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Abstract. In this paper, we prove the quasi-compactness of the Frobenius-Perron operator

for a piecewise convex map τ with a countably infinite number of branches on the interval

I = [0, 1]. We establish that for high enough n iterates of τ , τn are piecewise expanding. Using

the Lasota-Yorke Inequality derived from references [4] and [14], adapted to meet the assumptions

of the Ionescu-Tulcea and Marinescu ergodic theorem [7], we demonstrate the existence of

absolutely continuous invariant measure (ACIM) µ for τ , the exactness of the dynamical system

(I, τ, µ) and the quasi-compactness of Frobenius-Perron operator Pτ induced by τ . The last fact

implies a multitude of strong ergodic properties of τ .

1. Introduction

This paper investigates the existence of absolutely continuous invariant measures (ACIMs)

for a class of dynamical systems: piecewise convex maps with a countably infinite number of

branches defined on the unit interval [0, 1] denoted by T . Understanding ACIMs is crucial for

analyzing the long-term behaviour and chaotic nature of deterministic dynamical systems.

Let I = [0, 1], B denote the Borel σ-algebra of subsets of I and let m be the normalized

Lebesgue measure on I . Let τ : I → I be a piecewise monotonic and hence non-singular

transformation. A measure µ on B is τ -invariant if it remains unchanged under the action of τ ,

i.e., µ(τ−1A) = µ(A), for all A ∈ B. To examine ACIMs, we use the Perron-Frobenius operator

induced by τ , Pτ from L1
m to L1

m:

Pτf(x) =
∑

y∈τ−1(x)

f(y)g(y).

Pτ key properties are linearity, positivity, contractivity and preservation of integrals. The fact

that a measure h ·m is τ -invariant if and only if Pτh = h, i.e., h is a fixed point of Pτ , makes

Pτ essential for studying ACIMs. For more information about ACIMs, the Frobenius-Perron

operator and their mutual interconnections we refer the reader to [2] or [17].
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The piecewise convex maps considered until recently had a finite number of branches. We

recall the standard assumptions. Let I = [0, 1]. A piecewise convex map τ defined on I satisfy

the following conditions:

(1) There exist a finite partition 0 = a0 < a1 < ..... < an = 1 such that τ |[ai−1,ai) is continuous,

strictly increasing and convex for i = 1, 2...n.

(2) τ(ai−1) = 0 and τ ′(ai−1) > 0 for i = 1, 2, ...n.

(3) τ ′(0) = 1/α > 1.

The first to study such maps were Lasota and Yorke [15]. They discovered the three important

properties, restated in Proposition 2.3, and used them to prove the existence of the ACIM µ and

the exactness of the system (τ, µ). Additional properties of piecewise convex maps were shown

in [9–13]. Generalizations, weakening the assumptions or random maps were studied in [1, 5, 6].

Recently, in [3,8,18] Lasota and Yorke’s results were generalized to the case when a piecewise

convex map has a countably infinite number of branches. In this paper, we prove a further result,

the quasi-compactness of the operator Pτ , induced by τ . This fully describes the behavior of the

system (τ, µ) and implies several strong ergodic properties. This result could not be obtained

employing the previously used methods.

In Section 2, we explore the dynamics of piecewise convex maps with a countably infinite

branches. These maps are defined on the partition of I = [0, 1] into disjoint open subintervals

Ii = (ai, bi)
∞
i=1, whose complement has Lebesgue measure zero. Each restriction τi to Ii is an

increasing, convex, differentiable function with
∑

i≥1
1

τ ′i(ai)
< +∞ and τ ′(0) > 1, if 0 is not a

limit point of partition endpoints. We denote the class of such maps by T . We focus on the

Frobenius-Perron operator Pτ associated with these maps, which acts on integrable functions

f defined on [0, 1]. This operator is central to understanding the distribution of iterates of f

under τ . We prove several key properties of Pτ , including its effect on non-increasing functions

and bounds on its norm. We show that if τ belongs to the class T , its iterates τn retains the

piecewise convex structure and summability condition on derivatives. We demonstrate that the

set of preimages of partition points is dense in [0, 1], and the derivatives of iterates are uniformly

bounded below by a constant greater than one, indicating piecewise expanding behavior.

In Section 3, we study piecewise expanding maps with a countably infinite number of branches.

These maps are defined on a partition of I into disjoint subintervals Ii = (ai, bi)
∞
i=1, each

homeomorphically mapped by τ onto its image. The expansion behavior is quantified by g(x),

the reciprocal of the derivative τ ′, with |g(x)| ≤ β < 1, defining the class TE . We prove that if τ

is in T , for high enough n, its iterates τn are in TE . We study the Frobenius-Perron operator Pτ
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Figure 1. A piecewise convex maps with countable number of branches.

and its action on functions in BV , where BV = {f ∈ L1
m : v(f) < +∞}. We follow [14,19]

to establish Lasota-Yorke inequality for the functions in BV and apply the ergodic theorem of

Ionescu-Tulcea and Marinescu [7] to prove the quasi-compactness of Pτ and its implications for

ACIMs.

2. Piecewise convex map with countably infinite number of branches

Definition 2.1. Let I = [0, 1] and let P = {Ii = (ai, bi)}∞i=1 be a countably infinite family of

open disjoint subintervals of I such that Lebesgue measure of I \
⋃

i≥1 Ii is zero. We define a

piecewise convex map τ on partition I as follows:

(1) For i = 1, 2, 3..., τi = τ|Ii is an increasing convex differentiable function with limx→a+i
τi(x) =

0. We define τi(ai) = 0 and τi(bi) = limx→b−i
τi(x). The values τ ′i(ai) are also defined by

continuity.

(2) We assume ∑
i≥1

1

τ ′i(ai)
< +∞.

(3) If x = 0 is not a limit point of the partition points, then we have τ ′(0) = 1/α > 1, for some

0 < α < 1. By T we will denote the set of maps satisfying conditions (1)-(3).

Lemma 2.2. If x = 0 is the limit point of the sequence of left endpoints of the partition

intervals, then we have limx→0+τ
′(x) = +∞, where at points where τ ′(x) is not defined we take



4 PAWEŁ GÓRA AND APARNA RAJPUT

τ ′(x) = τ ′+(x). Then, for some 0 < r < 1 and some α < 1, we have∑
ai<r

1

τ ′(ai)
= α < 1.

Proof. Condition (3) implies that for any M > 0 the inequality τ ′(ai) ≤ M can be satisfied only

for a finite number of points ai. This implies the first claim of the lemma. The second claim

follows by the fact that the sums of the tails of a convergent series converge to 0. □

The Frobenius-Perron operator induced on L1
m by the map τ ∈ T is

(1) Pτf(x) =
∑
i≥1

f(τ−1
i (x))

τ ′i(τ
−1
i (x))

χ|τi(Ii)(x).

The proposition below summarizes the properties of maps in T which were before used to show

the existence of acim. We apply different methods but use these properties as well.

Proposition 2.3. Let τ ∈ T and f : [0, 1] → R+ be a non-increasing function. Then,

(1) Pτf is also non-increasing function;

(2) For any x ∈ [0, 1] we have f(x) ≤ 1
x
∥f∥1;

(3) ∥Pτf∥∞ ≤ α∥f∥∞ +D∥f∥1, where α < 1 is the number specified in Definition 2.1 or

Lemma 2.2 and D > 0 is a constant.

Proof. (1) Since τi is increasing on Ii, τ−1
i is also increasing, for all i ≥ 1. Let f ∈ L1

m be

non-increasing. Then for any x ≤ y we have f(x) ≥ f(y). Hence, f(τ−1
i (x)) ≥ f(τ−1

i (y)).

Also, τ ′i is non-decreasing being the derivative of convex function which gives 1/τ ′i(τ−1
i (x))

is non-increasing and χ|τi(ai,bi)(x) is also non-increasing since τi(ai) = 0. The product of

non-increasing functions is non-increasing, thus Pτf(x) is non-increasing.

(2) For any 0 < x ≤ 1, we have

∥f∥1 =
∫ 1

0

f(x)dm(x) ≥
∫ x

0

f(x)dm(x) ≥ x · f(x).

(3) Case I: Let a1 = 0 be a limit point of partition endpoints ai. Since Pτf is non-increasing,

∥Pτf∥∞ ≤ Pτf(0), and we have

Pτf(0) =
∑
i≥1

f(τ−1
i (0))

τ ′i(τ
−1
i (0))

=
∑
i≥1

f(τ−1
i (τi(ai))

τ ′i(τ
−1
i (τ(ai))

=
∑
i≥1

f(ai)

τ ′i(ai)
,
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Figure 2. Illustration for the proof of part(2) of Proposition 2.3.

≤
∑
i:ai<r

f(ai)

τ ′i(ai)
+
∑
i:ai>r

f(ai)

τ ′i(ai)
≤ α · ∥f∥∞ +

∑
i:ai>r

f(ai)

τ ′i(ai)
,

≤ α · ∥f∥∞ +
∑
i:ai>r

1

ai · τ ′i(ai)
· ∥f∥1.

For this case we define D as D =
∑
i:ai>r

1

ai · τ ′i(ai)
.

Case II: Let a1 = 0 be not a limit point of partition endpoints ai. Again, since Pτf is

non-increasing, ∥Pτf∥∞ ≤ Pτf(0), and we have

Pτf(0) =
∑
i≥1

f(τ−1
i (0))

τ ′i(τ
−1
i (0))

=
∑
i≥1

f(τ−1
i (τi(ai))

τ ′i(τ
−1
i (τ(ai))

=
∑
i≥1

f(ai)

τ ′i(ai)
,

=
f(a1)

τ ′1(a1)
+
∑
i≥2

f(ai)

τ ′i(ai)
≤ f(0)

τ ′1(0)
+
∑
i≥2

1

ai · τ ′i(ai)
· ∥f∥1,

≤ α · ∥f∥∞ +D · ∥f∥1.

For this case we define D as =
∑
i≥2

1

ai · τ ′i(ai)
. □

Let P(n) = P
∨

τ−1(P)
∨

· · ·
∨

τn−1(P). We denote the branches of τn by τ
(n)
i . Then,

P(n) =
{
I
(n)
i =

(
a
(n)
i , b

(n)
i

)}∞

i=1
is a countably infinite family of open disjoint subintervals of I

corresponding to τn. We have the following results:

Theorem 2.4. Let P be a partition for τ and P(n) denote the partition for τn. If τ ∈ T then

τn ∈ T as well, i.e. ,
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(a) If τ ∈ T then τn is piecewise increasing on P(n).

(b) τn is piecewise convex on P(n).

(c) τn is piecewise differentiable on P(n).

(d) lim
x→

(
a
(n)
i

)+ τ
(n)
i (x) = 0 for τn on P(n).

(e)The condition (2) holds for τn. i.e.,∑
i≥1

1(
τ
(n)
i

)′ (
a
(n)
i

) < +∞.

(f) If x = 0 is not a limit point of the partition points and condition (3) holds for τ then it holds

for τn.

Proof. Proofs of (a), (b) and (c) are simple, since τ is piecewise increasing, convex and

differentiable on P and we know the composition of increasing, convex and differentiable

functions is also increasing, convex and differentiable. Hence (a), (b) and (c) hold for τn on P(n).

To prove (d) we will use induction. From (1) we have, when x approaches ai from the right hand

side limx→a+i
τi(x) = 0. We consider for n = 2 one branch of τ 2. The branch τ

(2)
k = τj ◦ τi is

defined on Ii,j = Ii ∩ τ−1
i (Ij) = τ−1

i (Ij). Since the left endpoint of τi(Ii) is 0, if the interval

τ−1
i (Ij) is not empty then it contains τ−1

i (aj) = a
(2)
k -the left endpoint of I(2)k .

We have,

lim
x→a

(2)+
k

(τj ◦ τi)(x) = τj

(
τi

(
a
(2)
k

))
= τj(τi(τ

−1
i (aj))) = τj(aj) = 0.

Now, we use induction. We assume that the result holds for τn. The map τn has infinitely many

branches and on each branch, it satisfies the property, (d) i.e.,

lim
x→a

(n)+
i

τ
(n)
i (x) = 0.

For n+ 1, if we consider a kth branch of τn+1, τ (n+1)
k = τj ◦ τ (n)i . We have,

a
(n+1)
k =

(
τ
(n)
i

)−1

(aj).

and

lim
x→a

(n+1)+

k

τj

(
τ
(n)
i (x)

)
= τj

(
τ
(n)
i

(
a
(n+1)
k

))
= τj

(
τ
(n)
i

((
τ
(n)
i

)−1

(aj)

))
= τj(aj) = 0.

(e) A branch of τ 2 is τj(τi) defined on Ii,j = Ii ∩ τ−1
i (Ij) = τ−1

i (Ij). Let us assume
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i≥1

1

τ ′i(ai)
= K. Then,

∑
j≥1

∑
i≥1

1

(τj ◦ τi)′(ai)
=
∑
j≥1

∑
i≥1

1

τ ′j(τi(ai))τ
′
i(ai)

.

≤
∑
j≥1

∑
i≥1

1

τ ′j(aj)τ
′
i(ai)

≤
∑
j≥1

1

τ ′j(aj)

∑
i≥1

1

τ ′i(ai)
= K ·K < +∞.

By induction the result holds for any n.

(f) Let a1 = 0 be not a limit point of partition endpoints ai. Then, τ ′(0) = 1
α

> 1 and

(τn)′(0) = 1
αn > 1. □

Lemma 2.5. Let τ : [0, 1] → [0, 1] satisfies the condition (1)-(3). Then, the set S =
∞⋃
n=0

τ−n({a1, b1, a2, b2, ...ai, bi...}) is dense in [0, 1].

Proof. Case I: We assume a1 = 0 is not a limit point of the partition endpoints. Let

S =
∞⋃
n=0

τ−n({a1, b1, a2, b2, ...ai, bi...}).

We want to prove that S is dense in [0, 1]. Let’s assume that it is not true. Then, there exists an

interval [x0, y0] ⊂ [0, 1] such that,

τn([x0, y0]) ∩ {a1, b1, a2, b2, ...ai, bi, ...} = ϕ for all n = 0, 1, 2, 3....

Therefore for each n, the points xn = τn(x0) and yn = τn(y0) belong to the same interval (ai, bi).

Let xn, yn ∈ (ak, bk) and xn < yn, k = 1, 2, 3.... For τk defined on (ak, bk), k = 1, 2, 3..., see

Figure 3 for k = 1 and Figure 4 for k > 1, we have,

tan(θ1) =
τk(xn)

xn

and tan(θ2) =
τk(yn)

yn
.

Since τk is increasing on (ak, bk) we have,

(2) tan(θ2) ≥ tan(θ1) =⇒ τk(yn)

yn
≥ τk(xn)

xn

=⇒ τk(yn)

τk(xn)
≥ yn

xn

.

or,
xn+1

yn+1

=
τk(xn)

τk(yn)
≤ xn

yn
.

Since this holds for k = 1, 2, 3... we obtain for all n ≥ 1,

(3)
xn+1

yn+1

≤ xn

yn
≤ ... ≤ x0

y0
.
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a1 = 0 xn yn b1

τ1(xn)

τ1(yn)

θ1 θ2 x

1

Figure 3. When 0 is not a limit point of the partition points and k = 1.

0 ak xn yn bk

τk(xn)

τk(yn)

θ1 θ2 x

1

Figure 4. When 0 is not a limit point of the partition points and k > 1.

For k > 1, see Figure 5, we have,

tan(θ1) =
τk(xn)

xn − b1xn

and tan(θ2) =
τk(yn)

yn − b1xn

.
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b1xn b1 ak xn yn bk

τk(xn)

τk(yn)

θ1 θ2 x

1

Figure 5. When 0 is the limit point of the partition points.

Since τk is increasing on (ak, bk) we have,

tan(θ2) ≥ tan(θ1) =⇒ τk(yn)

yn − b1xn

≥ τk(xn)

xn − b1xn

,

or
τk(yn)

τk(xn)
≥ yn − b1xn

xn − b1xn

=
yn

(
1− b1

xn

yn

)
xn(1− b1)

.

By (3) we obtain,
1− b1

xn

yn

1− b1
≥

1− b1
x0

y0

1− b1
.

Thus, for xn, yn ∈ (ak, bk) with k > 1, we obtain

(4)
yn+1

xn+1

≥ q
yn
xn

,

where q =
(
1− b1x0/y0

1− b1

)
> 1.

Since τ ′1(x) ≥ τ ′1(0) > 1, the interval (xn, yn) is stretched by τ1 as long as it stays in (a1, b1). Thus,

it has to go above b1 after a finite number of steps. Equation (4) implies that limn→∞
yn
xn

= ∞.

Since lim supn xn ≥ b1 we have lim supn yn = ∞, which is impossible as it contradicts the fact

that yn remain bounded within [0, 1].

Case II: If 0 is the limit point of the partition points, the point 0 is not a left end of any interval

(ai, bi). We choose an interval (aj, bj) such that bj < r. Then τ ′(x) > 1 for all x < bj , where
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τ ′(x) is not defined we use τ ′+(x). Again, we will show that the set

S =
∞⋃
n=0

τ−n({a1, b1, a2, b2, ...ai, bi...}),

is dense in [0, 1]. Suppose it’s not true. Then there exist an interval [x0, y0] ⊂ [0, 1] such that

τn([x0, y0]) ∩ {a1, b1, a2, b2, ...ai, bi, ...} = ϕ for all n = 0, 1, 2, 3...

This means that for each n the points xn = τn(x0) and yn = τn(y0) belong to the same interval

(ai, bi), i = 1, 2, 3.... . For any xn, yn ∈ (ak, bk), k = 1, 2, 3..., using Figure 4, we obtain

(5)
yn+1

xn+1

=
τk(yn)

τk(xn)
≥ yn

xn

.

Thus, the formula (3) is valid also in this case.

Now, let xn, yn ∈ (ak, bk) with ak > bj , i.e., the interval (ak, bk) is on the right hand side of the

interval (aj, bj). Using Figure 5 with a1, b1 replaced by aj and bj , correspondingly, we obtain

τk(yn)

τk(xn)
≥ yn − bjxn

xn − bjxn

=
yn

(
1− bj

xn

yn

)
xn(1− bj)

.

Similarly as Case I for xn, yn ∈ (ak, bk) with bj < ak, we obtain

(6)
yn+1

xn+1

≥ q · yn
xn

,

where q =
(
1− bjx0/y0

1− bj

)
> 1.

Since τ ′(x) ≥ 1/α > 1 for all x ≤ bj , the subsequent images of any interval (xn, yn) ⊂ (0, bj)

get larger and larger as long as they stay in (0, bj). At the same time, the points xn+i, yn+i

are never separated by the points of the partition. Thus, after a finite number of steps interval

(xn, yn) moves to the right of the interval (0, bj). Thus, for infinitely many n′s we have

xn, yn > bj and according to (6), lim
n

yn
xn

= ∞. Also, as we know lim supn xn ≥ bj and we

obtain lim supn yn = ∞, which is impossible. Hence S is dense in [0, 1].

□

Lemma 2.6. There exist a natural number n0 such that for n > n0, inf(τn)′ ≥ γ, for some

γ > 1.

Proof. Recall, that P(n) =
{
Ii =

(
a
(n)
i , b

(n)
i

)}∞

i=1
is a partition corresponding to τn, and the

branch of τn defined on the interval
(
a
(n)
i , b

(n)
i

)
is τ (n)i . We also know that τn satisfies conditions
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a
(n)
i τ

(n)−1

i (b1)b
(n)
i

τ
(n)
i

b1

⊂ An ⊂ Bn

x

1

Figure 6. nth iterate of τ on Ii.

(1)-(3) with respect to the partition P(n). Consider the set,

S =
∞⋃
n=0

τ−n({a1, b1, a2, b2, ...ai, bi...}).

In Lemma 2.5 we proved that S is dense in [0, 1]. We consider two cases.

Case I: a1 = 0 is not a limit point of partition endpoints ai. Since S̄ = [0, 1], then there exist

n̄ ∈ N such that for any n > n̄,

(7) max
i

(
b
(n)
i − a

(n)
i

)
< η =

b1
2
inf(τ ′).

Note that, this condition ensures that the length of the longest interval in the partition of I for the

nth iterate of τ must be less than η.

Let n > n̄. Define,

An = τ−n(a1, b1) =
∞⋃
i=1

(τni )
−1((a1, b1)),

and Bn = [0, 1] \ An. We have

(8) τn(x) < b1 if x ∈ An,

and

(9) τn(x) ≥ b1 if x ∈ Bn.

The map τn is increasing on each interval
(
a
(n)
i , b

(n)
i

)
and

(
τ
(n)
i

)′
represents the rate of change

of τn on this interval. By (7), we know that the length of this interval is less than η. Then,
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the length of the interval
(
a
(n)
i ,
(
τ
(n)
i

)−1

(b1)

)
is also less than η. Therefore,

(
τ
(n)
i

)′
must be

sufficiently large to ensure that τn increases by at least b1 over an interval of length less than η

which gives, (
τ
(n)
i

)′
(x) ≥ b1

η
,

for some x ∈
(
a
(n)
i ,
(
τ
(n)
i

)−1

(b1)

)
= An ∩

(
a
(n)
i , b

(n)
i

)
. Since

(
τ
(n)
i

)′
is increasing, we have

the same inequality for all x ∈ Bn ∩
(
a
(n)
i , b

(n)
i

)
. Hence by (7),

(10)

(
τ ◦ τ (n)i

)′
(x) = τ ′

(
τ
(n)
i (x)

)
·
(
τ
(n)
i

)′
(x) ,

≥ b1
η
inf(τ ′) ≥ 2,

Whenever x ∈ Bn, i = 1, 2, 3.... . For x ∈ An we have,

(11)

(
τ ◦ τ (n)i

)′
(x) = τ ′

(
τ
(n)
i (x)

)
·
(
τ
(n)
i

)′
(x) ≥ τ ′(0)

(
τ
(n)
i

)′ (
a
(n)
i

)
,

≥ τ ′(0) inf(τn)′,

Inequalities (10) and (11) give us,

inf
(
τn+1

)′ ≥ min (2, τ ′(0) inf(τn)′) ,

and consequently, by induction we have

inf(τn)′ ≥ min(2, [τ ′(0)]n−n̄ inf(τ n̄)′),

For n > n̄. This implies that for sufficiently large n we have inf(τn)′ ≥ γ.

Case II: a1 = 0 is a limit point of partition endpoints ai. We choose an interval (aj, bj) such

that bj < r. Since S is dense in [0, 1], then there exist n̄ ∈ N such that for any n > n̄,

(12) max
i

(
b
(n)
i − a

(n)
i

)
< η =

bj
2
inf(τ ′).

Let n > n̄. Define,

An = τ−n(0, bj) =
∞⋃
i=1

(τni )
−1 ((0, bj)) ,

and Bn = [0, 1] \ An. We have

(13) τn(x) < bj if x ∈ An,
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and

(14) τn(x) ≥ bj if x ∈ Bn.

Note that for x ∈ An we have τ ′(τn(x)) ≥ 1
α
> 1. The map τn is increasing on each interval(

a
(n)
i , b

(n)
i

)
and

(
τ
(n)
i

)′
represents the rate of change of τn on this interval. By (12), we know that

the length of this interval is less than η. Then, the length of the interval
(
a
(n)
i ,
(
τ
(n)
i

)−1

(bj)

)
is

also less than η. Therefore,
(
τ
(n)
i

)′
must be sufficiently large to ensure that τn increases by at

least bj over an interval of length less than η which gives,(
τ
(n)
i

)′
(x) ≥ bj

η
,

for some x ∈
(
a
(n)
i ,
(
τ
(n)
i

)−1

(bj)

)
= An ∩

(
a
(n)
i , b

(n)
i

)
. Since

(
τ
(n)
i

)′
is increasing, we have

the same inequality for all x ∈ Bn ∩
(
a
(n)
i , b

(n)
i

)
. Hence by (12),

(15)

(
τ ◦ τ (n)i

)′
(x) = τ ′

(
τ
(n)
i (x)

)
·
(
τ
(n)
i

)′
(x),

≥ bj
η
inf (τ ′) ≥ 2,

Whenever x ∈ Bn, i = 1, 2, 3.... . For x ∈ An we have,

(16)

(
τ ◦ τ (n)i

)′
(x) = τ ′

(
τ
(n)
i (x)

)
·
(
τ
(n)
i

)′
(x) ≥ 1

α
·
(
τ
(n)
i

)′ (
a
(n)
i

)
,

≥ 1

α
· inf(τn)′,

Inequalities (15) and (16) give us,

inf
(
τn+1

)′ ≥ min

(
2,

inf(τn)′

α

)
,

and consequently, by induction we have

inf(τn)′ ≥ min

(
2,

(
1

α

)n−n̄

inf (τ n̄)
′

)
,

For n > n̄. This implies that for sufficiently large n we have inf(τn)′ ≥ γ.

□

3. Piecewise expanding map with countable number of branches

Definition 3.1. Let I = [0, 1] and let P = {Ii = (ai, bi)}∞i=1 be a countably infinite family of

open disjoint subintervals of I such that Lebesgue measure of I \
⋃

i≥1 Ii is zero. Let τ be a



14 PAWEŁ GÓRA AND APARNA RAJPUT

map from ∪i≥1Ii to the interval I , such that for each i ≥ 1, τ|Ii extends to a homeomorphism τi

of [ai, bi] onto its image.

Let

g(x) =


1

|τ ′i(x)|
, for x ∈ Ii, i = 1, 2, . . .

0, elsewhere
.

We assume supx∈I |g(x)| ≤ β < 1. Then, we say τ is a piecewise expanding map with countably

many branches and denote this class by TE .

Lemma 3.2. If τ ∈ T in the sense of Definition 2.1, then some iterate of τn ∈ TE in the sense of

Definition 3.1.

Proof. Proof of this lemma is a direct consequence of Lemma 2.6 and the condition (2) of

Definition 2.1. □

A piecewise expanding map τ is non-singular and the Frobenious-Perron operator correspond-

ing to τ is,

(17) Pτf(x) =
∞∑
i=1

f
(
τ−1
i (x)

)∣∣τ ′ (τ−1
i (x)

)∣∣χτ(Ii)(x) =
∑

y∈τ−1(x)

f(y)g(y).

Given f : I → R we define variation of f on a subset J of I by

VJ(f) = sup{
k∑

i=1

|f(xi)− f(xi−1)|}.

where the supremum is taken over all sequence (x1, x2, ...xk), x1 ≤ x2 ≤ ... ≤ xk, xi ∈ J . We

need a variation v(f) for f ∈ L1
m, the set of all equivalence classes of real-valued, m-integrable

functions on I .

Let BV = {f ∈ L1
m : v(f) < +∞}, where v(f) = inf{VIf

∗ : f ∗ is a version of f}. We define

for f ∈ BV ,

∥f∥v =
∫

|f |dm+ v(f).

BV is a Banach space with norm ∥.∥v.

Note : Every f ∈ BV has a version f ∗ with minimal variation. This holds iff for every x0 ∈ I ,

f ∗(x0) ∈ [ lim
x→x−

0

f ∗, lim
x→x+

0

f ∗],

One-sided limit always exists for f ∗. In particular, we choose f ∗ which is right-hand side

continuous.
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Proposition 3.3. For every f ∈ BV we have,

(18) VIPτnf ≤ An · VIf +Bn · ∥f∥1,

where An = ∥gn∥∞ +maxK∈Q VKgn < 1, for n sufficiently large, and Bn =
maxK∈Q VKgn

m(K)
.

Proof. We follow [19]. For f ∈ BV we have,

(19) P n
τ f(x) =

∑
y∈τ−n(x)

f(y) · gn(y),

where,

gn =


1

|(τn)′| , on ∪J∈P(n) J

0, elsewhere
.

Let P(n) be a partition of I corresponding to τn. Then,

Pτnf =
∑

J∈P(n)

Pτn(f · χJ),

which gives,

VIPτnf ≤
∑

J∈P(n)

VIPτn(f · χJ).

We notice that for J ∈ P(n) we have,

Pτn(f · χJ) ◦ τnJ (x) =
∑

J∈P(n)

f(τ−n
J (τnJ (x))) · gn(τ−n

J (τnJ (x))) · χJ(τ
−n
J (τnJ (x)))

= f(x) · gn(x) · χJ(x),

since τn|J is monotonic. We have,

VIPτn(f · χJ) = VI(f · gn · χJ) = VJ(f · gn).

Taking summation on both sides we get,∑
J∈P(n)

VIPτn(f · χJ) =
∑

J∈P(n)

VJ(f · gn) = VI(f · gn).

Let Q be a finite partition of I . Then we know,

(20) VI(f · gn) =
∑
K∈Q

VK(f · gn),
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and

(21) VK(f · gn) ≤ VKf · ∥gn∥∞ + ∥f · χK∥∞ · VKg,

(22) ∥f · χK∥∞ ≤ 1

m(K)

∣∣∣∣∫
K

fdm

∣∣∣∣+ VKf.

Using (21) and (22) in (20) we get,

(23)

VI (f · gn) ≤
∑
K∈Q

(
VKf · ∥gn∥∞ +

1

m(K)

∣∣∣∣∫
K

fdm

∣∣∣∣ · VKgn + VKf · VKgn

)
,

≤ VIf · ∥gn∥∞ +
maxK∈Q VKgn

m(K)
· ∥f∥1 +max

K∈Q
VKgn · VIf,

=

(
∥gn∥∞ +max

K∈Q
VKgn

)
VIf +

maxK∈Q VKgn
m(K)

· ∥f∥1.

We know from Richlik’s paper [19], that for every ϵ > 0 there exist a finite partition say Q such

that

max
K∈Q

VJg ≤ ∥g∥∞ + ϵ.

The result will still be true if we replace ∥g∥∞ < 1 by ∥gn∥∞ < 1 for some n ≥ 1. For 0 < ϵ < 1

we can find n ≥ 1 such that 2 · ∥gn∥∞ + ϵ < 1. Hence,

∥gn∥∞ +max
K∈Q

VKgn ≤ 2 · ∥gn∥∞ + ϵ < 1.

Finally we have,

VIPτnf ≤ VI(f · gn) ≤ An · VIf +Bn · ∥f∥1,

where An =

(
∥gn∥∞ +maxK∈Q VKgn)

)
< 1 and Bn =

maxK∈Q VKgn
m(K)

. □

Lemma 3.4. (1) For every c > 0, the set F = {f ∈ L1
m : ∥f∥v ≤ c} is compact in L1

m.

(2) (BV, ∥.∥v) is a Banach space.

(3) BV is dense in L1
m.

Proof. This is proved in Keller’s paper [14]. □

Corollary 3.5. If τ is piecewise convex then for some n > 1 and f ∈ BV , we have

∥Pτnf∥v ≤ r · ∥f∥v + C · ∥f∥1,

where r ∈ (0, 1) and C > 0.
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Proof. We know for f ∈ BV ,

∥f∥v =
∫

|f |dm+ v(f) = ∥f∥1 + v(f).

So,

(24) ∥Pτnf∥v = ∥Pτnf∥1 + v(Pτnf) ≤ ∥f∥1 + v(Pτnf).

Since f ∗ is a version of f ∈ L1
m, for ϵ > 0, Proposition 3.3 holds for f ∗ as well. Hence,

VIPτnf
∗ ≤ An · VIf

∗ +Bn · ∥f ∗∥1,

and

VIf
∗ ≤ v(f) + ϵ.

Since Pτnf
∗ is a version of Pτnf we have,

v(Pτnf) ≤ VI(Pτnf
∗) ≤ An · VIf

∗ +Bn · ∥f ∗∥1,

≤ An(v(f) + ϵ) +Bn · ∥f∥1.

From (24) we get,

∥Pτnf∥v ≤ ∥f∥1 + An · v(f) +Bn · ∥f∥1 + An · ϵ,

≤ An · ∥f∥v + (1 +Bn)∥f∥1 + An · ϵ,

since ϵ > 0 is arbitrary, by choosing r = An and 1 +Bn = C, we get the desired result. □

The properties of the operator Pτn and of the space BV which we proved in (3.3),(3.4) and

(3.5) allow us to use an ergodic theorem of Ionescu-Tulcea and Marinescu [7].

Theorem 3.6. Let (X, ∥.∥X) be a Banach space which is a linear subspace of (Y, ∥.∥Y ) such

that if fn ∈ X , ∥fn∥X ≤ K is such that fn → f in Y =⇒ f ∈ X and ∥f∥X ≤ K. Let C(X)

be the class of bounded linear operators with image in X satisfies the following conditions: (1)

There exists H > 0 such that ∥P n∥X < H,∀n ∈ N.

(2) There exists two positive constants 0 < r < 1 and R > 0 such that,

∥Pf∥X ≤ r · ∥f∥X +R · ∥f∥Y ,

whenever f ∈ X .

(3) P (B) is compact in Y for every bounded B ∈ (X, ∥.∥X).

Then every P ∈ C(X) has a finite number of eigenvalues {c1, c2, c3...cp} of modulus 1 with finite
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dimensional eigenspaces {E1, E2, ...Ep}, and

P n =

p∑
i=1

cni Pi + Sn,

where, if {Ψi}i=1,2,..,p,Ψ0 are projections relative to the splitting,

X =

p⊕
i=1

Ei ⊕ E0,

Pi = P ◦Ψi and ∥Sn∥X = O(qn) for some q ∈ (0, 1).

Above theorem helps us to understand the behaviour of Pτ . For the conclusion of the theorem

to hold it is enough that some iterate of P satisfies conditions (1) − (3). The spaces BV =

X,L1
m = Y and operator Pτ = P satisfy the assumptions of Ionescu-Tulcea and Marinescu [7].

Hofbauer and Keller [4, 14] were the first to use this theorem for proving the quasi-compactness

of Pτ and the existence of ACIM for τ . Before we use Theorem 3.6, we prove exactness of τ

with ACIM.

Lemma 3.7. Let τ : [0, 1] → [0, 1] satisfies Definition 2.1. Then there exists the unique

normalized absolutely continuous τ invariant measure µ. The dynamical system ([0, 1],B, µ; τ)

is exact and the density h =
dµ

dx
is bounded and decreasing.

Proof. We follow [16] closely. The proof is based on Theorem 2 of [16], which states that the

existence of a lower function is sufficient for the existence of ACIM and the exactness of the

system. The map τ satisfies conditions (1), (2) and (3) of Definition 2.1. We have proved in

Lemma 2.5 that S is dense in [0, 1]. Let 1∆ be the characteristic function of an interval

∆ = [d0, d1] whose end points belong to the set S. We claim that for sufficiently large n, P n
τ 1∆

is a decreasing function. We have proved that any iteration of τ satisfies the properties (1), (2)

and (3) of Definition 2.1, in particular, we have proved that τ (n)i is piecewise convex on

I
(n)
i =

(
a
(n)
i , b

(n)
i

)
an element the partition P(n) corresponding to τn and τn

(
a
(n)
i

)
= 0. This

implies that [χ|
(
a
(n)
i ,b

(n)
i

) · gn]
(
τ
(n)
i

)−1

(x) · χ|τ (n)
i

(
a
(n)
i ,b

(n)
i

)(x), is a non-increasing function on

[0, 1], since gn is non-increasing as the reciprocal of the derivative of a convex function. We can

see that,

{
a
(n)
1 , b

(n)
1 , a

(n)
2 , b

(n)
2 , .....a

(n)
i , b

(n)
i ....

}
= τ−n+1 {a1, b1, a2, b2, ....ai, bi, ...} .

Because by the definition of the points a(n)i , b
(n)
i they are the preimages of the original partition

points. This shows that every next partition is a partition of the previous one, i.e., they are finer

and finer. Since d1, d2 ∈ S there is an integer n0 sufficiently large such that di belongs to the
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partition
{
a
(n)
1 , b

(n)
1 , a

(n)
2 , b

(n)
2 , .....a

(n)
i , b

(n)
i ...

}
for n ≥ n0. The Frobenius-Perron operator for

τn is
P n
τ f(x) =

∑
y∈τ−n(x)

f(y)gn(y).

In particular, for f = 1∆ and n ≥ n0 we have,

P n
τ 1∆(x) =

∑
y∈τ−n(x)

gn(y) · χ
τn
(
I
(n)
i

)(y).
Since τn

(
I
(n)
i

)
is of the form

(
0, τn

(
b
(n)
i

))
, P n

τ 1∆ is non-increasing as a sum of

non-increasing functions. Now, let D0 be a subset of L1
m consisting of all functions of the form

f(x) =
∞∑
i=1

ci1∆i
, ci ≥ 0,

where the endpoints of the intervals ∆i belong to S. Since S is dense in [0, 1], the set D0 is

dense in L1
m. Now, we construct a lower function for Pτ . Let f ∈ D0. There exists n0 = n0(f)

such that P n
τ f is non-increasing for n ≥ n0. By part (2) of Proposition 2.3 for any τ ∈ T , Pτ

preserves the cone of non-increasing functions [2]. In particular we have P n
τ f(x) ≤ 1/x for

n ≥ n0. Now, using this estimate and Proposition 2.3 we get,

P n+1
τ f(0) = Pτ (P

n
τ f(0)) ≤ α · P n

τ f(0) +D.

where α < 1 and D are defined as in Proposition 2.3 for both cases. Using an induction

argument we get,

P n+n0
τ f(0) ≤ αn · P n0

τ f(0) +
D

1− α
.

Let K = 1 + D
1−α

. For sufficiently large n, say n ≥ n1, We have P n
τ f(0) ≤ K.

Define h = 1
2
1[0,1/(2K)]. We will prove,

P n
τ f(x) ≥ h(x) for n ≥ n1.

By contradiction, if there exist x0 ∈ [0, 1/(2K)] such that P n
τ f(x0) < h(x0) =

1
2

then,

1 =

∫ x0

0

P n
τ fdx+

∫ 1

x0

P n
τ fdx < x0P

n
τ f(0) + (1− x0)P

n
τ f(x0) ≤

1

2K
·K +

1

2
= 1,

Which is not possible. Hence P n
τ f(x) ≥ h(x) for n ≥ n1. □

Lemma 3.7 implies that the only eigenvalue of Pτ of modulus 1 is 1 and that it’s eigenspace is

one dimensional. With Theorem 3.6 this gives the following :
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Theorem 3.8. For a piecewise convex map τ with countable number of branches, it’s

Frobenius-Perron operator Pτ is quasi-compact on the space BV . More precisely, we have

(1) Pτ : L1
m → L1

m has 1 as the only eigenvalue of modulus 1.

(2) Set E1 = {f ∈ L1
m | Pτf = f} ⊆ BV and E1 is one dimensional.

(3) Pτ = Ψ+Q, where Ψ represents the projection on eigenspace E1, ∥Ψ∥1 ≤ 1 and Q is a

linear operator on L1
m with Q(BV ) ⊆ BV , sup

n∈N
∥Qn∥1 < ∞ and Q ·Ψ = 0.

(4) Q(BV ) ⊂ BV and, considered as a linear operator on (BV, ∥.∥v), Q satisfies

∥Qn∥v ≤ H · qn (n ≥ 1) for some constants H > 0 and 0 < q < 1.

Proof. The results 1 to 4 are direct consequences of Ionescu-Tulcea and Marinescu ergodic

Theorem [7] and Lemma 3.7. □

Quasi-compactnes of Pτ implies several important ergodic properties for the system (τ, µ) such

as exponential decay of correlation, Central Limit Theorem and many other problestic

consequences, see [4, 14].

• Weak Mixing: Since 1 is the only eigenvalue of Pτ with modulus 1 and the

corresponding eigenspace is one-dimensional, the system (τ, µ) does not have any

non-trivial periodic components. This implies that (τ, µ) is weakly mixing and has

several important statistical and ergodic properties, including:

• Exponential Decay of Correlations: For functions of bounded variation, the

correlation function decays exponentially fast. This means that for any two observables

f, g ∈ BV , there exist constants C > 0 and ρ < 1 such that:∣∣∣∣∫ f · (g ◦ τn) dµ−
∫

f dµ

∫
g dµ

∣∣∣∣ ≤ C∥f∥BV ∥g∥BV q
n.

• Central Limit Theorem: The system satisfies the Central Limit Theorem, meaning the

sum of observations (properly normalized) converges in distribution to a normal

distribution. Specifically, for a function f ∈ BV with
∫
fdµ = 0, the sequence of

partial sums Sn =
∑n−1

i=0 f ◦ τ i satisfies:

Sn√
n

d−→ N
(
0, σ2

)
,

where σ2 is the variance given by:

σ2 = lim
n→∞

1

n

∫
(Sn)

2 dµ.
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The CLT states that the normalized partial sums Sn√
n

converges in distribution to a

normal distribution N
(
0, σ2

)
as n → ∞.

• Almost Sure Invariance Principle (ASIP): Let τ ∈ T , let µ be its ACIM, and let

f ∈ BV be a real-valued function such that
∫
f dµ = 0. For some 1 ≤ s < ∞, define

the sequence of partial sums:

S(t) =
s∑

0≤n<t

f ◦ τn.

The variance σ2 is given by the absolutely convergent series:

σ2 =

∫
f 2dµ+ 2

∞∑
k=1

∫
f ·
(
f ◦ τ k

)
dµ.

Assume σ2 ̸= 0. Then the following holds:

(1) The integral of S(t)2 satisfies:∫
S(t)2dµ = t · σ2 +O(1).

(2) The normalized partial sums satisfy a central limit type approximation:

sup
z∈R

∣∣∣∣µ(S(t)

σ
√
t
≤ z

)
− 1√

2π

∫ z

−∞
e−x2/2 dx

∣∣∣∣ = O
(
t−θ
)
,

for some θ > 0.

(3) Without changing the distribution, one can redefine the process (S(t))t≥0 on a richer

probability space together with a standard Brownian motion (B(t))t≥0 such that:∣∣σ−1 · S(t)−B(t)
∣∣ = O

(
t−1/2

)
µ-almost everywhere.

The ASIP indicates that the process S(t) can be coupled with a standard Brownian

motion B(t) in such a way that their paths remain close almost surely, with an error

term that decays as t−1/2. This result leverages the mixing properties and the

structure of the Frobenius-Perron operator to establish a strong approximation.

• Other Probabilistic Properties: µ is the equilibrium state for log g on I , i.e.,

h(µ) +

∫
log gdµ = sup{h(ν) +

∫
log gdν| ν is a τ -invariant probability on I },

where h(ν) is the entropy of (τ, ν).
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Note 3.9. No result in this paper implies that the invariant measure is supported on the whole

interval [0, 1], even when map τ is onto. We can see this on the example of the map

τ(x) =


2x if x ∈ [0, 1/4);

2x− 1/2 if x ∈ [1/4, 1/2);

2x− 1 if x ∈ [1/2, 1].
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