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Abstract. In this paper we conjecture that the piecewise linear map f(x) = px1I[0,1/p)(x)+
(sx − s/p)1I[1/p,1](x), p > 1, 0 < s < 1 which has an expanding, onto branch and a
contracting branch is eventually piecewise expanding. We give a partial proof of the
conjecture, in particular for values of p and s such that d− ln(p(1−s)+s)

ln s e 6= d− ln p
ln s e.

1. Introduction

A piecewise differentiable function f is expanding if |f ′(x)| > 1 for all x at which the
derivative exists. f is said to be eventually expanding if there exists N ∈ N such that
fN(x) (the N -fold composition of f with itself) is expanding.

Eventually expanding maps play an important role in dynamical systems theory.
For example, most theorems on existence of absolutely continuous invariant measures
require the map to be expanding or eventually expanding. Very often proofs for general
maps are reduced to the eventually expanding situation. However, showing that a map
is eventually expanding is far from trivial. As a simple example, let f be a piecewise
linear function on the unit interval [0, 1] with two increasing branches, one of which has
slope greater than one and the other less than one. This is one of the simplest maps
one can make that is not expanding, but it seems to be rather difficult to show that it is
eventually expanding. In this paper we conjecture that f is eventually expanding if the
first branch is onto, and the second branch is touching the x-axis. We provide a partial
proof of the conjecture.This family of maps was investigated in [4] by different methods.
For p ≤ 2 (p being slope of the first branch) its natural extension was constructed and
proved to be Bernoulli. Similar, but different type of maps were analyzed in [2] and [6]
and shown to admit absolutely continuous invariant measures.

The authors recently learned about the main result of preprint [3], which covers a
wider class of maps than those considered here.

2. Main Theorem

Let f : [0, 1]→ [0, 1] be defined by

(1) f(x) =

{
px, 0 ≤ x < 1

p

s(x− 1
p
) 1

p
≤ x ≤ 1

.

Figure 1 shows the graph of f for p = 7/2 and s = 1/2.

Conjecture 1. For all (s, p) ∈ (0, 1)× (1,∞), f is eventually expanding.

For a real number x, let dxe = min {n ∈ Z| n ≥ x} and bxc = max {n ∈ Z| n ≤ x}.
1
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Figure 1. Graphs of y = x, and y = f(x) for p = 7/2 and s = 1/2.

Theorem 1. For all (s, p) ∈ (0, 1)× (1,∞) such that⌈
− ln(p(1− s) + s)

ln s

⌉
6=
⌈
− ln p

ln s

⌉
f is eventually expanding.

Proof. Consider a positive integer N and for any x ∈ [0, 1], consider the sequence
x, f(x), f 2(x), . . . , fN−1(x). There are only finitely many values of x such that for some
i with 0 ≤ i < N , f i(x) = 1/p. These finitely many values of x divide the interval
[0, 1] into finitely many intervals. If J is one of these intervals, then one can verify by
induction that for all i < N , f i(J) is an interval that does not contain 1/p, so it is
contained in either [0, 1/p), or (1/p, 1]. If f i(J) ⊂ [0, 1/p), then for all x ∈ J , f i+1(x)
is obtained from f i(x) by applying the first branch of f , and if f i(J) ⊂ (1/p, 1] then
f i+1(x) is obtained from f i(x) by applying the second branch of f . In the first case
we say that f is expanding on J at step i + 1 and in the second case we say that it
is contracting. It is easy to see that fN is linear on J , with slope pmsn, where m and
n are the numbers of steps at which f is expanding and contracting on J . Note that
0 ≤ n,m ≤ N and m+ n = N .

Let A = {(s, p) : d− ln p/ ln se 6= d− ln(p(1− s) + s)/ ln se}. Suppose there exist
(s, p) ∈ A such that for every N ∈ N, fN is not expanding. Then for every N there
exists an interval J ⊂ I, as described above, on which f is linear with slope pmsn ≤ 1.
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This implies

m ≤ cN , where c =
− ln s

ln p− ln s
.

J expands m times and contracts n times during N iterations, hence J must contract
consecutively dn/(m + 1)e times during N iterations of f . That is, there exists i ∈ N
such that f i+k(J) ⊂ (1/p, 1], for k = 0, 1, . . . , dn(m+ 1)e − 1.

Since m ≤ cN and and m is an integer, m ≤ bcNc, and therefore⌈
n

m+ 1

⌉
≥
⌈
N − bcNc
bcNc+ 1

⌉
=

⌈
1
c
− bcNc

cN

1 + 1−(cN)
cN

⌉
≥
⌈ 1

c
− 1

1 + εN

⌉
,

where (cN) denotes the fractional part of cN and εN = (1 − (cN))/cN ≥ 0. Note
that εN → 0 as N → ∞. Therefore, there exists N0 ∈ N such that for every N > N0,
d(1/c − 1)/(1 + εN)e = d1/c − 1e = d− ln p/ ln se. Taking N = N0 + 1, we conclude
that there is an interval J that, in the first N iterations of f , has j = d− ln p/ ln se
consecutive contractions. This means that there is some i such that for all x ∈ f i(J),
fk(x) > 1/p for k = 0, 1, . . . , j − 1. Letting x be any point in the interval f i(J), we
find that

1

p
< f j−1(x) = sj−1x− s

p

(
1− sj−1

1− s

)
≤ sj−1 − s

p

(
1− sj−1

1− s

)
,

which means that

j − 1 < − ln(p(1− s) + s)

ln s
.

Since j is an integer, this implies that⌈
− ln(p(1− s) + s)

ln s

⌉
≥ j =

⌈
− ln p

ln s

⌉
.

But since 0 < s < 1 and p > 1, p(1− s) + s < p, so⌈
− ln(p(1− s) + s)

ln s

⌉
≤
⌈
− ln p

ln s

⌉
and therefore ⌈

− ln(p(1− s) + s)

ln s

⌉
=

⌈
− ln p

ln s

⌉
.

Therefore, (s, p) /∈ A, a contradiction. �

The complement of set A in the proof of theorem 1 is given by d− ln p/ ln se =
d− ln(p(1− s) + s)/ ln se. If we solve this equation for p, we get the regions

1 +
1

s
+ · · ·+ 1

sk
< p ≤ 1

sk+1
, for k ∈ N ∪ {0} .

Hence, the curves on the boundary of the region A are of the form 1 + 1
s

+ · · ·+ 1
sk ,

and 1
sk+1 .
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3. Other regions where f is eventually expanding

We will refer to {(s, p) ∈ (0, 1)× (1,∞)| f is eventually expanding} as the “good”
region. We show that the good region contains all points with small enough p:

Proposition 1. If 1 < p ≤ 2 and 0 < s < 1, then f is eventually expanding.

Proof. Let N be the least positive integer such that pN−1s > 1. Note that N ≥ 2
and pN−2s ≤ 1. Consider the first N iterations of f . As in the proof of Theorem 1,
fN is piecewise linear on [0, 1], and if J is one of the intervals on which f is linear,
then the slope of f on J is pmsn, where m and n are the numbers of expansions and
contractions of J under f . We claim now that we always have n ≤ 1, so the slope
is at least pN−1s > 1 and therefore f is eventually expanding. To prove this claim,
suppose that n ≥ 2. Then there must be some i and j such that 0 ≤ i < j ≤ N − 1,
f is contracting on J at steps i + 1 and j + 1 and f is expanding on J at step k + 1
whenever i < k < j. In other words, f i(J) ⊂ (1/p, 1], f j(J) ⊂ (1/p, 1], and if i < k < j
then fk(J) ⊂ [0, 1/p)). This means that if x ∈ f i(J) then x > 1/p, fk(x) < 1/p for
k = 1, . . . , j − i− 1, and f j−1 > 1/p. But then

f i−j(x) = pi−j−1s

(
x− 1

p

)
≤ pN−2s

(
x− 1

p

)
≤ x− 1

p
≤ 1− 1

p
=
p− 1

p
≤ 1

p
,

which is a contradiction. �

Denote the boundary curves of the region A by:

γ L
k (s) =

1

sk
, and

γ U
k (s) = 1 +

1

s
+

1

s2
+ · · ·+ 1

sk
=

1− sk+1

sk(1− s)
,

where k ∈ N ∪ {0}. The following lemma shows that for p ∈ [γ U
n−1(s), γ

U
n (s)), the n-th

image of 1 is the first image of 1 to fall into [0, 1/p).

Lemma 1. For n ≥ 0, f j(1) ≥ 1/p for j = 0, 1, . . . , n if and only if p ≥ γ U
n (s). If

p = γ U
n (s), then fn(1) = 1/p.

Proof. We prove it by induction. If n = 0, then the equivalence to be proven says that
1 ≥ 1/p if and only if p ≥ 1 and that is clearly true. For the induction step, assume that
the statement is true for n = k − 1. Then to prove the statement for n = k it suffices
to show that for p ≥ γ U

k−1(s), f
k(1) ≥ 1/p if and only if p ≥ γ U

k (s). So suppose that
p ≥ γ U

k−1(s). Then by inductive hypothesis, f i(1) ≥ 1/p for i = 0, . . . , k − 1. Therefore

fk(1) = sk − s

p

(
1− sk

1− s

)
,

and we have

fk(1) ≥ 1

p
⇐⇒ sk − s

p

(
1− sk

1− s

)
≥ 1

p
⇐⇒ p ≥ 1

sk

(
1− sk+1

1− s

)
= γ U

k (s).

Similar inductive argument shows fn(1) = 1/p if p = γ U
n (s). �
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Consider any s ∈ (0, 1) and any k ≥ 2. For p ≥ γ U
k−1(s) we have

fk(1) = sk − s

p

(
1− sk

1− s

)
,

which clearly increases as p increases. Also, if p = γ U
k−1(s) then fk−1(1) = 1/p and

therefore fk(1) = 0, and if p = γ U
k (s), then fk(1) = 1/p. It follows that there is a

unique p ∈ (γ U
k−1(s), γ

U
k (s)) such that fk(1) = 1/p2. We denote this unique value of p

by γM
k (s). Clearly if γ U

k−1(s) ≤ p < γM
k (s) then fk(1) < 1/p2, and if p > γM

k (s) then
fk(1) > 1/p2. We can find a formula for γM

k (s) by setting the formula for fk(1) above
equal to 1/p2 and solving the resulting quadratic equation we get

γM
k (s) =

1− sk +
√

(1− sk)2 + 4(1− s)2sk−2

2(1− s)sk−1
.

Proposition 2. Suppose k ≥ 2. If 1/2 < s < 1, and

γ U
k−1(s) ≤ p ≤ γM

k (s) =
1− sk +

√
(1− sk)2 + 4(1− s)2sk−2

2(1− s)sk−1
,

then f is eventually expanding.

Proof. Let N be a positive integer, and consider N iterations of f . As usual, let J be
an interval on which fN is linear, with slope pmsn, where m and n are the numbers of
expansions and contractions of J in the N iterations of f . Since γ U

k−1(s) ≤ p < γM
k (s),

we have fk(1) ≤ 1/p2. It follows that J can never have more than k consecutive
contractions, and if it has k consecutive contractions and those contractions are followed
by at least two more steps, then both of those steps must be expansions.

The sequence of contractions and expansions of J can be described by a string of
c’s and e’s, where the ith letter is a c if J contracts at step i and an e if it expands.
This string can be broken up into blocks of the form cie, where 0 ≤ i ≤ k − 1, or ckee,
except possibly for a final block consisting of up to k c’s, perhaps followed by an e. If
we associate with each block of the form ciej the factor sipj, then the product of all of
these factors is pmsn, the slope of fN on J .

For a block of the form cie with 0 ≤ i ≤ k−1, the corresponding factor is sip ≥ sk−1p,
and for a block of the form ckee the factor is skp2. Since p ≥ γ U

k−1(s) = 1+· · ·+1/sk−1 >
1/sk−1, we have sk−1p > 1. And sp ≥ sk−1p > 1, so skp2 = (sp)(sk−1p) > sk−1p. Thus
for all blocks except the last, the factor is at least sk−1p, which is greater than 1. The
factor for the last block is at least sk. The length of the last block is at most k + 1,
and the length of every other block is at most k+ 2, so the number of blocks is at least
N/(k + 2). Therefore the slope of fN on J is at least

(sk−1p)N/(k+2)−1sk.

Since sk−1p > 1, this will be larger than 1 for sufficiently large N , so f is eventually
expanding.

�

Corollary 1. If 1 < p and 1
2
≤ s < 1, then f is eventually expanding.
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Proof. Suppose f is not eventually expanding. Then by Theorem 1, there is some k ≥ 1
such that γ U

k−1(s) < p ≤ γ L
k (s). If k = 1 then this means 1 < p ≤ 1/s ≤ 2, contradicting

Proposition 1. Now suppose k ≥ 2. Since p ≤ γ L
k (s) = 1/sk, we have sk ≤ 1/p, and

therefore

fk(1) = sk − s

p

(
1− sk

1− s

)
≤ 1

p
− s

p

(
1− 1/p

1− s

)
=

1

p2
−
(

2s− 1

1− s

)(
p− 1

p2

)
≤ 1

p
.

Therefore p ≤ γM
k (s), so we have a contradiction with Proposition 2. �
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Figure 2. Shows the regions where f is proven to be eventually ex-
panding for p > 2 and s < 1/2. If 1 < p ≤ 2 or s ≥ 1/2, f is eventually
expanding by Proposition 1 and Corollary 1. It is conjectured that f is
eventually expanding for all 1 < p and 0 < s < 1.

The following proposition shows other parts of the good region.

Proposition 3. If sp < 1 and 1
pk < s < 1

pk−1(p−1)
, k ≥ 2, then f is eventually expanding.

Proof. If p < 1/s , then f(1) = s(1 − 1/p) < 1/p. Also, if s < 1
pk−1(p−1)

, then f(1) =

s(1− 1/p) < 1/pk. It follows that in k+ 1 iterations, any interval can contract at most
once. So on any of the intervals on which fk+1 is linear, the slope is at least spk > 1. �

Therefore, if we let ηU
k (p) = 1/(pk−1(p− 1)) and ηL

k (p) = 1/pk where k ≥ 2, then for
(s, p) satisfying ηL

k (p) < s < ηU
k (p), f is eventually expanding.
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Figure 2 shows the regions where we have proven f to be eventually expanding (darker
regions) for p > 2 and s < 1/2. Visible curves are γ L

1 (p) = 1/s ≤ γ U
1 (inside) ≤ γM

2 ≤
γ L

2 ≤ γ U
2 (inside) ≤ γM

3 , and η L
3 ≤ η U

3 ≤ η L
2 ≤ η U

2 ≤ γ L
1 (p) = 1/s. Note that f is also

eventually expanding If 1 < p ≤ 2 or s ≥ 1/2 as shown by Proposition 1 and Corollary
1.

4. Exactness and other properties

A function f : I → I is said to be exact or locally eventually onto, if for every open
interval J ∈ I there exists N such that fN(J) = I.

Proposition 4. The map f defined by (1) is exact (or locally eventually onto) if it is
eventually expanding.

Proof. By assumption, there exists N such that fN is piecewise expanding. Since both
branches of f touch the x axis, all branches of f j touch the x axis, for any j ∈ N.
Since fN is piecewise expanding, any given interval J ∈ [0, 1] grows under action of fN

until its image covers a discontinuity point. Thus, there exists an integer k such that
fkN+1(J) contains the fixed point 0. Since the branch that contains the fixed point is
onto and expanding, some iterate of fkN+1(J) under f eventually covers all of [0, 1]. �

If map f is eventually piecewise expanding, the whole rich theory of such maps
applies to it. In particular f admits an absolutely continuous invariant measure µ
[1, 7]. Similarly as in Proposition 4 it can be proven that µ is unique and the system
{f, µ} is exact in measure theoretical sense. Explicit formula for the density of µ can
be obtain using methods of [5].

A point x is called periodic under f if there exists N ∈ N such that fN(x) = x. In
this case, x is said to be repelling if |(fN)′(x)| > 1 and attracting if |(fN)′(x)| < 1. The
following property of f has been noticed by M. Misiurewicz.

Proposition 5. (Misiurewicz) All periodic points of f are repelling.

Proof. Let us fix an N ≥ 1. All branches of fN are increasing and touch the x axis.
The slope of fN at 0 is pN > 1. Thus, no branch with a slope smaller than or equal to
1 can intersect the diagonal. Thus, any fixed point of fN is repelling. �
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