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Abstract. Let I = [0, 1] and let P be a partition of I into a finite number
of intervals. Let τ1, τ2; I → I be two piecewise expanding maps on P. Let G

⊂ I × I be the region between the boundaries of the graphs of τ1 and τ2. Any
map τ : I → I that takes values in G is called a selection of the multivalued map

defined by G. There are many results devoted to the study of the existence of
selections with specified topological properties. However, there are no results

concerning the existence of selection with measure-theoretic properties. In this
paper we prove the existence of selections which have absolutely continuous

invariant measures (acim). By our assumptions we know that τ1 and τ2 possess

acims preserving the distribution functions F (1) and F (2). The main result
shows that for any convex combination F of F (1) and F (2) we can find a map

η with values between the graphs of τ1 and τ2 (that is, a selection) such that
F is the η-invariant distribution function. Examples are presented. We also

study the relationship of the dynamics of our multivalued maps to random
maps.
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1. INTRODUCTION

Multivalued maps have application in economics [3], modeling, and rigorous
numerics [8] and in dynamical systems [1, 2]. The objective of this note is to study
multivalued maps whose graphs are defined by single valued maps τ1 and τ2, which
are in the class T of piecewise expanding, piecewise C2 maps from I into I. We
refer to τ1, τ2 as the lower and upper boundaries of the graph G ⊂ I × I. Since
τ1 and τ2 are in T , they possess acims with probability density functions (pdf),
f1 and f2. Any map τ : I → I that takes values in G is called a selection of the
multivalued map defined by G. There has been much research devoted to the study
of the existence of selections with specified topological properties. However, the
existence of selections with acims has not been studied. In this paper we prove the
existence of such selections.

Motivating examples are presented in Section 2. The first example shows that if
the class of transformations is restricted only to the graphs of the lower and upper
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boundary maps τ1 and τ2, that is, G consists only of the graphs of these two maps,
then there is no transformation that has pdf equal to a convex combination of f1
and f2. In the second example, we construct a selection with desired properties in
the case where the upper and lower boundary maps are piecewise linear.

In Section 3 we describe the construction of selections with acims when the
boundary maps of G are tent like. In Section 4 we present the main result. We
assume that the lower and upper boundary maps are in T and have invariant
distribution functions F (1) and F (2). If, for 0 < λ < 1, the convex combination
F = λF (1) +(1−λ)F (2) is a homeomorphism of the unit interval, then there exists
a piecewise monotonic selection η, τ1 ≤ η ≤ τ2, preserving the distribution function
F .

In Section 5 we present an approach to finding selections based on conjugation: if
τ1 is piecewise linear and the τ2 is conjugated to τ1 then, for any convex combination
f of f1 and f2 we can find a map τ with values between the graphs of τ1 and τ2
such that f is the invariant pdf associated with τ. In fact, τ is also a conjugacy
of τ1. In Section 6 we study the relationship between the dynamics of multivalued
maps and random maps. In particular, we consider a multivalued map consisting
of two graphs, and show that in general the statistical long term behaviour of
an arbitrary selection of the multivalued map cannot be achieved by a position
dependent random map based on the maps defining the multivalued map. A number
of positive examples are also presented.

2. Motivating examples

Let us consider a multivalued map T with lower boundary map τ1 and upper
boundary map τ2 as in Figure 1. If τ1 preserves a density f1 and τ2 preserves a
density f2, then we ask whether for any convex combination f = λ · f1 +(1−λ) · f2,
0 < λ < 1, we can find a selection of T which preserves the density f . We present
a counterexample showing that if T = {τ1, τ2} (T is two-valued), then it may be
impossible.

Example 1.

Let

τ1(x) =



















4
3x, 0 ≤ x < 3

8 ;

4x− 1, 3
8 ≤ x < 1

2 ;

−4x+ 3, 1
2 ≤ x < 5

8 ;

−4
3
x+ 4

3
, 5

8
≤ x ≤ 1,

and

τ2(x) =



















3x, 0 ≤ x < 1
6 ;

3
2x+ 1

4 ,
1
6 ≤ x < 1

2 ;

−3
2x+ 7

4 ,
1
2 ≤ x < 5

6 ;

−3x+ 3, 5
6
≤ x ≤ 1.

The invariant densities are f1 = 3
2χ[0,1/2] +

1
2χ[1/2,1] and f2 = 2

3χ[0,1/2] +
4
3χ[1/2,1],

correspondingly. Thus, the Lebesgue measure density is a convex combination of
f1 and f2, 1 = 2

5 · f1 + 3
5 · f2. In order for a two branch map τ to leave Lebesgue

measure invariant, it is necessary to satisfy

|τ ′−1
1 (x)| + |τ ′−1

2 (x)| = 1,



SELECTIONS AND THEIR ABSOLUTELY CONTINUOUS INVARIANT MEASURES 3

Figure 1. Two valued map of Example 1

at the preimages τ−1
1 (x) and τ−1

2 (x) of every point x, which is impossible.

Example 2.

Again, consider the two maps of Example 1. If we allow at least one of the
branches of the map τ to be between the maps τ1 and τ2, then we can achieve
the invariance of Lebesgue measure. For example, the map given below preserves
Lebesgue measure. Its graph is shown in Figure 1 using dashed lines.

τ (x) =











τ2(x), 0 ≤ x < 1
2 ;

−3x+ 5
2 ,

1
2 ≤ x < 4

6 ;

−3
2
x+ 3

2
, 4

6
≤ x ≤ 1.

3. Selections for special case of tent-like maps

We assume that both maps τ1, τ2 are increasing on [0, 1/2] and decreasing on
[1/2, 1] and have values 0 at 0 and 1, 1 at 1/2. We do not assume that the lower map
τ1 is conjugated to the upper map τ2. Let us assume that τ1 preserves measure µ1

and τ2 preserves measure µ2, not necessarily absolutely continuous. Let F (1), F (2)

be the distribution functions of measures µ1, µ2, respectively (F i(x) = µi([0, x]),
i = 1, 2). Let µ = λµ1 +(1−λ)µ2 , 0 < λ < 1, and let F be the distribution function
of µ:

F (x) = µ([0, x]).
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We are looking for a map η satisfying τ1 ≤ η ≤ τ2 that preserves the distribution
function F (or equivalently measure µ).

We introduce the function s : [0, 1/2] → [1/2, 1], which relates the branches η1, η2

of η. Let

(1) η2(x) = η1(s
−1(x)).

The Frobenius-Perron operator of η is given by

(PηF ) (x) = F (η−1
1 (x)) + 1 − F (η−1

2 (x)).

Thus the fixed point of this operator is given by

F (x) = F (η−1
1 (x)) + 1 − F (η−1

2 (x)),

or
F (η1(z)) = F (z) + 1 − F (s(z)),

or
F (s(z)) = 1 + F (z) − F (η1(z)),

which allows us to find s once η1 is given:

(2) s(z) = F−1(1 + F (z) − F (η1(z))).

Thus, once we construct η1 satisfying τ1,1 ≤ η1 ≤ τ2,1 we obtain η2 and have to
check if it satisfies the required inequalities. We will show that η1 can be chosen in
such a way that the graph of η2 is between the graphs of τ1 and τ2.

Let us assume

(3) τ−1
2,1 ≤ η−1

1 ≤ τ−1
1,1 ,

which is equivalent to τ1,1 ≤ η1 ≤ τ2,1, and

(4) F = λF (1) + (1 − λ)F (2).

The fixed points of the Frobenius-Perron operators for τ1 and τ2 yield

F (1)(x) = F (1)(τ−1
1,1 (x)) + 1 − F (1)(τ−1

1,2 (x)),

F (2)(x) = F (2)(τ−1
2,1 (x)) + 1 − F (2)(τ−1

2,2 (x)),

or

F (1)(τ−1
1,2 (x)) = F (1)(τ−1

1,1 (x)) + 1 − F (1)(x),

F (2)(τ−1
2,2 (x)) = F (2)(τ−1

2,1 (x)) + 1 − F (2)(x),

F (η−1
2 (x)) = F (η−1

1 (x)) + 1 − F (x),

(5)

where we have also included the foregoing fixed point equation for η. We want to
show that

τ−1
1,2 (x) ≤ η−1

2 (x) ≤ τ−1
2,2 (x),

or, equivalently, that

(6) F (τ−1
1,2 (x)) ≤ F (η−1

2 (x)) ≤ F (τ−1
2,2 (x)).

First, we will show that it is possible to choose η1 in such a way that

(7) F (τ−1
1,2 (x)) ≤ F (η−1

2 (x)).

Using (4) and (5) we obtain the following inequalities, all of which are equivalent
to (7).

(8) λF (1)(τ−1
1,2 (x)) + (1 − λ)F (2)(τ−1

1,2 (x)) ≤ F (η−1
1 (x)) + 1 − F (x),
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λ
[

F (1)(τ−1
1,1 (x)) + 1 − F (1)(x)

]

+ (1 − λ)F (2)(τ−1
1,2 (x))

≤ λF (1)(η−1
1 (x)) + (1 − λ)F (2)(η−1

1 (x)) + 1 − λF (1)(x) − (1 − λ)F (2)(x),
(9)

λF (1)(τ−1
1,1 (x)) + (1 − λ)F (2)(τ−1

1,2 (x))

≤ λF (1)(η−1
1 (x)) + (1 − λ)F (2)(η−1

1 (x)) − (1 − λ)[F (2)(x) − 1].
(10)

Using (5), we obtain

λF (1)(τ−1
1,1 (x)) + (1 − λ)F (2)(τ−1

1,2 (x))

≤ λF (1)(η−1
1 (x)) + (1 − λ)F (2)(η−1

1 (x)) − (1 − λ)
[

F (2)(τ−1
2,1 (x)) − F (2)(τ−1

2,2 (x))
]

,

(11)

or,

λ
[

F (1)(τ−1
1,1 (x)) − F (1)(η−1

1 (x))
]

+ (1 − λ)
[

F (2)(τ−1
2,1 (x)) − F (2)(η−1

1 (x))
]

≤ (1 − λ)
[

F (2)(τ−1
2,2 (x)) − F (2)(τ−1

1,2 (x))
]

,
(12)

which is also equivalent to (7). Since τ−1
2,2 ≥ τ−1

1,2 the right hand side of (12) is

positive, independent of the choice of η1. Since τ−1
2,1 ≤ η−1

1 ≤ τ−1
1,1 , the first term

on the left hand side is positive (and zero for η1 = τ1,1) and the second term is
negative. This shows that there is an interval I1(x) touching τ1,1(x) such that if we
choose η1(x) in this interval, then the inequality (12) and thus (7) will be satisfied.

Now, we will show the second part of (6), i.e., that it is possible to choose η1 in
such a way that

(13) F (η−1
2 (x)) ≤ F (τ−1

2,2 (x)).

As above, we manipulate (13) to obtain

(1 − λ)
[

F (2)(η−1
1 (x)) − F (2)(τ−1

2,1 (x))
]

+ λ
[

F (1)(η−1
1 (x)) − F (1)(τ−1

1,1 (x))
]

≤ λ
[

F (1)(τ−1
2,2 (x)) − F (1)(τ−1

1,2 (x))
]

.
(14)

Since τ−1
2,2 ≥ τ−1

1,2 the right hand side is positive, independent of the choice of η1.

Since τ−1
2,1 ≤ η−1

1 ≤ τ−1
1,1 , the first term on the left hand side is positive (and zero

for η1 = τ2,1) and the second term is negative. This shows that there is an interval
I2(x) touching τ2,1(x) such that if we choose η1(x) in this interval, the inequality
(14) and thus (13) will be satisfied.

Now, we will show that there exists an η1 satisfying inequalities (3), (12) and
(14). Note that the left hand size of (12) is equal to minus the left hand side of
(14), while both right hand sides are positive. We choose η1 such that the left hand
side of (12) ( and also of (14)) is 0. Then, both inequalities are satisfied. This is

possible, at least if we assume that F (1), F (2) are continuous.
We now solve for η1 as follows:

λF (1)(η−1
1 (x)) + (1 − λ)F (2)(η−1

1 (x)) = (1 − λ)F (2)(τ−1
2,1 (x)) + λF (1)(τ−1

1,1 (x)),

which implies that

F (η−1
1 (x)) = (1 − λ)F (2)(τ−1

2,1 (x)) + λF (1)(τ−1
1,1 (x)),

or,

(15) η−1
1 (x) = F−1

(

(1 − λ)F (2)(τ−1
2,1 (x)) + λF (1)(τ−1

1,1 (x))
)

,
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assuming F is strictly increasing.
Now we show that η1(x) defined by equation (15) satisfies assumption (3), i.e.,

the graph of η1 is located between the graphs of τ1,1 and τ2,1. First,

τ−1
2,1 (x) ≤ η−1

1 (x)

is equivalent to

τ−1
2,1 (x) ≤ F−1

(

(1 − λ)F (2)(τ−1
2,1 (x)) + λF (1)(τ−1

1,1 (x))
)

,

thus,

F (τ−1
2,1 (x)) ≤ (1 − λ)F (2)(τ−1

2,1 (x)) + λF (1)(τ−1
1,1 (x)),

or

λF (1)(τ−1
2,1 (x)) + (1 − λ)F (2)(τ−1

2,1 (x)) ≤ (1 − λ)F (2)(τ−1
2,1 (x)) + λF (1)(τ−1

1,1 (x)),

or

F (1)(τ−1
2,1 (x)) ≤ F (1)(τ−1

1,1 (x)),

which is true since τ2,1(x) ≥ τ1,1(x) and both are increasing. On the other hand,

η−1
1 (x) ≤ τ−1

1,1 (x)

is equivalent to

F−1
(

(1 − λ)F (2)(τ−1
2,1 (x)) + λF (1)(τ−1

1,1 (x))
)

≤ τ−1
1,1 (x),

or

(1 − λ)F (2)(τ−1
2,1 (x)) + λF (1)(τ−1

1,1 (x)) ≤ F (τ−1
1,1 (x)),

or

(1 − λ)F (2)(τ−1
2,1 (x)) + λF (1)(τ−1

1,1 (x)) ≤ λF (1)(τ−1
1,1 (x)) + (1 − λ)F (2)(τ−1

1,1 (x)),

or

F (2)(τ−1
2,1 (x)) ≤ F (2)(τ−1

1,1 (x)),

which is true by the same reason as in the first case.
Note that η1(x), defined by equation (15), is increasing and continuous since all

the functions defining η1(x) are increasing and continuous. Also,

η−1
1 (0) = F−1

(

(1 − λ)F (2)(τ−1
2,1 (0)) + λF (1)(τ−1

1,1 (0))
)

= F−1(0) = 0,

η−1
1 (1) = F−1

(

(1 − λ)F (2)(τ−1
2,1 (1)) + λF (1)(τ−1

1,1 (1))
)

= F−1 (F (1/2)) = 1/2.

Actually, for the tent like map we are considering, it is not necessary to assume
that the maximum is achieved at 1/2, it can be any point in (0, 1).

4. Main result

Our main result is the following theorem.

Theorem 1. Let us consider a multivalued map from the unit interval into itself
whose lower and upper boundary maps τ1 and τ2 are piecewise monotonic, their
invariant distribution functions F (1) and F (2) are continuous, and for any 0 < λ <
1, the convex combination F = λF (1) + (1 − λ)F (2) is a homeomorphism of the
unit interval. Then, there exists a piecewise monotonic selection η, τ1 ≤ η ≤ τ2,
preserving the distribution function F .
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Proof. We assume that the partition points for τ1 and τ2 are the same: a0 = 0 <
a1 < a2 < · · · < am = 1. Let Ij = [aj−1, aj], j = 1, 2, 3, . . . , m. On each interval Ij ,
τ1,j := τ1|Ij

and τ2,j := τ2|Ij
share the same monotonicity, where we understand

τ1,j and τ1,j as the natural extensions of branches of τ1 and τ2, respectively.
For any interval [a, b] ⊆ [0, 1], given a monotone continuous function h : [a, b] →

[0, 1] (not necessarily onto), we define its extended inverse as follows. Let

hmax = max{h(x)|x ∈ [a, b]} ,
and

hmin = min{h(x)|x ∈ [a, b]} .
If h is increasing, then its extended inverse is defined as

h−1(x) =











a , for x ∈ [0, hmin];

h−1(x) , for x ∈ [hmin, hmax];

b , for x ∈ [hmax, 1].

If h is decreasing, then its extended inverse is defined as

h−1(x) =











b , for x ∈ [0, hmin];

h−1(x) , for x ∈ [hmin, hmax];

a , for x ∈ [hmax, 1].

We define the extended inverse of each branch of η by

(16) η−1
j (x) = F−1

(

λF (1)(τ−1
1,j (x)) + (1 − λ)F (2)(τ−1

2,j (x))
)

,

where j = 1, 2, 3, . . . , m. The function η defined in this way, after the vertical
segments are removed, has the same number of branches as τ1 and τ2, and each
branch of it has the same monotonicity as the corresponding branches of the bound-
ary maps.

First, we show that the graph of η is located between the graphs of τ1 and τ2.
For some j ∈ {1, 2, . . . , m}, we will show this for the case when τ1,j and τ2,j are
increasing. The proof for the case when τ1,j and τ2,j are decreasing is similar. We
need to show:

τ−1
2,j (x) ≤ η−1

j (x) ≤ τ−1
1,j (x),

which is equivalent to

F
(

τ−1
2,j (x)

)

≤ F
(

η−1
j (x)

)

≤ F
(

τ−1
1,j (x)

)

,

or, using (16),

λF (1)(τ−1
2,j (x)) + (1 − λ)F (2)(τ−1

2,j (x))

≤ λF (1)(τ−1
1,j (x)) + (1 − λ)F (2)(τ−1

2,j (x))

≤ λF (1)(τ−1
1,j (x)) + (1 − λ)F (2)(τ−1

1,j (x)),

which is true, because τ−1
2,j (x) ≤ τ−1

1,j (x) since τ1,j and τ2,j are increasing.

Now, for any x ∈ [0, 1], using the previous notation, we have

η−1([0, x]) =

m
⋃

j=1

[η−1
j

l
(x), η−1

j

r
(x)],
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τ−1
1 ([0, x]) =

m
⋃

j=1

[τ−1
1,j

l
(x), τ−1

1,j

r
(x)],

τ−1
2 ([0, x]) =

m
⋃

j=1

[τ−1
2,j

l
(x), τ−1

2,j

r
(x)],

where the bars over inverses of maps η−1, τ−1
1 and τ−1

2 imply that the extended
inverses are used for each branch. Note that all the three maps have the same
monotonicity for each corresponding branch. Moreover, for some x, the intervals
appearing on the right hand side of the above preimages may only contain one point.

For example, if x ∈ [0, τmin
1,j ], where j ∈ {1, 2, . . . , m}, then τ−1

1,j

l
(x) = τ−1

1,j

r
(x) =

aj−1 when τ1,j is increasing.
For the maps τ1 and τ2, the Frobenius-Perron equation implies

F i(x) =

m
∑

j=1

[

F i
(

τ−1
i,j

r
(x)

)

− F i

(

τ−1
i,j

l
(x)

)]

,

i = 1, 2.
Using (16) and the fact that η, τ1 and τ2 have the same monotonicity on each

interval Ij , j ∈ {1, 2, . . . , m}, we have

F
(

η−1
j

r
(x)

)

− F

(

η−1
j

l
(x)

)

= λF (1)
(

τ−1
1,j

r
(x)

)

+ (1 − λ)F (2)
(

τ−1
2,j

r
(x)

)

−
[

λF (1)

(

τ−1
1,j

l
(x)

)

+ (1 − λ)F (2)

(

τ−1
2,j

l
(x)

)]

= λ

[

F (1)
(

τ−1
1,j

r
(x)

)

− F (1)

(

τ−1
1,j

l
(x)

)]

+(1 − λ)

[

F (2)
(

τ−1
1,j

r
(x)

)

− F (2)

(

τ−1
1,j

l
(x)

)]

.

Thus, denoting the measure corresponding to F by µ, we have

µ
(

η−1([0, x])
)

=

m
∑

j=1

F
(

η−1
j

r
(x)

)

− F

(

η−1
j

l
(x)

)

= λ

m
∑

j=1

[

F (1)
(

τ−1
1,j

r
(x)

)

− F (1)

(

τ−1
1,j

l
(x)

)]

+(1 − λ)

m
∑

j=1

[

F (2)
(

τ−1
1,j

r
(x)

)

− F (2)

(

τ−1
1,j

l
(x)

)]

= λF (1)(x) + (1 − λ)F (2)(x) = F (x),

which implies that the map η defined in (16) preserves F . This completes the
proof. �

We construct an example as follows. Let ϕ1 and ϕ2 be homeomorphisms of [0, 1]
onto itself defined by

ϕ1(x) =

{

2x2, for 0 ≤ x < 1/2;

1 − 2(1 − x)2, for 1/2 ≤ x ≤ 1,
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Figure 2. Invariant distribution functions F (1), F (2) and F .

ϕ2(x) =

{

−1
4 + 1

4

√
1 + 16x, for 0 ≤ x < 1/2;

1
2

(

x2 + 1
2
(x+ 1)

)

, for 1/2 ≤ x ≤ 1.

Define the maps τ1 = ϕ−1
1 ◦S ◦ϕ1 and τ2 = ϕ−1

2 ◦S ◦ϕ2, where S is the tent map.
The graphs of τ1 and τ2 are shown in Figure 3. The invariant distribution function
for τ1 is F (1) = ϕ1, and the invariant distribution function for τ2 is F (2) = ϕ2

(Corollary 1). Let λ = 3/4 and F = λF (1)+(1−λ)F (2). The distribution functions
are shown in Figure 2. In Figure 3 we show the selection η constructed using formula
(16).

5. Another method of partially solving the problem

In this section we generally assume that lower and upper boundary maps τ1 and
τ2 are conjugated and use this conjugation to construct a selection. The following
result is well known.

Proposition 1. Let τ1 and τ2 be interval [0, 1] maps preserving densities f1 and
f2, correspondingly, and conjugated by a diffeomorphism (or at least absolutely
continuous homeomorphism) h:

τ2 = h−1 ◦ τ1 ◦ h.
Then,

f2 = (f1 ◦ h) · |h′|.
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Figure 3. Transformations τ1, τ2 and η.

Corollary 1. If τ1 is the tent map, then

f2 = |h′|,
or equivalently

h(x) = ±
∫ x

0

f2(t)dt.

Proposition 2. Let τ1 be a piecewise linear Markov map of [0, 1] onto itself pre-
serving density f1. (This means that there is a partition P such that P = {Ii}n

i=1

and τ1(Ij) is a union of consecutive elements of P for any 1 ≤ j ≤ n. Then, f1
is piecewise constant f1 =

∑n
i=1 ciχIi

[4].) Let τ2 be a map conjugated to τ1 by a
diffeomorphism (or at least an absolutely continuous homeomorphism) h preserving
the partition P,

τ2 = h−1 ◦ τ1 ◦ h.
Then, τ2 preserves the density

f2 = |h′| ·
n

∑

i=1

ciχIi
,

and

|h′| = f2 ·
n

∑

i=1

1

ci
χIi

.
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Proof. We have

f2 = (f1 ◦ h) · |h′| =

n
∑

i=1

ciχIi
◦ h · |h′| = |h′| ·

n
∑

i=1

ciχIi
.

�

Figure 4. Piecewise linear Markov map τ1 and the conjugated
map τ2.

Let us now consider a more general multivalued map T with lower boundary map
τ1 and upper boundary map τ2 as in Figure 4. The map T is typically infinitely
valued: T (x) = [τ1(x), τ2(x)], x ∈ [0, 1]. If τ1 preserves a density f1 and τ2 preserves
a density f2, then we ask if, for any convex combination f = λ · f1 + (1 − λ) · f2,
0 < λ < 1, we can find a selection of T which preserves the density f . We give
conditions under which this holds.

Theorem 2. Let τ1 be a piecewise linear Markov map (on partition P) of [0, 1]
onto itself preserving the density f1 =

∑n
i=1 ciχIi

. Let τ2 be a map conjugated to τ1
by an increasing absolutely continuous homeomorphism h preserving the partition
P, that is,

τ2 = h−1 ◦ τ1 ◦ h.
Let the density f2 be τ2 invariant. Then, for any convex combination f = λ · f1 +
(1 − λ) · f2, 0 < λ < 1, we can find a selection of T which preserves the density f.
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Proof. By Proposition 2 we have |h′| = f2 ·
∑n

i=1
1
ci
χIi

. Assuming that h is increas-
ing

h(x) =

∫ x

0

f2(t) ·
n

∑

i=1

1

ci
χIi

(t)dt.

Using Proposition 2 again, if we define the following conjugation

g(x) =
∫ x

0
f(t) · ∑n

i=1
1
ci
χIi

(t)dt =
∫ x

0
(λ · f1(t) + (1 − λ) · f2(t)) ·

∑n
i=1

1
ci
χIi

(t)dt

=
∫ x

0

(

λ · 1 + (1 − λ) ·
(

f2(t) ·
∑n

i=1
1
ci
χIi

(t)
))

dt = λ · x+ (1 − λ) · h(x),

then τ = g−1 ◦ τ1 ◦ g preserves the density f . Note, g is also increasing.
We will prove that τ1 ≤ τ ≤ τ2. Consider x ∈ Ii ∈ P. Let β = 1 − λ. The

function τ1 is piecewise linear on Ii, so τ1(λx + βy) = λτ1(x) + βτ1(y), x, y ∈ Ii.
First, we will prove that τ1 ≤ τ or equivalently g ◦ τ1 ≤ τ1 ◦ g. For x ∈ Ii we have

g(τ1(x)) = λτ1(x) + βh(τ1(x)) ≤ λτ1(x) + βτ1(h(x)) = τ1(g(x)).

We used the inequality h ◦ τ1 ≤ τ1 ◦ h which is equivalent to τ1 ≤ h−1 ◦ τ1 ◦ h = τ2.
Now, we prove that τ ≤ τ2 or that g−1 ◦ τ1 ◦ g ≤ τ2 or, equivalently, that

τ1 ◦ g ≤ g ◦ τ2. Again, we consider x ∈ Ii:

τ1(g(x)) = τ1(λx + βh(x)) = λτ1(x) + βτ1(h(x)).

We also have

g(τ2(x)) = λτ2(x) + βh(τ2(x)) = λτ2(x) + βh(h−1(τ1(h(x)))) = λτ2 + βτ1(h(x)).

Since τ1 ≤ τ2 the proof is complete. �

Example 3.

In this example we show existence of a selection τ in a situation when the lower
boundary map is not onto. Let us consider the tent map

τ2(x) = 1 − 2|x− 1/2|,
and

τ1(x) =



















4x2 , for 0 ≤ x < 1/4,

2x− 1/4 , for 1/4 ≤ x < 1/2,

−2x+ 7/4 , for 1/2 ≤ x < 3/4,

4(1 − x)2 , for 3/4 ≤ x ≤ 1,

shown in Figure 5.
The invariant densities are f2 = 1 for τ2 and f1 = 2χ[1/4,3/4] for τ2. For any

0 < λ < 1 their convex combination is

f = λf1 + (1 − λ)f2 = (1 − λ)χ[0,1/4]∪[3/4,1] + (1 + λ)χ[1/4,3/4].

We are looking for the selection τ satisfying τ1 ≤ τ ≤ τ2 and preserving f . We
must have τ (0) = τ (1) = 0 since both τ1 and τ2 satisfy these conditions. We also
must have τ (1/2) = 1 since f is supported on the whole [0, 1]. We will look for a
symmetric map τ .

For x ∈ [0, 1/4], we have

(1 − λ) =
(1 − λ)

∣

∣

∣
τ ′(τ−1

(1)
(x))

∣

∣

∣

+
(1 − λ)

∣

∣

∣
τ ′(τ−1

(2)
(x))

∣

∣

∣

,
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Figure 5. Maps τ1, τ2 and map τ we are looking for.

or

1 =
1

∣

∣

∣
τ ′(τ−1

(1) (x))
∣

∣

∣

+
1

∣

∣

∣
τ ′(τ−1

(2) (x))
∣

∣

∣

.

Thus, by symmetry of τ :

|τ ′(x)| = 2 , for x ∈ [0, τ−1
(1)

(1/4)] ∪ [1 − τ−1
(1)

(1/4), 1].

For x ∈ [1/4, τ (1/4)], we have

(1 + λ) =
(1 − λ)

∣

∣

∣
τ ′(τ−1

(1)
(x))

∣

∣

∣

+
(1 − λ)

∣

∣

∣
τ ′(τ−1

(2)
(x))

∣

∣

∣

,

which, by symmetry of τ , implies

|τ ′(x)| = 2(1 − λ)/(1 + λ) , for x ∈ [τ−1
(1) (1/4), 1/4]∪ [3/4, 1− τ−1

(1) (1/4)].

For x ∈ [τ (1/4), 3/4], we have

(1 + λ) =
(1 + λ)

∣

∣

∣
τ ′(τ−1

(1) (x))
∣

∣

∣

+
(1 + λ)

∣

∣

∣
τ ′(τ−1

(2) (x))
∣

∣

∣

,

which, by symmetry of τ , implies

|τ ′(x)| = 2 , for x ∈ [1/4, τ−1
(1) (3/4)] ∪ [1 − τ−1

(1) (3/4), 3/4].
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Figure 6. Map τ for λ = 1/2.

For x ∈ [3/4, 1], we have

(1 − λ) =
(1 + λ)

∣

∣

∣
τ ′(τ−1

(1)
(x))

∣

∣

∣

+
(1 + λ)

∣

∣

∣
τ ′(τ−1

(2)
(x))

∣

∣

∣

,

which, by symmetry of τ , implies

|τ ′(x)| = 2(1 + λ)/(1 − λ) , for x ∈ [τ−1
(1)

(3/4), 1− τ−1
(1)

(3/4)].

In Figures 6 and 7 we present graphs of τ for λ = 1/2 and λ = 1/10. The slopes
are 2, 2/3, 2, 6 for the first and 2, 18/11, 2, 22/9 for the second.

6. Multivalued Maps and Random Maps

We define a random map to be a finite collection of maps as follows: let R =
(τ1, τ2, . . . , τK; p1, p2, . . . , pK), where τk are maps of an interval, pk are position
dependent probabilities which are assumed to be measurable, pk(x) ≥ 0 for k =

1, 2, ...., K and
∑K

k=1 pk(x) = 1. At each step, the random map R moves the point
x to τk(x) with probability pk(x). For fixed {τ1, τ2, . . . , τK}, R can have different
invariant probability density functions, depending on the choice of the (weight)
functions {p1, p2, . . . , pK}. Let fk be an invariant density of τk, k = 1, . . . , K.
It is shown in [5, 7] that for any positive constants ak, k = 1, . . . , K, satisfying
∑K

k=1 ak = 1, there exists a system of weight probability functions p1, . . . , pK such
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Figure 7. Map τ for λ = 1/10.

that the density f = a1f1 + · · · + aKfK is invariant under the random map R =
{τ1, . . . , τK ; p1, . . . , pK}, where

pk =
akfk

a1f1 + · · ·+ aKfK
, k = 1, 2, . . . , K,

(It is assumed that 0/0 = 0.)
Let us now consider a multivalued map consisting of a lower boundary map τ1

and an upper boundary map τ2, with density functions f1 and f2, respectively.
Let f be any convex combination of f1 and f2. Then, by the foregoing result, we
can construct a position dependent random map on the graphs of τ1 and τ2 whose
unique pdf is f.

A related problem is to consider a piecewise expanding selection having density
function f ; can we find a probability function p(x) such that the resulting random
map R = (τ1, τ2; p, 1− p) has f as its density function?

In general this problem does not have a positive solution (see Example 4 below).
However, in many cases the solution can be found. A simple example of this
situation can be shown from τ1 and τ2 of Example 1. Let us consider the triangle
map, τ, whose graph fits in between the graphs of τ1 and τ2. It can be shown that
R = (τ1, τ2; 0.75, 0.25) has Lebesgue measure as its invariant measure.

Another, more general result in this direction can be established by considering
τ1 to be a piecewise linear Markov map where τ2 is conjugated to τ1 by g(x) =
λx+(1−λ)h(x), where h conjugates the upper map τ2 to the lower map τ1. Then τ
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has pdf f which is a convex combination of f1 and f2. Hence by the main result of
[7], we know that there exists a position dependent random mapR = (τ1, τ2; p, 1−p)
which has f as its pdf.

Example 4.

We consider the semi-Markov ([6]) piecewise linear maps

τ1(x) =











4
3x , for 0 ≤ x < 3

20 ;

16x− 11
5 , for 3

20 ≤ x < 1
5 ;

5x (mod) 1 , for 1
5
≤ x ≤ 1,

τ2(x) =











16x , for 0 ≤ x < 1
20 ;

4
3x+ 11

15 , for 1
20 ≤ x < 1

5 ;

5x (mod) 1 , for 1
5
≤ x ≤ 1,

whose graphs are shown in Figure 8. For the selection τ we choose the map τ (x) =
5x (mod 1) preserving Lebesgue measure.

Figure 8. Boundary maps in the counterexample

We will show that there is no solution, i.e., there is no position dependent random
map based on τ1, τ2 that preserves Lebesgue measure.

Let us consider p1(x), non-constant, on [0, 1/5] (the values on [1/5, 1] are not
important). Let φ1 = τ−1

1 on [0, 1/5], ψ1 = τ−1
2 on [0, 1/5], φi = τ−1

1 = τ−1
2 on

[(i− 1)/5, i/5], i = 2, 3, 4, 5. The Frobenius-Perron operator of R is

(PRf) (x) =
3

4
p1(φ1(x))f(φ1(x))χ[0,1/5] +

1

16
(1 − p1(ψ1(x))) f(ψ1(x))χ[0,1/5]

+
1

16
p1(φ1(x))f(φ1(x))χ[1/5,4/5] +

1

16
(1 − p1(ψ1(x))) f(ψ1(x))χ[1/5,4/5]

+
1

16
p1(φ1(x))f(φ1(x))χ[4/5,1] +

3

4
(1 − p1(ψ1(x))))f(ψ1(x))χ[4/5,1]

+
1

5
(f(φ2(x)) + f(φ3(x)) + f(φ4(x)) + f(φ5(x))) .

(17)
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Figure 9. Maps τ1, τ2 on interval [0, 1/5] (not to scale).

If we assume that f = 1 is preserved by PR, then equation (17) reduces to

1

5
=

3

4
p1(φ1(x))χ[0,1/5] +

1

16
(1 − p1(ψ1(x)))χ[0,1/5]

+
1

16
p1(φ1(x))χ[1/5,4/5] +

1

16
(1 − p1(ψ1(x))) χ[1/5,4/5]

+
1

16
p1(φ1(x))χ[4/5,1] +

3

4
(1 − p1(ψ1(x))))χ[4/5,1].

(18)

We introduce a map τ21 : [0, 1/5] → [0, 1/5], τ21 = τ−1
2 ◦ τ1, (see Fig. 10) defined

by

τ21(y) =











1
12x , for 0 ≤ x < 3

20 ;

x− 11
80 , for 3

20 ≤ x < 15
80 ;

12x− 11
5 , for 15

80 ≤ x ≤ 1
5 .

We assume that the solution p1 exists and is a probability, i.e., its values are
between 0 and 1. In particular it is defined on the interval [1/80, 4/80] and on
interval [12/80, 15/80]. Let us consider equation (18) for x ∈ [1/5, 4/5]. We have

(19)
1

5
=

1

16
p1(φ1(x)) +

1

16
(1 − p1(ψ1(x))) ,
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Figure 10. The map τ21 on [0, 1/5].

or, substituting x = φ−1
1 (y), y ∈ [12/80, 15/80],

(20)
1

5
=

1

16
p1(y) +

1

16

(

1 − p1(ψ1(φ
−1
1 (y)))

)

.

Using the equality τ21 = ψ1 ◦ φ−1
1 , this can be rewritten as

p1(y) =
11

5
+ p1(τ21(y)).

Note that τ21([12/80, 15/80]) = [1/80, 4/80]. Whatever are the values of p1 on
[1/80, 4/80], this implies that the values on [12/80, 15/80] are strictly larger than
1. This contradicts the assumptions on p1.

Acknowledgment: The authors are grateful to an anonymous reviewer for
detailed comments which greatly improved the presentation of the paper.
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