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movement:

Let f: X — X be a function. It can be considered as a

x— f(x) = f(f(x) = F(f(f(2) = FF(f(f(2)))) —



f:+X — X is a contraction if

d(f(z), f(y)) < A-d(z,y) , 0<A<1,

for all z,y € X.
Example: fi(z) = %a:, x €R.
Another: fo(z) =4z + 2, z €R.

Theorem (Banach): A contraction in a complete metric space
has exactly one fixed point:

fe)=c.
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We use more than one function, for example f; and fo
How to use them both 7

Two methods:

1) Random map: with probability p apply f; and with
probability 1 — p apply fo.
2) Define function on sets, not on points.
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If X is our space, we define Hausdorff space H(X) as space of
compact nonempty subsets of X. We define distance dy

between subsets. It can be proved that H(X) is complete if X
is complete.
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For f: X — X we naturally define F': H(X) — H(X) as

F(A) ={f(z):z € A} .
Once we have to functions Fy, Fy : H(X) — H(X) we define IFS
F:H(X)— H(X) by

F(A) = Fi(A) U Fz(4)
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Theorem: If f;, fo are contractions on X, then F = (Fi, F») is
a contraction on H(X). Thus, it has the unique ”fixed point”, a
compact set called the attractor of the IFS F, satisfying

.7-"(A) =A.
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It can be approximated by iteration starting from any compact

A= lim FY(B),
for any B € H(

n—oo
X).
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filz) =1z, fo() =Ltz + 2 z R
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IFS and Fractals
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IFS and Fractals
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IFS and Fractals
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Introduced by Barnsley and his ”Iterated Systems Inc.” Used
by Microsoft, Encyclopedia Britannica, Spectrum Holobyte and
some other companies.

Gives compression of 50-100 times while JPEG gives 3-6 times.
Moreover the fractaly compressed image has infinite resolution,
i.e., never shows pixelization like JPEG images.

Out of fashion, due to marketing errors and development of
wavelets techniques.
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IFS and Fractals

Peano curve

Peano curve is a continuos function f : [0,1] — [0, 1] x [0, 1]

which is onto,i.e., the graph covers the whole square.
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fz)=2*4+¢c, ceC , zeC.

This map is not a contraction but has two inverse branches:
solutions of the equation w = 22 + ¢

fi(w), fa(w)

which are local contractions. IFS build of them produces so
called Julia sets dependent on the parameter c.
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IFS and Fractals

Julia sets in Complex Dynamics

Figure: Julia set for ¢ = —0.1708 4 0.81791
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