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Abstract

Asymptotic Genealogy of a Branching Process and a Model of Macroevolution

by

Lea Popovic

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor David J. Aldous, Chair

We consider a stochastic model for an evolutionary process that allows us to model phylo-

genies and fossil time series in a coherent manner. The model includes both data on the

number of extant taxa, and the likelihood of the appearance of extinct taxa in the historical

record. We study this problem within a branching process model. Consider a continuous-

time binary branching process conditioned to have population size n at some time t, and

with a chance p for recording each extinct individual in the process. Within the family

tree of this process, we consider the smallest subtree containing the genealogy of the extant

individuals together with the genealogy of the recorded extinct individuals. We introduce

a novel representation of such subtrees in terms of a point-process, and provide asymp-

totic results on the distribution of this point-process as the number of extant individuals

increases. We motivate the study within the scope of a coherent analysis for an a-priori

model for macroevolution.

Professor David J. Aldous
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Phylogeny and the Fossil Record

The use of stochastic models in the theory of macroevolution (origin and extinction

of species) has been common practice for many years now. Stochastic models have been

used to recreate phylogenetic trees of extant taxa from molecular data, and to recreate the

time series of the past number of taxa from the fossil record. However, only few attempts

have been made to make the two analyses consistent with each other. Instead of studying

data-motivated models (which are scientifically more realistic for specific applications), the

first purpose of this thesis is to study a purely random model that can accommodate such a

coherent analysis. We study a mathematically fundamental stochastic model which allows

for inclusion of both extant and fossil types of data in one analysis.

The model we propose is the continuous time critical branching process. The reasons for our

choice are the following. If one is to consider a model in which extinctions and speciations

are random without systematic tendencies for the number of species to increase or decrease,

then for a branching process this translates into the criticality of the process (the average

number of offspring of each individual is 1). Such a model corresponds to one general view

in evolutionary biology that (except for mass extinctions and their aftermath) the overall

number of species does not have exponential growth nor an exponential decrease.
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The fundamental critical branching processes previously employed in evolutionary models

have drawbacks that exclude their use in our proposed study. The basic evolution model is

the Yule process [24], the elementary continuous-time pure birth process. This process starts

with one individual, each individual gives birth to offspring according to a Poisson(rate

1) process. One can clearly not employ this model, as it a priori does not involve the

extinction of species, hence does not allow for inclusion of the fossil record. The next

candidate model which includes the extinction of individuals, is the basic neutral model

used in population genetics. The Moran model [9], is the process of uniformly random

speciations and extinctions of individuals in a population of a fixed size. In this process the

total number of individuals is a fixed number, each individual lives for an Exponential(mean

1) lifetime, at the end of which it is replaced by an offspring chosen uniformly at random from

the total population including itself. One can consider this process as having persisted from

a distant past to the present, giving implicitly a genealogical tree of the extant individuals.

Asymptotically in the total population size (with suitable rescaling) this genealogical process

(backwards in time) is the Kingman’s coalescent model. Although it is possible to make

modifications of this model to allow for non-constant population size [14], this unfortunately

requires an a priori assumption on the evolution of the total population size in time.

We are interested in considering a group of species that have some common ancestor at their

origin. This corresponds to the practice in evolutionary biology of considering monophyletic

groups. In this sense, the critical continuous-time binary branching process, in which in-

dividuals live for an Exponential(mean 1) time during which they produce offspring at

Poisson(rate 1) times, is the natural basic model for the given purpose. Our first goal is to

study the genealogical structure of the process conditioned on its population size at a given

time t. By genealogical structure we mean a particular subtree of the branching process

family tree. We consider all the extant individuals at time t, and the subset of the extinct

individuals each having independently a chance p of being sampled into the record. The

subtree we are interested in is the smallest one containing all the common ancestors of the

extant individuals and all the sampled extinct individuals. We introduce a point-process

representation of this subtree, which has a convenient graphical interpretation, and derive

its law.

The main result of the first two chapters is the asymptotic behavior of such point-processes



3

(as the number of extant individuals increases, appropriately rescaled), and their connection

to a conditioned Brownian excursion. We further want to avoid assuming that the time

of origin of the branching process is known (giving time t of today), and to rely only on

the number of extant species as known. We hence incorporate our results for given t in a

Bayesian model which randomizes the time of origin based on the number of extant individ-

uals. We also consider some statistics of interest describing this genealogical structure, such

as: the time of the last common ancestor of all extant individuals, the number of individuals

present at the time of the last common ancestor, etc. We derive their distributions in the

asymptotic setting.

As a last remark on the choice of the branching process, we note that, as implied by general

convergence results on critical branching processes ([3] and many others), the same asymp-

totic process representing the genealogical and fossil structure as obtained here, should hold

in general for any critical branching process with finite offspring variance.

The relationship between random trees and Brownian excursions has been much explored

in the literature. We note only a small selection that is directly relevant to the work in this

paper. Neveu-Pitman [19],[18] and Le Gall [15] noted the appearance of continuous-time

critical branching processes embedded in the structure of a Brownian excursion. Abra-

ham [1] and Le Gall [16] considered the construction of an infinite tree within a Brownian

excursion, which is in some sense a limit of the trees from the work of Neveu-Pitman.

The convergence of critical branching processes conditioned on total population size to a

canonical tree within a Brownian excursion (the continuum random tree) was introduced

by Aldous [3]. We state a connection of the asymptotic results in this paper with the above

mentioned results.

In the mathematical literature, some aspects of the genealogy of critical Galton-Watson trees

conditioned on non-extinction have been studied by Durrett [8], without the use of random

trees. The genealogy of branching processes which are “barely” super-critical was studied

by O’Connell [20] for which he explored questions of last common ancestry of all extant

individuals. Geiger [12] introduced a different point-process representation of the genealogy

of a critical branching process. He considered branching processes that are size-biased ac-

cording to the number of individuals extant at some time t, and represented the genealogy of



4

the extant individuals relative to their degree of relationship with a distinguished individual

chosen randomly from this extant set. The genealogy of critical branching processes has

also been studied within the context of super-processes (for an excellent survey see [16]). In

particular, Le Gall, Le Jan, and Duquesne [17],[7] have considered Galton-Watson branching

processes with offspring distributions µn conditioned on total progeny, that when suitably

rescaled converge to a continuous-state branching process with some branching mechanism

ψ. They have shown that the genealogies of these conditioned branching processes then

also converge to a continuous branching structure coded by a ψ-height process, constructed

as a local time functional of the Levy process with Laplace exponent ψ).

1.2 Higher Order Taxa

The use of stochastic models of evolution has also been extensively applied on each level

of taxonomy (species, genera, etc.) separately. However, it is certainly desirable to insure

hierarchical consistency between them, so that the phylogenetic tree on species is consistent

with the phylogenetic tree on genera consisting of these species. The second purpose of this

thesis is to extend our model on species to encompass a consistent model on higher order

taxa. A natural way to extend our analysis to the next taxonomic level is to superimpose on

the branching process a random process of marks distinguishing some species as sufficiently

different as to be originators of a new genus. The way one defines what constitutes a new

genus from these marks is subject to different constraints that produce different degrees of

coarseness in the next taxonomic level.

We shall consider the coarsest definition that makes each genus a clade. In biological terms

this translates into a monophyletic property of higher order taxa. We provide an analysis

for tree on genera thus generated from the tree on species. We derive the distribution of

the number of lineages at a time s in the past, the merge-rate of lineages, as well as the

number of species per genus. We also derive the relevant statistics for the shape of the tree

on genera. As implied by Aldous’ discussion of several shape statistics from the biological

literature ([4]), we consider here the distribution of split-rates as a mathematically optimal

way of describing the tree shape.
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A further analysis of models on higher order taxa, as well as a list of useful references to

the biological literature, can be found in [5], a survey paper of Aldous in collaboration with

the author of this thesis, which aims to provide a comprehensive discussion of coherent and

consistent stochastic models for macroevolution.

1.3 Overview

The analysis of a the genealogical and fossil structure of the model on species are

presented in Chapters 2- 3. In Section 2.2 we give a precise definition of the genealogical

point-process representing the common ancestry of the extant individuals. We provide its

exact law, as well as its asymptotic behavior in Section 2.3. Then, in Section 3.1 we give the

definition of the corresponding genealogical point-process that includes the sampled extinct

individuals as well. We provide its exact law, and in Sectione 3.2 derive its asymptotic

behavior as well.

The Bayesian calculations randomizing the time of origin of the process, are given in 2.4.

Furtermore, the distribution of statistics describing the geneaological structure are given in

2.5.

The analysis of the model on higher order taxa is presented in Chapter 4. We give the

definition of a higher order taxon, say a genus, based on a process of changes on the species,

and analyze the superimposed process on genera. We provide the distribution for the lifetime

of a genus containing a typical extant species in Section 4.3, as well as the distribution of

the number of other extant species contained in it in Section 4.4. Lastly, in Sections4.5-4.6

we analyze the shape of the tree on species as well as the shape of the tree on genera, via

probabilities of different types of branching points in them.
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Chapter 2

Genealogy of the Extant

Individuals

In this chapter we define precisely the branching process model for the evolution of

species and recall equivalent ways of representing the genealogical history of this process as

a random tree with edge-lengths and by the contour process of this tree. We introduce a

novel way of representing the genealogy of extant individuals with a point-process (named

the genealogical point-process), and derive the law of this process (Lemma 3). We further

introduce a point-process defined from a conditioned Brownian excursion (named the con-

tinuum genealogical point-process), and show that this is precisely the asymptotic process

of the rescaled genealogical point-processes as the number of extant individuals increases

(Theorem 5). We also give the associated Bayesian asymptotic result with the time of the

of the origin of the process randomized (Corollary 7). In the last section we derive the

asymptotic distributions of some statistics of interest which can be used to describe the

genealogy.

2.1 Critical Branching Process

Let T be a continuous-time critical branching process, with initial population size 1. In

such a process each individual has an Exponential(rate 1) lifetime, in the course of which it



7

gives birth to new individuals at Poisson(rate 1) times, with all the individuals living and

reproducing independently of each other. Let Tt,n be the process T conditioned to have

population size n at a given time t. We shall use the same notation (T and Tt,n) for the

random trees with edge-lengths that are the family trees of these processes.

We depict these family trees as rooted planar trees with the following conventions. Each

individual is represented with a set of edges whose total length is equal to that individual’s

lifetime. Each birth time of an offspring corresponds to a branch-point in the parent’s edge,

with the total length of the parent’s edge until the branch-point equal to the parent’s age

at this time. The new individual is then represented by the edge on the right, while the

parent continues in the edge on the left. Such trees are identified by their shape and by

the collection of the birth times and lifetimes of individuals. We shall label the vertices in

the tree in a depth-first search manner. An example of a random tree realization of Tt,n is

shown in Figure 2.1(a).

1

2
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4 5

12 13 14

15 16 17

9

10 11
6

7 8

1

2

6

7
8

9

10
11

12
13 14

15
17

16

4 5

3
t

(a) (b)

Figure 2.1: (a) A realization of the tree Tt,n whose population at time t is n = 5; the leaves
are labeled in depth-first search manner; (b) The contour CTt,n process of the tree Tt,n; each
local maximum of CTt,n corresponds to the height of a leaf of Tt,n.

Remark . The random tree T we defined is almost the same as the family tree of a

continuous-time critical binary-branching Galton-Watson process. The difference between

the two is only in the identities of the individuals. If, in the Galton-Watson process, at

each branching event with two offspring we were to impose the identification of the left

offspring with its parent, the resulting random tree would be the same as the family tree of
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our branching process T .

Let CT be the contour process induced by the random tree T . The contour process of a

rooted planar tree is a continuous function giving the distance from the root of a unit-speed

depth-first search of the tree. Such a process starts at the root of the tree, traverses each

edge of the tree once upwards and once downwards following the depth-first search order

of the vertices, and ends back at the root of the tree. The contour process consists of line

segments of slope +1 (the rises), and line segments of slope −1 (the falls). The unit speed

of the traversal insures that the height levels in the process are equivalent to distances from

the root in the tree, in other words to the times in the branching process. In particular,

the local maxima of CT correspond in height to the leaves of T (in other words, to the

times of death of individuals), while the local minima of CT correspond in height to the

branching points of T (to times of births of new individuals). The contour process induced

by the random tree Tt,n depicted in Figure 2.1(a) is CTt,n shown in Figure 2.1(b). For a

formal definition of planar trees with edge lengths, contour processes and their many useful

properties one can consult the recent lecture notes of Pitman [21] §6.1.

2.2 Genealogical Point-process

Let the genealogy of extant individuals at a given time t be defined as the smallest

subtree of the family tree which contains all the edges representing the ancestry of the

extant individuals. The genealogy of extant individuals at t in Tt,n is thus an n-leaf tree,

which we denote by G(Tt,n). Figure 2.2(a) shows the genealogical subtree of the tree from

Figure 2.1(a). We next introduce a novel point-process representation of this genealogical

tree G(Tt,n). We thus get an object that is much simpler to analyze, and gives much clearer

asymptotic results than if made in the original space of trees with edge-lengths.

Informally, think of forming this point-process by taking the heights of the branching points

of the genealogical tree G(Tt,n) in the order they have as vertices in the tree. For conve-

nience reasons (in considering asymptotics with t increasing) we keep track of the heights

of the branching points in terms of their distances from level t. The vertical coordinate

of each branching point is thus its distance below level t, while its horizontal coordinate
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is just its index. The point-process representation of G(Tt,n) from Figure2.2(a) is shown

in Figure 2.2(b). Formally, let Ai, 1 ≤ i ≤ n − 1, be the times (distance to the root) of

branch-points in the tree G(Tt,n), indexed in order induced from the depth-first search of

the vertices in Tt,n, let τi = t − Ai be their distance below level t, and let #i = i.

.

.

. .

(a) (b)

1 2 3 4 5=n0

t

Figure 2.2: (a) The genealogical tree G(Tt,n) of the extant individuals at time t; (b) The
point-process Πt,n representation of G(Tt,n) (the dotted lines show the simple reconstruction
of G(Tt,n) from its point-process).

Definition. The genealogical point-process Πt,n is the random finite set

Πt,n = {(#i, τi) : 1 ≤ i ≤ n − 1, 0 < τi < t} (2.1)

For practical purposes it is most useful to exploit the bijection between a random tree and

its contour process. We can obtain the point-process Πt,n equivalently from the contour

process CTt,n as follows. The ith individual extant at t corresponds to the pair (Ui, Di),

consisting of an up-crossing Ui and the subsequent down-crossing Di of the level t. The

branch-points Ai, 1 ≤ i ≤ n − 1, of G(Tt,n) correspond to the levels of lowest local minima

of the excursions of CTt,n below level t, in other words Ai = inf{CTt,n(u) : Di < u < Ui+1}.

We next use this observation together with the description of the law of CTt,n in order to

obtain the law of Πt,n. We first recall the result of Neveu-Pitman-Le Gall, regarding the

law of the contour process CT of an unconditioned random tree T (one can consult either

[15] or [19] for its proof).
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Lemma 1. In the contour process CT of a critical branching process T the sequence of

rises and falls (up to the last fall) has the same distribution as a sequence of independent

Exponential(rate 1) variables stopped one step before the sum of successive rises and falls

becomes negative (the last fall is then set to equal this sum).

The following corollary is an immediate consequence of Lemma 1 and the memoryless

property of the exponential distribution.

Corollary 2. For the contour process CT the process XT = (CT , slope[CT ]) is a time-

homogeneous strong Markov process on R+×{+1,−1} stopped when it first reaches (0,−1).

The law of the genealogical point-process Πt,n can now easily be derived using some standard

excursion theory of Markov processes. Note that the contour process of a whole class of

binary branching processes can be shown to be a time-homogeneous Markov process as well

(see [11]). In the following Lemma we show that the distances of the n−1 branching points

below level t are independent and identically distributed, with the same law as that of the

height of a random tree T conditioned on its height being less than t.

Lemma 3. For any fixed t > 0, the random set Πt,n is a simple point-process on {1, . . . , n−
1}× (0, t) with intensity measure

νt,n
(
{i}× dτ

)
=

1
2

dτ

(1 + τ)2
1 + t

t
(2.2)

In other words, τi, 1 ≤ i ≤ n − 1 are i.i.d. variables on (0, t) with the law (2.2).

Proof. In short the proof relies on the following. The contour process CT of an uncondi-

tioned tree T is, by the previous Corollary, a Markov process considered until a certain

stopping time. Hence, its excursions below some level t are independent and identically

distributed. Conditioning of the tree Tt,n translates simply in terms of its contour process,

into conditioning this Markov process to have exactly n − 1 excursions below t until this

stopping time. Further, for the law of these excursions it will follow, by the sign invariance

of the law of CT , that their law is the same as that of a copy of CT conditioned to have a

height less than t.

Consider the Markov process XT = (CT , slope[CT ]) until the first hitting time U(0,−1) =

inf{u ≥ 0 : XT (u) = (0,−1)}, and consider its excursions from the point (t, +1) using the
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distribution of CT given by Lemma 1. For i ≥ 1 let Ui be the times of the up-crossings of

level t by CT
U0 = 0, Ui = inf{u > Ui−1 : XT (u) = (t, +1)}, i ≥ 1.

Clearly P(t,+1)

[
inf{u > 0 : XT (u) = (t, +1)} > 0

]
= 1, hence the set of all visits to (t, +1)

at times {Ui, i ≥ 1} is discrete. The excursions of XT from level t are, for i ≥ 1

ei(u) = XT (Ui + u), for u ∈ [0, Ui+1 − Ui), and ei(u) = (0, +1) else.

The number of visits in an interval [0, u] is

#(0) = 0, #(u) = sup{i > 0 : u > Ui}, u > 0,

and the total number prior to U(0,−1) is L = sup{i ≥ 0 : U(0,−1) > Ui} = #(U(0,−1)). If n is

the P(t,+1)-law of ei, and if e<t is the set of excursions from (t, +1) that return to (t, +1)

without reaching (0,−1), and e>t the set of all others, then it is clear that (e.g.[23] Vol.2

§VI.50.)

• P(t,+1)

[
L ≥ i

]
=

[
n(e<t)

]i−1
, i ≥ 1, and e1, e2, . . . are independent

• given that L ≥ i: the law of e1, e2, .., ei−1 is n(· ∩ e<t)/n(e<t)

• given that L = i: the law of ei is n(· ∩ e>t)/n(e>t)

This makes {(#(Ui), ei), 1 ≤ i ≤ L − 1} a simple point-process, (note that #(Ui) = i, and

#(∞) = L), whose number of points has a Geometric(n(e>t)) law, and with each ei having

the law n(· ∩ e<t)/n(e<t).

This observation is particularly convenient for analyzing the law of CTt,n . Since CTt,n is just

CT conditioned on L = n, the n − 1 excursions of CTt,n below t are independent identically

distributed with the law n(· ∩ e<t)/n(e<t). We next derive the law of their depth Ai

measured as distance from level t by τi = t − Ai.

For each up-crossing time Ui of level t, we have a down-crossing time

Di = inf{u > Ui : XT (u) = (t,−1)}, i ≥ 1.
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For the values of Ai, i ≥ 1 we are only interested in the part of the excursions from (t, +1)

below level t

e<t
i = ei(Di + u), u ∈ [0, Ui+1 − Di), and e<t

i (u) = (0, +1) else.

We note that the shift and reflection invariance of the transition function of CT , as well as

its strong Markov property, applied to the law n for e<t
i imply that the law of e+

i = t− e<t
i

is the same as the law of XT . Consequently the law of t − inf(e<t
i ) = sup(e+

i ) is the same

law as that of sup(CT ).

To explicitly express the law of sup(CT ) we now recall classical results for the branching

process T (e.g. [10] §XVII.10.11.), by which the law of the population size N(t) of T at

time t is given by

P
[
N(t) = 0

]
=

t

1 + t
; P

[
N(t) = k

]
=

tk−1

(1 + t)k+1
, for k ≥ 1. (2.3)

Hence

P
[
sup(CT ) > t

]
= P

[
N(t) > 0

]
=

1
1 + t

, for t ≥ 0. (2.4)

Now for CTt,n and for each 1 ≤ i ≤ n − 1 we have that Ai = inf(e<t
i ), and the e<t

i are

independent with e<t
i ∼n(· ∩ e<t)/n(e<t), hence then each τi = t − Ai has the law

P[τi ∈ dτ ] = P[sup(CT ) ∈ dτ | sup(CT ) < t]

=
dτ

(1 + τ)2
1 + t

t
, for 0 ≤ τ ≤ t. (2.5)

Since for the genealogical point-process Πt,n we consider only the excursions below level t,

we have that the rate of these points is 1/2.

2.3 Continuum Genealogical Point-process

We could establish the asymptotics for Πt,n now with a routine calculation. However,

instead of considering this result in isolation, it is far more natural to view it as part of

the larger picture connecting critical branching processes and Brownian excursions. Let us

recall the asymptotic results for critical Galton-Watson processes conditioned on a “large”

total populations size. A result of Aldous [3] (Thm 23) says that its contour process (when
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appropriately rescaled) converges as the total population size increases, to a Brownian

excursion (doubled in height) conditioned to be of length 1. Note that, if Ntot is the

total population size of a critical Galton-Watson process, and N(t) its population size

at some given time t, then the events {Ntot = n} and {N(t) = n|N(t) > 0} are both

events of “small” probabilities. The first has asymptotic chance cn−3/2 as n → ∞, and for

t/n→ t as n → ∞ the second has asymptotic chance c(t) n−1 [3]. While the total population

Ntot size corresponds to the total length of the contour process, the population size N(t)

at a particular time t corresponds to the occupation time of the contour process at level t.

Hence, it is natural to expect that the contour process of a critical Galton-Watson process

conditioned on a ”large” population at time t (when appropriately rescaled) converges, when

t/n → t as n → ∞, to a Brownian excursion conditioned to have local time 1 at given level

t.

We will show the following. Consider a Brownian excursion conditioned to have local time

1 at level t, as a “contour process” of an infinite tree (in the sense of the bijection between

continuous functions and trees established in [3]). Consider defining a “genealogical” point-

process from this Brownian excursion, using the depths of its excursions below level t, in

the same manner as used in defining Πt,n from the contour process CTt,n , except that the

excursions are now indexed by the amount of local time at level t at their beginning. The

state-space of such a point-process can be simply described, and we show that it has quite a

simple law as well. It is then easy to show that this point-process is precisely the asymptotic

process of appropriately rescaled processes Πt,n as n → ∞.

We construct a point-process from a Brownian excursion conditioned to have local time 1

at level t, in the same manner in which Πt,n was constructed from the contour process CTt,n .

Let B(u), u ≥ 0 be a Brownian excursion. For a fixed t > 0, let #t(u), u ≥ 0, be its local time

at level t up to time u (with standard normalization of local time as occupation density

relative to Lebesgue measure). Let it(#), # ≥ 0, be the inverse process of #t, in other words

it(#) = inf{u > 0 : #t(u) > #}. Let Bt,1(u), u ≥ 0, then be the excursion B conditioned to

have total local time #t equal to 1, where #t = #t(∞) is the total local time at t. Consider

excursions e<t
! of Bt,1 below level t indexed by the amount of local time # at the time it(#−)

of their beginning. For each such excursion let a! be its infimum, and let t! be the depth of

the excursion measured from level t, t! = t − a!. Ito’s excursion theory then insures that
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the process {(#, t!) : it(#−) *= it(#)} is well defined.

Definition. The continuum genealogical point-process πt,1 is the random countably infinite

set

πt,1 = {(#, t!) : it(#−) *= it(#)} (2.6)

Remark . The name of the process will be justified by establishing it as the limit of ge-

nealogical point-processes.

For the state-space of the continuum genealogical process we introduce the notion of a nice

point-process, (see [3]§2.8.). A nice point-process on [0, 1] × (0,∞) is a countably infinite

set of points such that:

• for any δ > 0: [0, 1] × [δ,∞) contains only finitely many points

• for any 0 ≤ x < y ≤ 1, δ > 0: [x, y] × (0, δ) contains at least one point.

We now show that the state-space for πt,1 is the set of nice point-processes, and establish

the law of this process using standard results of Levy-Ito-Williams on excursion theory.

Lemma 4. The random set πt,1 is a Poisson point-process on [0, 1] × (0, t) with intensity

measure

ν(d#× dτ) =
d#

2
dτ

τ2
(2.7)

In particular, the random set πt,1 is a.s. a nice point-process.

Proof. The crux of the proof lies in the following observations. An unconditioned Brownian

excursion B observed from the first time it reaches level t, is just t−a standard Brownian

motion observed until the first time it reaches t. The excursions of B below level t are

thus the positive excursions of the Brownian motion. By a standard result, the process of

excursions of Brownian motion from 0, indexed by the amount of local time at 0 at the time

of their beginning, is a Poisson point-process with intensity measure d#×n, where n is Ito’s

excursion measure. One can show that the condition on B to have local time 1 at level t,

is equivalent to the condition that the shifted Brownian motion has all its excursions until
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local time 1 of height lower than t and has one excursion at local time 1 higher than t. This

then, by the independence properties of Poisson processes, allows for a simple description

of the point-process of the depths of excursions below t of Bt,1 as a Poisson process itself,

except restricted to the set [0, 1] × (0, t).

Consider the path of an (unconditioned) Brownian excursion B after the first hitting time

of t, Ut = inf{u ≥ 0 : B(u) = t}, shifted and reflected about the u-axis

β(u) = t − B(Ut + u), for u ≥ 0 (2.8)

Let #β0 (u), u ≥ 0 be the local time of β at level 0 up to time u, and let iβ0 (#), # ≥ 0 be the

inverse process of this local time, in other words iβ0 (#) = inf{u > 0 : #β0 (u) > #}. Then the

process β(u), u ≥ 0 is a standard Brownian motion stopped at the first hitting time of t,

Uβ
t = inf{u ≥ 0 : β(u) = t}.

Next, the excursions of β from 0 are (with a change of sign), precisely the excursions of B
from t, and the local time process #β0 of β is equivalent to the local time process #t of B.

We are only interested in the excursions of B below t, which are the positive excursions of

β, for iβ0 (#−) *= iβ0 (#) and β(iβ0 (#)+) > 0

e+

! = β(iβ0 (#−) + u), u ∈ [0, iβ0 (#) − iβ0 (#−)), and e+

! (u) = 0 else

Note that we thus have that the infimum of an excursion of B below t to be simply inf(e<t
! ) =

t − sup(e+

! ).

Standard results of Ito’s excursion theory (e.g. [23] Vol.2 §VI.47.) imply that for a standard

Brownian motion β the random set for its positive excursions {(#, sup(e+

! )) : iβ0 (#−) *=
iβ0 (#), β(iβ0 (#)+) > 0} is a Poisson point-process on R+ ×R+ with intensity measure d#/2×
dτ/τ2.

Now let L = inf{# ≥ 0 : sup(e+

! ) ≥ t)}. Then stopping #β0 at the hitting time L is

equivalent to stopping β at its hitting time Uβ
t . Let πt be a random set defined from the

unconditioned Brownian excursion B, in the same manner in which we defined πt,1 from

a conditioned Brownian excursion Bt,1. Then, using the relationship (2.8) of B and β, we

observe that πt is equivalent to a restriction of {(#, sup(e+

! )) : iβ0 (#−) *= iβ0 (#), β(iβ0 (#)+) > 0}
on the random set [0, L] × (0, t). The Poisson point-process description of {(#, sup(e+

! )) :
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iβ0 (#−) *= iβ0 (#), β(iβ0 (#)+) > 0} now implies that πt is a Poisson point-process on R+ × R+

with intensity measure d#/2 × dτ/τ2 restricted to the random set [0, L] × (0, t).

Next, note that the condition {#t = 1} for B is equivalent to the condition {#β0 (Uβ
t ) = 1}

for β, which is further equivalent to the condition {L = 1} for πt. We have thus established

that πt,1
d=πt|{L = 1}.

Further, the condition {L = 1} on πt is equivalent to the condition that πt has no points in

[0, 1)×[t,∞) and has a point in {1}×[t,∞). But since πt is Poisson, independence of Poisson

random measures on disjoint sets implies that conditioning πt on {L = 1} will not alter

its law on the set [0, 1] × (0, t). However, since πt,1 is supported precisely on [0, 1] × (0, t),

the above results together imply that πt,1 is a Poisson point-process on [0, 1] × (0, t) with

intensity measure d#/2 × dτ/τ2.

It is now easy to see from the intensity measure of πt,1 that its realizations are a.s. nice

point-processes, namely

• for any δ > 0:
∫∫

[0,1]×[δ,∞) d#/2×dτ/τ2 = 1/2δ < ∞

• for any 0≤ x<y≤ 1, and δ>0:
∫∫

[x,y]×(0,δ) d#/2×dτ/τ2 = (y−x)/2·∞

And since πt,1 is Poisson, finiteness of its intensity measure on [0, 1]× [δ,∞) implies that it

has a.s. only finitely many points in the set [0, 1]× [δ,∞), while infiniteness of its intensity

measure on [x, y]×(0, δ) implies that it has a.s. at least one point on the set [x, y]×(0, δ).

Having thus obtained the description of the continuum genealogical point-process induced

by a conditioned Brownian excursion, it is now an simple task to confirm that it indeed

arises as the limit of genealogical processes. The right rescaling for Tt,n is to speed up the

time by n and to assign mass n−1 to each extant individual, which implies the appropriate

rescaling of each coordinate of Πt,n by n−1. We hence define the rescaled genealogical

point-process as

n−1Πt,n = {(n−1#i, n
−1τi) : (#i, τi) ∈ Πt,n} (2.9)

and establish its asymptotic behavior as n → ∞.
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Theorem 5. For any {tn > 0}n≥1 such that tn/n →
n→∞

t we have

n−1Πtn,n
d=⇒

n→∞
πt,1 (2.10)

Remark . The notation d=⇒ is used to mean weak convergence of processes.

Proof. The proof of the Theorem is a just consequence of the fact that weak convergence

of Poisson point-processes follows from the weak convergence of their intensity measures.

By Lemma 3 and the rescaling (2.9) we have that n−1Πtn,n is a simple point-process on

{1/n, . . . , 1 − 1/n}× (0, tn/n) with intensity measure

1
n

n−1∑

i=1

δ{i}(#)
2

ndτ

(1 + nτ)2
1 + tn

tn
(2.11)

If {tn}n≥1 is such that tn/n→ t as n → ∞, then it is clear that the support set of the

process n−1Πtn,n converges to [0, 1] × (0, t), the support set of the process πt,1 . It is also

clear that the intensity measure (2.11) converges to d#/2×dτ/τ2 which, by Lemma 4, is the

intensity measure of πt,1. For simple point-processes this is sufficient (e.g.[6] §12.3.) to insure

weak convergence of the processes n−1Πtn,n to a Poisson point-process on [0, 1] × (0, t) with

intensity measure d#/2 × dτ/τ2. By Lemma 4, we thus have that n−1Πtn,n
d=⇒

n→∞
πt,1.

2.4 Randomization of Time of Origin

We would now like to incorporate our results in a Bayesian model which randomizes

the time of origin of the process. In the use of stochastic models of macroevolution one

mostly estimates the time of origin of the process is estimated along with the genealogy of

extant species. For that reason we want to avoid the assumption that time t of today is

known. Instead, we assume that the prior distribution for t is Uniform on (0,∞) and make

use of the posterior distribution on t given that the in T there are n extant individuals at

time t. Let qn denote the density of this posterior distribution of t. The following Lemma

establishes the density qn, as well as its asymptotics.
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Lemma 6. For a Uniform((0,∞)) prior on tn, given that T has n extant individuals at

time tn, the posterior distribution of tn has the density qn which satisfies

nqn(tn) →
n→∞

tn/n→t

q(t), q(t) =
1
t2

exp(−1
t
), t > 0 (2.12)

with q being the density of the inverse Exponential (rate 1) law.

Proof. The proof is a straightforward calculation using the law of the population size of the

branching process T time t after its origin. Let N(tn) be the population size of T at time

tn. Then recall (see (2.3)) that P
[
N(tn) = n

]
= tn−1

n /(1 + tn)n+1, for n ≥ 1. Since the

prior on tn is Uniform on (0,∞), the posterior distribution is continuous with the density

qn(tn) =
1

c(n)
P

[
N(tn) = n

]
=

1
c(n)

tn−1
n

(1 + tn)n+1
, for tn > 0,

where

c(n) =
∞∫

0

P
[
N(s) = n

]
ds =

∞∫

0

sn−1

(1 + s)n+1
ds =

1
n

.

We are interested in the asymptotics as n → ∞, and tn/n → t, hence for the posterior

density for the rescaled tn we have that

nqn(tn) =
n2

(1 + tn)2
(
1 − 1

1 + tn

)n−1
→

n→∞
tn/n→t

1
t2

exp(−1
t
) = q(t)

as claimed.

Remark . Improper (σ-finite) prior distributions often lead to proper (in other words, prob-

ability) posterior distributions. With our choice of the prior this is the case with our

Bayesian model.

We now incorporate our earlier results on the genealogical point-process into this Bayesian

model.

Definition. Πn is the point-process specified by the posterior law of the genealogical point-

process under a Uniform((0,∞)) prior on t and given that T has n extant individuals at

time t. Also, π1 is the point-process specified by first choosing t according to the inverse

Exponential(rate 1) law, then choosing a point-process according to the law of the continuum

genealogical point-process πt,1.
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We define the rescaling of the process Πn in the same manner as for the process Πt,n. The

next Corollary establishes the asymptotic behavior of the rescaled process n−1Πn as n → ∞.

Corollary 7. For any {tn > 0}n≥1 such that tn/n →
n→∞

t we have

n−1Πn
d=⇒

n→∞
π1 (2.13)

Proof. The proof is a direct consequence of our earlier result on the asymptotics of the

rescaled process Πt,n, together with the Lemma above.

Namely, it is clear that the law of the point-process Πn is the same as the law obtained

by first choosing tn according to the posterior distribution qn, and then choosing a point-

process according to the law of the genealogical point-process Πtn,n. We express this by the

notation

L(Πn) = qn(tn)L(Πtn,n)

which after rescaling of the point-processes becomes

L(n−1Πn) = nqn(tn)L(n−1Πtn,n)

Whenever tn/n → t, by Theorem 5 we have that L(n−1Πtn,n) →
n→∞

L(πt,1), and by Lemma 6

we have that nqn(tn) →
n→∞

q(t). Since the point-process π1 was defined by specifying L(π1) =

q(t)L(πt,1), it follows that

L(n−1Πn) →
n→∞

L(π1)

as claimed.

2.5 Statistics of Genealogy

Let us next consider how we can use our asymptotic results to make approximate con-

clusions about the qualitative properties and the distributions of some statistics describing

the genealogy. One can use the law of the continuum genealogical point-process to approx-

imate a realization of the n-extant species genealogical point-process. This allows us to

write down simple steps for simulating (an approximate) genealogical subtree of the extant

species. For describing the genealogy with a few statistics, one is generally interested in the
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time of the last common ancestor for the extant species, and the number of species in the

process at this time. We derive the distributions of the joint law of these statistics in the

asymptotic setting which can be used to approximate the true distributions.

One can construct an approximate realization of a genealogical subtree of n-extant species

under our Bayesian model as follows (using Lemma 6 and Lemma 3):

• Choose t from the inverse Exponential law q(t) = 1
t2 exp(−1

t ), t > 0, let tn = nt;

• Choose n − 1 values τi, 1 ≤ i ≤ n − 1, independently according to the same law

fτi(τ) = 1
τ2

tn
tn+1 , 0 < τ < tn;

• Construct a genealogical subtree by letting the points (i, 0), 1 ≤ i ≤ n, represent the

extant species, and then letting the point (1
2 + i, τi), 1 ≤ i ≤ n − 1, represent the

branching point that is the last common ancestor of the species i and i + 1 (see

Figure 2.2(b)).

In the construction we have only used the asymptotic distribution for the time of origin of

the process, however in the rest of this section we shall make more use of the nice structure

of the asymptotic law of the genealogical point-process as well.

Let tlcan denote the last common ancestor of all the extant species in the n-species model.

Then given the time of origin of the process, we have that in the genealogical point-process

Πtn,n

tlcan = sup{τi : 1 ≤ i ≤ n − 1, (#i, τi) ∈ Πtn,n}.

As n → ∞, tn/n → t we get tlcan /n → tlca, where tlca = sup{t! : (#, t!) ∈ πt,1}. Since πt,1

is a Poisson point-process with intensity measure dl × dτ/τ2 (Lemma 4), we have for the

conditional law of tlca given t:

P[tlca ≤ s|t] = P
[
{πt,1 ∩ (0, 1) × (s, t)} = ∅

]
= exp(

1
t
− 1

s
), 0 < s < t.

Hence the joint law of (t, tlca) is

ft,tlca(t, s) =
1
t2

1
s2

exp(−1
s
), 0 < s < t. (2.14)

And also the marginal law of tlca is

ftlca(s) =
1
s3

exp(−1
s
), 0 < s < ∞. (2.15)
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Let N(tlcan ) denote the number of species in the process at the time of the last common

ancestor of all the extant species in the n-species model. Then given tn and tlcan , we have

that N(tlcan ) is the occupation time at level tlcan of CTtn,n . Asymptotically, in place of CTtn,n

and its occupation time N(tlcan ), we have Bt,1, a Brownian excursion conditioned to have

local time at level t equal to 1, and its local time #tlca at level tlca (#tlca is shorthand for the

total local time #tlca(∞)). Let Ut = inf{u ≥ 0 : Bt,1(u) = t} be the first visit time of level

t, and let Dt = sup{u ≥ 0 : Bt,1(u) = t} be its last visit time. Note that tlca = inf{Bt,1(u) :

Ut < u < Dt}, so that we have the decomposition #tlca = #tlca(Ut) + (#tlca(∞) − #tlca(Dt))

(see Figure 2.3).

Now, let βU (u) = Bt,1(u), u ≤ Ut, and let βD(u) = t − Bt,1(u), u ≥ Dt. Since we have that

#tlca depends only on Bt,1(u), u ∈ (0, Ut) ∪ (Dt,∞), while #t depends only on Bt,1(u), u ∈
(Ut, Dt), the strong Markov property and the time reversibility imply that βU and βD

are two independent Brownian motions started at 0 stopped when they first hit t, and

conditioned to actually reach t before they first hit 0. Also #tlca(Ut) and #tlca(∞)− #tlca(Dt)

are independent identically distributed as #β
tlca(Ut).

Dtt

lca

U

Bt, 1

t

0

t

Figure 2.3: The conditioned Brownian excursion Bt,1 and its local time at level tlca =
inf{Bt,1(u) : Ut < u < Dt}

We establish the law of #β
tlca(Ut) with a variation of the standard argument for local times

of Markov processes. Let Utlca = inf{u ≥ 0 : β(u) = tlca} and consider the shifted process
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β(Utlca + u) − tlca which is a Brownian motion started at 0 and stopped when it first

hits t − tlca, conditioned to reach t − tlca before it first hits −tlca. Note that if we define

Uβ
t−tlca = inf{u ≥ Utlca : β(U lca

t + u) − tlca = t − tlca} we have that Uβ
t−tlca = Ut − Utlca .

If we further define Uβ
−tlca = inf{u ≥ Utlca : β(Utlca + u) − tlca = −tlca} and we let #β0 (u)

to be the local time at 0 of the shifted process β(Utlca + u) − tlca, then we have that

#β
tlca(Ut) = #β0 (Uβ

t−tlca ∧ Uβ
−tlca). For establishing the law of #β0 (Uβ

t−tlca ∧ Uβ
−tlca) we now

appeal to a standard result on local times for Brownian motion (see e.g.[23]) which says

that

P
[
#β0 (Uβ

t−tlca ∧ Uβ
−tlca) > x

]
= exp

(
− (

1
t − tlca

+
1

tlca
)x

)
, for x > 0.

In other words, #β0 (Uβ
t−tlca ∧Uβ

−tlca) has the distribution of an Exponential random variable

with parameter 1/(t − tlca) + 1/tlca. It immediately follows that #tlca has the distribution

of a Gamma random variable with parameters λ(t, tlca) = 1/(t − tlca) + 1/tlca and 2.

Hence the conditional law of #tlca , given t and tlca, is

f!tlca |t,tlca(r) = λ(t, tlca)2r exp
(
− rλ(t, tlca)

)
, r > 0.

So that the joint law of t, tlcs, and #tlca is

ft,tlca,!tlca
(t, s, r) =

1
(t − s)2

1
s4

r exp(−1
s
− tr

s(t − s)
), 0 < s < t, 0 < r. (2.16)

And also the marginal law of #tlca is

f!tlca (r) =
2

(1 + r)3
, r > 0. (2.17)

We can now draw approximate values for the statistics of the genealogy of n-extant species

: tn = nt, tlcan = ntlca, and N(tlcan ) = n#tlca , using these asymptotic distributions.
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Chapter 3

Genealogy of Sampled Extinct

Individuals

In this chapter we define the sampling process model for the fossil record, and consider

the genealogical history of the recorded extinct individuals together with the extant ones.

We introduce a way of representing this joint genealogical history with a point-process that

includes the genealogical point-process (named the p-sampled historical point-process), and

derive the law of this process (Lemma 8). We further introduce a similar point-process

defined from a conditioned Brownian excursion (named the p-sampled continuum historical

point-process), and show that this is precisely the asymptotic process of the rescaled p-

sampled historical point-processes as the number of extant individuals increases, while the

number of recorded extinct individuals remains finite (Theorem 11). In the course, we

also prove a result about the asymptotic behavior of critical branching processes of known

extinction time whose individuals are p-sampled (Lemma 10).

3.1 p-Sampled Historical Point-process

We now consider extending the analysis of the ancestry of extant individuals to include

some proportion of the extinct individuals as well. Suppose that each individual in the

past has independently had a given chance p of appearing in the historical record. We



24

indicate such sampling of extinct individuals by putting a star mark on the leaf of Tt,n

corresponding to the recorded individual. An example of a realization of such p-sampling is

shown in Figure 3.1(a), and the induced sampling in the contour process in Figure 3.1(b).

*
* *

*

*
*

*

* *

* *
*

* *t

(a) (b)

Figure 3.1: (a) The tree Tt,n with p-sampling on its individuals (the sampled individuals
are represented by ∗’s); (b) The contour process of this tree with the sampling on the
corresponding local maxima.

The goal is to combine the information on the sampled extinct individuals, with our analysis

of the ancestry of the extant ones. In order to do so we extend our earlier notions of the

genealogy of the extant individuals and of the genealogical point-process.

Let the p-sampled history of extant individuals at time t be defined as the smallest sub-

tree of the family tree which contains all the edges representing both the ancestry of the

extant individuals as well as of all of the p-sampled extinct individuals. We denote the

p-sampled history of extant individuals at t in Tt,n by Gp(Tt,n). Note that by definition

Gp(Tt,n) contains the genealogy G(Tt,n) (which would correspond to a 0-sampled history).

It is in fact convenient to think of Gp(Tt,n) as consisting of the “main genealogical tree”

G(Tt,n), and a collection of “p-sampled subtrees” attached to this main tree linking with

additional branches the ancestry of p-sampled extinct individuals. Figure 3.2(a) shows the

p-genealogical subtree of the tree from Figure 3.1(a). We next extend the notion of the

genealogical point-process to represent this enriched p-sampled genealogy. We construct a

point-process representation of Gp(Tt,n) so that it contains Πt,n as its “main points”.
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Figure 3.2: (a) The p-sampled tree Gp(Tt,n); the “main tree” (in bold) has the “p-sampled
subtrees” attached to it; (b) The point-process representation Ξp

t,n of Gp(Tt,n); each of the
“main points” (large dots) have an associated left set and a right set representing the
p-sampled subtrees attaching to the left and right of that branch-point.

Informally, think of extending the point-process Πt,n (representing G(Tt,n)), by adding sets

representing the p-sampled subtrees as follows. At each branch-point of the main tree there

is a set of p-sampled subtrees attached to the edges of the main tree on the left of this

branching point, and a set of p-sampled subtrees attached on the right of this branching

point (see Figure 3.2(a)). We associate to each branch-point at height Ai, a left set Li and

a right set Ri, which shall represent these sets of subtrees. Each such Li and Ri needs to

contain the following information: the heights ai,L(j) and ai,R(j) at which the p-sampled

subtrees get attached to the edges of the main tree (as before we shall keep track of these

heights as distances from level t in terms of ti,L(j) = t − ai,L(j) and ti,R(j) = t − ai,R(j));

and the shape of the subtrees Υi,L(j) and Υi,R(j) themselves (the indexing j ≥ 0 on the

subtrees is induced by a depth-first search forwards to the branch-point at Ai for the left

sets and a depth-first search backwards to the branch-point at Ai for the right sets). The

point-process representing the p-sampled genealogical tree from Figure 3.2(a) is shown in

Figure 3.2(b). In order to describe the law of the p-subtrees it will also be convenient to

keep track of the height hi,L(j) and hi,L(j) of the subtrees Υi,L(j) and Υi,R(j).

Formally, we define the point-process of Gp(Tt,n) from the contour process CTt,n . The p-

sampling on the tree is represented by the sampling of the local maxima of CTt,n . From the



26

definition of Πt,n, we have the heights of the branch-points of G(Tt,n) to be Ai = inf{CTt,n(u) :

Di < u < Ui+1}, occurring in the contour process CTt,n at times Bi = argmin{CTt,n(u) : u ∈
(Di, Ui+1)}. The set Li, representing the set of p-subtrees attaching to the edges of G(Tt,n)

on the left of the branch-point Ai, is defined from the part of the excursion of CTt,n below t

before time Bi. In other words if, for XTt,n = (CTt,n , slope[CTt,n]), we define

e<t
i,L(u) = XTt,n(Di + u), u ∈ [0, Bi − Di),

then Li is completely defined by e<t
i,L. Analogously Ri is defined from the part of the

excursion of CTt,n below t after time Bi, in other words if we define

e<t
i,R(u) = XTt,n(Ui+1 − u), u ∈ [0, Ui+1 − Bi)

then it is completely defined by e<t
i,R (the subscripts L and R reflect whether the entities are

involved in defining Li or Ri). Note that the e<t
i,L runs forwards up to time Bi, while e<t

i,R
runs

backwards. On the extreme ends, we have the set of p-subtrees on the far left of the main tree

defined by the part of CTt,n prior to the first up-crossing time U1, e<t
0,L(u) = XTt,n(U1−u), u ∈

[0, U1). Analogously, the set of p-subtrees on the right of the last branching point is defined

by the part of CTt,n after the last down-crossing time Dn, e<t
n,R

(u) = XTt,n(Dn + u), u ∈
[0, U(0,−1) − Dn), where U(0,1) = inf{u ≥ 0 : XTt,n = (0,−1)}.

0

*

*

*
*

*
*

*
*

*
*

.
l,L(j)

t =t!a
l,L(j)

h l,L(j)

l,L(j)t   =t!a l,L(j)

i i

e

Figure 3.3: The left half e<t
i,L of an excursion of CTt,n below t, with its infimum process ςi,L

whose levels of constancy are {ai,L(j)}j , above which lie the p-marked subtrees {Υi,L(j)}j

of heights {hi,L(j)}j.
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In order to define the sets Li and Ri we also need to define the processes

ςi,L(u) = inf
0≤v≤u

e<t
i,L(v), u ∈ [0, Bi − Di), and

ςi,R(u) = inf
0≤v≤u

e<t
i,R(v), u ∈ [0, Ui+1 − Bi).

The bijection between the tree Tt,n and its contour process CTt,n implies that the heights

at which the p-subtrees are attached to the edges of the main tree, are precisely the levels

of constancy of the processes ςi,L and ςi,R. Furthermore, the p-subtrees themselves have

as their contour processes the excursions of e<t
i,L − ςi,L and e<t

i,R − ςi,R above these levels

of constancy (see [21] for a detailed description). Figure 3.3 shows e<t
i,L together with its

infimum process ς<t
i,L.

We define ai,L(j), j ≥ 0 to be the successive levels of constancy of ςi,L, and let ti,L(j) =

t − ai,L(j) be their distance form level t. For each level of constancy ai,L(j), let e<t
i,L(j) be

the excursion of e<t
i,L − ςi,L that lies above the level ai,L(j). Let hi,L(j) be the height of this

excursion, hi,L(j) = sup(e<t
i,L(j)), and let Υi,L(j) be the tree whose contour process is the

excursion e<t
i,L(j). Figure 3.3 shows an excursion e<t

i,L(j) with the p-subtree Υi,L(j) it defines.

Note that all the star marks due to p-sampling are contained in the excursions e<t
i,L(j), hence

are contained in the subtreesΥi,L(j). An analogous definition leads to ai,R(j), j ≥ 0, hi,R(j),

and Υi,L(R) from e<t
i,R(j) and ςi,R(j). With each point (#i, ti) of Πt,n we now associate the

sets

Li = {(ti,L(j),Υi,L(j))}j≥0, and Ri = {(ti,R(j),Υi,R(j))}j≥0. (3.1)

In addition, for extreme ends we define one set R0 from e<t
0,R, and we define a set Ln from

e<t
n,L. For ease of future notation we set L0 = ∅, Rn = ∅, (#0, t) = (1, t), and (#n, tn) = (n, t).

Definition. The p-sampled historical point-process Ξp
t,n is the random set

Ξp
t,n = {(li, ti,Li,Ri) : (li, ti) ∈ Πt,n, 0 ≤ i ≤ n} (3.2)

Remark . We have in fact implicitly defined a point-process representation Ξt,n of a com-

plete historical point-process (which would correspond to 1-sampling). The difference be-

tween Ξt,n and Ξp
t,n is only in the ∗’s on the leaves in the latter. It will however be clear

that for nice asymptotic behavior we need to consider Ξp
t,n with p < 1; in other words we

can only keep track of a proportion of the extinct individuals.
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We can now derive the law of the point-process Ξp
t,n. For this we shall also need the law

of the p-subtrees appearing in the sets Li and Ri. Let T denote the space of finite rooted

binary trees with edge-lengths, and Λ denote the law on T of the tree T . Then, let Λp

denote the law on T induced by the p-sampling on the tree T . Further, for any h > 0, let

Λp
h denote the law induced by restricting Λp to the trees T of height h.

In order to describe the law of Ξp
t,n we use a more careful and detailed analysis of the

structure of the contour process CTt,n . First we use the result of Lemma 3, which gives us

the law of the main points of Ξp
t,n. Then conditional on the location of the main points,

we give the law of the sets Li and Ri of p-subtrees. We show that the sets Li and Ri are

independent Poisson point-processes. The intensity measure of each such a set is given by

the following. First, choose ti,L(j), the distances below t at which the p-sampled subtrees

are getting attached, uniformly over ti, the total distance below t to the ith branch-point.

Next, choose hi,L(j), the height for each p-subtree, according to the same law as that of the

height of a tree T whose height is known to be less than ti,L(j). Finally, choose the law of

Υi,L(j), the attaching subtree, according to the law Λp
h described above.

Lemma 8. For any fixed 0 < p < 1, the law of the random set Ξp
t,n is given by:

• {(li, ti) : 1 ≤ i ≤ n − 1} is the simple point-process Πt,n of Lemma 3, and

• given {(li, ti), 1 ≤ i ≤ n − 1}: the sets Li and Ri are independent; and for each

0 ≤ i ≤ n the random sets Li and Ri are Poisson point-processes on R+ × T with

intensity measure

1{0<t<ti}dt 1{0<h<t}
dh

(1 + h)2
1 + t

t
Λp

h (3.3)

Proof. The proof relies on the multiple reconnaissance of the appearance of (conditioned

versions of) an alternating walk with Exponential(rate 1) steps within the contour process

CTt,n . From earlier we have that the excursions of CTt,n below t are independent, and the law

of their depths below t is given by Lemma 3. We further show that for such an excursion,

given its depth is ti, the part before its lowest point is independent of the part after it.

In fact, if the former is run forwards to the lowest point, and the latter backwards to the

lowest point, then the two parts have the same law as well. This law is the same as that

of t−an alternating exponential step walk, conditioned to reach ti before it comes back to



29

0. Its Markovian property further leads to a simple description of the law of the levels

of constancy of its infimum process. The excursions above the levels of constancy of the

infimum are then shown to be copies of this alternating exponential step walk, conditioned

on its maximal height.

The independence of the sets Li over the index i follows from the independence of the

excursions e<t
i of XTt,n below level t (the same holds for the sets Ri). The strong Markov

property of XT also gives the independence of R0 and Ln from these sets as well. Then

given ti, the conditional independence and the equality in law of Li and Ri, follow from

the time reversibility and the strong Markov property of XT . Consider the left half e<t
i,L

of an excursion below level t. By Lemma 3, the conditional law of t − e<t
i given ti is

that of XT |{sup(CT ) = ti}. Hence, the law of t − e<t
i,L is that of XT |{τti < τ0} where

τti , τ0 are the first hitting times by XT of (ti, +1), (0,−1) respectively. Now, consider the

levels of constancy {ai,L(j)}j of ςi,L = inf(e<t
i,L). If ti,L(j) = t − ai,L(j), then {ti,L(j)}j

are levels of constancy of t − ςi,L = sup(t − e<t
i,L). The fact that CT is an alternating sum

of exponential variables implies that {ti,L(j)}j form a Poisson process of rate 1 on the

set (0, ti). It also implies that the excursions {e<t
i,L(j)}j of e<t

i,L − ςi,L above these levels of

constancy have the laws of XT |{sup(XT ) < ti,L(j)}. Hence for each j, given ti,L(j) the law

of hi,L(j) = sup(e<t
i,L(j)), by (2.4) of Lemma 3, has the density

dh

(1 + h)2
1 + ti,L(j)

ti,L(j)

on the set (0, ti,L(j)). Then given the value of hi,L(j), for each j the excursion e<t
i,L(j) has

the law of XT |{sup(XT ) = hi,L(j)}, hence the tree defined by e<t
i,L(j) as its contour process

has the law of of T∆=hi,L(j). Now, the strong Markov property implies that the p-sampling

on the local maxima of CTt,n is for each e<t

i,L(j) again a Bernoulli p-sampling on its local

maxima. Thus the law of the p-sampled tree Υi,L(j) is Λp
hi,L(j). Putting all the above

results together we have that the set {(ti,L(j),Υi,L(j))}j≥0 is a Poisson point-process with

intensity measure

1{0<t<ti}dt 1{0<h<t}
dh

(1 + h)2
Λp

h
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3.2 p-Sampled Continuum Historical Point-process

Let us now consider the implications that the p-sampling of extinct individuals has

in the asymptotic context. In Section 2, the genealogical point-process was defined from

the contour process CTt,n , and its asymptotics process was identified as the continuum

genealogical point-process defined from a Brownian excursion Bt,1 conditioned to have local

time 1 at level t.

The p-sampled historical process is defined from a contour process CTt,n whose local maxima

are sampled independently with equal chance p. In terms of the (horizontal) u-coordinate

of CTt,n the p-sampled individuals form a random set of marks on R+. The fact that CT is

an alternating sum of independent Exponential(rate 1) random variables implies that the

random set formed by the local maxima of CT is a Poisson process of rate 1/2 on R+, and

the same still holds for the sets formed by the local maxima of each part of an excursion of

CTt,n below t. If we further sample these local maxima independently with chance p we have

a Poisson process of rate p/2 on R+. For the asymptotics, the appropriate rescaling, as in

Section 2, speeds up the time axis of CTt,n by n. Hence if we consider pn such that npn → p

as n → ∞, then asymptotically the pn-sampling on CTt,n will converge to a Poisson process

of rate p/2. This prompts us to consider for the asymptotics of the p-historical point-process

a process similarly defined from a conditioned Brownian excursion Bt,1 sampled according

to a Poisson(rate p/2) process along its (horizontal) u-coordinate.

Remark . We are interested in obtaining an asymptotic point-process that has a.s. finitely

many extinct individuals recorded. It is clear that thus the rate of sampling asymptotically

has to satisfy npn → p as n → ∞.

We define a process derived from a conditioned Brownian excursion Bt,1 in the same manner

that Ξp
t,n was derived from the contour process of the conditioned branching process CTt,n .

Recall that B(u), u ≥ 0 denotes a Brownian excursion, for a fixed t > 0 #t(u), u ≥ 0 is its

local time at level t up to time u, it(#), # > 0 is the inverse process of #t. Also, Bt,1(u), u ≥ 1

denotes the excursion B conditioned to have total local time at t equal to 1, and (#, e<t
! )

denotes the set of excursions of Bt,1 below level t indexed by the local time #t at the time

of their beginning.
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Figure 3.4: Top: An excursion e<t
! of Bt,1 below t, its left e<t

!,L
and right e<t

!,R
parts, with their

infimum processes; Bottom: shows the process e<t
!,L − ς!,L.

Define the p-sampling on Bt,1 to be a Poisson(rate p/2) process along the u-axis of Bt,1.

We indicate this by putting a star mark on the graph of Bt,1 at the times of this Poisson

process. Let e<t
! be an excursion of Bt,1 below level t

e<t
! (u) = Bt,1(it(#−) + u), u ∈ [0, it(#) − it(#−))

Recall that a! = inf(e<t
! ) is its lowest point occurring at u! = argmin{e<t(u)}, and that

t! = t − t! denotes its distance from level t. For each e<t
! we define its left and right parts

(relative to its lowest point) to be

e<t
!,L

(u) = Bt,1(it(#−) + u), u ∈ [0, u! − it(#−)) and

e<t
!,R

(u) = Bt,1(it(#) − u), u ∈ [0, it(#) − u!)

Note that e<t
!,L

runs forwards to the lowest point of e<t
! , while e<t

!,R
runs backwards in time

to it. We shall also need their respective processes of infima

ς!,L(u) = inf
0≤v≤u

e<t
!,L

(v), u ∈ [0, u! − it(#−)) and

ς!,L(u) = inf
0≤v≤u

e<t
!,L

(v), u ∈ [0, u! − it(#−))

Figure 3.4 shows e<t
!,L and e<t

!,L with ς!,L and ς!,L.

We define a!,L(j), j ≥ 0 to be the successive levels of constancy of ς!,L, and we let t!,L(j) =

t − a!,L(j) be their distance to level t. For each level of constancy a!,L(j), let e<t
!,L(j) be
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the excursion of e<t
!,L − ς!,L that lies above the level a!,L(j). Let h!,L(j) = sup(e<t

!,L(j)) be

the height of this excursion. Note that a.s. all the p-sampled points on Bt,1 lie on these

excursions e<t
!,L(j). We define a tree Υ!,L(j) induced by such a p-sampled excursion e<t

!,L(j)

, as the tree whose contour process is the linear interpolation of the sequence of the values

of e<t
!,L(j) at the p-sampling times, alternating with the sequence of the minima of e<t

!,L(j)

between the p-sampling times. An analogous definition leads to a!,R(j), j ≥ 0, t!,R(j), j ≥ 0

h!,R(j), and Υ!,L(R) from e<t
!,R(j) and ς!,R(j).

Remark . This definition of a tree from an excursion path sampled at given times has

been explored for different sampling distributions in the literature (for some examples see

[21] §6). Since for each e<t
! there are a.s. only finitely many p-sampled points the trees

{Υ!,L(j)}j , {Υ!,R(j)}j are a.s. in the space T of rooted planar trees with edge-lengths and

finitely many leaves.

With each point (#, t!) of πt,1 we now associate the sets

L! = {(t!,L(j),Υ!,L(j))}j≥0, andR! = {(t!,R(j),Υ!,R(j))}j≥0 (3.4)

We also define the first “right” set R0 and the last “left” set L1 from paths e<t
0,R of Bt,1

before the first hitting time of t, and e<t
1,L of Bt,1 after the last hitting time of t. For ease of

notation we let L0 = R1 = ∅, t = t1 = t.

Definition. The p-sampled continuum historical point-process ξp
t,1 is the random set

ξp
t,1 = {(#, t!,L!,R!) : (#, t!) ∈ πt,1, it(#−) *= it(#)} (3.5)

We next derive law of the point-process ξp
t,1. For this we shall also need the law of the

trees induced by the p-sampled excursions of e<t − ς. Let λp denote the law on the space

T induced by a B sampled at Poisson(rate p) points (in the sense of the bijection between

sampled continuous functions and trees, [3], same as the definition of Υ!,L(j) from the p-

sampled e!,L(j)). Then, for any h > 0, let λp
h denote the law induced by restricting λp to

the set of Brownian excursions B of height h.

In order to derive the law of we exploit in a more detailed manner the nice properties of

Brownian excursions. We first use the result of Lemma 4, which gives us the law of the set
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{(#, t!) : it(#−) *= it(#)}. Then conditional on this set we give the law of the sets L! and R!.

We show that {L!,R!}! are independent Poisson point-processes. the intensity measure

of each such set is given by the following. First, choose t!,L(j), the distances below t at

which the p-sampled subtrees excursions of e<t
!,L − ς!,L occur uniformly over t!, the distance

below t of the lowest point of e<t
! . Next, choose h!,L(j), the height for each such p-sampled

excursion, according to the same law as that of the height of a B whose height is known

to be less than t!,L(j). Finally, choose the law of the induced tree Υ!,L(j) according to the

law λp
h described above.

Lemma 9. The random set ξp
t,1 is such that:

• {(#, t!) : it(#−) *= it(#)} is the Poisson point-process πt,1 of Lemma 4, and

• given {(#, t!) : it(#−) *= it(#)} the sets L! and R! are independent; and for each

# : it(#−) *= it(#) L! and R! are Poisson point-processes on R+ × T with intensity

measure

1{0<t<t!}dt 1{0<h<t}
dh

h2
λp

h (3.6)

Proof. The proof proceeds in much of the same steps as the one for deriving the law of the

p-sampled historical process Ξp
t,n. The notable difference is that we now have to resort to

more sophisticated Markovian results on the decomposition of a Brownian path, such as the

Williams decomposition of a Brownian excursion given its height, and the Pitman theorem

on Bessel processes. In short, we consider the decomposition of the conditioned Brownian

excursion Bt,1 into its excursions below level t provided by the Lemma 4. For each such

excursion below t given its lowest point at distance t! below t, Williams’ decomposition

gives us the independence and identity in law of its left and right parts, as well as the

description of their laws in terms of a 3-dimensional Bessel process. Furthermore, we can

use Pitman’s theorem that describes the law of the excursions of this Bessel process above

the levels of constancy of its future infimum. After taking care of some conditioning issues,

this finally gives us a simple description of these excursions above the levels of constancy

as simply Brownian excursions conditioned on their maximal height.

The independence of the sets L! over the index # (the same holds for the sets R!) follows

from the independence of the excursions of Bt,1 below level t. This also holds (by the strong



34

Markov property of B) for the sets R0 and L∞ defined from the parts of the path of Bt,1

of its ascent to level t and its descent from it. For each e<t
! excursion of Bt,1 below level

t, we let e+

! = t − e<t
! . By Lemma 4, the conditional law of e+

! given (#, t!) is that of

a Brownian excursion B conditioned on the value of its supremum B|{sup(B) = t!}. Let

τt! = inf{u > 0 : e+

! (u) = t!}, then by Williams’ decomposition of a Brownian excursion B
(e.g. [23] Vol.1 §III.49.), the law of e+

!,L = t−e<t
!,L is that of a Bess(3) (3-dimensional Bessel)

process ρ stopped the first time τρ
t!

= inf{u > 0 : ρ(u) = t!} it hits t!. By time reversibility

of B the process

r!,L(u) = t! − e+

!,L(τt! − u), u ∈ (0, τt!)

also has the law of the stopped Bess(3) process ρ(u), u ∈ (0, τρ
t!
). Let

j!,L(u) = inf
u≤v≤τt!

r!,L, u ∈ (0, τt!)

Then {t! − t!,L(j)}j are (in reversed index order) the successive levels of constancy of

the process j!,L(u), u ∈ (0, τt!), {h!,L(j)}j (in reversed index order) are the heights of the

successive excursions from 0 of the process r!,L(u) − j!,L(u), u ∈ (0, τt!), and {Υ!,L(j)}j (in

reversed index order) are the trees induced by the p-sampled points on these excursions.

To obtain the law of j!,L and r!,L − j!,L consider the Bess(3) process ρ(u), u ≥ 0 and its

future infimum process (u) = inf
v≥u

ρ(v), u ≥ 0. We note that the law of j!,L(u), u ∈ (0, τt!)

is equivalent to that of  (u), u ∈ (0, τρ
t!
) if  (τρ

t!
) = t!, in other words, if ρ(u), u ≥ 0 after it

first reaches t! never returns to that height again. So,

(j!,L, r!,L − j!,L) d= ( , ρ−  )|{ (τρ
t!
) = t!} for u ∈ (0, τt!)

By Pitman’s theorem, then by Levy’s theorem (e.g. [22] VI.§3. and§6.)

( , ρ−  ) d=(ζ, ζ − β) d=(#̄, |β̄|)

where β is a standard Brownian motion, ζ its supremum process; |β̄| is a reflected Brownian

motion, #̄ its local time at 0 (with the occupation time normalization). Thus, for τ̄t! :=

inf{u ≥ 0 : |β̄|u + #̄u = t!},

(j!,L, r!,L − j!,L) d= (#̄, |β̄|) |{#̄τ̄t!
= t!} for u ∈ (0, τt!)

The condition {#̄τ̄t!
= t!} is equivalent to the condition {#̄τ̄t!

= t!, |β̄|τ̄t!
= 0} and {u < τ̄t! :

#̄u < t!, |β̄|u < t! − #̄u}. Hence,

(j!,L, r!,L − j!,L) d=(#̄, |β̄|) |{#̄u < t!, |β̄|u < t! − #̄u; #̄τ̄t!
= t!, |β̄|τ̄t!

= 0} (3.7)
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Since
(
#̄, sup(|β̄|)

)
is a Poisson point-process with intensity measure d#̄dh̄/h̄2, then using the

independence property of a Poisson random measure on disjoint sets in (3.7), we obtain for

t = t! − #̄ that
(
t! − j!,L, sup(r!,L − j!,L)

)
is a Poisson point-process with intensity measure

1(0<t<t!)dt 1(0<h<t)
dh

h2

Recall the relationship of the values {t!,L(j), h!,L(j),Υ!,L(j)}j of L! with the processes j!,L

and r!,L − j!,L. The above result thus implies that L! is a Poisson point-process with

intensity measure

1(0<t<t!)dt 1(0<h<t)
dh

h2
λp

h

where the last factor comes from the fact that Υ!,L(j) is just the tree induced by the

p-sampled excursion of |β̄| of height h!,L(j).

Our next goal is to show that the process ξp
t,1 whose law we have just obtained, is indeed

the asymptotic result of the processes Ξp
t,n after appropriate rescaling. In order to do so,

we first must show that the laws Λpn
h on the space of trees converge as n → ∞ to the law

λp
h if npn → p.

3.3 p-Sampled Trees T of Given Height h

We need to consider more closely the trees Υi,L(j) and Υ!,L(j) induced by the sampled

excursions appearing in the historical point-processes above. In both cases we have an

excursion, CT or B, of a given height and with marks on it produced by a sampling process.

Laws of the trees induced by sampled excursions of unrestricted height can be very simply

and elegantly described (see [13] for the case of B). However, for the trees from excursions

of a given height that we need to consider here, the description is much messier. We shall

give next a recursive description that applies equally to define an Υl,L(j) from CT of a given

height, or to define Υ!,Lj from B of a given height. A similar recursive description of an

infinite tree induced by an unsampled Brownian excursion is given by Abraham [2].

Define the “spine” of the tree to extend from the root of the tree to the point of maximal

height in the excursion. An equivalent representation of the tree is one in which the subtrees
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of the trees on the left and on the right of the axis through the spine are attached to this

spine, and example of which is shown in Figure 3.5. We obtain the branch levels at which

these subtrees are attached, as well as parameters needed for the description of the subtrees

as follows.

*
*
*

*

*
*

*
*

t

eL(j)

L(j)

l,L(j)

hL(j)

Figure 3.5: The “first” set in the recursive description consists of branch levels {tL(j)}j at
which subtrees induced by sampled excursions of eL − ςL are attached to the spine; and the
heights {hL(j)}j of these subtrees.

We denote the excursion function defining this tree by e(u), u ≥ 0 (in other words e = CT
or e = B). Let h be its given height, and Uh = argmax{e(u) : u > 0} the time at which it

is achieved. Then let eL(u), u ∈ [0, Uh] be the left part of the excursion, and we also define

its future infimum process ςL(u) = inf
v≥u

e(v), u ∈ [0, Uh]. Then the subtrees attaching on the

left of the spine are defined by the process eL − ςL and the set of sampled marks. They

are precisely the trees induced by the sampled excursions eL(j) of eL − ςL whose height is

some hL(j). The levels at which they are attached to the spine are the levels of constancy

tL(j) of ςL at which the excursions of eL − ςL occur. Thus the set {(tL(j), hL(j))}j≥0 is

the “first” set in our recursive definition of tress. The “second” set is derived in the same

manner from the sampled excursions {eL(j)}j , and so on. We define these sets analogously

for the right part of e.

This recursive procedure is clearly very similar to our definition of the left and right sets,

Li,Ri for e<t
i and L!,R! for e<t

! as defined earlier. The main difference is that the subtrees

here are defined from excursions above the levels of constancy of the future infimum process
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for e, whereas earlier they were defined from excursions above the levels of constancy of the

past infimum process for e<t
i and e<t

! . However, time inversion and reflection invariance of

the transition function of e will allow us to easily derive the laws of the “first” set of points

here from the results of Lemma 8 and Lemma 9.

Recall that T is the space of finite rooted binary trees with edge-lengths. We defined Λp

as the law on the space T induced by the p-sampling of the critical branching process T ,

and we defined Λp
h to be the law induced by restricting Λp to the trees T of height h. Also

recall that we defined λp as the law on the space T induced by a B sampled at Poisson(rate

p) points, and we defined λp
h to be the law induced by restricting λp to the set of Brownian

excursions B of height h.

In the next Lemma we give a recursive description of the law of Λpn
h and λp

h, and we show

that we do have the convergence of the Λpn
h (appropriately rescaled) to λp

h if npn → p.

Lemma 10. The law Λpn
h of a tree induced by a pn-sampled contour process CT of a given

height h is such that the first sets of points {tL(j), hL(j)}j and {tR(j), hR(j)}j are indepen-

dent Poisson point-processes with intensity measure

1
√

pn
1(0<τ<h)dτ 1(0<κ<h−τ)

dκ

(1 + κ)2
1 + τ

τ
(3.8)

The law λp
h of a tree induced by a p-sampled Brownian excursion B of a given height h is

such that the first sets of points {tL(j), hL(j)}j and {tR(j), hR(j)}j are independent Poisson

point-processes with intensity measure

1
√p

1(0<τ<h)dτ 1(0<κ<h−τ)
dκ

κ2
(3.9)

Let n−1Λpn
h be the law of the tree induced by a rescaled pn-sampled contour process CT by

n−1 in the vertical coordinate.

Then for any {pn ∈ (0, 1)}n≥1 such that npn →
n→∞

p we have n−1Λpn
h =⇒

n→∞
λp

h.

Proof. The key for this proof is to observe the following. If e(u), u ≥ 0 is the pn-sampled

process XT |{sup(CT ) = h} then eL(u) = e(u), u ∈ [0, Uh] has the law of a pn-sampled

XT |{τh < τ0} where τh, τ0 are the first hitting times of (h, +1), (0,−1) respectively by

XT . Then time reversibility and the reflection invariance of the transition function of



38

XT imply that h − eL(Uh − u), u ∈ [0, Uh] has the same law as eL(u), u ∈ [0, Uh]. Now

the levels of constancy of ςL, and the corresponding excursions eL − ςL above them, are

equivalent to the levels of constancy and excursions of a set Li considered in Lemma 8,

thus giving a Poisson process of intensity measure as in (3.3). The factor p−1/2 in the

intensity measure (3.8) comes from the fact that here we only consider the excursions of

eL − ςL that have at least one sampled mark in them. Namely, for the branching process

T , if Ntot denote the total population size of T , then the generating function of Ntot is

E(xNtot) = 1 − (1 − x)1/2. Hence, the chance of at least one mark in the pn-sampled

point-process of T is 1 − E((1 − pn)Ntot) = pn
1/2.

A similar argument applies when e(u), u ≥ 0 is the process B|{sup(B) = h} sampled at Pois-

son(rate p/2) times. Time reversibility and reflection invariance of the transition function of

B allow us to identify that the law of the levels of constancy of of ςL, and the corresponding

excursions eL − ςL above them are the same as those for a set L! considered in Lemma 9,

which we know form a Poisson process with intensity measure as in (3.6). The factor p−1/2

in the intensity measure of (3.9) then comes from the rate of excursions with at least one

sampled mark. Namely, a Poisson(rate p/2) process of marks on B along its time coordinate

is in its local time coordinate a Poisson(rate p1/2) process of marks (see [23] Vol.2§VI.50.).

Now the law of the first set of the rescaled process with under n−1Λpn
h converges to the

law of the first set of the process with the law λp
h. This follows from the fact that the

former is a sequence of Poisson point-processes whose support set and intensity measure

converge to those of the latter Poisson point-process. Since for Poisson random measures the

convergence of finite dimensional sets is sufficient to insure weak convergence of the whole

process our claim follows for the first sets, and by recursion for the whole process.

Finally, we can obtain the asymptotic result for the pn-sampled historical point-processes.

The rescaling of Ξpn
tn,n is the same as that for Πt,n. Both coordinates of Πt,n are rescaled

by n−1, so that the vertical coordinate of the sets Li,Ri is also rescaled by n−1, and the

sampling rate is rescaled by n. Hence the rescaled process is defined as

n−1Ξpn
tn,n = {(n−1li, n

−1τi, n
−1Li, n

−1Ri) : (li, τi,Li,Ri) ∈ Ξpn
tn,n} (3.10)

The asymptotic properties of the rescaled p-sampled historical process are now easily es-

tablished from our earlier results.
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Theorem 11. For any {tn > 0}n≥1, and {pn ∈ (0, 1)}n≥1 such that tn/n →
n→∞

t, and

npn →
n→∞

p we have n−1Ξpn
tn,n =⇒

n→∞
ξp
t,1.

Proof. By Theorem 5 we already have that n−1Πtn,n =⇒
n→∞

πt,1. Applying the rescaling to

the results of Lemma 8 together with the result of Lemma 10 now implies that the support

set and intensity measure of the Poisson point-process of each Li after rescaling converges

to those of the Poisson point-process L! as given by Lemma 9. Then the convergence of

the support set and intensity measure for the Poisson random measure Ξpn
tn,n to those of ξp

t,1

implies the weak convergence of these processes.

Remark . The randomization of the time of origin (Section 2.4) can be used to extend the

results above into Bayesian asymptotic results as well.
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Chapter 4

Genealogy of Higher Order Taxa

In this chapter we define a model on higher order taxa, in such a way that it incorporates

the model on species within it. We analyze this model from the perspective of a typical

species, and the genus containing it. We determine the distribution of the lifetime of this

genus (Lemma 12), and the distribution of the number of extant species contained in it

(Lemma 14). We also determine the shape of the tree on genera in terms of the probabilities

of branching points with different split type appearing within the tree (Lemma 16 and

Theorem 17).

4.1 Model on Genera

Let γ ≥ 0 be the parameter of a Poisson process on the edges of the critical branching

tree T . The times of this Poisson process represent the occurrences within the lifetime of

a species of a change that makes it and its progeny significantly different enough so as to

generate a new higher-order taxon. This random process of changes is superimposed on the

critical branching process model on the evolution of species. We indicate these changes by

putting a cross mark on the place on the edge of the family tree at the time of its occurrence.

For concreteness we shall talk about a model on genera to represent this model on higher

order taxa (genera being the next level above species), although we can employ this model

at an arbitrary higher order level. The next issue in the above model is deciding, given
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these changes, how to partition the species into genera. This is really a deterministic issue

rather then a stochastic one, with several different ways of resolving it depending on how

wide a range within a group of species one is willing to allow a genus include. In other

words, there are varying degrees of coarseness that a division into genera within a tree on

species can have. Several mathematically reasonable solutions are discussed in [5].

The starting point for all the divisions, is that the marks for changes partition the family

of species into classes, where two species are in the same class if the path in the family

tree between them contains no mark for such a change. The coarsest of all models is one

in which we define each genus to consist of one such class. However, these classes are not

necessarily clades, where a clade is a set of species consisting of all the descendents of some

ancestral species (in biology it is called a monophyletic group). Mathematically, a clade in

a tree is the complete subtree of all the edges that have a particular common edge on their

paths back to the root. For example, in Figure 4.1 the partition {5, 6, 7} forms a clade while

the partition {1, 2, 3, 4, 5} doesn’t. In biology, the emphasis is generally on classifications

in which higher order taxa are monophyletic groups. An argument for such a choice is that

one would like to avoid having the situation occurring in non-monophyletic classifications

where: for some species a1, a2 ∈ A, and b1 ∈ B in two genera, we have that a1 is more

closely related to b1 in a different genus then to a2 in its own.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4.1: A tree (cladogram) on the extant species.

Hence, we impose in our model the additional requirement that the group of species making
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a genus should be a clade. Given the class partition of species according to the marks for

changes, we define a partition into genera to be the coarsest one in which each genus is a

clade and each class is a union of one or more genera. Figure 4.2 gives an example of a

partition of a tree on species into genera that are monophyletic. Consequently, we have the

following rule for constructing genera from a tree on species: two species are in the same

genus if on the path in the family tree between them there is no mark for a change or a

lineage arising that has a mark for a change in it. Within the tree on species the founders

of the genera are: the species that have a mark for change during their lifetime and all of

their ancestors.

1 2 3 5 6 7 8 9 10 11 12 13 44 9(1,2,3) (5,6,7) 8 (11,12) 1310

* *

** *

(b)(a)

Figure 4.2: (a) The tree on species with marks for change represented by ∗’s; (b) The
induced tree on genera.

4.2 Local Structure of the Model

Consider our Bayesian model on species from the point of view of a typical extant species.

Our earlier construction provides the genealogy of all extant species with a genealogical

point-process. For a large number of extant species, according to (2.2) and (2.12), the law
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of this point-process and its time of origin is approximately given by

νt({i}× dτ) =
1
2

dτ

(1 + τ)2
1 + t

t
1
t2

exp(−1
t
), τ ∈ (0, t), t > 0

for any i ∈ N, i < n. Let ν({i} × dτ) be the marginal law of this process, integrating out

its time of origin. Then, for any i ∈ N, i < n

ν({i}× dτ) =
dτ

(1 + τ)2
, τ > 0

This gives us a simple description of the local structure of the genealogy of extant species,

where by local we mean within order 1 of time from the present. At present there are a large

number of extant species. As τ increases (time runs backwards), the lineage of a typical

species merges with the lineages of other species according to the density of points in the

genealogical point-process

fs(τ)dτ =
dτ

(1 + τ)2
, τ > 0.

Hence, the survival function of a lineage of a typical species is

F s(τ) =
∞∫

τ

fs(s)ds =
1

1 + τ
, τ > 0.

and the lineages merge at a rate

rs(τ)dτ =
fs(τ)dτ
F s(τ)

=
dτ

1 + τ
, τ > 0.

In order to obtain a description of the local structure of the model on genera, we focus on

the extant genus that a typical extant species belongs to. To do so, we consider the effect

that the occurrences of the marks for change have on the local structure of the genealogy of

an extant species. Note that, as time runs backwards, exactly three possible types of events

occur within a lineage:

(1) a mark for change occurs on this lineage,

(2) a merge occurs with a lineage which already has a mark for change in it,

(3) a merge occurs with a lineage which yet contains no marks for change.

Figure 4.3 shows the three different possibilities for the lineage of some extant species in a

small time interval (τ, τ + dτ).
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*

(1) (2) (3)

t

0
*

*

Figure 4.3: The three different types of events (1), (2), and (3) at time t back from the
present.

4.3 Lifetime of a Genus

We first consider the time at which the genus containing a typical extant species emerged

as a separate genus. According to our definition of a genus which requires it to be a complete

clade, an extant species is separated into a new genus the first time, back from the present,

that an event of type (1) or of type (2) occurs.

Definition. Let τg be the lifetime of a genus containing a typical extant species, measured

from the present back to its emergence.

The following Lemma establishes the law of the lifetime τg by considering the possible effects

the above three events have on the occurrence of a new genus within a small interval of

time.

Lemma 12. In the model on genera in which species change at rate γ, and a genus is the

largest collection of changed species that is a complete clade, the lifetime τg of a genus of a

typical extant species has the law given by

F g(τ) =
e−γτ (1 + τ)−1

1 −
τ∫

0
e−γu(1 + u)−2du

, τ > 0 (4.1)

where F g(τ) = P[τg > τ ].
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Proof. The proof is a classical applied probabilistic argument. We consider the effect in

an arbitrary small interval of time (τ, τ + dτ) that the three possible events have on the

probability of a start of a new genus.

Given that a new genus has not occurred by time τ , the probability of it occurring in

(τ, τ + dτ) is precisely the probability of events of type (1) or of type (2) above.

Since the rate of the marks of change along any lineage is γ, the probability of the type(1)

event is P[(1) ∈ (τ, τ + dτ)] = γdτ .

The probability of a lineage merging with any other lineage in (τ, τ+dτ) is given by the rate

in the local structure on species rs(τ) = 1/(1 + τ) , so P[(2) ∪ (3) ∈ (τ, τ + dτ)] = rs(τ) .

The lineage it merges with already has a mark for change in it, if and only if the occurrence

of a new genus has already happened in that lineage by time τ back from the present.

Locally the lineages of different extant species evolve independently and with identical law,

hence the occurrence of a new genus in the other lineage by time τ is equal to P[τg ≤ τ ]

as well. Hence, P[(2) ∈ (τ, τ + dτ)] = rs(τ)P[τg ≤ τ ] .

Now, let Fg(τ) = P[τg ≤ τ ], for τ ≥ 0 . Note that the independence of the process of

changes and the process of merges implies that the occurrence of both type(1) and type(2)

events in (τ, τ + dτ) has a negligible probability. Also, the Markov property of the tree

implies the independence of events in (τ, τ + dτ) from those in [0, τ ]. Hence, we have that

P[τg ∈ (τ, τ + dτ)] = P[τg > τ ]
(
γdτ + rs(τ)dτP[τg > τ ]

)
,

in other words,

Fg(τ + dτ) − Fg(τ) =
(
1 − Fg(τ)

) (
γdτ + rs(τ)Fg(τ)dτ

)
.

Now deriving the law of τg reduces to solving a differential equation for its cumulative

distribution function.

Substituting in rs(τ) = 1/(1 + τ) , we obtain that the cumulative distribution function is

the solution of the non-linear differential equation

dFg

dτ
=

(
1 − Fg

)(
γ +

Fg

1 + τ

)
, τ > 0, (4.2)
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that also satisfies Fg(0) = 0, dFg/dτ ≥ 0, lim
τ↑∞

Fg(τ) = 1 .

We first make a transformation of the equation by introducing the function y = − log
(
1−

Fg
)
, so that Fg = 1− e−y , and dy/dFg = ey = 1/(1−Fg) . In terms of the function y the

equation becomes

dy

dτ
=

1
(1 − Fg)

(
1 − Fg

)(
γ +

Fg

1 + τ

)

= γ +
Fg

1 + τ
= γ +

1 − e−y

1 + τ
.

We also transform the time parameter by introducing s = log
(
1+ τ

)
, so that τ = es − 1 ,

and dτ/ds = 1 + τ . In terms of the parameter s the equation then becomes

dy

ds
=

(
γ +

1 − e−y

1 + τ

)
(1 + τ)

= γ(1 + τ) + (1 − e−y) = γes + (1 − e−y).

Hence we need the solution of the differential equation

dy

ds
= γes + (1 − e−y), s > 0,

which satisfies the equivalent properties y(0), dy/ds ≥ 0, lim
s↑∞

y(s) = ∞ .

We now proceed as follows. We first obtain an explicit solution in y of this equation using

only the initial condition y(0) = 0 . We then further show that this solution indeed satisfies

the remaining two conditions as well.

First, in order to obtain a solution, we let z = ey so that then dz/dy = ey . In terms of z

we thus obtain a linear non-homogeneous differential equation

dz

ds
= ey

(
γes + 1 − e−y

)
= z

(
γes + 1

)
− 1, s > 0

which can now be solved using integrating factors.

Namely, multiplying both sides of the last equation by the factor e
∫ s
0 (γer+1)dr = e−γes−s ,

we obtain the equation
d
(
ze−γes−s

)

ds
= −eγes+s,

so that

z(s) = eγes+s
(
c0 −

∫ s

0
e−γer+rdr

)
, s ≥ 0.



47

The constant c0 is determined from the initial condition, z(0) = ey(0) = 1, to be c0 = e−γ .

In terms of the original function y = log(z) we have

y(s) =
(
γes + s

)
+ log

(
e−γ −

∫ s

0
e−γer+rdr

)
, s ≥ 0.

Second, we show that this solution satisfies dy/ds ≥ 0 and lim
s↑∞

y(s) = ∞ . Let I(s) =
∫ s
0 e−γer−rdr , so that y(s) = (γes + s) + log

(
e−γ − I(s)

)
. We next show that y(s) ≥

0, ∀s ≥ 0 . It is clear that I(s) ≥ 0, dI/ds ≥ 0 , and moreover that

I(s) =
∫ s

0
e−γer+rdr ≤ e−γ

∫ s

0
e−rdr = e−γ(1 − e−s).

Hence, e−γ − I(s) ≥ e−γ−s , and thus log
(
e−γ − I(s)

)
≥ −γ − s . So then,

y(s) = (γes + s) + log
(
e−γ − I(s)

)
≥ (γes + s)− γ− s = γ(es − 1) , which certainly implies

y(s) ≥ 0, ∀s ≥ 0 .

We now use this fact to show that dy/ds ≥ 0, ∀s > 0. Simply considering the differential

equation for y we observe that, because y ≥ 0,

dy/ds = γes + 1 − e−y ≥ γes , which certainly implies dy/ds ≥ 0, ∀s ≥ 0 .

Finally we show that lim
s↑∞

y(s) = ∞. This follows from an earlier result that

y(s) = (γes + s) + log
(
e−γ − I(s)

)
≥ γ(es − 1) , so clearly y(s) ↑ ∞, as s ↑ ∞ .

Expressing this result in terms of Fg and parameter τ this gives us the solution for the

distribution of τg:

Fg(τ) = 1 − e−y(log(1+τ))

= 1 − e−γ(1+τ)+log(1+τ)

e−γ −
∫ log(1+τ)
0 e−γer−rdr

= 1 − e−γτ (1 + τ)−1

1 −
∫ τ
0 e−γu(1 + u)−2du

τ ≥ 0,

from which we have the formula for the survival function F g(τ) = 1 − Fg(τ) of τg as

claimed.
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We can now make some easy estimates for the expected value of τg.

Theorem 13. The expected lifetime of a genus of typical species, in the model in which

species change with rate γ, satisfies

1
2γ

≤ E[τg] ≤
1
γ

. (4.3)

Proof. The proof is a simple consequence of the formula for the law of τg from the above

Lemma.

The inequality 1 ≤ e−γu ≤ e−γτ for 0 ≤ u ≤ τ , yields
∫ τ

0
(1 + u)−2du ≥

∫ τ

0
e−γu(1 + u)−2du ≥ e−γτ

∫ τ

0
(1 + u)−2du,

so

(1 + τ)−1 ≤ 1 −
∫ τ

0
e−γu(1 + u)−2du ≤ (1 + τ)−1(1 + τ − τe−γτ ),

hence

e−γτ ≥ e−γτ (1 + τ)−1

1 −
∫ τ
0 e−γu(1 + u)−2du

≥ e−γτ (1 + τ − τe−γτ )−1,

and since 1 + τ − τe−γτ ≤ eγτ , finally

1 − e−γτ ≤ Fg(τ) ≤ 1 − e−2γτ (4.4)

and the claimed estimates of the expected value immediately follow.

The bounds we obtained have an intuitively obvious explanation. Suppose we had a process

in which the marks for change occurred only along the lineage of the chosen typical species.

Then its genus emerges at the time of the first mark, and its lifetime has an Exponential(rate

γ) distribution. In light of all the other possibilities contributing to the emergence of the

genus in the original process , the lifetime of a genus is clearly stochastically dominates this

Exponential(rate γ) distribution. On the other hand, consider a lineage that merges with

that of the chosen species. If this lineage has a mark for change at some time then this

will cause the emergence of the genus for our chosen species. Suppose we take then the

minimum of the times of the first mark in this neighboring lineage and of the first mark

of the lineage of the chosen species, which has an Exponential(rate 2γ) distribution. Since

the emergence in the event of the mark on the neighboring lineage does not occur until the
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actual merger, it is follows that the lifetime of a genus is dominated by this Exponential(rate

2γ) distribution.

The implications on τg from the above bounds on Fg for the extreme values of γ (= 0, ↑∞),

have clear interpretations as well. For γ = 0 we have that Fg(τ) = 0 ∀τ , in other words

τg = ∞ a.s., corresponding to the fact that there are no marks for change. For γ ↑∞ we

have that Fg(τ) ↑ 1 ∀τ , in other words τg = 0, which corresponds to the fact that a mark

for change occurs a.s. immediately after τ = 0. We shall make use of the behavior of this

genus for the extreme values of γ in the following Section.

4.4 Size of a Genus

We next consider how the genera partition the set of extant species. We shall hence

consider the present size of the clade that contains a typical extant species. In other words,

we shall consider the number of extant species that a genus of an arbitrary extant species

contains. According to the local structure, the extant species in this genus are those whose

lineages merge with the chosen extant species, prior to any type (1) or type (2) event. Thus

as time runs runs back from the present, this gives us a partial size of the genus which

increases at any time that an event of type (3) occurs. The complete size of this genus is

given at time τg.

Definition. Let Nτ , for 0 ≤ τ ≤ τg, be the partial size of the genus of a typical extant

species, by time τ back from the present, and let N = Nτg be the complete size of this

genus. Size here means the number of extant species in this genus.

The following Lemma establishes the law of the process (Nτ )0≤τ≤τg in terms of a set of

recursive equations it satisfies.

Lemma 14. The partial size Nτ by time τ of a genus of a typical extant species, given

that the genus has not emerged yet has the conditional distribution fNτ defined by the set

of recursive equations

fNτ (k) =
1

(1 + τ)eγτF g(τ)

τ∫

0

eγsF g(s)
k−1∑

i=1

fNs(i)fNs(k − i)ds (4.5)
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for k ≥ 2, with

fNτ (1) =
1

(1 + τ)eγτF g(τ)
. (4.6)

The complete size N of this genus then has the law fN given by

fN (k) =
∫ ∞

0
fN (τ) dFg(τ), k ≥ 1 (4.7)

where F g = 1 − Fg is as in (4.1) of Lemma 12.

Proof. The proof once more relies on considering the effect that the three possible events

have on the partial size of this genus in an arbitrary small interval of time (τ, τ + dτ).

On the event that emergence of the genus has not yet occurred by time τ , the probability

that within this event the partial size increases is precisely the probability of an event of

type (3) above. The probability that the partial size remains the same within this event is

just the probability that none of the type (1), (2), or (3) events happen.

Let g(k, τ) = P[Nτ = k, τg > τ ], for k ≥ 1, τ ≥ 0. Then, since the Markov property of the

model again implies the independence of the event in (τ, τ + dτ) from the those in (0, τ ],

we have that

g(k, τ + dτ) =
k−1∑

i=1

g(i, τ)pτ (k − i)dτ + g(k, τ)pτ (0)dτ

where we have used the notation pτ (j) to mean, for all j ≥ 1

pτ (j)dτ = P[of a type (3) event with a lineage of size k − i ∈ (τ, τ + dτ)],

pτ (0)dτ = 1 −P[any event of type (1), (2), or (3) ∈ (τ, τ + dτ)].

Now, it is clear that pτ (0)dτ =
(
1 − γ − rs(τ)

)
dτ . On the other hand, for j ≥ 1 we have

that pτ (j)dτ = rs(τ)g(j, τ)dτ , since at a time of a merger in (τ, τ +dτ) the chance that the

merging lineage has partial size j and has not had its genus emergence yet is precisely g(j, τ).

This establishes the following recursive relationship for the family of functions {g(k, τ)},
over k ≥ 1, 0 ≤ τ < τg, as

g(k, τ + dτ) =
k−1∑

i=1

rs(τ) g(i, τ)g(k − i, τ) dτ +
(
1 − γ − rs(τ)

)
g(k, τ) dτ.
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In other words,

dg(k, τ)
dτ

=
k−1∑

i=1

rs(τ) g(i, τ)g(k − i, τ) −
(
γ + rs(τ)

)
g(k, τ).

Note that the initial values are dictated by the one chosen extant species to be g(1, 0) =

1, and g(k, 0) = 0 for k ≥ 1.

For k = 1 the above equation is just

dg(1, τ)
dτ

= −
(
γ + rs(τ)

)
g(1, τ),

hence g(1, τ) = c1 e−
∫ τ
0 (γ+rs(s))ds .

Since rs(τ) = 1/(1 + τ) , and g(1, 0) = 1, it follows that

g(1, τ) =
e−γτ

1 + τ
, 0 ≤ τ < τg. (4.8)

For k ≥ 1 using the integrating factor e
∫ τ
0 (γ+rs(s))ds we obtain

d
(
g(k, τ)e

∫ τ
0 (γ+rs(s))ds

)

dτ
= e

∫ τ
0 (γ+rs(s))ds

k−1∑

i=1

rs(τ) g(i, τ)g(k − i, τ).

Since rs(τ) = 1/(1 + τ), we have that e
∫ τ
0 (γ+rs(s))ds = eγτ (1 + τ), and also since g(k, 0) = 0

for k ≥ 1, it follows that

g(k, τ) =
e−γτ

1 + τ

τ∫

0

k−1∑

i=1

eγs g(i, s)g(k − i, s)ds, 0 ≤ τ < τg. (4.9)

Now, let fNτ represent the conditional distribution of the partial size Nτ , given the event

{τg ≥ τ}. Then,

fNτ (k) =
g(k, τ)
F g(τ)

,

where F (τ) is given by (4.1) from Lemma 12, which immediately yields the claimed recursive

definition of the distribution {fNτ (k), k ≥ 1}.

To obtain the law of the complete size of the genus, we can now use the conditional distri-

bution of the size Nτ as τ ↑ τg, and integrate over the possible values of τg.
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Let fN represent the distribution of N . Now, at the emergence of the genus there is no size

increase, and also we have the Markov property for the tree, hence

P[N = k, τg = τ ] = P[Nτ− = k, τg = τ ]

= P[Nτ− = k, τg > τ−, τg ∈ (τ−, τ)]

= P[Nτ− = k, τg > τ−]P[τg ∈ (τ−, τ)]

= P[Nτ− = k, τg > τ−] P[type (1) or (2) event∈ (τ−, τ)]

= g(k, τ−) P[type (1) or (2) event∈ (τ−, τ)]

Next note that, for each k ≥ 1, g(k, τ) is a continuous function in τ . Also, from Lemma 12

we have P[type (1) or (2) event∈ (τ−, τ)] = dFg(τ−)/F g(τ−), with Fg(τ) also continuous in

τ , so

P[N = k, τg = τ ] =
g(k, τ)
F g(τ)

dFg(τ).

Hence,

fN (k) = P[N = k] =
∫ ∞

0

g(k, τ)
F g(τ)

dFg(τ) =
∫ ∞

0
fNτ (k)dFg(τ), (4.10)

as claimed.

We can now give a bound on the expected number of species per genus.

Theorem 15. The expected size of the genus of a typical extant species, in the model in

which species change with rate γ, satisfies

1 ≤ E[N ] ≤ 1 +
2
γ

(4.11)

Proof. The proof relies on a comparison of the distribution of the partial size of a genus for

an arbitrary γ, with that of the same distribution for the particular case when γ = 0.

We start by identifying the distribution of Nτ , the partial size of a genus at time τ from

the present, in the case when the rate γ = 0, so that there are no marks for change. The

probabilities for the partial genus size Nτ when {τg > τ}, are given by (4.8) and a set of
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recursive equations (4.9). When γ = 0, these are just

g(1, τ) =
1

1 + τ
,

and g(k, τ) =
1

1 + τ

τ∫

0

k−1∑

i=1

g(i, s)g(k − i, s)ds, k ≥ 2.

holding for all τ ≥ 0, since τg = ∞ a.s. when γ = 0.

We now observe that

g(k, τ) =
1

1 + τ

( τ

1 + τ

)k−1
, k ≥ 1. (4.12)

are the explicit solutions of the above equations.

This is clearly the case for k = 1, and assuming this is the case for all i ≤ k − 1, we have

that

g(k, τ) =
1

1 + τ

∫ τ

0

k−1∑

i=1

(
1

1 + s
)2(

s

1 + s
)i−1+k−i−1 ds

=
1

1 + τ

∫ τ

0
(k − 1)(

1
1 + s

)2(1 − 1
1 + s

)k−2 ds

=
1

1 + τ

(
1 − 1

1 + τ

)k−1
=

1
1 + τ

( τ

1 + τ

)k−1

holds for k as well.

In other words, when there are no marks for change the number of extant species whose

lineages have merged with a randomly chosen one by time τ from the present follows a

Geometric( 1
1+τ ) distribution.

We next claim that for an arbitrary γ ≥ 0, the probabilities for the partial genus size Nτ

when τg > τ , satisfy

g(k, τ) ≤ e−γτ 1
1 + τ

( τ

1 + τ

)k−1
, k ≥ 1.

Namely, the partial size of a genus on τg > τ is due to two types of events, the non-

occurrence of the marks for change along its lineage, and the merger with other mark free

lineages.

Suppose we had a process in which the marks for change occurred only along the lineage of

our chosen extant species, while the other lineages were not subject to being marked. For
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this process, denote by N ′
τ the partial genus size by time τ arising from the chosen species,

and by τ ′g the time of emergence of this genus. Then we have N ′
τ = k, τ ′g > τ if and only if

the lineage of the chosen species is mark free and it has merged with k− 1 lineages of other

extant species by time τ . Since the marks for change on the lineage of the chosen species

are independent of the mergers, the distribution of the number of lineages merged with the

lineage of the chosen one is the same as in the process with no marks for change. In other

words

P[N ′
τ = k, τ ′g > τ ] = e−γτ 1

1 + τ

( τ

1 + τ

)k−1

where the first term is simply the probability of no marks on the chosen lineage by time τ ,

and the second is the probability of genus size in a mark free process given by (4.12).

In the original process, the possibilities of marks along lineages of other extant species reduce

the possibilities of merger with mark free lineages. Compared to the process analyzed above,

the rate of mergers with mark free lineages before the time of occurrence of this genus is

reduced, and we have that

g(k, τ) = P[Nτ = k, τg > τ ] ≤ P[N ′
τ = k, τ ′g > τ ] = e−γτ 1

1 + τ

( τ

1 + τ

)k−1

as claimed.

We can now use this comparison of the probabilities g(k, τ) for arbitrary γ with those for

the case γ = 0 to establish the bounds for the expected value of N . Namely, the distribution

of N is given by (4.10) as

fN (k) =
∫ ∞

0
g(k, τ)

dF (τ)
F (τ)

hence

E[N ] =
∑

k≥1

kfN (k) =
∑

k≥1

∫ ∞

0
kg(k, τ)

dF (τ)
F (τ)

≤
∑

k≥1

k

∫ ∞

0
e−γτ 1

1 + τ
(

τ

1 + τ
)k−1 dF (τ)

F (τ)

=
∫ ∞

0
e−γτ

(∑

k≥1

k
1

1 + τ
(

τ

1 + τ
)k−1

)
dF (τ)
F (τ)

=
∫ ∞

0
e−γτ (1 + τ)

dF (τ)
F (τ)

since the expected value of the Geometric( 1
1+τ ) distribution of the γ = 0 case is 1 + τ .
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Further, the differential equation for Fg given by (4.2) gives

dFg(τ)
F g(τ)

=
(
γ +

Fg(τ)
(1 + τ)

)
dτ

hence

E[N ] ≤
∫ ∞

0
e−γτ (1 + τ)

(
γ +

Fg(τ)
1 + τ

)
dτ

=
∫ ∞

0
γe−γτ (1 + τ)dτ +

∫ ∞

0
e−γτFg(τ)dτ

≤
∫ ∞

0
γe−γτ (1 + τ)dτ +

∫ ∞

0
e−γτdτ

since ∀τ ≥ 0, Fg(τ) ≤ 1. A simple calculation of integrals now yields

E[N ] ≤ 1 +
1
γ

+
1
γ

= 1 +
2
γ

as claimed.

In terms of the extreme values for γ (γ=0, andγ↑∞), we have the following interpretation.

For γ = 0 we have seen that τg = ∞ a.s., and that the partial genus size Nτ has a

Geometric( 1
1+τ ) distribution. Thus, ∀k ≥1

fN (k) = P[N = k] = lim
τ↑∞

P[Nτ = k, τ < ∞] = lim
τ↑∞

1
1+τ

(
1 − 1

1+τ

)k−1 = 0

In other words N = ∞ a.s., corresponding to the fact that when there are no marks for

change all the extant species are in the same genus. On the other hand, for γ ↑∞ we have

that τg = 0 a.s., and

g(k, τ) = P[Nτ = k, τ < τg] = 0, ∀τ ≥ 0, k ≥ 1, except for g(1, 0) = 1

Thus N = 1 a.s., corresponding to the fact that a mark for change occurs a.s. immediately

after τ = 0.

4.5 Shape and Branching Structure of the Model

We next consider the issue of tree shape in our models on species and genera. The

distribution of the model manifests itself in the shape and the amount of balance (or lack
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thereof) in the branching structure of the tree. To assess the shape and (im)balance of the

tree we consider the probabilities of different types of branching points. The type of each

branching point is defined in terms of the type of split it generates, in terms of sizes of its

daughter clades. The probabilities with which the different split types appear in the tree

then characterize the distribution of its shape.

The motivation for assessing the tree shape in terms of proportions of different split types,

is that it is arguably mathematically preferable to assessing the tree balance in terms of

a single numerical summary statistic (see ([4]) Sec §4. for a brief discussion of this issue).

We here only point out the fact that, using relative proportions of different split types, it

is easy to make comparisons of tree balance between trees with different numbers of leaves.

A branching point (of a binary tree) is a split of type (i, j) if its subclades have i, and j

number of leaves respectively. For a general assessment of tree balance there is no need to

distinguish between the left and the right subclades, and we use a convention whereby in

a split of type (i, j), i denotes the size of the smaller subclade, and j the size of the larger

subclade. Let p(i, j) denote the probability of a branching point being of split type (i, j),

then the set {p(i, j), i ≥ 1, j ≥ 1} completely describes the branching structure hence shape

of the tree.

Figure 4.4: The “perfectly balanced” tree (on left), and the “comb” tree (on right).

To illustrate, consider the extreme cases of tree shapes, the “perfectly balanced” tree and

the “comb” tree, as shown in Figure 4.4. In a given tree the probabilities p(i, j) are naturally

interpreted as relative proportions of branching points of split type (i, j). Let p(1, 1) denote
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the proportion of splits of type (1, 1), p(1, 2+) the proportion of splits of type (1, j) over

all j ≥ 2, and p(2+, 2+) the proportion of splits of type (i, j) over all j > i ≥ 2. Then

asymptotically for the perfectly-balanced tree we have:

p(1, 1)=1/2, p(1, 2+)=0, and p(2+, 2+)=1/2.

On the other hand asymptotically for the comb tree we have:

p(1, 1)=0, p(1, 2+)=1, and p(2+, 2+)=0.

Note how these extreme values of proportions for the three groups of splits in a tree char-

acterize the amount of (im)balance in a tree, attained in these two extreme non-random

cases. We shall use them for a quick comparison with our model on genera.

For the branching structure in the model on species, we first determine the relative pro-

portions of different lineages. At any time τ ≥ 0, back from the present, the mean rate of

lineages at time τ (the mean number of lineages relative to the number of extant species)

is given by the survival function of a lineage of a typical species F s(τ) = 1/(1 + τ). Let us

define the size of any lineage at time τ to be the number of extant species descending from

it. Then, for any τ ≥ 0 we have that F s(τ) = h1(τ) + h2+(τ), where h1(τ) is the mean

rate at time τ of lineages whose size is exactly 1, and h2+(τ) is the mean rate at time τ of

lineages whose size is greater than 1.

We consider the effect in an arbitrary small interval of time (τ, τ + dτ) that the merging

of lineages within the model on species has on the mean rates h1(τ), and h2+(τ). Merging

of any two lineages generates another lineage of size greater than 1. The probabilities of

different mergers of lineages are simply proportional to their mean rates (taking into account

possible merging from both the left and the right). This easily yields that the differential

equations for h1(τ), and h2+(τ) are

dh1(τ)
dτ

= −2h2
1(τ) − 2h1(τ)h2+(τ), h1(0) = 1,

dh2+(τ)
dτ

= +h2
1(τ) − 2h2

2+(τ) + h2
2+(τ) h2+(0) = 0.

(Note that the merger of a size 1 lineage with a size greater than 1 lineage does not alter

the rate of the latter, hence is absent from second equation.)
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Since ∀τ ≥ 0, h1(τ) + h2+(τ) = F s(τ) = 1/(1 + τ), the above easily yield solutions

h1(τ) = e−2
∫ τ
0 F s(s)ds = e−2 log(1+τ) =

1
(1 + τ)2

, τ ≥ 0,

h2+(τ) = F s(τ) − h1(τ) =
τ

1 + τ
, τ ≥ 0.

We can now use these two mean rates of lineages to determine the probabilities of three

types of branching points according to their split types. We introduce the notation for these

probabilities on the tree on species.

Definition. Let the probabilities of split types in the model on species be

ps(1 , 1 )(τ) = P[of a (1,1) split type at time τ ],

ps(1, 2+)(τ) = P[of any (1, j), j ≥ 2 split type at time τ ],

ps(2+, 2+)(τ) = P[of any (i, j), i > j ≥ 2 at time τ ]

with ps(1, 1), ps(1, 2+), ps(2+, 2+) the respective overall probabilities.

It is clear that the probabilities for branching at some time τ are given in terms of the mean

rates of different lineage types by

ps(1 , 1 )(τ) = h2
1(τ), ps(1, 2+)(τ) = 2h1(τ)h2+(τ), ps(2+, 2+)(τ) = h2

2+(τ)

so that the respective overall probabilities are

ps(1 , 1 ) =
∞∫

0

ps(1, 1)(τ)dτ =
∞∫

0

1
(1 + τ)4

dτ =
1
3

(4.13)

ps(1, 2+) =
∞∫

0

ps(1, 2+)(τ)dτ =
∞∫

0

2
1

(1 + τ)2
τ

(1 + τ)2
dτ =

1
3

(4.14)

ps(2+, 2+) =
∞∫

0

ps(2+, 2+)(τ)dτ =
∞∫

0

τ2

(1 + τ)4
dτ =

1
3
. (4.15)

The above three probabilities describe the shape for the genealogical tree of a large number

of extant species.
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4.6 Shape of Tree on Genera

For the branching structure on the tree on genera we have to consider the rates of the

following types of lineages. Note that the marks for change now create the following three

types of lineages at time τ :

(a) lineages with no marks for change up to time τ ,

(b) lineages with marks for change between their last merger time and time τ ,

(c) all other lineages.

Note that the lineages of type (a) are precisely those within which no genus has emerged

yet by τ , hence has no complete genus within it, the lineages of type (b) have exactly one

emerged genus by time τ , and lineages of type (c) have at time τ already more than one

genus within them. Figure 4.5 shows the different types (a), (b), and (c).

(a) (b) (c)

*

*
0

t

*
*

Figure 4.5: The three different types of lineages (a), (b), and (c) at time t back from the
present.

We now calculate the mean rate of these types of lineages.

Lemma 16. At any time τ ≥ 0 the mean rates ha(τ), hb(τ), hc(τ) of the lineages of types

(a), (b), (c) respectively are given by

ha(τ) = (1 + τ)−2F g(τ) (4.16)
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hb(τ) = (1 + τ)−2γ

τ∫

0

(1 + s)F g(s)ds (4.17)

hc(τ) = (1 + τ)−2
(
(1 + τ)Fg(τ) − γ

τ∫

0

(1 + s)F g(s)ds
)

(4.18)

Proof. We consider the effect that the mergers of lineages of different types have on the

rates ha(τ), hb(τ), hc(τ) within a small interval of time (τ, τ + dτ). The different types

of events in terms of the mergers of (a), (b), and (c) type lineages and of appearance of a

mark for change are

• (a) + (a) → (a), (a) + (b) → (c), (a) + (c) → (c)

• (b) + (b) → (c), (b) + (c) → (c), (c) + (c) → (c)

• (a) + mark → (b), (b) + mark → (b), (c) + mark → (c)

This now yields the differential equations for ha(τ), hb(τ), hc(τ) to be

dha(τ)
dτ

= −2h2
a(τ) + h2

a(τ) − 2ha(τ)hb(τ) − 2ha(τ)hc(τ) − γha(τ),

dhb(τ)
dτ

= −2ha(τ)hb(τ) − 2h2
b(τ) − 2hb(τ)hc(τ) + γha(τ),

dhc(τ)
dτ

= +2ha(τ)hb(τ) + h2
b(τ) − 2h2

c(τ) + h2
c(τ),

(Note that marks for changes on a type (b) lineage do not alter its rate, hence this is

absent from the second equation; also, marks for change on a type (c) lineage as well as any

mergers of type (c) lineage do not alter its rate hence all these events are absent from the

last equation.)

Note that the initial values are ha(0) = 1, hb(0) = 0, hc(0) = 0. Using the fact that

ha + hb + hc = F s = 1/1 + τ , the equation for ha becomes

dha

dτ
= −2haF s + h2

a − γha = h2
a − ha

( 2
1 + τ

+ γ
)
, ha(0) = 1.

Now using a transform ya = 1/ha we obtain an equivalent equation for ya

dya

dτ
= ya

( 2
1 + τ

+ γ
)
− 1, ya(0) = 1.
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We can now use the integrating factor e−
∫ τ
0 ( 2

1+s+γ)ds = (1 + τ)−2e−γτ to solve

d
(
(1 + τ)−2e−γτya

)

dτ
= −(1 + τ)−2e−γτ

obtaining back in terms of ha

ha(τ) =
1

ya(τ)
=

(1 + τ)−2e−γτ

1 −
τ∫

0
(1 + s)−2e−γsdτ

Using the result for the law F g(τ) of the time to the emergence of a genus from Lemma 12,

we see that this is precisely ha(τ) = F g(τ)/(1 + τ).

The equation for hb is

dhb

dτ
= −2hbF s + γha = − 2hb

1 + τ
+ γha, hb(0) = 0.

hence

hb(τ) = (1 + τ)−2γ

τ∫

0

(1 + s)2ha(s)ds = (1 + τ)−2γ

τ∫

0

(1 + s)F g(s)ds

Finally, for hc we have hc = F s − ha − hb that is

hc(τ) = (1 + τ)−2
(
(1 + τ)Fg(τ) − γ

τ∫

0

(1 + s)F g(s)ds
)

.

From the different types of lineages we can now derive the probabilities for different split

types within the tree on genera.

Definition. Let the probabilities of split types in the model on genera be

pg(1 , 1 )(τ) = P[of a (1,1) split type at time τ ],

pg(1, 2+)(τ) = P[of any (1, j), j ≥ 2 split type at time τ ],

pg(2+, 2+)(τ) = P[of any (i, j), i > j ≥ 2 at time τ ]

with pg(1, 1), pg(1, 2+), pg(2+, 2+) the respective overall probabilities.
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Let the ratio of balance be defined as pg = pg(1, 2+)/pg(1, 1).

It is clear how that the balance of the tree is determined by the ratio pg(1, 2+)/pg(1, 1). The

higher the ratio is, the more balanced the tree. The value of such a ratio for a perfectly

balanced tree is ∞, while for the comb tree it is 0. We are interested in determining how

the (im)balance of the tree on genera compares to that of the tree on species, whose ratio

of balance is equal to 1. Using the results of Lemma 12 we can now derive estimates for

such a comparison.

Theorem 17. The ratio of balance for the tree on genera satisfies

l(1,2+)

u(1,1)
≤ pg ≤

u(1,2+)

l(1,1)
, (4.19)

where l(1,2+), u(1,2+), l(1,1), and u(1,1) are given by (4.20)-(4.23).

Proof. The proof relies on using the mean rates of different types of lineages in the model

on genera, and then applying our earlier estimates for the law of the time of emergence of

a genus F g.

We first observe the results the mergers of different types of lineages produce. The merger of

two type (a) lineages is not noted in the tree on genera, since both lineages are part of a yet

incomplete genus. This merger is only seen as a branching point in the tree on species, and

is absent from the tree on genera. We shall denote this type of a “non-existent” branching

point by a split type (0, 0), an its probability at any time τ by pg(0, 0)(τ), and overall by

pg(0, 0). The merger of a type (a) lineage with a type (b) lineage, as well as a merger of

two type (b) lineages gives a branching point of split type (1, 1). The merger of a type (c)

lineage with either a type (a) lineage or a type (b) lineage generates a branching point of

split type (1, 2+). And finally, the merger of two type (c) lineages gives a branching point

of split type (2+, 2+). Thus,

pg(0, 0)(τ) = h2
a(τ),

pg(1, 1)(τ) = 2ha(τ)hb(τ) + h2
b(τ),

pg(1, 2+)(τ) = 2ha(τ)hc(τ) + 2hb(τ)hc(τ),

pg(2+, 2+)(τ) = h2
c(τ).
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Hence,

pg =

∫ ∞
0

(
2ha(τ)hc(τ) + 2hb(τ)hc(τ)

)
dτ

∫ ∞
0

(
2ha(τ)hb(τ) + h2

b(τ)
)

dτ

Using the bounds for F g (from Lemma 12), together with the formulae for ha(τ), hb(τ), hc(τ)

(from Lemma 16), we have that

e−2γτ

1 + τ
≤ ha(τ) ≤ e−γτ

1 + τ
,

1
2(1 + τ)2

(
1− (1 + τ)e−2γτ +

1 − e−2γτ

2γ

)
≤ hb(τ) ≤ 1

(1 + τ)2
(
1− (1 + τ)e−γτ +

1 − e−γτ

γ

)
,

1
(1 + τ)2

(
τ − 1 − e−γτ

γ

)
≤ hc(τ) ≤ 1

2(1 + τ)2
(
τ − 1 − e−2γτ

2γ
− (1 + τ)(1 − e−2γτ )

)
.

Thus, the lower and upper bounds for pg(1, 2+) are

l(1,2+) =
∞∫

0

2
1

(1 + τ)2
(
τ − 1 − e−γτ

γ

)

(
e−2γτ

1 + τ
+

1
2(1 + τ)2

(
1 − (1 + τ)e−2γτ +

1 − e−2γτ

2γ

))
dτ, (4.20)

u(1,2+) =
∞∫

0

2
1

2(1 + τ)2
(
τ − 1 − e−2γτ

2γ
− (1 + τ)(1 − e−2γτ )

)

(
e−γτ

1 + τ
+

1
(1 + τ)2

(
1 − (1 + τ)e−γτ +

1 − e−γτ

γ

))
dτ ; (4.21)

and for pg(1, 1) are

l(1,1) =
∞∫

0

1
2(1 + τ)2

(
1 − (1 + τ)e−2γτ +

1 − e−2γτ

2γ

)

(
e−2γτ

1 + τ
+

1
2(1 + τ)2

(
1 − (1 + τ)e−2γτ +

1 − e−2γτ

2γ

))
dτ, (4.22)

u(1,1) =
∞∫

0

1
(1 + τ)2

(
1 − (1 + τ)e−γτ +

1 − e−γτ

γ

)

(
2

e−γτ

1 + τ
+

1
(1 + τ)2

(
1 − (1 + τ)e−γτ +

1 − e−γτ

γ

))
dτ. (4.23)

yielding the claim.



64

For the extreme values for γ (= 0, ↑∞), we have the following. For γ = 0 we have ∀τ ≥ 0 all

the lineages within one incomplete genus. Hence all the branching points can be seen solely

within the tree on species and none within the tree on genera, corresponding to pg(0, 0) = 1,

pg(1, 1) = pg(1, 2+) = pg(2+, 2+) = 0. On the other hand for γ↑∞ we have immediately

after τ = 0 that all the extant lineages belong to their own species. This corresponds to

pg(0, 0) = pg(1, 1) = pg(1, 2+) = 0, pg(2+, 2+) = 1. For an arbitrary γ > 0, it is hard,

though certainly not for lack of trying, to find good estimates on the lower and upper bounds

for this ratio. However, numerical simulations for several values of γ = 1/10, 1, 10, etc. give

values of the ratio greater than 1, suggesting that the tree on genera is more unbalanced

than its respective tree on species.
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