; compare also with Corollary 3.25.

Dynamics in cases (3) + (4). For simplicity, we assume that λM
d,d ′ := λM

E,d,d ′ =
λM

ES,d,d ′ , that is, movement of E and ES is the same, and hence πE(d) =
πES(d), d ∈ D [we will use this property for deriving P(sS,m)(dvC) and
P(vS,m)(dvC) below]. We will treat the cases (3) and (4) separately and show the
result of Corollary 3.25 which states that these two cases lead to the same limiting
dynamics.

(3) From Assumption 3.21(i)(3), for vC with
∑

d∈D vCd = m, we have

VEd|(sS,vC)(t) − VEd|(sS,vC)(0)

= −Y1d

(∫ t

0

∫
κ1dVEd|(sS,vC)(u)vSdPsS (dvSd) du

)
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+ Y(−1+2)d

(∫ t

0
(κ−1d + κ2d)

(
vCd − VEd|(sS,vC)(u)

)
du

)

= −Y1d

(∫ t

0
κ1dVEd|(sS,vC)(u)sSπS(d) du

)

+ Y(−1+2)d

(∫ t

0
(κ−1d + κ2d)

(
vCd − VEd|(sS,vC)(u)

)
du

)
.

Hence, the equilibrium of VEd|(sS,vC) is as in Example 2.13 given by

Xd ∼ μ(vSd ,vCd)(dsEd) = Binom
(
vCd,

κ−1d + κ2d

κ−1d + κ2d + κ1dsSπS(d)

)
(sEd)

and VESd|(sS,vC) has equilibrium vCd − Xd . We compute λ̄CR(3) from (3.36) as

λ̄CR(3)(sS) = λ̄CR(3)
1 (sS) − λ̄

CR(3)
−1 (sS)

= ∑
d∈D

∫
κ1dvEdsSπS(d)

− κ−1d(vCd − vEd)μ(vSd ,vCd)(dvEd)P(sS,m)(dvCd)

= ∑
d∈D

∫ (
κ1dvCd

κ−1d + κ2d

κ−1d + κ2d + κ1dsSπS(d)
sSπS(d)

− κ−1dvCd

κ1dsSπS(d)

κ−1d + κ2d + κ1dsSπS(d)

)
P(sS,m)(dvCd)

= ∑
d∈D

∫
vCdκ1dκ2dsSπS(d)

κ−1d + κ2d + κ1dsSπS(d)
P(sS,m)(dvCd).

Consider the equilibrium P(sS,m)(dvCd) of movement dynamics for conserved
species VCd = VEd + VESd . Since we assume the same migration dynamics for
E and ES, the equilibrium P(sS,m)(dvC) is given by a multinomial distribution
with parameters m, (πE(d))d∈D and

∫
vCdP(sS,m)(dvCd) = mπE(d), d ∈D.

For (4), the overall rate λ̄CR(4) from (3.37) has the same form as λ̄CR(3) except
that P(sS,m)(dvCd) is replaced by P(vSd ,m)(dvCd). We first derive the equilibrium
probability distribution μ(vSd ,vCd)(dvEd) as above. Here, we find that sSπS(d) is
replaced by vSd , leading to

Xd ∼ μ(vSd ,vCd)(dvEd) = Binom
(
vCd,

κ−1d + κ2d

κ−1d + κ2d + κ1dvSd

)
(vEd).

The conserved quantities VCd(·) follow the same dynamics as in case (3) except
that sSπS(d) is replaced by vSd and, therefore, P(vS,m)(dvC) is a multinomial dis-
tribution with parameters m, (πE(d))d∈D as in case (3). Hence, in the equation for
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the rates we have
∫

vCdP(vSd ,m)(dvCd) = mπE(d), d ∈ D, and the limiting dynam-
ics in cases (3) and (4) is given by

λ̄CR(3)+(4)(sS) = ∑
d∈D

mπE(d)κ1dκ2dsSπS(d)

κ−1d + κ2d + κ1dsSπS(d)
.

Although we have seen that the dynamics for cases (1)+ (2), as well as for (3)+ (4)
is the same, in general they are quite different from each other, unless some very
special relationships between the chemical constants and movement equilibria in
different compartments are assumed. See the results in Pfaffelhuber and Popovic
(2014) on notions of dynamical homogeneity that allow one to make some inter-
esting conclusions.

4. Discussion. Specific features and extensions of spatial chemical reaction
models.

(a) Heterogeneous reaction and migration rates. The reaction rates �CR
kd in gen-

eral depend on the compartment d . For the same reason, the outflow of species i

from compartment d ′, ∑
d ′′∈D �M

i,d ′,d ′′ might depend on i and d ′. Moreover, it is

possible that �CR
kd (x·d) is zero for some compartments, that is, our model is flex-

ible enough to restrict some reactions to a subset of compartments. Analogously,
movement of certain species types can be restricted to only a subset of compart-
ments, that is, �M

i,d,d ′ can also be set to zero for some i, d, d ′. The only thing which
is required is that every reaction k happens within at least one compartment.

(b) Geometry of space. The geometry of the spatial system has not been explic-
itly relevant for our results. The reason is that movement dynamics is assumed to
happen at a different time scale (either faster or slower) than the effective reaction
dynamics of either the slow or fast species. This implies that only the equilibrium
of the movement is relevant for any dynamics occurring on the respectively slower
scale.

(c) Chemical conformations. Our model can be extended in order to model
different chemical conformations of chemical species instead of spatial compart-
ments. For this, let Di be the set of possible conformations of species i. Then any
molecule of species i performs a Markov chain on Di due to changes in conforma-
tion. Moreover, in this case for each type of reaction k its reaction rate �CR

k,d,d ′
might then depend on all conformations of reacting and produced molecules
d = (di)i∈I and d ′ = (d ′

i )i∈I , respectively. For example, our results can be ap-
plied to Michaelis–Menten kinetics with multiple conformations of the enzyme
and of the enzyme-substrate complex [see Kou (2008)].

(d) Other density dependent processes. The model can also be applied to other
density dependent Markov chain models, such as epidemic or ecological models.
Analogous results can also be made for density dependent stochastic differential
models of stochastic population growth in spatially heterogeneous environments
[see Evans et al. (2013)].
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Conclusions. The main conclusion of our paper is the following algorithm for
determining the dynamics of a spatial chemical reaction network: assume we are
given a network of the form (2.1) in a spatial context, that is, (3.1) holds with
reaction rates as in Assumption 3.1; introduce a (large) scaling constant N and
rewrite the dynamics of all species in the form (3.3) (for some αi’s, ηi’s and βk’s)
assuming (2.8) and (3.2) hold (admittedly, the choice of N , αi’s and βk’s is rather
an art than a science—for simplicity, we are assuming here that this step has been
done already); in addition, suppose every species moves between compartments as
in Assumption 3.4; the goal is to understand the dynamics of overall normalized
sums of species over compartments as given in (3.5).

There are two cases: either the system is on a single-scale, that is, (2.9) holds, or
the system is two-scale, that is, (2.11) holds. (We do not treat higher order scales
in this paper.)

(i) In the single-scale case Theorem 3.7 applies. Essentially, one has to av-
erage all reaction rates of reactions affecting slow species over the equilibrium
distribution of movement of all species. If reaction rates are given by mass action
kinetics, Corollary 3.8 applies.

(ii) The two-scale case is considerably more complicated. Here, every species
is either fast or slow and we have to consider all orders of the time scale of fast
reactions and movement of fast and slow species. We call Sf the overall sum of
normalized fast species and Ss the overall sum of normalized slow species. Con-
sider the submatrices of slow and fast reactions, ζ f and ζ s from (2.13) and (2.15),
respectively. A conserved quantity for the fast reaction subnetwork is a nontrivial
element of the null-space of (ζ f )T.

(ii-a) If there is no conserved quantity, we can use Theorem 3.13. Here, there
are up to four time scales to consider, movement of fast and slow species, the time
scale of the fast reactions and the time scale of the slow species. In all cases, in or-
der to determine the effective rate on Ss on a slower time scale, one has to average
over the equilibrium of all higher time scales. Interestingly, if all slow species are
continuous (i.e., have a deterministic process as a limit), it only matters if the fast
species move faster or slower than fast reactions. The speed of the movement of
slow species does not matter (see Corollary 3.17).

(ii-b) If there are conserved quantities for the fast reaction subnetwork, these
conserved quantities can still change on a slower time scale. Here, we are assum-
ing that this time scale is the same as the time scale of the slow species. The
main difference from the case without conserved quantities is that on the fast time
scale, the equilibria we need to consider for averaging are concentrated on a fixed
conserved quantity. Then, basically, the conserved quantity can be treated as new
species with its own dynamics (which changes on the timescale of slow species by
assumption). Again, there are four cases to consider; see Theorem 3.23. Also, if
all slow quantities are continuous, it only matters if the fast species move faster or
slower than the fast reactions; see Corollary 3.25.
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