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Abstract

Chaotic maps are deterministic yet asymptotically in time behave in a
statistical manner. In this note we present a chaotic dynamical model that is
consistent with observable quantum mechanics and succeeds in presenting a
physical process for superposition of wave functions, namely chaotic random
maps. In place of the wavefuction we shall use real chaotic maps as the
underlying mechanism for the observed probability density functions.

Let ψi(x, t), i = 1, 2 be two eigenfunctions of a quantum mechanical par-
ticle system. We associate with each ψi(x, t) a deterministic nonlinear point
transformation τ i(x) whose unique invariant probability density function is
the observed density ρi(x, t) = ψ∗

i (x, t)ψi(x, t). We consider the superposed
wavefunction ψ(x, t) = aψ1(x, t) + bψ2(x, t) and show that we can associate
with ψ(x, t), a random chaoitic map related to τ1(x)and τ2(x), whose in-
variant probability density function ft(x) is equal to ψ∗(x, t)ψ(x, t), where t
denotes time. This description allows for a physical interpretation of quan-
tum superposition. Numerical simulations of a two-slit experiment is done
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which show that the random map dynamics achieves the interference super-
position pattern very accurately.

Keywords: Wavefunctions, superposition, deterministic chaotic trans-
formations, position dependent random maps, two-slit experiment.

1. Introduction

Let ψ(x, t) be a wavefunction of a quantum particle system. The stochas-
tic mechanics of Nelson [2] shows that for a normalized solution ψ of the
time-dependent Schrödinger equation, there exists an associated diffusion
process satisfying the stochastic differential equation

dxt = at(xt)dt +
√

2νdwt, (1)

where the diffusion coefficient ν = ~/2m (~ is the Planck constant and m
the mass of the particle), and the forward drift coefficient is

at(x) =
~

m

[

Re

[∇ψ
ψ

]

+ Im

[∇ψ
ψ

]]

(2)

and the associated probability density function is

ρt(x) = ψ∗(x, t)ψ(x, t). (3)

We note, however, that the attempt to attribute meaning to a superposi-
tion of wavefunctions using stochastic differential equations fails [3, Section
4.8] as it amounts to merely defining a certain difussion to be the sum of
the diffusion processes associated with the two wavefunctions, but there is
no real identification of the superposed process with the individual ones. In
the random map approach described in the sequel we will make a clear and
reversible identification.

In Section 2 we present the notation and a review of our deterministic
description of quantum mechanics [1] using chaotic maps. In Section 3, we
review the motivation for our discrete time model for quantum mechanics.
In Section 4, we use a result from [5] to associate a position dependent ran-
dom map to the superposition of wavefunctions and identify the relationship
with the individual wavefunctions. This identification is reversible so that
given any random map that describes a superposed state, we can identify the
wavefunctions which would produce the superposed state using conventional
quantum mechanics. An example is worked in Section 5.
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2. Notation and Review

Let R = (-∞,∞) and let T : R → R possess a unique absolutely continu-
ous invariant measure µ which has the probability density function (pdf) f ,
that is

∫

A

fdx =

∫

T−1A

fdx

for any measurable set A ⊂ R. The Frobenius-Perron PT f operator acting
on the space of integrable functions is defined by

∫

T−1A

fdx =

∫

A

PT fdx.

The operator PT transforms probability density functions into probability
density functions under the transformation T , where T is assumed to be
nonsingular.

Let h : R → R be a diffeomorphism. Then τ = h ◦ T ◦ h−1 is a transfor-
mation from R into R which is said to be differentially conjugate to T and
whose probability density function is given by

k = (f ◦ h−1)· | (h−1)′ | (4)

Let the transformation T possess the probability density function f.
Suppose we are given a probability density function g on R , can we find
a transformation τ, derived from T, such that g is the unique probability
density function invariant under τ? The answer is yes. Using (4), we must
find h−1 such that

(f ◦ h−1) · (h−1)′ = g, (5)

where we have assumed, without loss of generality, that h−1 is an increasing
function on R. Now let

F (x) =

∫ x

−∞

f(y)dy

be the distribution function associated with f. Then, from (5) and the change
of variable formula, we have

F (h−1(x)) =

∫ x

−∞

g(y)dy.
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Since F is a monotonically increasing function, it has a unique inverse
and

h−1(x) = F−1

(
∫ x

−∞

g(y)dy

)

(6)

Thus, we have found h−1(x) and hence h(x) such that τ = h ◦ T ◦
h−1 has the unique probability density function g(x). Summarizing, given
any probability density function g(x), we have shown the existence of a point
transformation τ whose unique probability density function is g(x).

3. Chaotic Dynamical System Model for Quantum Mechanics

We make two general assumptions for our model:
1) Time is discrete, as implied by string theory and quantum loop gravity.

This, of course, implies that all continuous time theories such as quantum
mechanics and general relativity are at best only good approximations to a
discrete time reality.

2) Observables such as position and velocity are described by a probabil-
ity density function, such as is the case in quantum mechanics.In classical
mechanics and relativity theory, we can view the flows as point measures
rather than points, which may be approximations to pdfs with very narrow
support on R3.

Quantum mechanics formalism stipulates that the square of the wave-
function, ψ, is the observable pdf, f . In our model of the underlying process
for particle motion, we use a real chaotic map, τ , that generates f,via the
Birkhoff Ergodic Theorem. We postulate that the iteration time is of the
order of the Planck time, 10−44 seconds, while the observation time is of the
order of 10−10 seconds or more. The gap in these times allows for many iter-
ations on τ between observations and so, by the Birkhoff ErgodicTheorem,
can reveal the observable pdf.

Now let {τ1, τ 2,......,τK} be a collection of 1-dimensional maps and define a
random map to be a discrete-time dynamical system in which one of the maps
is randomly selected and applied at each iteration with constant probability
pk, .pk > 0,

∑K

k=1
pk = 1,.A measure µ on [0, 1] is called invariant under τ if

µ(A) =

K
∑

k=1

pkµ(τ−1

k A) (7)

for each measurable set A. In [4] it is shown that the following sufficient
condition is sufficient for the existence of an absolutely continuous invariant

4



measure for such a random map:

K
∑

k=1

pk

|τ ,
k|

≤ γ < 1 (8)

for some constant γ.
Although such dynamical systems have application in the study of fractals

[6] they are not rich enough for our purposes because they do not generate a
sufficiently large class of invariant densities. To enlarge the class of pdfs that
are attainable from random maps we allow the probabilities of selecting the
maps to be functions of position. The main result of [5] provides a sufficient
condition for the existence of an absolutely continuous invariant measure
for position dependent random maps. The pdf f(x) of this measure is the
solution of the equation:

K
∑

k=1

Pτk
(pk(x)f(x)) = f(x) (9)

where Pτk
is the Frobenius-Perron operator associated with τ k. If Γ =

{τ 1, . . . , τK} is a set of maps, we denote by AΓ the set of all attainable
densities, i.e., the set of densities f which satisfy (9), for all possible choices
of probability weight {p1(x), . . . , pK(x)}. We now state the result of [5] that
is needed in the sequel.

Proposition 1 If the set of maps Γ = {τ1, . . . , τK} contains the identity

map, then the set AΓ of attainable densities is equal to the set of all densities.

Proof. The identity map preserves any density.
We will use the following theorem from [5].

Theorem 2 Let {τ 1, . . . , τK} be a collection of maps. Let fk be an in-

variant density of τ k, k = 1, . . . , K. For any positive constants ak, k =
1, . . . , K, there exists a system of probability functions p1, . . . , pK such that

the density f = a1f1 + · · · + aKfK is invariant under the random map

T = {τ 1, . . . , τK ; p1, . . . , pK}. It is enough to set

pk =
akfk

a1f1 + · · · + aKfK

, k = 1, 2, . . . , K,

where we assume that 0/0 = 0.
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4. Superposition of Wavefunctions

Let ψ
1

and ψ
2

be two wavefunctions which are eigenstates of a quantum
particle system. By the foregoing method, we know there exist point trans-
formations τ 1and τ 2 whose invariant pdf’s are ψ∗

1
ψ1 and ψ∗

2
ψ2, respectively.

We consider the wavefunction ψ = aψ1 + bψ2, which is a superposition of
two eigenfunctions. Clearly ψ∗ψ is a probability density function which, in
general, is time dependent.

By Proposition 1, we know that ψ∗ψ can be realized at any time t as a
position dependent random map consisting of the three maps T = {τ 1,τ 2, Id;
p1(x), p2(x), 1− p1(x)− p2(x)}. We now ask: can this procedure be reversed.
That is, given pdf’s f1(x), f2(x), ft(x), can we find wavefunctions ψ

1
and ψ

2

such that f1 = ψ∗

1
ψ

1
, f2 = ψ∗

2
ψ

2
and ft(x) = (ψ

1
+ψ

2
)∗(ψ

1
+ψ

2
). The answer

is yes. Let ψ
1

=
√
f1e

is1t and ψ
2

=
√
f2e

is2t . Then

(ψ1 + ψ2)∗(ψ1 + ψ2) = f1 + f2 + 2
√

f1f2[cos(s1 − s2)t] = ft (10)

Since f1, f2 and ft are known, (s1 − s2) can be computed from (10). Thus,
we have determined ψ

1
and ψ

2
up to a constant phase.

5. Example: Two-slit experiment

Let us consider the two-slit experiment, with slit size .01 and slit centers
located at positions x = −1 and x = 1. We assume that the pdf’s at the slits
are Gaussian densities with variance .005 as shown in Figures 1a) and 1b),
that is,

f1(x) =
1

10
√
π

exp(−(x+ 1)2/100) ,

f2(x) =
1

10
√
π

exp(−(x− 1)2/100) ,
(11)

and their superposition is given by equation (24) of [7] which, for t = 1,
becomes

f(x) =
1

2 + exp(−1/100 − 100)

[

f1(x) + f2(x)

+
1

10
√
π

cos(2x) exp(−(x2 + 1)/100)
]

.

(12)

The random map we now construct consists of three maps, τ i, i = 1, 2,
constructed as in Section 2 which have pdfs f1 and f2, respectively, and the
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identity map τ 3(x) = x. We can view this random map as giving the particle
a choice of moving to the left (under the influence of the left slit), moving to
the right (under the influence of the right slit) or remaining in the same place,
as reflected in the identity map τ 3. If the iteration time is some multiple of
say the Planck time, then within an iteration time a particle can move left
and right a number of times and still at the iteration time end up close to
its original position.

It can be easily shown that if we set a1 = a2 = 0.1, a3 = 0.8, then

f3(x) =
1

a3

[

f(x) − f1(x) − f2(x)
]

,

is a density and the superposition density can be written as

f = a1f1 + a2f2 + a3f3.

They are shown in Figures 1 and 2. Figure 1 shows f1 in part a) and f2 in
b). Figure 2 shows f in a) and f3 in b).

Figure 1: a) shows density f1, b) shows density f2.

According to Theorem 2 we construct the probabilities

pi(x) =
aifi(x)

f(x)
, i = 1, 2, 3 .

They are shown in Figure 3.
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Figure 2: a) shows density f , b) shows density f3 .

Using the ”recipe” from Section 2 we construct maps τ 1 and τ 2 corre-
sponding to the densities f1 and f2. We have

h−1

1
(x) =

∫ x

−∞

f1(t)dt =
1

2
+

1

2
erf(

1

10
x+

1

10
)

and

h−1

2
(x) =

∫ x

−∞

f2(t)dt =
1

2
+

1

2
erf(

1

10
x− 1

10
) ,

where

erf(x) =
2√
π

∫ x

0

exp(−t2)dt .

We define τ i = hi ◦ T ◦ h−1

i , i = 1, 2, where T (x) = 1− 2|x− 1/2| is the tent
map. We used τ 3(x) = x as the third map. Figure 4 shows the maps τ 1 (left)
and τ 2 (right) in part a) and in part b) the results of numerical simulation
of 2,000,000 iterations of random map {τ 1, τ2, τ 3; p1, p2, p3}.

6. Observations:

1) In the foregoing model of the 2-slit experiment we are not compelled
to say that the particle goes through both slits. Rather, we say that the
particle is a particle and passes through one slit or the other. But between
the slit screen and the detecting screen the particles motion is governed by the
spacetime geometry determined by the physical structure of the experiment
(size of 2 open slits, their separation and distance between slit screen and
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Figure 3: The position dependent probabilities p1, p2, p3.

detecting screen) and which is described mathematically by the weighting
probabilities for the 2 maps in the random map. From this perspective
spacetime in the quantum setting is a complex structure which can only be
described probabilistically.

2) The random transformation model for quantum mechanics lends itself
to an interpretation of nonlocality since a jump from one transformation to
another is a discontinuous effect that can propel a quantum particle across
the universe in the time span of one iteration of the process.

3) Since the map τ i is piecewise onto all of the real line, a few, iterations
amounts to a very small duration of time, but the particle orbit may traverse
a large part of R. Also, the switching from one map to another can cause
the particle to be pushed far out. This process, iterating at the Planck time,
may explain nonlocality since the particle may appear to be in two distant
locations at once during the observation of time which is many times as large
as the Planck time, and hence during such an observation the particle may
have the time to travel back and forth between the two positions numerous
times, at (finite) speeds far greater than that of light.

4) The choice of the maps τ i may not be unique. However this would
not change the foregoing theory since all we need is a dynamical mechanism
that generates the desired pdfs. How fast or slow this is accomplished is not
important since the physical process is assumed to be iterated at a very small
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Figure 4: a) maps τ 1 and τ 2 b) results of numerical simulation.

time.
5) The maps, which are real observable transformations, have taken on

the role of the complex wave function which on its own does not have a
satisfactory physical interpretation.
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