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Abstract We introduce two models for random trees with multiple states motivated
by studies of trait dependence in the evolution of species. Our discrete time model, the
multiple state ERM tree, is a generalization ofMarkov propagationmodels on a random
tree generated by a binary search or ‘equal rates Markov’ mechanism. Our continuous
time model, the multiple state Yule tree, is a generalization of the tree generated by
a pure birth or Yule process to the tree generated by multi-type branching processes.
We study state dependent topological properties of these two random tree models. We
derive asymptotic results that allow one to infer model parameters from data on states
at the leaves and at branch-points that are one step away from the leaves.

Keywords Ancestral tree · Multi-type branching process · Yule tree ·
Binary search tree · Tree topology · Parameter reconstruction
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1 Introduction

During the past decade there has been considerable activity in studying the effect
trait differences may have on the rates of speciation and extinction in the evolution
of species (Fitzjohn (2012)) gives an excellent presentation of these recent develop-
ments). The possibility that diversification may be trait dependent implies that these
rates should not be inferred using standard trait independent methods. New likelihood
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methods that make better use of phylogenetic information were recently developed:
“BiSSE” for binary state speciation and extinction (Maddison et al. 2007); “QuaSSE”
for quantitative traits (Fitzjohn 2010); “GeoSSE” for geographic character traits (Gold-
berg et al. 2011), “CLASSE” for punctuated modes of character change (Goldberg
and Igic 2012); and were used to make new conclusions about a number of different
clades (see a recent survey by NG and Smith 2014).

Inferring the evolutionary process poses in general a non-trivial reconstruction
problem, as neither the rates nor the ancestral states in the phylogeny of present day
species are known. The underlying ancestral trees are typically assumed to be known
and reconstructed from aligned DNA sequence data. Predicting ancestral states is
then typically done with one of a number of heuristic methods based on the principle
of either: counting, maximum parsimony, or maximum likelihood. In such studies a
Markov chain of state changes is assumed to propagate down from the root along
the given tree. Many interesting theoretical results exist on the ability to reconstruct
ancestral states along the tree and the state at the root from the states observed at the
leaves (see the survey of Mossel and Steel 2005 and the paper of Gascuel and Steel
2014 for some recent developments). The focus so far was on reconstructing hidden
states along the underlying tree, rather than parameters of the Markov chain which
propagates them. In phylogenetics the underlying tree is assumed to be either a random
discrete binary tree, or a random Yule tree generated by a neutral pure birth process.
The shape of such a tree has the distribution of ‘equal rates Markov’ (ERM), and the
tree resulting after propagating states can be called a multiple state ERM tree. We
extend the model of propagating states down the tree to also include correlations of
states between edges with the same branch-point. As information only on the leaves is
insufficient for reconstruction,wewill also use correlated substructures of the tree. This
is the main reason why we focus on counts of cherries and pendants of different types
(c.f. next page), as these objects will prove to be sufficient in identifying parameters of
the underlying Markov chain which propagated the multiple states on the ERM tree.

Inference for evolutionary processes whose birth and death rates are trait dependent
adds an additional layer of mathematical difficulty. If we have a trait with finitelymany
variants (or a continuum of variants is discretized into finitely many bins) the full tree
evolves according to a multi-type branching process, in which rates of speciation to
different offspring ‘types’ (representing different states) and the rate of extinction is
specific to the state of that lineage. In such a branching process the shape of the tree
and its edge lengths are inseparable from the distribution of states on the lineages.
Both the ratio of speciation to extinction rates for each state, as well as the transitions
from a certain state to another play an important role in how the ancestral states are
distributed along the tree. The ancestral tree of this branching process, obtained by
pruning away the extinct lineages, turns out to be a random tree we call multiple
state Yule tree. In such a tree the chance of a lineage splitting is state dependent.
Consequently, this leaves a signature in terms of which splits are more frequent than
others and is reflected in the proportion of different types of splits at the tips of the
tree. Fortunately again, long term limit of counts of the different types of cherries and
pendants prove (under some mild assumptions) to be sufficient tools for uncovering
the underlying process which generated the multiple state Yule tree. We will use this
information in the reconstruction of model parameters.
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Very few practically applicable results have been obtained from theoretical analyses
of ancestral trees of multi-type branching processes. Deriving an exact distribution
for the ancestral tree is unsurprisingly challenging, as determining the likelihood of
any split requires the knowledge of the parental ‘type’ (state), and hence also all
ancestral states on that lineage. Popovic and Rivas (2014) developed a coalescent
point-process approach to generating ancestral trees using the tips in an infinite (quasi-
stationary) multi-type Galton-Watson branching processes. This construction relied
on a horizontal exploration of the tips which was developed by Aldous and Popovic
(2005) and extended by Lambert and Popovic (2013) (the standard vertical coalescent
construction is not possible for branching processes with state-dependent offspring
distributions). It can be used for simulating and computing likelihood of ancestral trees,
but calculating its statistical features is not easy, except in some very special cases.

In this paper, we focus on analyzing newly introduced a priori models on possible
ancestral tree shapes. Our multiple state ERM tree is a discrete time model that is an
extension of Markov propagation models on a random tree generated by a mechanism
which picks a random leaf to extend on. Our multiple state Yule tree is a continuous
time model and is a generalization of the tree generated by a pure birth process to
one with multiple states and state transitions. In order to investigate the topological
features of these two new models we analyze the number of different types of cherries
and different types of pendants in the tree: cherries are pairs of leaves each of which
is adjacent to a common ancestor, and pendants are edges of leaves whose immediate
ancestor is not a single edge away from another leaf (in otherwords, pendants are edges
to all the leaves that are not in a cherry). We use the random recursive mechanisms
for generating splits in the trees to obtain exact results for finite sized trees, as well as
asymptotic results as the trees grow in size. The distribution of the number of pendants
and cherries in the tree reflects the model parameters and can be used to infer them,
justifying the applicability of our main results.

For the multiple state ERM random trees, we focus on the numbers of cherries of
the different types. We identify the means and variances of these random variables
(Propositions 3 and 5), and we also derive asymptotic results as the number of leaves
in the tree grows (Theorems 6 and 9). We use the limiting fraction of different cherries
to infer the probabilities in the model (Corollary 11). Examples of particular models
for multiple state ERM trees are discussed in Sect. 2.2. For the multi-type branching
process we first identify the process obtained by pruning away the extinct lineages
(Proposition 13) as a specific version of amultiple state Yule tree with state transitions.
Using the distribution of states at the leaves (Lemma 16) we find the distribution of
different cherries and pendants (Propositions 19 and 21) in a generalmultiple stateYule
tree. We also derive their asymptotics in the long time-scale limit (Theorem 23) and
provide the way in which the original speciation and extinction rates can be inferred
from these topological features (Corollary 25).

2 Multiple state ERM trees

Consider a (single state) random tree constructed recursively, from a single node leaf,
by picking at each step one leaf uniformly at random and creating a branch-point by
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attaching twonew leaves to it. The distribution of this tree is called ‘equal ratesMarkov’
(ERM) (first investigated by Harding 1971) and has a long list of mathematical results
associated to it (Aldous 1996, 2001). Trees with this distribution can be generated in
a number of different ways, forwards in time—by using a (pure birth) Yule process
stopped the first time it reaches a prescribed number of leaves and ignoring the random
lengths of its branches, or backwards in time—starting from a prescribed number of
leaves using a neutral (coalescent) Moran process. Trees with this distribution have
been used in numerous studies as a null model in investigating patterns in tree shapes
(Mooers and Heard 1997). In terms of its statistical features the number of cherries
Cn for a tree with n leaves is known (McKenzie and Steel 2000) to have the following
properties:

E[Cn] = n

3
for n ≥ 3, V[Cn] = 2n

45
for n ≥ 5;

where V[Cn] = Var[Cn], and the distribution satisfies a central limit theorem:

Cn − n/3√
2n/45

⇒ N (0, 1).

These results were shown using an extended Pólya urn process by Smythe (1996) and
Janson (2004).

We consider a multiple state version of this random tree, where each node (branch-
points and leaves) has a state k ∈ K associated with it. The shape of the tree is
constructed in the same way as in the single state process, with each leaf having the
same chance, regardless of its state, of being picked at random to create the next
branch-point with two new leaves attached to it. The states of the two leaves being
attached, however, depend on the state of the leaf that they are being attached to. For
each state i, j1, j2 ∈ K the probabilities q j1, j2

i determine the chance that a leaf of
state i has states j1, j2 attached to it. Since we do not distinguish between different
embeddings of the tree in the plane, we can w.l.o.g. assume j1 ≤ j2. We call this tree
a multiple state ERM tree. The random tree with multiple states is distributed as a
Markov field (with propagation matrix {q j1, j2

i }i, j1≤ j2∈K) on an ERM tree. Note that,

for each i ,
∑

j1≤ j2 q j1, j2
i = 1. In order to avoid trivial cases that generate only single

state trees we will assume throughout that qii
i �= 1,∀i .

For the sake of simplicity we consider K = {1, 2}. There are k2(k + 1)/2 = 6
different types of cherries {111, 112, 122, 211, 212, 222} and k2 = 4 different types
of pendants {11, 12, 21, 22}, as illustrated in Fig. 1. Figure 2 illustrates cherries in an
example of a tree with n = 5 leaves.

2.1 Moments of the number of different types of cherries

For a tree with n leaves we let N1(n) denote the number of state 1 leaves, N2(n) =
n − N1(n) the number of state 2 leaves, and C j1 j2

i (n) the number of cherries of type
i j1 j2. Their means are relatively straightforward to calculate.
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Fig. 1 Type 1 is denoted by a blank circle, and type 2 by a full circle; different types of cherries: a type
111, b type 112, c type 122, d type 222, e type 212 and f type 211; and different types of pendants: g type
11, h type 12, i type 22 and j type 21

Fig. 2 Tree with
N1(5) = 3, N2(5) = 2, one
cherry of type 211, one cherry of
type 212, and one pendant of
type 22, where type 1 is denoted
by a blank circle, and type 2 by a
full circle

Lemma 1 Assume the probabilities {q j1 j2
i }i, j1≤ j2∈{1,2} satisfy (�): c1 − c2 /∈ {−2, 2}

for c1 := 2q11
1 + q12

1 and c2 := 2q11
2 + q12

2 . Then, ∀n ≥ 3,

ν1(n) := E[N1(n)] = c2n

2 − c1 + c2

− (2c2 − (2 − c1 + c2)ν1(2))Γ (n − 1 + c1 − c2)

(2 − c1 + c2)Γ (c1 − c2 + 2)Γ (n)
,

whereΓ (n) is the gamma function, andν1(2)=
{

c1, if N1(1)=1(initial leaf state is 1)

c2, if N2(1)=1 (initial leaf state is 2).

Analogous formula holds for ν2(n) := E[N2(n)] in which: c1 is replaced by
c′
1 := 2q22

2 + q12
2 (= 2 − c2), c2 is replaced by c′

2 := 2q22
1 + q12

1 (= 2 − c1)
(notice c′

1 − c′
2 = c1 − c2 remains the same), and ν1(2) is replaced by

ν2(2) =
{

c′
1, if N2(1) = 1 (initial leaf state is 2)

c′
2, if N1(1) = 1 (initial leaf state is 1).
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Proof The result follows from a straightforward recursion, for any 2 ≤ n1 ≤ n, we
have

P[N1(n) = n1] =
(

n1q12
1

n − 1
+ (n − n1 − 1)q22

2

n − 1

)

P[N1(n − 1) = n1]

+
(

(n1 − 1)q11
1

n − 1
+ (n − n1)q12

2

n − 1

)

P[N1(n − 1) = n1 − 1]

+
(

(n − n1 + 1)q11
2

n − 1

)

P[N1(n − 1) = n1 − 2]

+
(

(n1 + 1)q22
1

n − 1

)

P[N1(n − 1) = n1 + 1].

This yields a recurrence relation for Gn(x) =∑n1≥0 P[N1(n) = n1]xn1 ,which when
differentiated and evaluated at x = 1 results in the recurrence relation for ν1(n)

ν1 (n + 1) =
(

q12
2 + 2q11

2

)
+ 1

n

(
n + q12

1 + 2q11
1 − q12

2 − 2q11
2 − 1

)
ν1 (n) (1)

and solving it we obtain the claimed result.

Remark 2 The condition c1 − c2 �= 2 rules out trivial cases generating single state
trees {q11

1 = 1, q22
2 = 1} of only state 1 or state 2 (depending on initial state). The

condition c1 − c2 �= −2 rules out the unusual special case of completely alternating
states {q22

1 = 1, q11
2 = 1}. However, a number of interesting cases are covered by our

results, as shown at the end of this section.

Proposition 3 Under the same conditions (�) as in Lemma 1, ∀n ≥ 3, for

μ11
1 (n) := E

[
C11
1 (n)

]
, μ12

1 (n) := E

[
C12
1 (n)

]
, μ22

1 (n) := E

[
C22
1 (n)

]

we have

μ11
1 (n) = 3(2 − c1 + c2)(2μ11

1 (3) − q11
1 ν1(2)) + n(n − 1)(n − 2)q11

1 c2
3(2 − c1 + c2)(n − 1)(n − 2)

− q11
1 C(n)

μ12
1 (n) = 3(2 − c1 + c2)(2μ12

1 (3) − q12
1 ν1(2)) + n(n − 1)(n − 2)q12

1 c2
3(2 − c1 + c2)(n − 1)(n − 2)

− q12
1 C(n)

μ22
1 (n) = 3(2 − c1 + c2)(2μ22

1 (3) − q22
1 ν1(2)) + n(n − 1)(n − 2)q22

1 c2
3(2 − c1 + c2)(n − 1)(n − 2)

− q22
1 C(n)

where ν1(2), c1, c2 are as in Lemma 1, the constants C(n) are

C(n) := (2c2 − (2 − c1 + c2)ν1(2)) Γ (n − 1 + c1 − c2)

(2 − c1 + c2)Γ (c1 − c2 + 2)Γ (n)
,
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and the initial values are

μ11
1 (3) =

{ (
q11
1

)2 + q11
1 q12

1 /2 if N1(1) = 1

q11
1 q11

2 + q11
1 q12

2 /2 if N2(1) = 1,

μ12
1 (3) =

{(
q12
1

)2
/2 + q11

1 q12
1 if N1(1) = 1

q11
2 q12

1 + q12
2 q12

1 /2 if N2(1) = 1

μ22
1 (3) =

{
q11
1 q22

1 + q12
1 q22

1 /2 if N1(1) = 1

q12
2 q22

1 /2 + q11
2 q22

1 if N2(1) = 1.

Analogous formulae hold for

μ11
2 (n) := E

[
C11
2 (n)

]
, μ12

2 (n) := E

[
C12
2 (n)

]
, μ22

2 (n) := E

[
C22
2 (n)

]

in which: probabilities q j1 j2
1 are replaced by q j1 j2

2 , ν1(2) is replaced by ν2(2) =
2 − ν1(2), c1 and c2 are replaced by c′

1 and c′
2 respectively (as in Lemma 1), the

constants C(n) remain the same if the initial state is interchanged, and μ
j1 j2
1 (3) are

replaced byμ
j1 j2
2 (3)obtained by fully interchanging states in the formulae forμ

j1 j2
1 (3).

Proof Since at each step new leaves are attached in pairs, there is no need to keep
track of the number of different pendants. It suffices to keep track of the number of
different states of leaves and only of the cherries of the specific type we are trying to
calculate. Let

f i j1 j2
n (n1, k) := P

[
N1(n) = n1, C j1 j2

i (n) = k
]

and

Fi j1 j2
n (x, y) =

∑

n1≥0,k≥0

f i j1 j2
n (n1, k)xn1 yk .

Using recursion arguments, for any 3 ≤ n1 ≤ n, k ≥ 1, we have

f 111n (n1, k) =
(
2kq11

1

n − 1
+ (n − n1)q12

2

n − 1

)

f 111n−1(n1 − 1, k)

+
(

(n1 − 2k)q12
1

n − 1
+ (n − n1 − 1)q22

2

n − 1

)

f 111n−1(n1, k)

+
(

(n − n1 + 1)q11
2

n − 1

)

f 111n−1(n1 − 2, k)

+
(

(n1 + 1 − 2k)q22
1

n − 1

)

f 111n−1(n1 + 1, k)
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+
(

(n1 − 1 − 2(k − 1))q11
1

n − 1

)

f 111n−1(n1 − 1, k − 1)

+
(
2(k + 1)q22

1

n − 1

)

f 111n−1(n1 + 1, k + 1)

+
(
2(k + 1)q12

1

n − 1

)

f 111n−1(n1, k + 1),

for cherries of type 111,

f 112n (n1, k) =
(

kq12
1

n − 1
+ (n − n1 − k − 1)q22

2

n − 1

)

f 112n−1(n1, k)

+
(

(n1 − k − 1)q11
1

n − 1
+ (n − n1 − k)q12

2

n − 1

)

f 112n−1(n1 − 1, k)

+
(

(n − n1 − k + 1)q11
2

n − 1

)

f 112n−1(n1 − 2, k)

+
(

(k + 1)q11
2

n − 1

)

f 112n−1(n1 − 2, k + 1)

+
(

(k + 1)q12
2

n − 1
+ (k + 1)q11

1

n − 1

)

f 112n−1(n1 − 1, k + 1)

+
(

(k + 1)q22
2

n − 1

)

f 112n−1(n1, k + 1)

+
(

(n1 − k + 1)q12
1

n − 1

)

f 112n−1(n1, k − 1)

+
(

(n1 − k + 1)q22
1

n − 1

)

f 112n−1(n1 + 1, k)

+
(

(k + 1)q22
1

n − 1

)

f 112n−1(n1 + 1, k + 1)

for cherries of type 112, and

f 122n (n1, k) =
(

(n − n1 − 2k)q12
2

n − 1
+ (n1 − 1)q11

1

n − 1

)

f 122n−1(n1 − 1, k)

+
(

(n − n1 − 2k − 1)q22
2

n − 1
+ n1q12

1

n − 1

)

f 122n−1(n1, k)
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+
(
2(k + 1)q11

2

n − 1

)

f 122n−1(n1 − 2, k + 1)

+
(
2(k + 1)q12

2

n − 1

)

f 122n−1(n1 − 1, k + 1)

+
(
2(k + 1)q22

2

n − 1

)

f 122n−1(n1, k + 1)

+
(

(n1 + 1)q22
1

n − 1

)

f 122n−1(n1 + 1, k − 1)

+
(

(n − n1 − 2k + 1)q11
2

n − 1

)

f 122n−1(n1 − 2, k).

for cherries of type 122. Each of these equations yields a recurrence relation for
the corresponding joint generating function Fi j1 j2

n (x, y) by summing over n1 and k.
Differentiating and evaluating them at x = y = 1 then provides recurrences for the
means μ

j1, j2
i (n)

μ11
1 (n + 1) = n − 2

n
μ11
1 (n) + q11

1

n
ν1(n)

μ12
1 (n + 1) = n − 2

n
μ12
1 (n) + q12

1

n
ν1(n) (2)

μ22
1 (n + 1) = n − 2

n
μ22
1 (n) + q22

1

n
ν1(n)

solving which, with the expression for ν1(n) from Lemma 1, gives the claimed for-
mulae.

Remark 4 Simple algebra shows that the mean numbers of all cherries
∑

i, j1≤ j2 μ
j1 j2
1

(n) add up to n/3, corresponding to the known mean number of cherries in a single-
state ERM tree.

Proposition 5 Assume that c1−c2 /∈ {−2,−1, 0, 1, 3/2, 2} for c1, c2 as in Lemma 1.
Then, ∀n ≥ 5, for

σ 11
1 (n) := V

[
C11
1 (n)

]
, σ 12

1 (n) := V

[
C12
1 (n)

]
, σ 22

1 (n) := V

[
C22
1 (n)

]

we have

σ 11
1 (n), σ 12

1 (n), σ 22
1 (n) ∼ O(n) + O(nc1−c2−1) + O(n2(c1−c2−1)).

The same asymptotics hold for

σ 11
2 (n) := V

[
C11
2 (n)

]
, σ 12

2 (n) := V

[
C12
2 (n)

]
, σ 22

2 (n) := V

[
C22
2 (n)

]

as the exponents c′
1 − c′

2 = c1 − c2 are the same in these cases.
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Proof Using recurrence relations for the generating functions F111
n (x, y), F112

n (x, y),

F122
n (x, y) from the proof of Proposition 3, taking second derivatives in x, y and

evaluating them at x = y = 1 yields recurrence equations for the variances for
the number of cherries for each of the types 111, 112 and 113, respectively. For
j1 ≤ j2 ∈ {1, 2} let

R1 j1 j2
yy (n) := ∂2F1 j1 j2

n (x, y)

∂y2

∣
∣
∣
∣
∣
x=1,y=1, R1 j1 j2

xy (n) := ∂2F1 j1 j2
n (x, y)

∂x∂y

∣
∣
∣
∣
∣
x=1,y=1

.

From equations for F1 j1 j2
n (x, y) we obtain the recurrence relation for R1 j1 j2

yy (n),

R1 j1 j2
xy (n) as

R1 j1 j2
yy (n)

= Γ (n − 4)

Γ (n)

⎛

⎝
n−1∑

n1=1

2q j1 j2
1 (R1 j1 j1

xy (n1) − 2μ j1 j2
1 (n1))Γ (n1 + 1) + 24R1 j1 j2

yy (5)

n1Γ (n1 − 3)

⎞

⎠

The equations for R1 j1 j2
xy (n) satisfy the recurrence relations, for any n ≥ 4

R111
xy (n + 1) = 1

n

(
(2 − 2c1 + c2n)μ11

1 (n) + (n − 3 + c1 − c2)R111
xy (n)

+2q11
1 ν1(n) + q11

1 R(n)
)

R112
xy (n + 1) = 1

n

(
(1 − c1 + c2n − c2)μ

12
1 (n) + (n − 3 + c1 − c2)R112

xy (n)

+2q12
1 ν1(n) + q11

1 R(n)
)

R122
xy (n + 1) = 1

n

(
(c2n − 2c2)μ

22
1 (n) + (n − 3 + c1 − c2)R112

xy (n) + q22
1 R(n)

)

Recall that Gn(x) = ∑
n1≥0 P[N1(n) = n1]xn1 . Thus, R(n) = ∂2Gn

∂x2
|x=1,y=1 is the

second moment for the number of leaves N1 of state 1 (see Lemma 1) and satisfies the
recurrence, for n ≥ 3

R(n) = 1

n

(
2nq11

2 +(2nc2+2q11
1 −6q11

2 − 2q12
2 )ν1(n) + (n − 2 + 2c1 − 2c2)R(n)

)

From this we have,

σ
j1 j2

i (n) = Ri j1 j2
yy (n) + μ

j1 j2
i (n) − (μ

j2 j2
i (n))2 (3)

Explicitly solving these equations for the variances requires much more complicated
calculations than for the means. Using Maple yields formulae which are quite long
and cluttered. However, expanding these formulae with respect to n we obtain the
asymptotic results above.
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2.2 Special cases of multiple state ERM models

To illustrate howmultiple stateERMtrees for different speciationmodels give different
cherry distributions, we consider particular cases corresponding to specific values of
{q j1 j2

i }i, j1≤ j2∈{1,2}:

(a) The ‘single state’ model is the trivial one in which the only state in the tree is the
initial one: q11

1 = q22
2 = 1 (c1 − c2 = 2);

(b) The ‘alternating state’ model is one in which one state can only attach to itself
leaves of the other state: q22

1 = q11
2 = 1 (c1 − c2 = −2)

(c) In the ‘neutral to state’ model the branch-point state does not determine the
probabilities of leaf states: for each j1 ≤ j2: q j1 j2

i is independent of whether
i = 1, 2 (c1 − c2 = 0, c1 + c′

1 = 2);
(d) In the ‘only mixed state’ model each state has only mixed states attached to it:

q12
i = 1 for both i = 1, 2 (c1 − c2 = 0);

(e) The ‘asymmetric change in state’ represents a model where one state can be
randomly gained from the other but once gained can no longer be lost: {q11

1 =
1, q11

2 = q22
2 = (1−q12

2 )/2} or {q22
2 = 1, q11

1 =q22
1 =(1−q12

1 )/2} (c1−c2=1);

Single state

q111 = q222 = 1 (c1 − c2 = 2) μ11
1 (n) = n

3
all other μ

j1 j2
i = 0, if N1(1) = 1

μ22
2 (n) = n

3
all other μ

j1 j2
i = 0, if N2(1) = 1

Alternating state

q221 = q112 = 1 (c1 − c2 = −2) μ22
1 (n) = μ11

2 (n) = n

6
,n ≥ 4 all other μ

j1 j2
i = 0

Neutral to state

q111 = q112 , q121 = q122 , q221 = q222 μ11
1 (n) = nq111 c1

6
, μ11

2 (n) = nq112 c′
1

6
,

(c1 − c2 = 0) μ12
1 (n) = nq121 c1

6
, μ12

2 (n) = nq122 c′
1

6
,

μ22
1 (n) = nq221 c1

6
, μ22

2 (n) = nq222 c′
1

6
Only mixed state

q121 = q122 = 1 (c1 − c2 = 0) μ12
1 (n) = μ12

2 (n) = n

6
, all other μ

j1 j2
i = 0

Asymmetric change in state

q111 = 1, q112 = q222 (c1 − c2 = 1) μ11
1 (n) = n

3
, all other μ

j1 j2
i = 0,

if N1(1) = 1

μ11
1 (n) = n

3
− 1

2
, μ11

2 = μ22
2 = 1

4
(1 − q122 ),

μ12
2 = q122 , if N2(1) = 1

For cases (a), (b) we could not use Proposition 3 and we calculated the means
directly from the recurrence relations (1) and (2). In case (b), the mean number of
cherries for n = 3 is μ22

1 (3) = 0, μ11
2 (3) = 1 if N1(1) = 1; μ22

1 (3) = 1, μ11
2 (3) = 0

if N2(1) = 1, but from n ≥ 4 is equal to n/6 regardless of the initial state. The value
of c1 − c2 = c′

1 − c′
2 ∈ [−2, 2] reflects the extent to which leaves attach to leaves of
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the same state; the higher it is, the more likely a leaf is to attach to a leaf of the same
state, the two extreme cases are (a) and (b). The sum of means for all different types
of cherries is n/3, as found by McKenzie and Steel (2000) for a single state ERM
tree.

We can also calculate exact values for the variances of the numbers of cherries from
(3) instead of relying only on asymptotics as in Proposition 5. The sum of variances
for all different types of cherries coincides with the variance 2n/45 of a single state
ERM tree (McKenzie and Steel 2000) only in extreme cases (a), (b) when covariances
of different cherry types are zero.

Single type

q111 = q222 = 1 (c1 − c2 = 2) σ 11
1 (n) = 2n

45
, all other σ

j1 j2
i (n) = 0, if N1(1) = 1

σ 22
2 (n) = 2n

45
, all other σ

j1 j2
i (n) = 0, if N2(1) = 1

Alternating type

q221 = q112 = 1 (c1 − c2 = −2) σ 22
1 (n) = σ 11

2 (n) = 2n

45
,n ≥ 4 all other σ

j1 j2
i = 0

Neutral to type

q111 = q112 , q121 = q122 , q221 = q222 σ 11
1 (n) =

nq111

(
6(q111 )2 + 15c1 − 8q111 c21

)

90
,

(c1 − c2 = 0) σ 12
1 (n) =

nq121

(
6q111 q121 + 15c1 − 8q121 c21

)

90
,

σ 22
1 (n) =

nq221

(
6q111 q221 + 15c1 − 8q221 c21

)

90
,

Only mixed type

q121 = q122 = 1 (c1 − c2 = 0) σ 12
1 (n) = σ 12

2 (n) = 7n

90
, all other σ

j1 j2
i (n) = 0

Asymmetric change

q111 = 1, q112 = q222 (c1 − c2 = 1) σ 11
1 (n) = 2n

45
, all other σ

j1 j2
i = 0,

if N1(1) = 1

σ 11
1 (n) = 2n

45
+ o(n), σ 11

2 (n) = σ 22
2 (n) = 1

16

(
1 − q112

)3
,

σ 12
2 (n) = 1

4

(
q112

)2 (
1 − q112

)
, if N2(1) = 1

2.3 Asymptotic results for the number of cherries and pendants

To consider the full structure (with correlations) of all the cherries in a multiple state
ERM, we also need to keep track of the number of different pendants L j

i (n) of type
i j in a tree with n leaves. Let X(n) be a single vector representing different types of
cherries and pendants

X(n) =
(

C11
1 (n), C12

1 (n), C22
1 (n), C22

2 (n),

C12
2 (n), C11

2 (n), L1
1(n), L2

1(n), L2
2(n), L1

2(n)
)

Its asymptotic behaviour as n → ∞ can be characterized in terms of a strong law.
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The multiple state Yule process

Theorem 6 Assume the probabilities {q j1 j2
i }i, j1≤ j2∈{1,2} are such that to every cherry

it is possible to eventually attach every other cherry (∗). Then, as n → ∞

Xn

n
a.s−→ v1 := 1

3(2 − c1 + c2)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q11
1 c2

q12
1 c2

q22
1 c2

q11
2 (2 − c1)

q12
2 (2 − c1)

q22
2 (2 − c1)

(c1c2)/2

(2 − c1)c2/2

(2 − c1)(2 − c2)/2
(2 − c1)c2/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

where c1 := 2q11
1 + q12

1 , c2 := 2q11
2 + q12

2 are as in Lemma 1.

Remark 7 The condition (∗) is a form of irreducibility of the cherry state space. It
can be relaxed for multiple state tree models in which certain types of cherries are not
at all appearing in the tree. We get the same strong law results on a state space (the
vector X , the matrix A) that is restricted to the set of cherries that can appear in the
tree, on which the condition (∗) holds.
Proof The proof relies on a Pólya urn representation of the different types of cherries
and pendants: an extended Pólya urn process (X(n))n≥0 is a Markov chain on Z

d+
where the coordinates of the random vector X(n) = (X1(n), . . . , Xd(n)) represent
the number of balls of type i ∈ {1, . . . , d} in an urn at step n. The process starts at
X(0) and at each step balls of different types are added or removed from it. Each ball
type has associated to it a positive weight ai ≥ 0, i ∈ {1, . . . , d} and a random vector
ξ i = (ξi1, . . . , ξil) taking values in Z

d+, such that: ξi j ≥ 0,∀ j �= i and ξi i ≥ −1,∀i
as well as E(ξ2i j ) < ∞.

The weights and random vectors together characterize the distribution of the tran-
sition matrix for the Markov chain:

(i) at each step a ball is randomly selected from the urn with the probability of
selecting a ball of type i proportional to its weight ai , that is the probability of
drawing a ball of type i at time n ≥ 1 is ai Xi (n − 1)/

∑
j a j X j (n − 1);

(ii) if a ball of type i was selected, then the number of balls of different types to be
added to the urn is drawn according to the distribution ξi j , j = 1, . . . , d. The
condition ξi i ≥ −1 means the selected ball that is removed from the urn may or
may not be replaced on that step. It is useful to assume the urn never becomes
empty, |X(n)| > 0,∀n ≥ 0. Let a = (a1, . . . , ad). The generating matrix of a
Pólya urn is defined as A := (a jE(ξ j i ))

d
i, j=1, whose eigenvalues in decreasing
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order of real parts are denoted by λ1 > Re(λ2) ≥ Re(λ3) . . . (Perron-Frobenius
implies that λ1 is real valued). The urn is called irreducible if, for any i, j , given
the urn starts with a single ball of type i it is eventually possible to add a ball of
type j to the urn.

A complete treatment of extended Pólya urns is given by Janson (2004). We state
here only the results that are key for our proof. Assume the urn is such that: (a) it
is irreducible; (b) λ1 > 0, (c) λ1 and λ2 are simple eigenvalues with left and right
eigenvectors u1, v1 and u2, v2 satisfying u1 · v1 = u2 · v2 = 1 and a · v1 = 1;
(d) Re(λ2) > Re(λ3). The last condition implies that the set of eigenvectors λ

satisfying Re(λ) > λ1/2 consists either only of λ2 or it is empty. Under these
assumptions Theorem 3.21 in the paper by Janson (2004) insures that, in the limit as
n → ∞,

Xn

n
a.s−→ v1.

The process of constructing a multiple state ERM tree can be viewed as a Pólya urn
process: the balls of different types are all the different types of cherries and different
types of pendants. For K = {1, 2} we have d = 10, as shown in Fig. 1. The ball types
corresponding to any of the cherries have a weight ai = 2, and those corresponding to
pendants have a weight ai = 1, as it is twice as likely to choose a cherry than a pendant
when a leaf is picked uniformly at random. Careful consideration of the multiple state
ERM construction rules (a cherry being selected means that a new pair of leaves is to
be added to a randomly chose one of its leaves) shows that the generating matrix of
this Pólya urn process is:

A :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
(
q12
1 + q22

1

)
q11
1 0 0 q11

1 2q11
1 q11

1 0 0 q11
1

2q12
1 − (2 − q12

1

)
0 0 q12

1 2q12
1 q12

1 0 0 q12
1

2q22
1 q22

1 −2 0 q22
1 2q22

1 q22
1 0 0 q22

1

0 q22
2 2q22

2 −2
(
q11
2 + q12

2

)
q22
2 0 0 q22

2 q22
2 0

0 q12
2 2q12

2 2q12
2 − (2 − q12

2

)
0 0 q12

2 q12
2 0

0 q11
2 2q11

2 2q11
2 q11

2 −2 0 q11
2 q11

2 0

2 1 0 0 0 0 −1 0 0 0

0 1 2 0 0 0 0 −1 0 0

0 0 0 2 1 0 0 0 −1 0

0 0 0 0 1 2 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

whose eigenvalues can be shown to be: λ1 = 1, λ2 = c1 − c2 − 1 = 2q11
1 + q12

1 −
2q11

2 − q12
2 − 1, λ3 = λ4 = −1 and λ5 = · · · = λ10 = −2. The normalized right

and left eigenvectors of the largest real eigenvalue can be calculated in terms of the
parameters for the probabilities to be
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v1 = 1

3(2 − c1 + c2)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q11
1 c2

q12
1 c2

q22
1 c2

q22
2 (2 − c1)

q12
2 (2 − c1)

q11
2 (2 − c1)

c1c2/2

(2 − c1)c2/2

(2 − c1)(2 − c2)/2

(2 − c1)c2/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, u1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
2
2
2
2
2
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If we assume that q11
1 , q22

2 �= 1, this excludes the case when the generated ERM tree
is of a single type only, the urn process is irreducible, and also λ2 < 1 is a simple
eigenvalue. As all the assumptions are satisfied, applying the Theorem for Pólya urns
we obtain the claimed results.

Remark 8 This agrees with our earlier result from Proposition 3 as the means of the
number of cherries obtained earlier in fact satisfyE[X i (n)]/n → v1i , for i = 1, . . . , 6
as n → ∞; e.g. compare the strong law result to to the means calculated for finite
n in our special cases of multiple state ERM models (except in the case (e) in which
type 111 is a sink for the process). In particular, we could have used the framework
of the extended Pólya urn scheme to calculate recursive equations for the means and
variances of the numbers of different types of cherries in the process—unfortunately,
this approach does not yield a simpler proof of results from Propositions 3 and 5.

Central limit law for its (normalized) asymptotic distribution holds as well.

Theorem 9 Assume {q j1 j2
i }i, j1≤ j2∈{1,2} satisfy q11

1 , q22
2 �= 1, and c1 − c2 �= 0. Then,

(i) If c1 − c2 = 3/2, as n → ∞,

Xn − nv1

n ln(n)

d⇒ N (0,Σ),

with

Σ = C

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q11
1 )2 q11

1 q12
1 q11

1 q22
1 −q11

1 q22
2 −q11

1 q12
2 −q11

1 q11
2 ∗ ∗ ∗ ∗

� (q12
1 )2 q12

1 q22
1 −q12

1 q22
2 −q12

1 q12
2 −q12

1 q11
2 ∗ ∗ ∗ ∗

� � (q22
1 )2 −q22

1 q22
2 −q22

1 q12
2 −q12

1 q11
2 ∗ ∗ ∗ ∗

� � � (q22
2 )2 q22

2 q12
2 q22

2 q11
2 ∗ ∗ ∗ ∗

� � � � (q12
2 )2 q12

2 q11
2 ∗ ∗ ∗ ∗

� � � � � (q11
2 )2 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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where the constant Cis given by

C := −8
(
9 + 12(q11

1 )2 + 2q11
2 q12

1 + 4q11
1 q11

2

+ 4(q12
1 )2 + 14q11

1 q12
1 − 4q11

2 − 12q12
1 − 21q11

1

)
/25;

the explicit expressions for entries marked by ∗ are omitted as they represent the
covariances between cherries and the pendants, and pendants between themselves;
and expressions for the entries marked by a � follow from the symmetry of the covari-
ance matrix.
(ii) If c1 − c2 < 3/2, as n → ∞, then

Xn − nv1√
n

d⇒ N (0,Σ ′).

where Σ ′ can be obtained explicitly only in some special cases.

Proof The proof again relies on the corresponding result for our specific Pólya urn
described in the proof of Theorem 6: if we assume all the conditions there plus
Re(λ2) ≤ λ1/2, Theorems 3.22 and 3.23 in the paper by Janson (2004) insure that, as
n → ∞:

(i) if Re(λ2) = λ1/2, then

Xn − nλ1v1

n ln(n)

d⇒ N (0,Σ),

where the covariance matrix is given by Σ = (I − T )Σ I I (I − TT), with T :=
λ−1
2 λ1v1aTv2uT2 , Σ I I := v2uT2 B(v2uT2 ), and B :=∑l

i=1 v1i aiE(ξ iξ
T
i );

(ii) if Re(λ2) < λ1/2, then

Xn − nλ1v1√
n

d⇒ N (0,Σ ′).

where the covariancematrix is givenbyΣ ′:= ∫∞
0 ψ(s, A)Bψ(s, A)Te−λ1sλ1ds−

λ21v1v
T
1 , with B as above and ψ(s, A) := esA − λ1v1aT

∫ s
0 et Adt.

The two options on the eigenvalues correspond to: (i) c1 − c2 = 3/2, and (ii)
c1 − c2 < 3/2, respectively. To explicitly calculate the covariance matrix Σ in (i) we
need to find the normalized right and left eigenvectors corresponding to the second
largest eigenvalue λ2, which are given in term of the parameters for the probabilities
as
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v2 = c2
(2 − c1 + c2)(c2 − c1 − 1)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q11
1

q12
1

q22
1

q22
2

q12
2

q11
2

c1/(c1 − c2)
(2 − c1)/(c1 − c2)

−(2 − c1)/(c1 − c2)
c2/(c1 − c2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

u2 = 1

c2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2(2 − c1)
c1 + c2 − 2

2
2

c1 + c2 − 2
−2(2 − c1)

c1 − 2
1
1

c1 − 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Computing the matrix B = (c1 − c2 − 2)−1[bi, j ]1≤i, j≤10 gives lengthy expression
for its entries

b1,1 = −q11
1

3

(
10q11

2 −8q11
1 q11

2 +5q12
2 −4q11

1 q12
2

)
, b1,2 = q11

1

(
2q11

2 + q12
2

)
q12
1 ,

b1,3 = −2q11
1

3

(
2q11

2 + q12
2

) (
−1 + q11

1 + q12
1

)
,

b1,4 = −q11
1

6

(
2q11

2 + q12
2

) (
−4 + 2q11

1 − q12
1

)
,

b1,5 = −q11
1

3

(
2q11

2 + q12
2

)
q12
1 , b16 = 0,

b1,7 = −q11
1

3

(
−2 + 2q11

1 + q12
1

)
q12
2 , b1,8 = −2q11

1

3

(
−2 + 2q11

1 + q12
1

)
q11
2 ,

b1,9 = q11
1

6

(
−2 + 2q11

1 +q12
1

) (
2q11

2 −q12
2

)
, b1,10 = q11

1

3

(
−2 + 2q11

1 +q12
1

)
q12
2

b2,1 = q12
1

(
2q11

2 + q12
2

)
q11
1 , b2,2 = −q12

1

3

(
10q11

2 + 5q12
2 − 4q12

1 q11
2 − 2q12

1 q12
2

)

b2,3 = −q12
1

3

(
2q11

2 + q12
2

) (
−1 + q11

1 + q12
1

)
,

b2,4 = −q12
1

3

(
2q11

2 + q12
2

) (
2q11

1 − 2 − q12
1

)
,

· · ·
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b10,7 = −q12
2

6

(
−2 + 2q11

1 + q12
1

) (
2q11

2 + 3q12
2

)
,

b10,8 = −q11
2

6

(
−2 + 2q11

1 + q12
1

) (
−2 + 2q11

2 + 3q12
2

)

b10,9 = 0, b10,10 = −1

2

(
−2 + 2q22

1 + q12
1

) (
q12
2 − 2 + 2q11

2

)

Further lengthy and cumbersome linear algebra (computed using Maple) provides the
given entries for the variances and covariances of different types of cherries in Σ as
claimed.

Calculating the matrix Σ ′ in (ii) is even more involved, due to its integral expres-
sions, and can not be made to simplify other than in some very special cases.

Remark 10 The results above are consistent with our calculations of asymptotics for
the variances of the number of cherries in Proposition 5 (cf. Remark 8). When c1 − c2
< 3/2 implies c1 − c2 −1 < 1/2 and 2(c1 − c2 −1) < 1, and the individual variances
are O(n). When c1 − c2 = 3/2 the additional factor ln n comes from covariances in
numbers of different types of cherries.

The asymptotic strong law allows us to approximate unknown parameters for the
probabilities for ERM trees with a large number of leaves using counts of different
types of cherries on the tree.

Corollary 11 If the proportion of different types of cherries in a multiple state ERM
tree is given by xn = (X1(n)/n, . . . , X6(n)/n) and the number of leaves n in the
tree is large, one can approximately recover the parameters for the probabilities of
the model to be

q11
1 = x1

x1 + x2 + x3
, q12

1 = x2
x1 + x2 + x3

, q22
1 = x3

x1 + x2 + x3
,

q22
2 = x4

x4 + x5 + x6
, q12

1 = x5
x4 + x5 + x6

, q22
1 = x6

x4 + x5 + x6
,

as long as the total number of cherries with branch-point of type 1 and of type 2 are
non-zero.

This result is completely intuitive from a law of large numbers perspective: the
parameters for the probabilities for having a branch-point of type i j1 j2 are given by
the limiting fraction of cherries of type i j1 j2. Our results on the variability of the
number of cherries allows one to make a more precise statement about the error one
is making using such an approximation when the number of leaves is finite. Note that
the asymptotic limits are independent of the initial state of the process, which is due
to the ergodicity of the underlying Markov chain. Although from a practical point
of view this is certainly an advantage: no knowledge of the initial state is needed to
recover the parameters in the model, these results do not say anything about the ability
to reconstruct the state at the root. We next briefly address this question.

In the standard Markov propagation model on trees the probabilities for the types
of two leaves attaching to the same branch-point are independent. These are given
by a stochastic transition matrix S = [si j ]i, j∈{1,...,k} where si j is the probability
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that a leaf of type j will attach to a type i . In our notation this gives probabilities
q j1 j2

i = 2si j1si j2 , j1 < j2 and q j j
i = s2i j . Reconstruction of types for Markov propa-

gation models has been extensively studied (see the survey of Mossel and Steel 2005).
We only illustrate how the information on cherries can be used as a proxy to determine
whether robust reconstruction is possible or not. Without going into all the details we
recall that ‘reconstruction problem is solvable’ if there exist two different types which
when used at the root of the tree propagate asymptotically different distributions (mea-
sured by total variation) on the leaves of the tree. This roughly means that the leaf
types contain a non-vanishing amount of information on the type of the root of the tree
as the number of leaves n → ∞. A key result (Mossel and Steel 2005) then states that
on a binary tree the reconstruction problem is solvable when λ2 > 1/

√
2, where λ2 is

the second largest eigenvalue of the propagation matrix S. When k = 2 this condition
becomes |s11 + s22 − 1| > 1/

√
2 which, using Corollary 11, is equivalent to

∣
∣
√

v1,1/(v1,1 + v1,2 + v1,3) +√v1,4/(v1,4 + v1,5 + v1,6) − 1
∣
∣ > 1/

√
2.

3 From discrete to continuous multiple state trees

So far we proposed a model, multiple state ERM tree, that extends the discrete ERM
tree to a tree with multiple states, and showed that long term statistics on the number
of different types of cherries is sufficient to recover rate parameters in the model. This
random tree is an appropriate model when the underlying biological process is such
that the value of any particular state does not affect the evolutionary rates at which
the branchings in the tree happen (e.g. speciation and extinction rates are state inde-
pendent). In this case the shape of the tree is not affected by the state values along the
ancestral process, and can be modelled by multiple state propagation on an ERM tree.

In case speciation and extinction rates are state dependent a more complex model
is needed. We next propose a model, multiple state Yule tree, for extending the con-
tinuous time Yule tree (i.e. a Yule tree with edge lengths) to a pure birth tree with
multiple states and with state transitions. This random tree model naturally appears
as the ancestral tree of a multi-type birth and death branching process, which we first
show to be true by applying a procedure of pruning extinct lineages in the full geneal-
ogy of the branching process. As was the case for the discrete multiple state ERM
tree, we show that model parameters are recoverable from the long term statistics on
the number of cherries of different types.

The continuous time multiple state Yule tree model is an extension of the discrete
multiple state ERM tree model: if the former has time independent rates, then ignoring
its edge lengths produces the multiple state ERM tree (c.f. Remark 15). Importantly,
in both models the counts of different types of cherries represent simple signatures of
the correlation structure inherent in the evolution of trees with multiple states. Con-
sequently, the collection of cherry and pendant counts can be used as an effective
tool in identifying features of the underlying biological process (c.f. Corollaries 11
and 25). This explains the motivation behind our derivation of asymptotic results for
these mathematical objects, and their applicability in inference and model testing for
evolutionary processes.
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4 Ancestral tree of a multi-type birth-death process

Consider a random tree with edge lengths, constructed from an originating node, using
a pure birth process. By rescaling time one can relate any such tree to one whose birth
rate is 1, evenwhen the rate is time varying. The distribution of this tree is called ‘Yule’
tree (first considered in the biological context by Yule 1924), and has been used exten-
sively as a null model in investigating speciation process. This is due to the fact that its
distribution is precisely that of the ancestral tree reconstructed from any birth-death
branching process with constant rates (Nee et al. 1994)—an ancestral tree is obtained
from a full tree of the process by pruning away all the branches without any extant
species.When the branch lengths of aYule tree are ignored (given the same length) this
produces the uniform distribution on ranked tree shapes (a ranked tree is one in which
the order of branching events matters) with labelled tips, and when the ranking is also
ignored it produces the (single-type) ERM distribution on binary trees (Aldous 1996).

We consider a multiple state version of this tree obtained as the ancestral tree
reconstructed from a multi-type birth-death process. Let Z = (Z(t))t≥0 denote a
multi-type birth-death process onK = {1, . . . , k} types (i.e. states), whose coordinates
provide the count of different types in the population Z(t) = (Z1(t), . . . , Zk(t)). Let
T > 0 and let Z denote the full tree of (Z(t))0≤t≤T . Let W denote the ancestral tree
obtained by pruning away all lineages of Z which do not have any extant lineages at
time T (the law of W depends on T but for simplicity we omit T from its notation).
An illustration of an ancestral tree associated with a multi-type birth-death process
is shown in Fig. 3. Let W = (W(t))0≤t≤T ,W(t) = (W1(t), . . . , Wk(t)) denote the
population size process of the ancestral tree W (clearly we have ∀i , ∀t ∈ [0, T ]:
Wi (t) ≤ Zi (t) and Wi (T ) = Zi (T )). We call W the reconstructed ancestral process
of Z and the first intuitive observation is that the ancestral tree obtained by such pruning
is Markovian (detailed proof is in the Appendix). We then derive its law, which turns
out to be a multiple state pure birth process with time varying rates and an added
ability to switch states along a single lineage.

Fig. 3 A tree of a two-type birth-death process, where dashed and solid lines represent type 1 and type 2
lineages, respectively; the left most tree is that of the process observed until some time t < T , the center
tree is of the same process observed until time T , the right most tree is the ancestral tree associated with
the process surviving to T
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Lemma 12 The reconstructed ancestral process W of Z is a Markov process.

Proposition 13 Assume the multi-type birth-death process Z has birth rates
{bi j

i }i, j∈{1,...,k} (bi j
i = rate at which any type i gives birth to a type j) and death rates

{di }i∈{1,...,k} (di = rate at which any type i dies). Then, for any T > 0, the reconstructed

ancestral process W is a pure birth process with birth rates {qi j
i (t)}i, j∈{1,...,k} (qi j

i =

rate at which state i gives birth to state j) and state transition rates {q j
i (t)}i∈{1,...,k}

(q j
i = rate at which state i changes into state j) at time t ∈ [0, T ), given by

qi j
i (t) = bi j

i

(
1 − p0e j (t,T )

)
∀i, j, q j

i (t)

= bi j
i

(
1 − p0e j (t,T )

) p0ei (t,T )

1 − p0ei (t,T )

∀i �= j (4)

where p0ei (t,T ) = P[Z(T ) = 0|Z(t) = ei ] are the extinction probabilities for Z.

Remark 14 When there is only one state, for example i , this reduces to a pure birth
process with time varying birth rate bi (1 − p0ei

) as previously established (Nee et al.
1994). The extinctionprobabilities {p0ei

(t, T )}i∈{1,...,k} canbe shown to satisfy a system
of differential equations (Mode 1962; Jones 2011)

dp0ei
(t, T )

dt
= di −

⎛

⎝
k∑

j=1

bi j
i + di

⎞

⎠ p0ei
(t, T ) +

k∑

j=1

bi j
i p0ei

(t, T ) p0e j
(t, T ) ,

i = 1, . . . , k.

Proof Since the reconstructed ancestral process (W(t))t≥0 is a Markov process, it
suffices to show that its only transitions are changes of the form {ei , i = 1, . . . , k}
and {e j − ei , i �= j = 1, . . . , k} and calculate their rates. The set of possible transition
changes for Z, and the fact that ||W(t)|| (the sum of its coordinates) is non-decreasing,
imply the form of changes for W : an addition of ei occurs iff there is a birth event
and both the new lineage and the parent lineage survive to T , an addition of ei − e j ,

occurs iff there is a birth event and only the new lineage survives to T (see Fig. 3 for
an example).

Considering the possible values of the underlying birth-death process Z for a tran-
sition in (t, t + Δt], using (12), we get

P[W t+Δt = w + e j |W(t) = w]
=
∑

z≥w P[W(t + Δt) = w + e j ,W(t) = w, Z(t) = z]
∑

z≥w P[W(t) = w, Z(t) = z]

=
∑

z≥w P[Z(t) = z]Cz,w
∑k

i=1 wi b
i j
i Δt

(
1− p0(t+Δt, T )

)w+ei p0(t+Δt, T )z−w+o(Δt)
∑

z P[Z(t)=z]Cz,w(1 − p0(t, T ))w p0(t, T )z−w

=
k∑

i=1

wi b
i j
i (1 − p0e j

(t, T ))Δt + o(Δt). (5)

where we used p0(t, T )w := ∏k
i=1 p0ei

(t, T )wi , (1 − p0(t, T ))w := ∏k
i=1(1 −

p0ei
(t, T ))wi .

123



L. Popovic, M. Rivas

Similarly for i �= j

P[W(t + Δt) = w + e j − ei |W(t) = w]

=
∑

z P[Z(t) = z]Cz,w wi b
i j
i Δt

(
1 − p0(t + Δt, T )

)w+e j −ei p0(t + Δt, T )z−w+ei + o(Δt)
∑

z P(Z(t) = z)Cz,w(1 − p0(t, T ))w p0(t, T )z−w

= w j b
i j
i (1 − p0e j

(t, T ))p0ei
(t, T )

1 − p0ei
(t, T )

Δt + o(Δt). (6)

Transition rates (5) and (6) correspond to those of a pure birth process allowing for
state transitions along the lineages as claimed in (4). ��

In continuous time t ∈ [0, T ) nodes of different states have different time varying
weights, such that at any time the probability of a node of certain state is chosen to
be the next node with a branch-point (binary or unary) is proportional to this weight.
The weight of a node of state i is ai (t) = qi (t)/

∑k
�=1 q�(t) where

qi (t) = 1

1 − p0ei
(t, T )

⎛

⎝
k∑

j=1

bi j
i (1 − p0e j

(t, T )) − bii
i p0ei

(t, T )(1 − p0ei
(t, T ))

⎞

⎠

is the overall rate of events for state i . The probabilities of a node of state i having a
binary branch-point (with states i and j) versus a unary branch-point (of state j �= i)
are

pi j
i (t) = bi j

i (1 − p0e j
(t, T ))(1 − p0ei

(t, T ))
∑k

�=1 bi�
i (1 − p0e� (t, T )) − bii

i p0ei
(t, T )(1 − p0ei

(t, T ))
∀i, j,

p j
i (t) = bi j

i (1 − p0e j
(t, T ))p0ei

(t, T )
∑k

�=1 bi�
i (1 − p0e� (t, T )) − bii

i p0ei
(t, T )(1 − p0ei

(t, T ))
∀i �= j.

Contrary to the single state case, it is not possible to rescale time and relate this to
a Yule process with constant rates of births and of state transitions, because the rate at
which the time needs to be rescaled depends on the state of the node that was involved
in the last branching event. This information is dependent on the randomness of the tree
and is not simply a deterministic function of time as it is in the single state case. Conse-
quently, ignoring the edge lengths and possibly the ranking of branching events in these
trees does not produce any logical model onmultiple state discrete trees. Topologically
it also results inmultiple state discrete trees which are no longer regular binary ones, as
in addition to binary branch-points they also have unary branch-points (with the type
attached being necessarily different). Figure 4 illustrates obtaining such a discrete tree.

However, as in the single state case, near the present (t ≈ T ) probabilities of
extinction p0(t, T ) are approximately zero, and birth and state transition rates in the
ancestral tree are approximately constant qi j

i ≈ bi j
i ,∀i, j , and q j

i ≈ 0,∀i �= j . This
allows one to infer birth rates of the process using results on constant rate multiple
state Yule trees described in the next section (see Corollary 25). Knowing the values
of lineage through time plots for different types (Z(t), 0 ≤ t ≤ T ) will then allow one
to also infer death rates of the process.
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Fig. 4 The ancestral tree from Fig. 3 and the corresponding discrete two-type tree with branch-points and
state transitions, obtained by ignoring edge-lengths and ranking in the former, where dashed and solid lines
represent types 1 and 2 ancestors, respectively

Remark 15 If we consider multiple state Yule trees whose birth rates {qi j
i }i, j∈{1,...,k}

and state transition rates {q j
i }i �= j∈{1,...,k} are constant, ignoring edge lengths results in

a useful model on multiple state discrete trees: each node of type i is chosen to be the
next branch-point with probability proportional to its weight

ai = qi
∑k

�=1 q�

, where qi =
k∑

j=1

qi j
i +

k∑

j=1
j �=i

q j
i ;

once chosen the branch-point is binary with attached leaves of types i, j , or unary
with attached leaf of type j �= i , respectively, with probabilities

pi j
i = qi j

i

qi
∀i, j, and p j

i = q j
i

qi
∀i �= j.

The distribution of different types of cherries and pendants in the tree should provide
information about its birth and state transition rates. However, the approaches for
obtaining their distribution using generating functions and recursive relations (when
the number of leaves is finite), as well as the Pólya urn approach for their asymptotic
distribution (as the number of leaves grows), are completely unwieldly. The more
appropriate approach is to analyze distributions of different types of cherries and
pendants in the original continuous time trees as shown in the next Section.

5 Multiple state Yule trees with state transitions

We consider a multiple state birth process with state transitions constructed
using time-dependent birth rates {q j1 j2

i (t)}i, j1, j2∈{1,...,k} and state transition rates

{q j
i (t)}i �=∈{1,...,k}, and call its associated tree amultiple state Yule treewith state transi-

tions. For generality, we allow for the birth events to result in an instantaneous change

123



L. Popovic, M. Rivas

of state for the parent node as well, so that birth rates for a parent node of state i are
indexed in the superscript by any j1, j2 ∈ {1, . . . , k} giving a birth event of type i j1 j2
(rather than only having birth events of types i i j as in ancestral trees of the previous
section). Consequently, each birth event is a branch-point (with no special designation
in the continuing lineages) and in order not to distinguish between different planar
embeddings we will w.l.o.g. assume that j1 ≤ j2 (as in the multiple state ERM case).
For k states this model has k2(k + 1)/2 + k(k − 1) parameters.

Due to state transitions in the model (producing unary branch-points) we need to
precise a definition of cherries and pendants in such a tree. Since the sequence of state
transition events along a lineage is typically not available in data, we will focus on the
states at the topological end-points of the structure. We first let the topology of the tree
be defined only by binary branch-points, while unary branch-points are ignored. The
cherries and pendants are then defined in this topology as they would be in a regular
binary tree. This means that the type of each cherry and each pendant is defined by the
state values at the end nodes of the cherry or pendant. respectively. Figure 4 illustrates
a two-state Yule tree with state transitions which has only one cherry of type 222
and only one pendant of type 22. In general there are k2(k + 1)/2 different types of
cherries (we don’t differentiate between different planar embeddings of a cherry type),
k2 different types of pendants (sequence of state transitions along a lineage can revert
to the original state), and k different leaf states.

5.1 Moments of the number of different types of cherries and pendants

For a multiple state Yule tree with state transitions, we let N1(t), . . . , Nk(t) denote
the number of leaves of states 1, . . . , k, respectively, at time t . Let C j2 j2

i (t) denote the

number of cherries of type i j1 j2, and L j
i (t) the number of pendants of type i j at time

t . We next consider their means, which are relatively straightforward, although quite
complicated, to calculate.

Lemma 16 Let ν(t) = (ν1(t), . . . , νk(t)) be the vector of leaf means, νi (t) :=
E[Ni (t)],∀i . Then, ∀t ≥ 0

dν(t)

dt
= B(t)ν(t)

where B(t) is the k × k matrix with entries

[B(t)]�1,�2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q�1�1
�1

(t) −
∑

i≤ j
i, j �=�1

qi j
�1

(t) −
∑

i �=�1

qi
�1

(t) when �1 = �2

2q�1�1
�2

(t) + q�1
�2

(t) +
∑

j<�1

q j�1
�2

(t) +
∑

j>�1

q�1 j
�2

(t) when �1 �= �2.

Proof The matrix formulation is equivalent to the claim that each ν�(t) for 1 ≤ � ≤ k
satisfies
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dν�(t)

dt
=
∑

i �=�

⎛

⎝2q��
i (t) + q�

i (t) +
∑

j<�

q j�
i (t) +

∑

j>�

q�j
i (t)

⎞

⎠ νi (t)

+

⎛

⎜
⎜
⎝q��

� (t) −
∑

i≤ j
i, j �=�

qi j
� (t) −

∑

i �=�

qi
�(t)

⎞

⎟
⎟
⎠ ν�(t).

To see why this is true, observe that in the time interval (t, t + Δt) the number of
leaves of state � increases by 2 iff we have a birth event of type i�� for some i �= �. It
increases by 1 iff we have a birth event of type i j� for some i, j �= � or for i = j = �,
or if we apply a change of type i� for some i �= �. The number of leaves of state �

decreases by 1 only by having birth events of types �i j or by having state changes �i
for i, j �= �.

Remark 17 If B(t) in Lemma 16 is such that it commutes with
∫ t
0 B(τ )dtτ ∀t ≥ 0,

then the vector of leaf means can be given explicitly as

ν(t) =
∫ t

0
exp{B(τ )}dτ ν(0), moreover ν(t) = exp{Bt} ν(0)

if B(t) is a constant (time-independent) matrix B.

Let ρ(t) :=∑k
i=1 νi (t). By adding up counts for all different leaves we obtain the

following.

Corollary 18 Assume B(t) commutes with
∫ t
0 B(τ )dτ ∀t ≥ 0, then

ρ(t) = 1T
∫ t

0
exp{B(τ )}dτ ν(0), and ρ(t)

= 1T exp{Bt}ν(0) if B(t) ≡ B ∀t ≥ 0.

Wenext give themeannumber of cherrieswhose branch-point is of state �. Themean
number of cherries with branch-points of other states can be obtained analogously.

Proposition 19 Let μ�(t) = (μ11
� (t), . . . , μkk

� (t)) be the vector of cherry means

μ
i j
� (t) := E[C11

� (t)] of types �i j , for i ≤ j ∈ {1, . . . , k}. Then, ∀t ≥ 0

dμ�(t)

dt
= A�(t)μ�(t) + q(�)(t)ν�(t),

where

q(�)(t) := [q11
� (t), q12

� (t), . . . , qkk
� (t)]T

and A�(t) is a
(k+1

2

)× (k+1
2

)
matrix with entries
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[A�(t)]�i j,�mn

=
⎧
⎨

⎩

−(qi (t) + q j (t)), when (m, n) = (i, j)
δm,i qi

n(t) + δn,i qi
m(t), when (m, n) �= (i, j), i = j

δm,i q
j

n (t) + δm, j qi
n(t) + δn,i q

j
m(t) + δn, j qi

m(t), when (m, n) �= (i, j), i �= j.

where, for i ∈ {1, . . . , k}, qi (t) is the overall rate of events occurring to a lineage of
state i

qi (t) :=
∑

j≤�

q j�
i (t) +

∑

j �=i

q j
i (t),

and where entries in the matrix A�(t) are ordered in a consistent way with that of
types in the vectors μ�(t), q(�)(t).

Proof We show that each μ
i j
� (t) satisfies the following differential equation when

i = j

dμ
i j
� (t)

dt
=
∑

m≤n
(m,n) �=(i,i)

(
δm,i q

i
n(t) + δn,i q

i
m(t)

)
μmn

� − 2qi (t)μ
i i
� (t) + qii

� (t)ν�(t),

and when i �= j it satisfies

dμ
i j
� (t)

dt
=
∑

m≤n
(m,n) �=(i, j)

(
δm,i q

j
n (t) + δm, j q

i
n(t) + δn,i q

j
m(t) + δn, j q

i
m(t)

)
μmn

� (t)

−(qi (t) + q j (t))μ
i j
� (t) + qi j

� (t)ν�(t).

This can be seen from the fact that the number of cherries of type �i j will increase
by 1 iff a cherry of type �i j is added by a birth event to a lineage of state �, or there
is a state transition along a lineage of a cherry which from a cherry of some different
type produces a cherry of type �i j . The number of cherries of type �i j will decrease
by 1 iff there is a state transition along a lineage of a type �i j cherry, or there is a birth
event along one of its lineages producing a cherry of some different type.

Remark 20 The matrix A�(t) is diagonally dominant by columns, as: in a column
�mn every rate of the form qi

m(t) and every rate of the form qi
n(t) appears exactly

once (when n = m each one appears twice) and the sum of these rates is less than or
equal to qn(t) + qm(t). We will use this fact in upcoming proofs.

Proposition 21 Let γ (t) = (γ 1
1 (t), . . . , γ k

k (t)) be the vector of pendant means

γ
j

i (t) := E[L j
i (t)]. Then, ∀t ≥ 0

dγ (t)

dt
= C(t)γ (t) + U(t)μ(t),
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where C(t) is a k2 × k2 matrix with entries

[C(t)]�m,i j =
⎧
⎨

⎩

−qm(t) when (�, m) = (i, j)
qm

j (t) when � = i, m �= j
0 otherwise.

and U(t) is a k2 × (k+1
2

)
matrix with entries

[U(t)]�m,�′i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑

j1≤ j2

q j1 j2
m (t) when � = �′, m = i = j

∑

j1≤ j2

q j1 j2
i (t) when � = �′, m = j > i

∑

j1≤ j2

q j1 j2
j (t) when � = �′, m = i < j

0 otherwise.

Proof We show that each γ m
� (t) satisfies

dγ m
� (t)

dt
=
∑

j �=m

qm
j (t)γ j

� (t) − qm(t)γ m
� (t) +

∑

i<m

⎛

⎝
∑

j1≤ j2

q j1 j2
i (t)

⎞

⎠μim
� (t)

+
∑

i>m

⎛

⎝
∑

j1≤ j2

q j1 j2
i (t)

⎞

⎠μmi
� (t) + 2

∑

j1≤ j2

q j1 j2
m (t)μmm

� (t).

To see this, observe that the number of pendant edges of type �m will increase by 1 if
a state transition of type jm occurs on a pendant edge of type �j . Also, it will increase
by 1 if a birth event happens adding any cherry of type i j1 j2 to any cherry of type �im
(i �= m), or if a cherry of type mj1 j2 is added to a cherry of type �mm. The number
of pendant edges of type �m will decrease by 1 iff any birth event adding a cherry or
state transition occurs on a pendant edge of type �m.

5.2 Long time asymptotics for the number of cherries and pendants

We next consider what happens to the tree structure of the multiple state Yule process
with state transitions as t → ∞. The random total number of leaves

∑k
i=1 Ni (t)

grows as well, so we need to consider the fraction of different types of cherries and
pendants.We startwith results in case the birth {q j1 j2

i }i, j1≤ j2∈{1,...,k} and state transition
{q j

i }i �= j∈{1,...,k} rates in the process are constant (time independent) and then generalize
to the time varying case.

The matrix B(t) from Lemma 16 has nonnegative entries, except possibly for those
on the diagonal. By the Perron-Frobenius theorem, if it is irreducible, there exists
a largest simple eigenvalue λ(t) of B(t) with right and left eigenvectors u(t), v(t),
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respectively. We can assume that 1 · u(t) = 1. In case that B(t) ≡ B is time indepen-
dent, we have the following result. Recall ρ(t) is the mean total number of leaves in
the tree.

Lemma 22 If B(t) ≡ B and is irreducible, then η�(t) := ρ(t)−1μ�(t), if it converges,
satisfies

lim
t→∞ η�(t) = −u�(A� − λI)−1q(�),

where λ is the largest real eigenvalue of B with corresponding right eigenvector u =
(u1, . . . , uk). Furthermore, if η(t) = (η1(t), . . . , ηk(t)), then η�(t) := ρ(t)−1γ (t), if
it converges, satisfies

lim
t→∞ η�(t) = −(C − λI)−1U lim

t→∞ η(t).

Proof Using μ�(t) = ρ(t)η�(t) in the differential equation for μ�(t) from Proposi-
tion 19 we get

dη�(t)

dt
=
(

A� − ρ(t)−1 dρ(t)

dt
I
)

η�(t) + ρ(t)−1q(�)(t)ν�(t).

Assuming that limt→∞ η�(t) exists, taking limit as t → ∞ on both sides and using
the fact that η�(t) is continuous, we get

0 =
(

A� − lim
t→∞ ρ(t)−1 dρ(t)

dt
I
)

lim
t→∞ η�(t) + q(�) lim

t→∞ ρ(t)−1ν�(t). (7)

Let J denote the Jordan representation form of the matrix B, so that B = P J P−1

and exp{B} = P exp{J}P−1. By Corollary 18,

lim
t→∞ ρ(t)−1 dρ(t)

dt
= lim

t→∞
1TB exp{Bt}ν(0)

1T exp{Bt}ν(0)

= 1TλuvTν(0)

1TuvTν(0)
= λ.

Similarly, using Lemma 16,

lim
t→∞ ρ(t)−1ν�(t) = e�uvTea

1TuvTea
= u�.

We claim that (A� − λI) is invertible. This is true because A� is diagonally dominant
by columns (see Remark 20), and λ ≥ 0 (ρ(t) is positive and increasing), whichmeans
that (A� − λI) is diagonally dominant by columns as well. Hence, from (7) we get

lim
t→∞ η�(t) = −u�(A� − λI)−1q(�).
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The proof for limt→∞ η�(t) follows in the analogous steps, using γ (t) = ρ(t)η�(t),
the differential equation for γ (t) from Proposition 21 and the fact that C − λI is also
diagonally dominant.

To obtain a version of this result in the time varying case we need to make some
assumptions on the behaviour of birth and state transition rates in the long term limit.

Theorem 23 If all the birth rates and state transition rates in the long term converge
to limits {limt→∞ q j1 j2

i (t)}i, j1≤ j2∈{1,...,k} and {limt→∞ q j
i (t)}i �= j∈{1,...,k} such that the

matrix limt→∞ B(t) is irreducible with maximum eigenvalue λ and corresponding
right and left eigenvectors u and v respectively; then, assuming the limits below exist,

w� := lim
t→∞ η�(t) = −u� lim

t→∞(A�(t) − λI)−1 lim
t→∞ q(�)(t),

and

w� := lim
t→∞ η�(t) = − lim

t→∞(C(t) − λI)−1U(t) lim
t→∞ η(t),

Proof The proof is similar to that in the constant rate case. Replacing μ�(t) =
ρ(t)η�(t) in the differential equation for μ�(t) from Proposition 19, we get

dη�(t)

dt
=
(

A�(t) − ρ(t)−1 dρ(t)

dt
I
)

η�(t) + ρ(t)−1q(�)(t)ν�(t)

Since limt→∞ η�(t) exists, taking t → ∞ on both sides, we get

0 =
(
lim

t→∞ A�(t) − lim
t→∞ ρ(t)−1 dρ(t)

dt
I
)
lim

t→∞ η�(t)

+ lim
t→∞ q(�)(t) lim

t→∞ ρ(t)−1ν�(t) (8)

From Lemma 16 we have dν(t)
dt = B(t)ν(t), and defining β(t) := ρ(t)−1ν(t), we

have

dβ(t)

dt
= B(t)β(t) − ρ(t)−1 dρ(t)

dt
β(t),

which taking t → ∞ on both sides gives

lim
t→∞ ρ(t)−1 dρ(t)

dt
lim

t→∞ β(t) = lim
t→∞ B(t) lim

t→∞ β(t).

By assumption the matrix limt→∞ B(t) has all finite entries and is irreducible, hence
the vector limt→∞ β(t) only has positive entries and the Perron-Frobenius Theorem
implies that this vector is the eigenvector u and that λ = limt→∞ ρ(t)−1 dρ(t)

dt .
Wenowclaim that (A�(t)−λI) is invertible. This is true because A�(t) is diagonally

dominant by columns (again see Remark 20), and λ ≥ 0 (since ρ(t) is positive and
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increasing), which means that (A�(t) − λI) is diagonally dominant by columns as
well. Hence, (8) implies

lim
t→∞ η�(t) = −u� lim

t→∞(A�(t) − λI)−1 lim
t→∞ q(�)(t)

as claimed.
The proof for limt→∞ η�(t) follows in the analogous steps, replacing γ (t) =

ρ(t)η�(t) in the differential equation for γ (t) from Proposition 21 and using the
fact that C − λI is also diagonally dominant.

Remark 24 In the special case that ∀t ≥ 0 the matrices B(t) are irreducible, mutually
diagonalizable, to matrices D(t), and have the same right and left eigenvectors u, v

for their corresponding maximum eigenvalues λ(t), we can give a shorter proof: from
Corollary 18;

lim
t→∞

dρ(t)
dt

ρ(t)
= lim

t→∞
1TB(t) exp{∫ t

0 B(τ )dτ }ν(0)

1T exp{∫ t
0 B(τ )dτ }ν(0)

= lim
t→∞

1TP D(t)P−1P exp{∫ t
0 D(τ )dτ }P−1ν(0)

1TP exp{∫ t
0 D(τ )dτ }P−1ν(0)

= lim
t→∞

1TP D(t) exp{∫ t
0 D(τ )dτ }P−1ν(0)

1TP exp{∫ t
0 D(τ )dτ }P−1ν(0)

= lim
t→∞ λ(t)

1TuvTν(0)

1TuvTν(0)
= lim

t→∞ λ(t),

since the dominating terms are only those involving e
∫ t
0 λ(τ)dτ with u, v as right and

left eigenvectors of B(t) respectively; also,

lim
t→∞

ν�(t)

ρ(t)
= e�uvTea

1TuvTea
= u�,

and substituting these in (8) gives the desired result.

The asymptotic results allow one to infer the birth and state transition rate para-
meters of the models based on the number of cherries and pendants. Note that in
the constant rate case, we have k2(k + 1)/2 + k(k − 1) parameters, and we have
k2(k+1)/2+k2 statisticswhich satisfy the relation: 2

∑
�,i≤ j η

i j
� (t)+∑i �= j η

j
i (t) = 1.

One nonetheless needs some form of additional information in order to infer the model
parameters, as in the following result. Let

ri (t) :=
∑

j1≤ j2

q j1, j2
i (t), i ∈ {1, . . . , k}

denote the overall birth rates for each state.
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Corollary 25 If the long term birth rates limt→∞ ri (t) and the maximum real eigen-
value λ of limt→∞ B(t) are known, then the limits of the birth and state transition
rates can be expressed in terms of the limiting fractions of cherries and pen-
dants w = limt→∞ η(t) and w� = limt→∞ η�(t), where w� = [w11

� , . . . wkk
� ]T,

∀� ∈ {1, . . . , k} and w� = [w1
1, . . . , w

k
k ].

Proof Observe that we can express C and U in terms of ri (t) as

[C(t)]�m,i j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−rm(t) −
∑

i �=m

qi
m(t) when (�, m) = (i, j).

qm
j (t) when � = i, m �= j.

0 otherwise.

and,

[U(t)]�m,�′i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2rm(t) when � = �′, m = i = j.

ri (t) when � = �′, m = j > i.

r j (t) when � = �′, m = i < j.

0 otherwise.

Since λ is known, Theorem 23 implies we have

lim
t→∞(C(t) − λI)w� + lim

t→∞U(t)w = 0

a linear systemwhich, knowing the values of limt→∞ ri (t) and λ, and given the values
of w and w� from statistics of cherries and pendants, depends only on the limits of the
state transition rates limt→∞ q j

i (t), i �= j ∈ {1, . . . , k}.
For each solution of this system in terms of the limiting state transition rates, we

will have the values of limt→ q(�)(t) for � ∈ {1, . . . , k} which can subsequently be
used in each of the systems

lim
t→∞(A�(t) − λI)w� + u� lim

t→∞ q(�)(t) = 0, ∀� ∈ {1, . . . , k},

which is in fact a linear system in the branching rates because

u� = 2
∑

i

w��
i +

∑

i, j<�

w
j�
i +

∑

i, j>�

w
�j
i +

∑

i �=�

w�
i .

It is therefore possible to get solutions of this system in terms of the limiting birth
rates by expressing in terms of vectors w,w∗ as claimed. ��
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Remark 26 In the special case that the overall birth rates ri (t) ≡ ri ∀t are constants
and ri ≡ r ∀i ∈ {1, . . . , k} are independent of state, the maximum eigenvalue of B
is simply λ = r , so in order to infer the birth and state transition rates we only need
to know the overall growth rate r and the statistics on the fractions of cherries and
pendants.

5.3 Some simple special cases of multiple state Yule models

To illustrate how the asymptotic fractions of cherries and pendants can be used to infer
the birth {q j1 j2

i }i, j1≤ j2∈{1,...,k} and state transition {q j
i }i �= j ∈ {1, . . . , k} rates in the

model we consider two particular cases of the ‘symmetric change of state’ models
with k = 2. We will assume that the two overall birth rates ri =∑1≤ j1≤ j2≤2 q j1 j2

i are
independent of the state r1 = r2 =: r , that birth rates are symmetric in parent state
{q11

1 = q22
2 , q12

1 = q12
2 }, and that the same holds for state transition rates {q2

1 = q1
2 }.

We consider the following two such models:

(a) ‘symmetric cladogenetic transitions’ model in which change in state can only
occur at birth events and occurs independently for the offspring and parent:

q2
1 = q1

2 = 0, q11
1 = q22

2 = r (1 − p)2, q12
1 = q12

2 = r 2p(1 − p),

q22
1 = q11

2 = r p2

where p ∈ (0, 1) is the probability of state change at a birth event;
(b) ‘symmetric anagenetic transitions’model in which change in state can only occur

along the lineage:

q11
1 = q22

2 = r, q12
1 = q22

1 = q12
2 = q11

2 = 0, q2
1 = q1

2 = r p

where p is the relative rate of state transition along a lineage.

(a) Since in the cladogenetic case all state transition rates are zero, by Corollary 25
we only need to solve the system of equations {(A� − λI)w� + u�q(�) = 0}�=1,2 for
the rates q(1), q(2). We have that the matrix B is

B =
[

q11
1 − q22

1 − q2
1 2q11

2 + q12
2 + q1

2
2q22

1 + q12
1 + q2

1 q22
2 − q11

2 − q1
2

]

= r

[
1 − 2p 2p
2p 1 − 2p

]

,

with eigenvalue λ = r and corresponding right eigenvector u = [1/2, 1/2]T. We have
q1 = q2 = r and the matrices A1, A2 are

A1 = A2 =
⎡

⎣
−(q1 + q1) 0 0

0 −(q1 + q2) 0
0 0 −(q2 + q2)

⎤

⎦ =
⎡

⎣
−2r 0 0
0 −2r 0
0 0 −2r

⎤

⎦ .

Solving the above system of equations for q(1), q(2) in terms of the asymptotic frac-
tions of cherries and pendants w� = [w11

� , w12
� , w22

� ] for � ∈ {1, 2} and w� =
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[w1
1, w

2
1, w

1
2, w

2
2] gives q(�) = −2(A� − r I)w� = −3A�w� = 6r [w11

� , w12
� , w22

� ]T,
for � = 1, 2. Birth rates then are

q j1 j2
� = 6rw

j1 j2
� for �, j1 ≤ j2 ∈ {1, 2}

This implies that the asymptotic fractions of cherries together with p satisfy

p = 1 −
√
6w11

1 =
√
6w22

1 = 1

2

(

1 ±
√
1 − 12w12

1

)

.

Note that if we ignore edge lengths in this tree, we essentially get the random
discrete tree arising from the symmetric Markov propagation model, briefly dis-
cussed at the end of Sect. 2.3, in which the propagation matrix S is symmetric with
s12 = s21 = p, s11 = s22 = 1 − p.

(b) In the anagenetic case, by Corollary 25 we need to solve the system of equations
(C − λI)w� + Uw = 0 for the state transition rates q2

1 = q1
2 = r p. The matrix B is

B =
[

q11
1 − q22

1 − q2
1 2q11

2 + q12
2 + q1

2
2q22

1 + q12
1 + q2

1 q22
2 − q11

2 − q1
2

]

= r

[
1 − p p

p 1 − p

]

,

with eigenvalue λ = r and corresponding right eigenvector u = [1/2, 1/2]T. Also
q1 = q2 = r + r p, the matrix C − λI = C − r I is

C − r I =

⎡

⎢
⎢
⎣

−q1 − r q1
2 0 0

q2
1 −q2 − r 0 0
0 0 −q1 − r q1

2
0 0 q2

1 −q2 − r

⎤

⎥
⎥
⎦

= r

⎡

⎢
⎢
⎣

−(2 + p) p 0 0
p −(2 + p) 0 0
0 0 −(2 + p) p
0 0 p −(2 + p)

⎤

⎥
⎥
⎦

and the matrix U is

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2q11
1 q22

2 0 0 0 0

0 q11
1 2q22

2 0 0 0

0 0 0 2q11
1 q22

2 0

0 0 0 0 q11
1 2q22

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

2r r 0 0 0 0
0 r 2r 0 0 0
0 0 0 2r r 0
0 0 0 0 r 2r

⎤

⎥
⎥
⎦

Solving the above system for q2
1 = q1

2 = r p in terms of the asymptotic frac-
tions of cherries and pendants w� = [w11

� , w12
� , w22

� ] for � ∈ {1, 2} and w� =
[w1

1, w
2
1, w

1
2, w

2
2] implies that the asymptotic fractions of cherries and pendants as

well as p satisfy
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p = 2w11
1 + w12

1 − 2w1
1

w1
1 − w2

1

= w12
1 + 2w22

1 − 2w2
1

w2
1 − w1

1

= 2w22
2 + w12

2 − 2w1
2

w1
2 − w2

2

= w12
2 + 2w22

2 − 2w2
2

w2
2 − w1

2

.

The matrices A1, A2 are

A1 = A2 =
⎡

⎣
−(q1 + q1) 0 0

0 −(q1 + q2) 0
0 0 −(q2 + q2)

⎤

⎦

= r

⎡

⎣
−2(1 + p) 0 0

0 −2(1 + p) 0
0 0 −2(1 + p)

⎤

⎦

and the value of p shouldmake the systemof equations {(A�−r I)w�+ 1
2q(�) = 0}�=1,2

with q(1) = [r, 0, 0]T, q(2) = [0, 0, r ]T a consistent one. With p as above, birth and
state transition rates then are

q11
1 = q22

2 = r, q12
1 = q22

1 = q12
2 = q11

2 = 0, q2
1 = q1

2 = r p.

Our results can be used together with what is previously known about predictive
accuracy of a reconstruction method, such as maximum parsimony, majority rule and
maximum likelihood, for the ancestral states. Predictive accuracy is measured in terms
of the expected value (over all sample trees in the random model) of the probability
that the predicted state of the root is correct. There are a number of known results
(Gascuel and Steel 2014; Mossel and Steel 2014) on when a reconstruction method
for the state of the root in the tree is more accurate than a uniform guess on its
value. For the above models of symmetric change of state (with k = 2) the results of
Gascuel and Steel (2014) state that the predictive accuracy of themaximum parsimony
method is asymptotically 1/2 iff r ≤ 6s; and the predictive accuracy of any method
is asymptotically 1/2 if r ≤ 4s; where s = r p denotes the substitution rate in this
symmetric propagation model. Results of Mossel and Steel (2014) state that majority
rule is more accurate than a uniformly random guess iff r > 4s. Our expressions for
p = s/r allow one to approximately determine whether in a given tree the state of the
root can be accurately predicted by one of these methods or not.

Unfortunately, our results cannot be used in the extreme ‘asymmetric change of
state’ models, such as:

(c)‘asymmetric cladogenetic change’ model with

q2
1 = q1

2 = 0, q11
1 = r, q12

1 = q22
1 = 0, q22

2 = r (1 − p)2, q12
2 = r 2p(1 − p),

q11
2 = r p2

where p ∈ (0, 1) is the probability of state change from 2 to 1 at a birth event; here

the matrix B = r

[
1 2p
0 1 − 2p

]

has maximal eigenvalue λ = r but it is reducible; and
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(d) ‘asymmetric anagenetic irreversible transition’ model with

q11
1 = q22

2 = r, q12
1 = q22

1 = q12
2 = q11

2 = 0, q2
1 = 0, q1

2 = r p

here p is the relative rate of state transition along state 2 lineage; and the matrix

B = r

[
1 p
0 1 − p

]

is reducible as well.

We stress that the reason why we cannot use limiting fractions of different cherries
and pendants in order to infer rates in the above two cases is due to extreme asymmetry
in these two examples. Namely, had we chosen any less extreme form of asymmetry
with no zero entries in B we could have applied our results just as we had in the
symmetric cases (a) and (b).

5.4 Comparison for numbers of cherries in different models

Consider a general multiple state Yule tree on k = 2 states but without state tran-
sitions. Its overall birth rates q1(t) = ∑

j1≤ j2 q j1 j2
1 (t) and q2(t) = ∑

j1≤ j2 q j1 j2
2 (t)

are generally not the same, which implies that the probabilities at which lineages
of each state are chosen to be the next one to give birth are not the same (there
is ‘non-neutrality’ in states). Let a1(t) := q1(t)/(q1(t) + q2(t)) and a2(t) :=
q2(t)/(q1(t) + q2(t)) = 1 − a1(t) denote the weights proportional which lineages
of states 1 and 2, respectively, get chosen to give birth (see Remark 15). For any
two such models {q j1 j2

i (t)}i, j1≤ j2∈{1,2} and {q ′ j1 j2
i (t)}i, j1≤ j1∈{1,2} we can compare the

weights a1 and a′
1 of choosing state 1 lineages. We provide a comparison between

the asymptotic fraction of different types of cherries w1 = [w11
1 , w12

1 , w22
1 ]T and

w2 = [w11
2 , w12

2 , w22
2 ]T in the two models based on the comparison of their weights

a1(t) and a2(t) = 1 − a1(t) of choosing a lineage of different states to give birth.

Proposition 27 Assume that the birth rates {q j1 j2
i (t)}i, j1≤ j2∈{1,2} and {q ′ j1 j2

i

(t)}i, j1≤ j2∈{1,2} in the two models are such that, their limits q j1 j2
� := limt→∞ q j1 j2

� (t),
q� := limt→∞ q�(t) satisfy

q11
1 − q22

1

q1
= 1 + q11

2 − q22
2

q2
,

q ′11
1 − q ′22

1

q ′
1

= 1 + q ′11
2 − q ′22

2

q ′
2

(9)

Then, the asymptotic proportions of cherries of type 1 and type 2 in the two models
satisfy monotonicity in terms of weights a1 and a′

1 given by

a1 < a′
1 ⇒ w

j1 j2
1 < w′ j1 j2

1 , ∀ j1 ≤ j2 and w
j1 j2
2 > w′ j1 j2

2 , ∀ j1 ≤ j2

where a1 := limt→∞ a1(t), a′
1 := limt→∞ a′

1(t) denote the limiting weights of state
1 lineages.
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Proof Theorem 23 implies that the vectors w� = [w11
� , w12

� , w22
� ] for � ∈ {1, 2}

satisfy

w� = lim
t→∞ η�(t) = −u� lim

t→∞(A�(t) − λI)−1 lim
t→∞ q(�).

Since we are considering multiple state Yule models with state transition rates q2
1 (t) =

q1
2 (t) = 0, the matrix A(t) from Proposition 19 depends only on q1(t) and q2(t).

Let p j1 j2
� := q j1 j2

� /q� denote the probabilities that a birth event at a lineage of

state � results in states j1, j2 (see Remark 15) in the limit as t → ∞. Then q j1 j2
� =

p j1 j2
� a�(q1 + q2) and the assumption on the limiting birth rates becomes

p111 + p222 = 1 + p221 + p112

Substituting all this into the equations for w� above, and using a2 = 1−a1, we obtain
expressions for w1,w2 that are written entirely in terms of probabilities p j1 j2

� and
weight a1:

w11
1 = a1 p111

(
p111 − p221

)

2p111 a1 + a1 − 2p221 a1 − p111 + p221 + 1
,

w12
1 = a1 p121

(
p111 − p221

)

2p111 a1 − a1 − 2p221 a1 − p111 + p221 + 2
,

w22
1 = a1 p221

(
p111 − p221

)

2p111 a1 − 3a1 − 2p221 a1 − p111 + p221 + 3
,

w11
2 = p112

(
1 − p111 + p221

)
(1 − a1)

2p111 a1 + a1 − 2p221 a1 − p111 + p221 + 1
,

w12
2 = p122

(
1 − p111 + p221

)
(1 − a1)

2p111 a1 − a1 − 2p221 a1 − p111 + p221 + 2
,

w11
2 = p222

(
1 − p111 + p221

)
(1 − a1)

2p111 a1 − 3a1 − 2p221 a1 − p111 + p221 + 3
.

In order to prove the monotonicity of w
j1 j2
� as a function of a1 for �, j1, j2 ∈ {1, 2},

it suffices to check their first derivate with respect to a1:

∂w11
1

∂a1
= p111

(
p111 − p221

) (
1 − p111 + p221

)

(
2p111 a1 + a1 − 2p221 a1 − p111 + p221 + 1

)2 > 0,

∂w12
1

∂a1
= p121

(
p111 − p221

) (
2 − p111 + p221

)

(
2p111 a1 − a1 − 2p221 a1 − p111 + p221 + 2

)2 > 0,
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∂w22
1

∂a1
= p221

(
p111 − p221

) (
3 − p111 + p221

)

(
2p111 a1 − 3a1 − 2p221 a1 − p111 + p221 + 3

)2 > 0,

∂w11
2

∂a1
= −p112

(
2 − (p111 − p221

) (
1 + p111 − p221

))

(
2p111 a1 + a1 − 2p221 a1 − p111 + p221 + 1

)2 < 0,

∂w12
2

∂a1
=

−p122

(
1 − (p111 − p221

)2
)

(
2p111 a1 − a1 − 2p221 a1 − p111 + p221 + 2

)2 < 0,

∂w22
2

∂a1
= −p222

(
p111 − p221

) (
1 − p111 + p221

)

(
2p111 a1 − 3a1 − 2p221 a1 − p111 + p221 + 3

)2 < 0,

and the result follows. ��
The assumption for the limiting birth rates can be satisfied in relevant models. For

example, in a process where at a birth event states of the two continuing lineages are
assigned according to a Markov process with transition probabilities (si j )i, j∈{1,2}, the
probabilities p j1 j2

� are

p111 = (1 − s12)
2, p121 = 2(1 − s12)s12, p221 = (s12)

2,

p222 = (1 − s21)
2, p122 = 2(1 − s21)s21, p112 = (s21)

2,

and the assumption (9) is equivalent to s12 + s21 = 1/2.

Remark 28 In the special case when the overall birth rates are equal a1 = a2 =
1/2 (‘neutral’ underlying tree shape), if edge lengths in the multiple state Yule tree
without state transitions are ignored the resulting distribution on the tree is that of a
corresponding multiple state ERM model. Accordingly, the asymptotic fractions of
cherries we obtained in the proof of Proposition 27 are in fact the same as asymptotic
fractions obtained in Theorem 6 for the multiple state ERM trees with probabilities
{p j1 j2

i }i, j1≤ j2∈{1,2}.
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Appendix

Proof of Lemma 12. In the event that Z(T ) = 0 there is nothing to prove, so we
consider W on the event Z(T ) �= 0 ⇔ W(0) �= 0 (and W(T ) �= 0 as well).

For any n ≥ 1 let 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ T , we denote the joint distribution of
W at these times by

Pt0;t1,...,tn (z0;w1, . . . ,wn) = P
[
W(t j ) = w j , 1 ≤ j ≤ n

∣
∣ Z(t0) = z0

]
.
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We first show, by induction, that ∀n ≥ 1

Pt0;t1,...,tn (z0;w1, . . . ,wn)

= Pt0;t1,...,tn−1(z0;w1, . . . ,wn−1)
Pt0;tn−1,tn (z0;wn−1,wn)

Pt0;tn−1(z0;wn−1)
. (10)

This is evident for n = 2. Assume the equation is true ∀i ≤ n − 1 with n > 2. Notice
that Pt0;t1,...,tn (z0;w1, . . . ,wn)

=
∑

z1≥w1

P[Z(t1) = z1|Z(t0) = z0]Pt1;t1,...,tn (z1;w1, . . . ,wn). (11)

The branching property of the birth-death process Z guarantees independence of its
subtrees originating from non-overlapping subsets of individuals present at any time
t1. Since all individuals surviving at time T must be descendants of the process W ,
we have

Pt1;t1,...,tn (z1;w1, . . . ,wn) = P
[
W(t j ) = w j , 1 ≤ j ≤ n

∣
∣ Z(t1) = z1

]

= Cz1,w1P
[
W(t j )

= w j , 1 ≤ j ≤ n
∣
∣ Z(t1) = w1

]
p0z1−w1

(t1, T )

= Cz1,w1 Pt1;t1,...,tn (w1;w1, . . . ,wn)p0z1−w1
(t1, T ) (12)

where Cz1,w1 denotes the combinatorial number of distinct ways of choosing w1 out
of z1 individuals, and p0z (t, T ) = P[Z(T ) = 0|Z(t) = z] is the extinction probability
by time T of the process Z started at time t with Z(t) = z.

Given Z(t1) = w1, the process (Z(t))t≥t1 is the sum of birth-death processes
defined by subtrees {T (i)}, i = 1, . . . , |w1|, originated by one of each of the |w1|
individuals at time t1. We may assume that each T (i) is started by an individual of
state τ (i), where τ (1), . . . , τ (|w1|) is some ordering of the |w1| surviving originator
states. Probability for the surviving lineages is

Pt1;t1,...,tn (w1;w1, . . . ,wn)

= P
[
W(t j ) = w j , 1 ≤ j ≤ n

∣
∣ Z(t1) = w1

]

= P

⎡

⎣W(t j )(T (i)) �= 0 ∀i,
|w1|∑

i=1

W(t j )(T (i)) = w j , ∀2 ≤ j ≤ n

⎤

⎦

where W(t)(T (i)) denotes the number of individuals of T (i) at time t which have a
surviving lineage at time T . Since the subtrees T (i) are independent

Pt1;t1,...,tn (w1;w1, . . . ,wn)

=
∑

∀2≤ j≤n,
(
w

(i)
j

)

1≤i≤|w1|:
w

(i)
j >0,

∑|w1|
i=1 w

(i)
j =w j

|w1|∏

i=1

Pt1;t2,...,tn
(
eτ (i);w

(i)
2 , . . . ,w(i)

n

)
, (13)
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where ei denotes the unit k-dimensional vector whose i-th coordinate is 1 and all other
coordinates are 0, and the summation is over all possible decompositions of w j into

vectors (w
(i)
j )i=1,...,|w1| with all nonzero coordinate values, for each j = 2, . . . , n. By

the inductive hypothesis (10) for n − 1, the probabilities in the product on the right
side are equal to

Pt1;t2,...,tn
(
eτ (i);w

(i)
2 , . . . ,w(i)

n

)

= Pt1;t2,...,tn−1

(
eτ (i);w

(i)
2 , . . . ,w

(i)
n−1

) Pt1;tn−1,tn

(
eτ (i);w

(i)
n−1,w

(i)
n

)

Pt1;tn−1

(
eτ (i);w

(i)
n−1

)

= Pt1;t2,...,tn−1

(
eτ (i);w

(i)
2 , . . . ,w

(i)
n−1

)
P

[
W (tn) = w(i)

n |W (tn−1)

= Z (tn−1) = w
(i)
n−1

]

where the last equality follows from (11) and (12) since

Pt1;tn−1,tn

(
eτ (i);w

(i)
n−1,w

(i)
n

)

= P

[
W (tn−1) = w

(i)
n−1,W (tn) = w(i)

n |Z (t1) = eτ (i)

]

=
∑

zn−1≥wn−1

P
[
Z (tn − 1) = zn−1|Z (t1) = eτ (i)

]
Czn−1;w(i)

n−1
p0zn−1−wn−1

(tn−1, T )

×P

[
W (tn) = w(i)

n |W (tn−1) = Z (tn−1) = w
(i)
n−1

]

= P

[
W (tn) = w(i)

n |W (tn−1) = Z (tn−1) = w
(i)
n−1

]
Pt1;tn−1

(
eτ (i);w

(i)
n−1

)
.

As the first factor on the right side above does not depend on (w
(i)
n )i=1,...,|w1| the

sum in (13) may be split into outer sums, over 2 ≤ j ≤ n − 1, and an inner sum, over
j = n that is equal to

∑

(wn):w(i)
n >0,

∑|w1|
i=1 w

(i)
n =wn

|w1|∏

i=1

P

[
W (tn) = w(i)

n |W (tn−1) = Z (tn−1) = w
(i)
n−1

]
.

By the same argument using splitting over independent subtrees, but this time
splitting the individuals at time tn−1 into subsets of sizes (w

(i)
n−1)i=1,...,|w1|, we can

show that this sum contributes to the outer sums a factor of

P
[
W (tn) = wn|W (tn−1) = Z (tn−1) = wn−1

] = Pt0;tn−1,tn (z0;wn−1,wn)

Pt0;tn−1 (z0;wn−1)
,
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where the last equality follows again from Eqs. (11) and (12), and combining with the
outer sums in (13) implies

Pt1;t1,...,tn (w1;w1, . . . ,wn)

= Pt1;t1,...,tn−1 (w1;w1, . . . ,wn−1)
Pt0;tn−1,tn (z0;wn−1,wn)

Pt0;tn−1 (z0;wn−1)
,

as wanted. By using once again Eqs. (11) and (12), this becomes Eq. (10) for step n.
Equation (10) may be written in terms of conditional probabilities as

P
[
W (tn) = wn

∣
∣W

(
t j
) = w j , 1 ≤ j ≤ n − 1, Z (t0) = z0

]

= P
[
W (tn) = wn

∣
∣W (tn−1) = wn−1, Z (t0) = z0

]

which implies the Markov property for (W(t))t≥0. ��
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