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Abstract. In the present work, for the first time, we employ Ulam’s method

to estimate and to predict the existence of the probability density functions of
single species populations with chaotic dynamics. In particular, given a chaotic

map, we show that Ulam’s method generates a sequence of density functions

in L1-space that may converge weakly to a function in L1-space. In such a
case we show that the limiting function generates an absolutely continuous

(w.r.t. the Lebesgue measure) invariant measure (w.r.t. the given chaotic

map) and therefore the limiting function is the probability density function
of the chaotic map. This fact can be used to determine the existence and

estimate the probability density functions of chaotic biological systems.

1. Introduction. Several ecologists have studied the implications of chaotic dy-
namics both in field experiments [11, 12, 13, 16, 25, 39, 40] and experimental pop-
ulation research [7, 14, 20, 22, 36, 45]. In wildlife, there are only a few proofs of
chaos that seem convincing. This includes chaotic population dynamics of boreal
rodents due to mustelid predators [15], dynamics of vole populations in northern
Fennoscandia [17, 32, 41] and the epidemics of childhood diseases [34, 33]. Al-
though laboratory experiments are far different than the wildlife situations, they
can be used for testing some ecological concepts. There are more convincing exam-
ples of chaotic behaviors in laboratory experiments. In particular, ecologists have
observed experimental evidence of chaos in cultures of the flour beetle Tribolium
[8, 10], Nicholson’s sheep blowflies [29, 35, 43] and the microbial food web with
constant experimental conditions [3].
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There are several mathematical and statistical models that can be used to explore
chaotic behaviors. In the present work we consider discrete-time models of the form

xn+1 = f(xn), (1)

where f(x) is the density-dependent recruitment function.
In biology, the recruitment functions are often classified into overcompensating

and compensating density dependent functions [2]. The former occurs when f has
a local maximum and decreases for large population sizes, whereas the latter cor-
responds to a recruitment function that is bounded and increases monotonically.
Compensating density dependence relates to contest competition, in which only a
portion of the population obtains enough resources for survival and the rest will
gradually die [5]. Whereas overcompensating density relates to scramble competi-
tion, in which resources are divided between all members and large population sizes
will result in decreased survival rates [2, 5].

It can be shown that there is no possibility of period doubling or chaotic behavior
for populations with compensating density dependence. In particular, when the
recruitment function f(x) is a bounded monotone increasing function, the slope of
f(x) at the positive equilibrium is between zero and one. Therefore, the positive
equilibrium remains stable at all times. On the contrary, populations that are
ruled by overcompensating density dependence may exhibit period doubling and
chaotic behaviors (see for example chapter 2 of [5]). When the model is chaotic,
the solution xn behaves randomly and it is highly sensitive to the initial condition.
Studies of discrete chaotic dynamical systems often lead to bifurcation diagrams,
frequency plots and many other computational aspects of the chaotic systems [1, 7,
10, 38]. In the present work, for the first time, we employ a mathematical method
known as Ulam’s method [42] to estimate the probability density function (PDF)
of single species populations that exhibit chaotic behaviors. We will also establish
the conditions, under which the PDF related to a chaotic system exists. Using
the estimated PDF the ecologist will able to further investigate the behavior of
the chaotic populations and compute the estimated probability of any interval of
population sizes.

Mathematically, we study the existence of invariant measures of chaotic maps.
The existence of a continuous invariant measure shows that the system in question
is chaotic. The existence of an absolutely continuous invariant measure (acim)
proves even more chaotic behavior and gives tools to statistically predict the future
of the system.

The most popular method to practically approximate an acim is the so-called
Ulam’s method of approximating the Frobenius-Perron operator of the system by
a sequence of finite-dimensional operators (matrices), [24]. We prove some facts
about Ulam’s approximations. In particular, we show that any *-weak limit of
Ulam’s approximations is an invariant measure, and give sufficient conditions for
this limit measure to be absolutely continuous.

As an example, we show that the Smith-Slatkin model for some parameters has
an acim. We use the Schwarzian derivative method and sketch the methodology
which can give the existence of an acim for a large set of parameter values.

2. Preliminaries. Throughout the paper we assume that [a, b] is a closed and
bounded interval in the real number line, B is the Borel σ-algebra on [a, b], and µ
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is a measure on B. We recall some basic definitions. More details can be found in
[4].

Definition 1. The map τ : [a, b]→ [a, b] is called measurable if τ−1(B) ⊆ B, that
is, B ∈ B implies τ−1(B) ∈ B, where τ−1(B) = {x ∈ [a, b] : τ(x) ∈ B}.

Definition 2. Let τ : [a, b] → [a, b] be a measurable map. A set B ∈ B is said to
be an invariant set of τ if τ−1(B) = B. The map τ is said to be ergodic w.r.t. the
measure µ if B ∈ B is an invariant set of τ then µ(B) = 0 or µ(Bc) = 0.

Definition 3. We say that the measurable map τ : [a, b]→ [a, b] preserves measure
µ or that µ is τ -invariant if µ(τ−1(B)) = µ(B) for all B ∈ B, that is, µ ◦ τ−1 = µ
on B.

Definition 4. The measure µ on B is said to be an absolutely continuous measure
w.r.t. the Lebesgue measure m if B ∈ B and m(B) = 0, then µ(B) = 0.

Now we are ready to recall the Birkhoff Ergodic Theorem (see [4] for the proof).

The Birkhoff Ergodic Theorem Suppose τ : [a, b] → [a, b] is measurable and
the measure µ is τ -invariant. Then for any f ∈ L1[a, b], there exists a function

f̂ ∈ L1[a, b] such that

lim
N→∞

1

N

N−1∑
n=0

f(τn(x)) = f̂(x), µ− a.e. (2)

Furthermore, we have

f̂ ◦ τ = f̂ , µ− a.e. (3)

and ∫ b

a

f̂ dµ =

∫ b

a

f dµ. (4)

In addition, if τ is ergodic w.r.t. the measure µ, then (3) implies that f̂ is constant
µ-a.e., so from (4) we obtain

f̂ =
1

µ([a, b])

∫ b

a

f dµ, µ− a.e.

So if µ([a, b]) = 1, that is, the measure µ is a probability measure, (2) becomes

lim
N→∞

1

N

N−1∑
n=0

f(τn(x)) =

∫ b

a

f dµ, µ− a.e. (5)

Thus, by letting f = χB in (5) we obtain

lim
N→∞

1

N

N−1∑
n=0

χB(τn(x)) = µ(B), µ− a.e. (6)

Here χB denotes the characteristic function over the set B, that is,

χB(x) =

{
1 if x ∈ B
0 if x /∈ B ,
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Remark 1. Let’s assume the measure µ defined by

µ(B) =

∫
B

f∗ dm, ∀B ∈ B, (7)

where f∗ ∈ L1[a, b]. Then we say that the measure µ has density f∗. Note that the
measure µ defined by (7) is absolute continuous w.r.t. the Lebesgue measure m.
So if τ is ergodic w.r.t. the Lebesgue measure m, then it is also ergodic w.r.t. the
measure µ. Now we further assume that the measure µ defined by (7) is τ -invariant
probability measure. If τ is also ergodic w.r.t. the Lebesgue measure µ, from (6)
and (7) we obtain

lim
N→∞

1

N

N−1∑
n=0

χB(τn(x)) =

∫
B

f∗ dm, ∀B ∈ B, (8)

Note that if we regard (x, τ(x), τ2(x), . . .) as the occurrences of a random variable
X at each discrete step, then (8) can be written

Prob(X ∈ B) =

∫
B

f∗ dm, ∀B ∈ B.

So f∗ is the probability density function of the random variable X. In section 5, we
will find conditions under which there exists a density function f∗ ∈ L1[a, b] such
that the probability measure µ with density f∗ is τ -invariant using the concept of
weak precompactness.

We also need to review the Frobenius-Perron operator [4] associated with a map
τ .

Definition 5. A measurable map τ : [a, b] → [a, b] is nonsingular w.r.t. the
Lebesgue measure m if m(B) = 0 implies m(τ−1(B)) = 0, where B ∈ B.

Definition 6. If τ : [a, b]→ [a, b] is a nonsingular map w.r.t. the Lebesgue measure
m, the operator Pτ : L1[a, b]→ L1[a, b] defined (implicitly) by∫

B

Pτf dm =

∫
τ−1(B)

f dm ∀B ∈ B, ∀f ∈ L1[a, b]

is called the Frobenius-Perron operator associated with τ .

Remark 2. By choosing B = [a, x] we see that∫ x

a

Pτf dm =

∫
τ−1([a,x])

f dm ∀f ∈ L1[a, b].

So by differentiating both sides w.r.t. x we have

(Pτf) (x) =
d

dx

∫
τ−1([a,x])

f dm ∀f ∈ L1[a, b],

which is the explicit formula of the Frobenius-Perron operator associated with τ .

Now we have the following theorem that tells us under what condition on the
density function f∗ ∈ L1[a, b], the probability measure µ with density f∗ is τ -
invariant.

Theorem 1. Let τ : [a, b] → [a, b] be a nonsingular map, and let Pτ be the
Frobenius-Perron operator associated with τ . Let f∗ ∈ L1[a, b] be a density func-
tion. Then the probability measure µ with density f∗ is τ -invariant if and only if
f∗ is a fixed point of Pτ , that is, Pτ (f∗) = f∗.
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Proof. See, for example, [4, Proposition 4.2.7.].

Remark 3. In general, for a given nonsingular map τ : [a, b] → [a, b], there may
not exist a density function f∗ ∈ L1[a, b] such that Pτ (f∗) = f∗.

3. Partially invariant measures. In this section we show that Ulam’s method
gives an almost τ -invariant measure. We briefly explain Ulam’s method. We let
Pn = {Ii}ni=1 be a partition of [a, b] into n equal length subintervals. We define an
n×n nonnegative matrix A = (aij), which is called Ulam’s matrix associated with
τ based on the partition Pn of [a, b], as follows:

aij =
m(τ−1(Ii) ∩ Ij)

m(Ij)
, 1 ≤ i, j ≤ n.

Note that Ulam’s matrix is a column stochastic matrix. So A can be viewed as the
transition matrix of a finite state Markov chain so that the aij can be interpreted
as the probability that a point in Ij is mapped into Ii under τ .

Since Ulam’s matrix is a column stochastic matrix, 1 is its eignenvalue. Since A
is nonnegative, there exists a nonnegative eigenvector y of A corresponding to the
eigenvalue 1, that is, Ay = y and y ≥ 0. We may assume that

∑n
j=1 yj = n. We let

fn =
∑n
j=1 yjχIj . Since y is a nonnegative vector such that

∑n
j=1 yj = n, it follows

that fn is a density function. We call fn Ulam’s density function associated with
τ based on the partition Pn of [a, b].

Now we prove that if µn is the measure with density fn, then µn is τ -invariant
on Pn.

Lemma 1. If we let µn be the measure with density fn, where fn is Ulam’s density
function associated with τ based on the partition Pn = {Ii}ni=1, then we have

µn(τ−1(Ii)) = µn(Ii), 1 ≤ i ≤ n.

Proof. Let A = (aij) be Ulam’s matrix associated with τ based on the partition
Pn, so that

aij =
m(τ−1(Ii) ∩ Ij)

m(Ij)
, 1 ≤ i, j ≤ n.

So we have

m(Ij)aij = m(τ−1(Ii) ∩ Ij), 1 ≤ i, j ≤ n
or

b− a
n

aij = m(τ−1(Ii) ∩ Ij), 1 ≤ i, j ≤ n.

Recall that Ay = y and fn =
∑n
j=1 yjχIj .

We first compute µn(τ−1(Ii)). Observe that

µn(τ−1(Ii)) =

n∑
j=1

µn(τ−1(Ii) ∩ Ij)

=

n∑
j=1

∫
τ−1(Ii)∩Ij

fn dm

=

n∑
j=1

yjm(τ−1(Ii) ∩ Ij)
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=
b− a
n

n∑
j=1

aijyj =
b− a
n

[Ay]i =
b− a
n

yi.

On the other hand, note that

µn(Ii) =

∫
Ii

fn dm = yim(Ii) =
b− a
n

yi.

So we have proved that

µn(τ−1(Ii)) = µn(Ii), 1 ≤ i ≤ n.

Remark 4. Let P2k = {Ii}2
k

i=1 be a partition of [a, b] into 2k equal length subinter-
vals for k = 1, 2, . . .. Then by Lemma 1 the measure µ2n is τ -invariant on P2n . But
since µ2n is a measure, it is finitely additive. So it follows that µ2n is τ -invariant
on ∪nk=1P2k .

4. Invariant measures. In this section we will prove that if a measure µ is a
limit point of the measures {µ2n}n≥1 in ∗-weak topology, then µ is τ -invariant. We
recall that the convergence of µ2n to µ in *-weak topology means that

lim
n→∞

∫ b

a

g dµ2n =

∫ b

a

g dµ, ∀g ∈ C[a, b].

(See, for example, [4, Chapter 2, Definition 2.2.8]).
We first prove the following lemma.

Lemma 2. Suppose g is a step function on P2n = {Ii}2
n

i=1. Then∫ b

a

g dµ2n =

∫ b

a

g ◦ τ dµ2n .

Proof. Write g =
∑2n

i=1 aiχIi . Then clearly∫ b

a

g dµ2n =

2n∑
i=1

aiµ2n(Ii).

On the other hand, using Lemma 1 we also have∫ b

a

g ◦ τ dµ2n =

2n∑
i=1

ai

∫ b

a

χIi ◦ τ dµ2n

=

2n∑
i=1

ai

∫ b

a

χτ−1(Ii) dµ2n

=

2n∑
i=1

aiµ2n(τ−1(Ii))

=

2n∑
i=1

aiµ2n(Ii).

So, we have shown that
∫ b
a
g dµ2n =

∫ b
a
g◦τ dµ2n , provided that g is a step function

on P2n = {Ii}2
n

i=1.

We will need the following result in proving Proposition 1.
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Theorem 2. Let {νn}n≥1 be a sequence of probability measures. Then there exists
a subsequence {νnk

}k≥1 such that νnk
→ ν in *-weak topology as k → ∞ and ν is

a probability measure, that is, the set of probability measures is compact in *-weak
topology.

Proof. See, for example [4, Chapter 2, Corollary 2.2.3].

We also need the following result.

Theorem 3. Let τ : [a, b] → [a, b] be a measurable map. Then a measure µ is
τ -invariant if and only if∫ b

a

g dµ =

∫ b

a

g ◦ τ dµ for any g ∈ C[a, b].

Proof. See, for example, [4, Chapter 3, Theorem 3.1.2].

Now we prove the following.

Proposition 1. Suppose τ : [a, b]→ [a, b] is in C[a, b]. Let us consider a sequence
of Ulam’s densities {f2n}n≥1 associated with τ based on the sequence of partitions
{P2n}n≥1. Let µ2n be probability measure with density f2n . Since {µ2n}n≥1 is a
family of probability measures, by Theorem 2 there exists a subsequence {µ2nk }k≥1

such that µnk
→ µ as k →∞ in *-weak topology, where µ is a probability measure.

Then µ is τ -invariant.

Proof. For notational convenience, we will write {µ2nk }k≥1 as {µ2n}n≥1. By The-
orem 3, it is enough to show that∫ b

a

g dµ =

∫ b

a

g ◦ τ dµ for any g ∈ C[a, b].

Suppose g ∈ C[a, b]. Let ε > 0. For each positive integer n, let g2n =
∑2n

i=1 ciχIi ,
where each Ii ∈ P2n and ci is the infimum value of g on Ii. Since g ∈ C[a, b],
g2n → g uniformly on the interval [a, b]. In particular, we can find an N1 ≥ 1 such
that

n ≥ N1 =⇒ sup
[a,b]

|g − g2n | < ε/4.

This implies also

n ≥ N1 =⇒ sup
[a,b]

|g ◦ τ − g2n ◦ τ | < ε/4.

Since µ2n → µ in *-weak topology and g, τ ∈ C[a, b], we can find N2 and N3

such that

n ≥ N2 =⇒

∣∣∣∣∣
∫ b

a

g dµ−
∫ b

a

g dµ2n

∣∣∣∣∣ < ε/4,

and

n ≥ N3 =⇒

∣∣∣∣∣
∫ b

a

g ◦ τ dµ−
∫ b

a

g ◦ τ dµ2n

∣∣∣∣∣ < ε/4.
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Now let N = max{N1, N2, N3}. Let n ≥ N . Then using Lemma 2 and the fact
that µ2n is a probability measure, we have∣∣∣∣∣

∫ b

a

g dµ−
∫ b

a

g ◦ τ dµ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

g dµ−
∫ b

a

g dµ2n

∣∣∣∣∣+

∣∣∣∣∣
∫ b

a

g dµ2n −
∫ b

a

g2n dµ2n

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

g2n dµ2n −
∫ b

a

g2n ◦ τ dµ2n

∣∣∣∣∣+

∣∣∣∣∣
∫ b

a

g2n ◦ τ dµ2n −
∫ b

a

g ◦ τ dµ2n

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

g ◦ τ dµ2n −
∫ b

a

g ◦ τ dµ

∣∣∣∣∣
<
ε

4
+
ε

4
+ 0 +

ε

4
+
ε

4
= ε.

Since ε > 0 was arbitrary, we have
∫ b
a
g dµ =

∫ b
a
g ◦ τ dµ. Since g was an arbitrary

function in C[a, b], µ is τ -invariant.

The following example shows that even though the measure µ in Proposition 1
is τ -invariant, it may not be absolutely continuous measure w.r.t. the Lebesgue
measure m.

Example 1. Let τ : [0, 1] → [0, 1] be defined by τ(x) = x/2 for ∀ x ∈ [0, 1]. It is
easy to show that f2n = 2nχ[0,1/2n]. So for any g ∈ C[0, 1], we have∫ 1

0

g dµ2n =

∫ 1

0

g · f2n dm =

∫ 1

0

g · 2nχ[0,1/2n] dm = 2n
∫ 1

2n

0

g dm = g(xn),

where xn ∈ [0, 1/2n]. So

lim
n→∞

∫ 1

0

g dµ2n = lim
n→∞

g(xn) = g(0).

If we define µ as

µ(B) =

{
1 if 0 ∈ B
0 if 0 /∈ B ,

then clearly
∫ 1

0
g dµ = g(0). So we see that µn → µ as n→∞ in *-weak topology.

So by Proposition 1 µ is τ -invariant, but clearly µ is not absolutely continuous with
respect to the Lebesgue measure m.

5. Absolutely continuous invariant measures. In this section we consider con-
structing τ -invariant measures which are also absolutely continous measures w.r.t.
the Lebesgue measure m.

Definition 7. The set of functions F ⊆ L1[a, b] is called weakly precompact if
every sequence of functions {gn} ⊆ F contains a subsequence {gnk

} that converges
weakly to a function g ∈ L1[a, b].

Recall that weak convergence of {gnk
} to g in L1[a, b] means that for any h ∈

L∞[a, b] we have ∫ b

a

gnk
· h dm→

∫ b

a

g · h dm as k →∞.
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Now the following sufficient condition of the family of sets in L1[a, b] being weakly
precompact is useful.

Theorem 4. Let g ∈ L1[a, b] be a nonnegative function. Then the set of all func-
tions f ∈ L1[a, b] such that

|f(x)| ≤ g(x) m− a.e.

is weakly precompact in L1[a, b].

Proof. See, for example [23, page 87].

We now prove the following:

Proposition 2. Let τ : [a, b] → [a, b] be nonsingular. Let us consider a sequence
of Ulam’s densities {f2n}n≥1 associated with τ base on the sequence of partitions
{P2n}n≥1. Let µ2n be the measure with density f2n for each n. If the family
{f2n}n≥1 is weakly precompact in L1[a, b] and hence f2nk → f∗ weakly in L1[a, b] as
k →∞, then the measure µ with density f∗ is an absolutely continuous τ -invariant
probability measure.

Proof. For notational convenience we may assume that f2n → f∗ weakly in L1[a, b]
as n→∞. We first show that µ is τ -invariant on ∪n≥1P2n . Suppose I ∈ ∪n≥1P2n .
Then I ∈ P2N1 for some N1. By Remark 4 we have µ2n(I) = µ2n(τ−1(I)) for all
n ≥ N1, that is, ∫

I

f2n dm =

∫
τ−1(I)

f2n dm, n ≥ N1

or ∫ b

a

f2nχI dm =

∫ b

a

f2nχτ−1(I) dm, n ≥ N1.

Let ε > 0 be given. Since f2n converges to f∗ weakly and χI ∈ L∞[a, b], there
exists N2 such that∣∣∣∣∣

∫ b

a

f2nχI dm−
∫ b

a

f∗χI dm

∣∣∣∣∣ < ε

2
, n ≥ N2.

Similarly, there exists N3 such that∣∣∣∣∣
∫ b

a

f2nχτ−1(I) dm−
∫ b

a

f∗χτ−1(I) dm

∣∣∣∣∣ < ε

2
, n ≥ N3.

Let N = max{N1, N2, N3}. Observe that if n ≥ N , then we have∣∣µ(I)− µ(τ−1(I))
∣∣ =

∣∣∣∣∣
∫
I

f∗ dm−
∫
τ−1(I)

f∗ dm

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

f∗χI dm−
∫ b

a

f∗χτ−1(I) dm

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

f∗χI dm−
∫ b

a

f2nχI dm

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

f2nχI dm−
∫ b

a

f2nχτ−1(I) dm

∣∣∣∣∣
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+

∣∣∣∣∣
∫ b

a

f2nχτ−1(I) dm−
∫ b

a

f∗χτ−1(I) dm

∣∣∣∣∣
<

ε

2
+ 0 +

ε

2
= ε.

Since ε > 0 was arbitrary, we have µ(I) = µ(τ−1(I)). Since I was an arbitrary
element in ∪n≥1P2n , µ is τ -invariant on ∪n≥1P2n .

Now we show that µ is τ -invariant on B. Since τ is nonsingular, both µ and
µ ◦ τ−1 are absolutely continuous measures w.r.t. the Lebesgue measure m. So for
any ε > 0 there exists δ > 0 such that

m(A) < δ =⇒ µ(A) <
ε

6
and (µ ◦ τ−1)(A) <

ε

6
. (9)

Now suppose B ∈ B. Then there is a finite disjoint collection of finite intervals
{Ik}mk=1 such that

m(B − I) +m(I −B) < δ, (10)

where I =
⋃m
k=1 Ik. Since the collection of the end points of the intervals in

{P2n}n≥1 is dense in the interval [a, b], for each k we can choose an interval Jk such
that

(a) Jk ⊆ Ik;
(b) Jk is a finite disjoint union of the intervals in P2nk for some nk;
(c) m(Ik − Jk) < δ/m.

So if we let J =
⋃m
k=1 Jk, we have

m(I − J) = m

(
m⋃
k=1

Ik −
m⋃
k=1

Jk

)
= m

(
m⋃
k=1

(Ik − Jk)

)

=

m∑
k=1

m(Ik − Jk) <

m∑
k=1

δ

m
= δ. (11)

Since µ = µ◦τ−1 on {P2n}n≥1, it follows that µ(Jk) = (µ◦τ−1)(Jk) for 1 ≤ k ≤ m,
and hence it follows that

µ(J) = (µ ◦ τ−1)(J). (12)

So using (9), (11), and (12), we have

|µ(I)− (µ ◦ τ−1)(I)| = |µ(J ∪ (I − J))− (µ ◦ τ−1)(J ∪ (I − J))|
= |µ(J) + µ(I − J)− (µ ◦ τ−1)(J)− (µ ◦ τ−1)(I − J)|
= |µ(I − J)− (µ ◦ τ−1)(I − J)| (13)

≤ |µ(I − J)|+ |(µ ◦ τ−1)(I − J)|

<
ε

6
+
ε

6
=
ε

3
.

Now we let

C = B − I, D = B ∩ I, and E = I −B

and note that by (10) we have

m(C) < δ and m(E) < δ. (14)
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So, using (9), (13), and (14), we have

|µ(D)− (µ ◦ τ−1)(D)| = |µ(I − E)− (µ ◦ τ−1)(I − E)|
= |µ(I)− µ(E)− (µ ◦ τ−1)(I) + (µ ◦ τ−1)(E)|
≤ |µ(I)− (µ ◦ τ−1)(I)|+ µ(E) + (µ ◦ τ−1)(E) (15)

<
ε

3
+
ε

6
+
ε

6
=

2ε

3
.

Finally, using (9), (14), and (15), we have

|µ(B)− (µ ◦ τ−1)(B)| = |µ(C ∪D)− (µ ◦ τ−1)(C ∪D)|
= |µ(C) + µ(D)− (µ ◦ τ−1)(C)− (µ ◦ τ−1)(D))|
≤ |µ(D)− (µ ◦ τ−1)(D)|+ µ(C) + (µ ◦ τ−1)(C)

<
2ε

3
+
ε

6
+
ε

6
= ε.

Since ε was arbitrary, we have µ(B) = (µ ◦ τ−1)(B). Since B was an arbitrary
element of B, µ is τ -invariant on B. Since µ has its density function f∗ ∈ L1[a, b], it
is also an absolutely continuous probability measure w.r.t. the Lebesgue measure.

Example 2. Let τ : [0, 1]→ [0, 1] be defined by

τ(x) =

{
2x

1−x , 0 ≤ x ≤ 1
3

1−x
2x ,

1
3 ≤ x ≤ 1.

Using Ulam’s method, we found {f2n}10
n=1 and obtained the data displayed in Table

1. It shows strong evidence that {f2n}n≥1 is bounded by 2. So, by Theorem 4,
{f2n}n≥1 is weakly pre-compact, and hence there exists a sub-sequence {f2nk }n≥1

of {f2n}n≥1 which converges weakly to f∗ ∈ L1[a, b]. Thus by Proposition 2 the
measure µ with density f∗ is an absolutely continuous τ -invariant probability mea-
sure µ. Then by Theorem 1, we have Pτ (f∗) = f∗. Since τ is ergodic, f∗ is the
unique fixed density of Pτ . Hence again by Theorem 1 we see that µ is the unique
absolutely continuous τ -invariant probability measure on B. One can verify that

f∗(x) =
2

(1 + x)2
.

Since f∗ is the unique fixed density of Pτ , we may expect that {f2n}n≥1 converges
strongly to f∗ (see [24]). See Figure 1 for the plot of f25 and f∗.

Example 3. Let τ : [0, 1] → [0, 1] be defined by τ(x) = 4x(1 − x). Using Ulam’s
method, we found {f2n}10

n=5. Each fn has two peak values. Those peak values hap-
pened near 0 and near 1 for each n. We compiled those peak values and displayed
in Table 2. We also presented their ratios of two consecutive fn’s, and displayed
them in Table 3, which show that the limit behavior of {f2n}n≥1 is like O(1/

√
x)

near 0 and O(1/
√

1− x) near 1. Since both 1/
√
x and 1/

√
1− x are in L1[0, 1], the

collection {f2n}n≥1 is bounded by some g ∈ L1[0, 1]. So, by Theorem 4, {f2n}n≥1 is
weakly precompact, and hence by Proposition 2 there is a density f∗ ∈ L1[a, b] such
that if the measure µ has f∗ as its density, then the measure µ is the absolutely
continuous τ -invariant probability measure. Since τ is ergodic, f∗ the only density
function which makes µ τ -invariant. In fact, it is well known that

f∗(x) =
1

π
√
x(1− x)

.
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Table 1. Maximum values of f2n

n 2n maximum values of f2n

1 2 1.25
2 4 1.5075
3 8 1.7232
4 16 1.8157
5 32 1.9126
6 64 1.9465
7 128 1.9748
8 256 1.9871
9 512 1.9930

10 1024 1.9964

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.75

1

1.25

1.5

1.75

2

x

f* (x
),

 f
25(x

)

 

 

f
2
5
(x)

f*(x)

Figure 1. Graphs of the probability density function f∗ and its
estimation f25 for Example 2. Since {f2n}n≥1 is bounded by 2, by
Theorem 4 {f2n}n≥1 is weakly pre-compact, and hence there exists
a subsequence {f2nk }n≥1 of {f2n}n≥1 which converges weakly to
f∗ ∈ L1[a, b]. In fact, we may expect that {f2n}n≥1 converges
strongly to f∗.

Again we may expect that {f2n}n≥1 converges strongly to f∗. See Figure 2 for the
plot of f29 and f∗.

Example 4. Let τ : [0, 1] → [0, 1] be defined by τ(x) = x/2. As was discussed in
Example 1, Ulam’s method gives {f2n}n≥1 = {2nχ[0,1/2n]}n≥1, and hence the peak
value of f2n is 2n, and the ratio of the peak values of two consecutive fn’s is 2.
This suggests that the limit behavior of {f2n}n≥1 is like O(1/x) near 0. Since 1/x
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Table 2. Peak values of f2n in Example 3

n 2n 1st peak value of f2n 2nd peak value of f2n

5 32 1.2899 3.8291
6 64 1.8337 5.4724
7 128 2.4475 7.3235
8 256 3.5149 10.5309
9 512 4.8498 14.5401

10 1024 6.9200 20.7534

Table 3. The consecutive ratio of peak values of f2n in Example 3

n 2n f2n/f2n−1 at 1st peak value f2n/f2n−1 at 2nd peak value
6 64 1.4216 1.4292
7 128 1.3347 1.3382
8 256 1.4361 1.4380
9 512 1.3798 1.3807

10 1024 1.4269 1.4273

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

x

f* (x
),

 f
29(x

)

 

 

f
2
9
(x)

f*(x)

Figure 2. Graphs of the probability density function f∗ and its
estimation f29 for Example 3. Again we may expect that {f2n}n≥1

converges strongly to f∗.

is not in L1[0, 1], the collection {f2n}n≥1 is not bounded by an integrable function,
and hence Theorem 4 and Proposition 2 do not apply. In fact, in Example 1 we
showed that there is no absolutely continuous invariant measure in this case.
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6. Applications to biological systems. The recursive equation

xn+1 = f(xn) + γxn,

can be used for nonlinear discrete-time epidemic models. Here γ (0 ≤ γ < 1)
denotes the constant probability of surviving per generation; f models the typically
nonlinear birth or recruitment process; x(n) denotes the population size at time n;
and time is measured in discrete units.

If

f(xn) =
αxn

1 + (βxn)p
,

the above recursive equation is called the Smith-Slatkin model. Hence the Smith-
Slatkin model gives

xn+1 =
αxn

1 + (βxn)p
+ γxn.

Here α is the maximal per-capita intrinsic growth rate of the population; p reflects
the type and strength of intra-specific competition; and β scales the carrying ca-
pacity of the population. Details of this model and its applications in ecology and
epidemiology have been mentioned in [6].

We write the above recursive equation as

xn+1 = τ(xn),

where

τ(x) =
αx

1 + (βx)p
+ γx. (16)

If we let x∗ denote the fixed population of the Smith-Slatkin model under τ , from
the equation

x∗ = τ(x∗),

we obtain

x∗ =
1

β

(
α+ γ − 1

1− γ

) 1
p

.

The following lemma establishes the condition under which |τ ′(x∗)| > 1.

Lemma 3. If p > 2α
(1−γ)(α+γ−1) , then |τ ′(x∗)| > 1.

Proof. Since

τ ′(x) =
α[1 + (βx)p]− αp(βx)p

[1 + (βx)p]2
+ γ,

by a direct computation we obtain

τ ′(x∗) = 1− (1− γ)(α+ γ − 1)

α
.

It follows that if p > 2α
(1−γ)(α+γ−1) , then |τ ′(x∗)| > 1.

Whenever 0 < p < 2α
(1−γ)(α+γ−1) , {xn}n≥1 approaches to a simple demographic

attractor x∗. But, as p increases past 2α
(1−γ)(a+γ−1) , the equilibrium point undergoes

period-doubling bifurcation and eventually to chaos, see Figure 3. See also [6].
The critical point of τ to the left of x∗ is

xc =
1

β

(
−
√
α2p2 − 2α2p− 4αγp+ α2 − (αp− α− 2γ)

2γ

)1/p

.
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Figure 3. Bifurcation diagram of Smith-Slatkin map for α =
1.5, β = 1, γ = 0.1, as p changes from 5 to 19.

We will study the dynamics of τ on the invariant interval
[
a = τ2(xc), b = τ(xc)

]
,

see Figure 4.
We will use the Schwarzian derivative of τ defined by

Sτ =
τ ′′′

τ ′
− 3

2

(
τ ′′

τ ′

)2

.

Its negativity can be used to prove the existence of absolutely continuous invariant
measure [27, 28, 31, 21, 30]. First, we will prove that Sτ < 0 for a wide range of
parameters.

Proposition 3. For p > 2 and γ
α <

p3−3p2+5p−3
6(p2+1) we have Sτ < 0 for x > 0.

Proof. Let p > 2. Let f1(x) = x/(1 + xp) + kx, where k = γ
α . It can be proved by

elementary but tedious calculations that

Sf1(x) =
−F (x)

2x2(1 + xp)2(x2pk − xp(p− 1− 2k) + k + 1)2
,

where

F (x) = x4p2k(p2 − 1) + x3p(p3 − p2 + 5p− 2− 4k(p2 + 2))

+ x2p(2p3 − 6p2 + 10p− 6− 12k(p2 + 1))

+ xp(p3 + 5p− 6− k(4p2 + 8)) + p2(k + 2)− 2(k + 1).



16 NOAH H. RHEE, PAWE L GÓRA AND MAJID BANI-YAGHOUB

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

X
n

X
n+

1=
α 

X
n /(

1+
(β

 X
n)p ) 

+
 γ

 X
n

 

 

Figure 4. Graph of Smith-Slatkin map for α = 1.5, β =
1, γ = 0.1 and p = 18 with x∗ = 0.977725973073732, xc =
0.857817481013884, b = τ(xc) = 1.295956066342802, and a =
τ2(xc) = 0.147708628629491. Note that τ : [a, b]→ [a, b].

Thus, a sufficient condition for Sf1 < 0 is

k < min

{
p3 − 3p2 + 5p− 3

6(p2 + 1)
,
p3 − p2 + 5p− 2

4(p2 + 2)
,
p3 + 5p− 6

4(p2 + 2)

}
,

which for p > 2 is equivalent to

k <
p3 − 3p2 + 5p− 3

6(p2 + 1)
.

Let g(x) = βx. Since in general S(f ◦ g) = (Sf ◦ g)(g′)2 + S(g) and in our case

S(g) = 0 we get S(f1 ◦ g) < 0 or Sf2 < 0 for f2(x) = βx/(1 + (βx)p) + γβ
α x.

Since for any function g we have S(const · g) = S(g) we also have Sτ < 0 since
τ(x) = α

β f2(x).

In Figure 5 we plot the graph of p3−3p2+5p−3
6(p2+1) on the p-interval [2, 20]. For

example, if α = 1.5 and γ = 0.1, the condition γ
α < p3−3p2+5p−3

6(p2+1) in Proposition 3

is fulfilled for all p > 2.
A strong result giving sufficient condition for the existence of acim for such maps

was given in [31]. We give a simplified version applicable to our map τ :

Theorem 5. Suppose that τ is unimodal, C3 and has a negative Schwarzian de-
rivative. Moreover assume that

∞∑
n=0

|(τn+1)′(xc))|−1/2 < +∞.

Then, τ has a unique absolutely continuous invariant probability measure µ which
is ergodic and of positive entropy. Furthermore there exists a positive constant K
such that µ(A) < K

√
m(A) for any A ∈ B.
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Figure 5. Graph of p3−3p2+5p−3
6(p2+1). For α = 1.5 and γ = 0.1, the

condition γ
α <

p3−3p2+5p−3
6(p2+1) in Proposition 3 is fulfilled for all p > 2.

As it is shown in Figures 6 and 7, when α = 1.5, β = 1, and γ = 0.1, for p = 8 the
third image of the critical point τ3(xc) is above the fixed point x∗ and for p = 8.5
we have τ3(xc) < x∗. Thus, for some value p = p̂ in between we have τ3(xc) = x∗.
We found that p̂ ∼ 8.151184748169387. Note that

p̂ >
2α

(1− γ)(α+ γ − 1)
=

2(1.5)

(1− 0.1)(1.5 + 0.1− 1)
=

50

9
.

So by Lemma 3 we have |τ ′(x∗)| > 1. Note that the mapping τ defined (16) on the
interval [a, b] is unimodal and C3. We already observed that if α = 1.5 and γ = 0.1,
then the condition in Proposition 3 is fulfilled for all p > 2. Hence τ with α = 1.5,
β = 1, γ = 0.1, and p = p̂, has negative Schwarzian derivative on [a, b].

Corollary 1. Suppose α = 1.5, β = 1, and γ = 0.1. If p = p̂ the Smith-Slatkin
map τ admits a unique ergodic absolutely continuous invariant measure µ. It is of
positive entropy and µ(A) < K

√
m(A) for any A ∈ B.

Proof. Since τ3(xc) = x∗, for n ≥ 3, the series in Theorem 5 becomes

|τ ′(xc)|−1/2 + |(τ2)′(xc)|−1/2 + |(τ3)′(xc)|−1/2
∞∑
n=0

(
|τ ′(x∗)|−1/2

)n
.

Since |τ ′(x∗)| > 1, this series converges. So the Corollary follows from Theorem
5.

The famous theorem of Jakobson [27, 18, 19, 26, 37, 44] states that for a one
parameter family of unimodal maps τα with negative Schwarzian derivative, similar
to the family of parabolas x 7→ αx(1 − x), the set of parameters for which τα has
an acim is “large” (e.g., it is of positive Lebesgue measure) and in particular it is of
Lebesgue density 1 around each “Misiurewicz parameter” (a parameter for which
some iterate of critical point hits a periodic point).
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Figure 6. Graph of Smith-Slatkin map for α = 1.5, β = 1, γ = 0.1
and p = 8. Three first iterates of the critical point are shown.

Unfortunately, Smith-Slatkin family (say, with α, β, γ fixed and p as a parame-
ter) does not satisfy the assumptions of any version of Jakobson’s theorem we know.
On the other hand the bifurcation diagram of Figure 3 suggests that map τ has an
acim for a large set of p’s. The following Example reinforces this evidence.

Example 5. We let α = 1.5, β = 1, and γ = 0.1. If we let p = 18, then the
orbit {τn(x)}∞n=0 exhibits a chaotic behavior. We have xc = 0.857817481013884,
b = τ(xc) = 1.295956066342802, and a = τ2(xc) = 0.147708628629491. Note that
τ : [a, b]→ [a, b].

Now we want to study whether there is a density f∗ ∈ L1[a, b] such that if
the measure µ has f∗ as its density function, then µ is a τ -invariant absolutely
continuous probability measure on B. If we can find such a density f∗ ∈ L1[a, b],
then by Remark 1 f∗ is the p.d.f. of the population random variable X whose
occurrences are according to (x, τ(x), τ2(x), . . .). So even though the population at
discrete times may exhibit a chaotic behavior, we can do statistical analysis of the
population random variable X.

Using Ulam’s method we computed {f2n}11
n=8, and we found out that there are

six peak values. We compiled those peak values and displayed them in Tables 4-6.
We also present their ratios of two consecutive f2n and displayed them in Tables
7-9. Note that at each singular point x̂ the limit behavior is like O(1/

√
x̂− x) when

x < x̂ and x ≈ x̂ and O(1/
√
x− x̂) when x > x̂ and x ≈ x̂. Since 1/

√
x̂− x∗ and
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Figure 7. Graph of Smith-Slatkin map for α = 1.5, β = 1, γ = 0.1
and p = 8.5. Three first iterates of the critical point are shown.

Table 4. Peak values of f2n for τ in Example 5

n 2n The 1st peak values The 2nd peak values
8 256 9.9001 6.5190
9 512 13.987 9.0862

10 1024 20.609 12.770
11 2048 28.397 16.860

1/
√
x̂− x∗are in L1[a, b], the collection {f2n}n≥1 is bounded by some g ∈ L1[a, b].

So by Theorem 5, {f2n}n≥1 is weakly precompact and hence by proposition 2 there
is a density f∗ ∈ L1[a, b] such that if the measure µ has f∗ as its density function,
then the measure µ is the absolutely continuous τ -invariant probability measure.
Since τ is ergodic, µ is the only τ -invariant measure. So we may expect that
{f2n}n≥1 converges to f∗. Figure 8 is the graph of f28 , in which we can recognize
six peak values. It is clear that the first peak value occurs at x = a and the last
peak value at x = b.

Note that f∗ is the p.d.f. of the population random variable X whose occurrences
are according to (x, τ(x), τ2(x), . . .). Using (5) with f(x) = x, we have∫ b

a

x dµ(x) = lim
N→∞

1

N

N−1∑
n=0

τn(x).
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Figure 8. Graph of f28 for Example 5. There are six peak val-
ues, where the first peak value occurs at x = a and the last peak
value at x = b. Although the closed form of the probability den-
sity function f∗ is unknown, the numerical simulations strongly
show that {f2n}n≥1 is bounded by an integrable function. So, by
Theorem 4, {f2n}n≥1 is weakly pre-compact, and hence there ex-
ists a sub-sequence {f2nk }n≥1 of {f2n}n≥1 which converges weakly
to f∗ ∈ L1[a, b]. By Proposition 2 the measure µ with density
function f∗ is an absolutely continuous τ -invariant measure. So
f∗ is the PDF of the chaotic map τ . In fact, we may expect that
{f2n}n≥1 converges strongly to f∗.

Table 5. Peak values of f2n for τ in Example 5

n 2n The 3rd peak values The 4th peak values
8 256 4.2530 2.7992
9 512 5.8493 3.8154

10 1024 8.1477 5.2147
11 2048 10.711 6.8142

Since the measure µ has f∗ as its density, the above equation becomes

X̄ =

∫ b

a

xf∗(x) dm(x) = lim
N→∞

1

N

N−1∑
n=0

τn(x),

where X̄ denotes the mean of the population random variableX. So we can estimate
the mean X̄ by x̄, where
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Table 6. Peak values of f2n for τ in Example 5

n 2n The 5th peak values The 6th peak values
8 256 2.0871 4.1312
9 512 2.8524 5.5220

10 1024 3.5875 7.8931
11 2048 4.5694 10.607

Table 7. The consecutive ratio of the first two peak values of f2n

for τ in Example 5

n 2n f2n/f2n−1 at 1st peak value f2n/f2n−1 at 2nd peak value
9 512 1.4128 1.3938

10 1024 1.4735 1.4055
11 2048 1.3779 1.3203

Table 8. The consecutive ratio of the middle two peak values of
f2n for τ in Example 5

n 2n f2n/f2n−1 at 3rd peak value f2n/f2n−1 at 4th peak value
9 512 1.3753 1.3630

10 1024 1.3929 1.3668
11 2048 1.3146 1.3067

Table 9. The consecutive ratio of the last two peak values of f2n

for τ in Example 5

n 2n f2n/f2n−1 at 5th peak value f2n/f2n−1 at 6th peak value
9 512 1.3667 1.3367

10 1024 1.2577 1.4294
11 2048 1.2737 1.3439

x̄ =
1

N

N−1∑
n=0

τn(x),

using a large N . Similarly, using (5) with f(x) = (x− x̄)2, the variance σ2 can be
approximated by s2, where

s2 = lim
N→∞

1

N

N−1∑
n=0

(τn(x)− x̄)2,

So we can also estimate the standard deviation σ of the population random variable
X by s, where

s =

√∑N−1
n=1 (τn(x)− x̄)2

N
.

Using these two formulas with N = 105, 106, and 107, we compiled the estimates
of X̄ and σ in Table 10.
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Table 10. The estimates of X̄ and σ for Example 5

N x̄ s
105 0.6658 0.3570
106 0.6657 0.3574
107 0.6657 0.3575
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