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Abstract. Keller [9] introduced families of W–shaped maps that can have a great

variety of behavior. As a family approaches a limit W map, he observed behavior

that was either described by a probabilty density function (pdf) or by a singular

point measure. Based on this, Keller conjectured that instability of the absolutely

continuous invariant measure (acim) can result only from the existence of small

invariant neighbourhoods of the fixed critical point of the limit map. In this note

we show that the conjecture is not true. We construct a very simple family of

W maps with acim’s supported on the whole interval, whose limiting dynamical

behavior is captured by a singular measure. Key to the analysis is the use of a

general formula for invariant densities of piecewise linear and expanding maps [6].

1. Introduction

Usually, the absolutely continuous invariant measure of a piecewise expanding map

of an interval is stable under deterministic or even random perturbations. This

means that if we consider a family of piecewise expanding maps τa, a > 0 with

acims µa, converging to a piecewise expanding map τ0 with acim µ0, then under

general assumptions µas converge to µ0. One such assumption is that for some

positive ε, |τ ′

a| > 2 + ε for all a ≥ 0. Actually, much more is proven in [10] and [1].

This stability property is often useful, for example, in establishing results about

metastable systems [14].

† The research of the authors was supported by NSERC grants.
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12 Zh. Li, P. Góra, A. Boyarsky, H. Proppe,P. Eslami

Keller [9] introduced the family of W -maps that are piecewise expanding and

exhibit a wide variety of behaviour. This was done to understand whether in

dimension one the expanding constant ensuring stability is really 2 rather than 1

as for zero-dimensional systems [7]. This regularity was later confirmed in [8] by

showing that this constant for a piecewise expanding n-dimensional system with

rectangular partition is n + 1.

Key to the complexity of Keller’s families is the fact that, as the parameter

approaches 0, say, the behavior near a folded critical point plays a crucial role.

This critical point has slope 2 on one side and −2 on the other. Thus, the

entire family is uniformly piecewise expanding and each member has a unique

absolutely continuous invariant measure. However, the stability of probability

density functions that one might expect in families of uniformly piecewise expanding

maps does not occur. Keller provided an example of a family for which the limit of

acims is a singular measure. This occurred because of the existence of diminishing

invariant neighbourhoods of the critical point. Keller conjectured that this is the

only mechanism which can cause such limiting behaviour.

In this paper we construct a family of simple W -maps which disproves Keller’s

conjecture. All our maps are piecewise expanding with slopes strictly greater than

2 in magnitude and are exact with their acim’s supported on all of [0, 1].

Standard bounded variation methods cannot be applied in this setting as the

slopes of maps in our family are not uniformly bounded away from 2. The Lasota-

Yorke BV inequality [2] cannot be invoked for families of maps whose slopes are

not bounded away from 2 in magnitude. Other research related to the objectives

of this note can be found in [3], [13] and [11]. However, none of the methods used

in these papers apply to the family of maps we consider.

In a recent paper [5], a 3-parameter countable family of transitive maps was

constructed which converges to the W -map for which the acim’s approach any

given convex combination of the point measure at 1/2 and the W -map acim. All

maps in this family are Markov, which makes the analysis easier.

In this note we shall utilize the main result of [6] which proves that the invariant

pdf for any piecewise linear map which is eventually expanding has a convenient

infinite series expansion. The estimates on the family of pdfs derived from this

representation allows us to prove our main result, that the acim’s of the family

of W -maps approach a combination of an absolutely continuous and a singular

measure rather than the acim of the limit map.

In Section 2 we introduce our family and state the main theorem, which is proved

in Section 3. In Section 4, we show computational results for some pdfs of the Wa

maps when a is small.
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2. Family of Wa maps and the main result

We consider the family {Wa : 0 ≤ a} of maps of [0, 1] onto itself defined by

Wa(x) =























1 − 4x , for 0 ≤ x < 1/4 ;

(2 + a)(x − 1/4) , for 1/4 ≤ x < 1/2 ;

1/2 + a/4 − (2 + a)(x − 1/2) , for 1/2 ≤ x < 3/4 ;

4(x − 3/4) , for 3/4 ≤ x ≤ 1 .

(1)

Figure 1. a) map W0, b) map Wa, a > 0, with a few first points of the trajectory of 1/2.

The map W0 is Keller’s W -map [9]. We consider only small a > 0 as we are

interested in the limiting behaviour of the Wa’s as a → 0. Fig. 1 shows the graphs

of Wa for a = 0 and a > 0. Every Wa is a piecewise linear, piecewise expanding

map with minimal modulus of the slope equal to 2+a. Every Wa has a unique acim

µa supported on [0, 1] and is exact with respect to this measure. The transitivity of

such maps is proven in [5], and the uniqueness of acim and exactness follow directly

from the Li-Yorke paper [12].

Let ha denote the normalized density of µa, a ≥ 0. It is easy to check that for

W0, µ0 has density

h0 =

{

3
2 , for 0 ≤ x < 1/2 ;
1
2 , for 1/2 ≤ x ≤ 1 .

(2)

Our goal is to prove the following theorem:

Theorem 2.1. As a → 0 the measures µa converge ∗-weakly to the measure

2

3
µ0 +

1

3
δ( 1

2
) ,

where δ( 1
2
) is the Dirac measure at point 1/2.
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The proof relies on the general formula for invariant densities of piecewise linear

maps [6] and direct calculations. The calculations depend on the parameter a, but

we suppress it whenever there is no confusion.

3. Proofs

This section contains the proof of Theorem 2.1, divided into a number of steps.

3.1. Formula for non-normalized invariant density of Wa We adapt the general

formulas of [6] to our case and obtain the following formula for fa:

Lemma 3.1. For small a > 0 there exists A < −1 such that

fa = 1 + 2A

(

∞
∑

n=1

χs(β(1/2, n), Wn
a (1/2))

|β(1/2, n)|

)

. (3)

is a Wa-invariant non-normalized density.

Here,

χs(t, y) =

{

χ[0,y] for t > 0 ;

χ[y,1] for t < 0 ,

and β(1/2, n) is the cumulative slope along the n steps of the trajectory of 1/2

defined by:

β(1/2, 1) = 2 + a, and

β(1/2, n) = (2 + a) ·W ′

a(Wa(1/2)) · W ′

a(W 2
a (1/2)) · · ·W ′

a(Wn−1
a (1/2)), for n ≥ 2.

The detailed justification of formula (3) is in Subsection 3.2.

For small positive a, the first image of 1/2 is Wa(1/2) = 1/2 + a/4 and the next

image lands just below the fixed point slightly less than 1/2. The following forward

images of 1/2 form a decreasing sequence until they go below 1/4. Let k be the first

iterate j when W j
a (1/2) is less than 1/4. That is, k = min{j ≥ 1 : W j

a (1/2) ≤ 1/4}.

Then, the consecutive cumulative slopes of 1/2, namely β(1/2, j), 1 ≤ j ≤ k, are

(2 + a),−(2 + a)2,−(2 + a)3, . . . ,−(2 + a)k ,

and

fa = 1 + 2A





χ[0,Wa(1/2)]

(2 + a)
+

k
∑

j=2

χ[W j
a (1/2),1]

(2 + a)j
+ . . .



 . (4)

3.2. Justification of the formula for fa Using the notation of [6], we have the

following lemma:

Lemma 3.2. (a) N=4, K=2, L=0;

(b) α = (1, 1/2 + a/4, 1/2 + a/4, 1), β = (−4, 2 + a,−(2 + a), 4), γ = (0, 0, 0, 0);

(c) The digits A = (a1, a2, a3, a4), where a1 = −1, a2 = 1/2 + a/4, a3 =

−3/2 − 3a/4, a4 = 3;
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(d) There are two ci’s, which are c1 = (1/2, 2) and c2 = (1/2, 3), and j(c1) = 2,

j(c2) = 3. Then, Wu = {c1, c2},Wl = ∅, Ul = {c2},Ur = {c1}.

(e) β(c1, 1) = 2 + a since j(c1) = 2, then β(c1, 2) = −(2 + a)2 and β(c1, k) =

−(2 + a)k up to k defined in Subsection 3.1, k = min{j ≥ 1 : W j
a (1/2) ≤ 1/4};

(f) β(c2, 1) = −(2 + a) since j(c2) = 3, then β(c2 , 2) = (2 + a)2 and

β(c2 , k) = (2 + a)k up to the same k in part (e), Wn
a (c1) = Wn

a (c2) for all n;

(g) Based on (f), we have the following for the matrix S = Si,j,i, j = 1, 2:

For c1 ∈ Ur

S1,1 =

∞
∑

n=1

δ(β((c1 , n) > 0))δ(Wn
a (c1) > 1/2) + δ(β((c1 , n) < 0))δ(Wn

a (c1) < 1/2)

|β(c1, n)|
,

S1,2 =

∞
∑

n=1

δ(β((c1 , n) > 0))δ(Wn
a (c1) > 1/2) + δ(β((c1 , n) < 0))δ(Wn

a (c1) < 1/2)

|β(c1, n)|
.

For c2 ∈ Ul

S2,1 =

∞
∑

n=1

δ(β((c2 , n) < 0))δ(Wn
a (c2) > 1/2) + δ(β((c2 , n) > 0))δ(Wn

a (c2) < 1/2)

|β(c2, n)|
,

S2,2 =

∞
∑

n=1

δ(β((c2 , n) < 0))δ(Wn
a (c2) > 1/2) + δ(β((c2 , n) > 0))δ(Wn

a (c2) < 1/2)

|β(c2, n)|
,

where δ(“condition”) is equal to 1 if the “condition” holds and to 0 if it does not.

Remark: It follows from (e, f) of Lemma 3.2 that Si,j are equal for i, j = 1, 2. Let

Id be the 2 × 2 identity matrix, V = [1, 1]. Then, for the solution, D = [D1, D2],

of the following system :
(

−ST + Id
)

DT = V T , (5)

we have D1 = D2. Let us denote them by A.

Let I1, I2, I3, I4 be the partition of I = [0, 1], where I1 = [0, 1/4), I2 =

(1/4, 1/2), I3 = (1/2, 3/4) and I4 = (3/4, 1]. Let β1 = −4, β2 = 2+a, β3 = −(2+a),

and β4 = 4.We define the following index:

j(x) = j for x ∈ Ij , j = 1, 2, 3, 4,

and

j(c1) = 2, j(c2) = 3.

Already defined for Lemma 3.1 we have cumulative slopes for iterates of points:

β(x, 1) = βj(x), and β(x, n) = β(x, n − 1) · βj(Wn−1
a (x)), n ≥ 2 ,

and

χs(t, y) =

{

χ[0,y] for t > 0 ;

χ[y,1] for t < 0 .

Using Theorem 2 in [6] directly, we obtain Lemma 3.2. Now, we can prove Lemma

3.1:
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16 Zh. Li, P. Góra, A. Boyarsky, H. Proppe,P. Eslami

Proof: First, by part (g) of Lemma 3.2, since the first and fourth branches of Wa

have slope of modulus 4 > 2 + a,

Si,j ≤
∞
∑

n=1

1

(2 + a)n
=

1

1 + a
< 1 .

On the other hand, for small a

Si,j ≥
1

2 + a
+

1

(2 + a)2
> 1/2.

Now, the solution of the system (5) will be D1 = D2 = 1
1−2S1,1

< −1. By Theorem

2 in [6], it follows from (d, e, f) of Lemma 3.2 that:

fa = 1 + D1

∞
∑

n=1

χs(β(c1, n), Wn
a (c1))

|β(c1, n)|
+ D2

∞
∑

n=1

χs(−β(c2, n), Wn
a (c2))

|β(c2, n)|

= 1 + A

∞
∑

n=1

χs(β(c1, n), Wn
a (1/2))

|β(c1, n)|
+ A

∞
∑

n=1

χs(−β(c2, n), Wn
a (1/2))

|β(c2, n)|

= 1 + 2A

(

∞
∑

n=1

χs(β(1/2, n), Wn
a (1/2))

|β(1/2, n)|

)

,

which completes the proof. 2

3.3. Estimates on fa Recall that k = min{j ≥ 1 : W j
a (1/2) ≤ 1/4}. Clearly,

k > 1. Furthermore, we have the following lemma:

Lemma 3.3. (I) for 2 ≤ m ≤ k, Wm
a (1/2) = −1

4aa(2+a)m−1+1
1+a + 1

2 ;

(II) lim
a→0

ak = 0;

(III) lim
a→0

1
a(2+a)k = 0.

Moreover, if we let k1 = [ 2
3k] (integer part of 2k/3), we have

(IV ) lim
a→0

1
a(2+a)k1

= 0;

(V ) lim
a→0

a2(2 + a)k1 = 0;

(V I) lim
a→0

W k1

a (1
2
) = 1

2
.

Proof: Suppose (I) is true. By the definition of k, 0 ≤ W k−1
a (1/2) ≤ 1/4. That is,

0 ≤ −
1

4
a
a(2 + a)k−1 + 1

1 + a
+

1

2
≤

1

4
. (6)

The first inequality of (6) implies

a2(2 + a)k−2 ≤ 1, (7)

and the second implies

a2(2 + a)k−1 ≥ 1, (8)

and so

2 ≤ lim inf
a→0

a2(2 + a)k ≤ lim sup
a→0

a2(2 + a)k ≤ 4 .
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Assertions (II), (III) and (V) follow immediately. To prove (IV) we have from (7)

a ≤
2 + a

(2 + a)k/2
,

and so using also (8):

1

a(2 + a)k1
=

(2 + a)k−k1

a(2 + a)k
≤

a(2 + a)k−k1

2 + a

≤
2 + a

(2 + a)k/2

1

2 + a
(2 + a)k−k1 =

1

(2 + a)k1−k/2
→ 0 .

Finally (VI) follows from (I) and (V).

Now, let us prove (I). For m = 2, it is easy to check that W 2
a (1/2) = 2−a−a2

4

which is the same as −1
4
aa(2+a)+1

1+a
+ 1

2
. Suppose (I) holds for m = i < k, that is

W i
a(1/2) = −

1

4
a
a(2 + a)i−1 + 1

1 + a
+

1

2
.

Then for m = i + 1,

W i+1
a (1/2) = (2 + a)(−

1

4
a
a(2 + a)i−1 + 1

1 + a
+

1

2
−

1

4
)

= −
1

4
a
a(2 + a)i + 2 + a

1 + a
+

1

2
+

a

4

= −
1

4
a
a(2 + a)i + 1

1 + a
+

1

2
.

This completes the proof. 2

Let δ(“condition”) be equal to 1 if the “condition” holds and to 0 if it does not.

Lemma 3.2 implies that

S1,1 =

∞
∑

n=1

δ(β((1/2, n) > 0))δ(Wn
a (1/2) > 1/2) + δ(β((1/2, n) < 0))δ(Wn

a (1/2) < 1/2)

|β(1/2, n)|
.

Also, it was shown there that A = 1
1−2S1,1

. Since

S1,1 ≥
k1
∑

n=1

1

(2 + a)n
=

1
2+a

− 1
(2+a)k1+1

1 − 1
2+a

,

and

S1,1 ≤
∞
∑

n=1

1

(2 + a)n
=

1

1 + a
,

we have

Al =
1 + a

a − 1 + 2
(2+a)k1

≤ A ≤
1 + a

a − 1
= Ah . (9)

Note that, for small a, both estimates Al and Ah are smaller that −1.
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Let us define,

gl =
χ[0,Wa(1/2)]

(2 + a)
+

k1
∑

j=2

χ[W j
a (1/2),1]

(2 + a)j
,

and

gh = gl +
∞
∑

j=k1+1

1

(2 + a)j
= gl +

1

(1 + a)(2 + a)k1
.

Let us further define fl = 1 + 2Algh and fh = 1 + 2Ahgl. It follows from (4) and

(9) that

fl ≤ fa ≤ fh . (10)

Let χ1 = χ[0,1/2+a/4], χj = χ[W j
a (1/2),1/2+a/4], j = 2, 3, . . . , k1, χc = χ(1/2+a/4,1].

Now we will represent the functions fl and fh as combinations of functions χj,

j = 1, . . . , k1 and χc. After some calculations, we obtain:

fl =

(

2

2 + a
Al + 1

)

χ1 + 2Al

k1
∑

n=2

χn

(2 + a)n
+

+

(

2Al

1
2+a

− 1
(2+a)k1

1 + a
+ 1

)

χc + 2Al
1

(1 + a)(2 + a)k1
;

fh =

[

Ah
2

2 + a
+ 1

]

χ1 + 2Ah

k1
∑

n=2

χn

(2 + a)n
+

(

2

1
2+a − 1

(2+a)k1

a − 1
+ 1

)

χc.

Note that (9) implies that both Al, Ah are smaller than −(1 + 2a). Using this we

can show that all coefficients in the representation of fl and fh are negative for

sufficiently small a.

3.4. Normalization Let us define J1 = [0, W k1
a (1/2)], J2 = (W k1

a (1/2), 1/2+a/4],

J3 = (1/2 + a/4, 1]. We will calculate integrals of fh over each of these intervals

and use them to normalize fh. We have

C1 =

∫

J1

fh dλ =

∫

J1

[

2

(

1 + a

a − 1

1

2 + a

)

+ 1

]

χ1 dλ

=

[

2

(

1 + a

a − 1

1

2 + a

)

+ 1

]

W k1

a (
1

2
) =

a2 + 3a

(a − 1)(2 + a)
W k1

a (
1

2
) .

Using Lemma 3.3, we have lim
a→0

C1

a = −3
4 . In the same way we can see that for any

0 < α < 1/2, we obtain

lim
a→0

1

a

∫ α

0

fhdλ = −
3

2
α . (11)
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On the interval J2, the integral of fh is:

C2 =

∫

J2

fh dλ =

∫

J2

[

2

(

1 + a

a − 1

1

2 + a

)

+ 1

]

χ1 dλ + 2
1 + a

a − 1

k1
∑

j=2

∫

J2

χj

(2 + a)j
dλ

=
a2 + 3a

(a − 1)(2 + a)

(

1

2
+

a

4
− W k1

a (
1

2
)

)

+2
1 + a

a − 1

[

(k1 − 1)a2

4(2 + a)(1 + a)
+

a

4(1 + a)

1 − 1
(2+a)k1−1

1 + a

]

.

Using Lemma 3.3, we have

lim
a→0

C2

a
= −

1

2
. (12)

On the interval J3, the integral of fh is:

C3 =

∫

J3

fh dλ =

∫

J3

(

2

1
2+a − 1

(2+a)k1

a − 1
+ 1

)

χc dλ

=

(

2

1
2+a − 1

(2+a)k1

a − 1
+ 1

)

(
1

2
−

a

4
) .

Using Lemma 3.3, we have

lim
a→0

C3

a
= −

1

4
.

In the same way we can see that for any 0 < α < 1/2, we obtain

lim
a→0

1

a

∫ 1

1/2+α

fhdλ = −
1

2

(

1

2
− α

)

. (13)

If we define B = C1 + C2 + C3, then fh

B is a normalized density. We see that

lim
a→0

B

a
= −

3

2
.

3.5. Conclusion of the proof Now, we will use our foregoing calculations to

show that the normalized measures (fh/B) · λ converge ∗-weakly to the measure
2
3µ0 + 1

3δ( 1
2
), as a → 0.

For any interval [0, α], 0 < α < 1/2 as a → 0, formula (11) implies

lim
a→0

∫ α

0

fh

B
dλ =

−3
2α

−3
2

= α . (14)

For J2, which converges to the point 1/2, formula (12) implies

lim
a→0

∫

J2

fh

B
dλ =

−1
2

−3
2

=
1

3
. (15)

For any interval [1/2 + α, 1], 0 < α < 1/2, formula (13) implies

lim
a→0

∫ 1

1/2+α

fh

B
dλ =

−1
2

(

1
2 − α

)

−3
2

=
1

3

(

1

2
− α

)

. (16)
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20 Zh. Li, P. Góra, A. Boyarsky, H. Proppe,P. Eslami

Formulas (14), (15) and (16) together show that measures (fh/B) · λ converge ∗-

weakly to the sum of the measure with density χ[0,1/2] + 1
3χ[1/2,1] and 1

3 of a unit

point mass at 1/2, i.e., to the measure 2
3µ0 + 1

3δ( 1
2
).

Now, we will show the same for the normalized measure defined using fl. To

this end, let us note that

fh − fl = 2Ahgl − 2Algh = 2(Ah − Al)gl − 2Al
1

(1 + a)(2 + a)k1

= 2
1 + a

a − 1

−2/(2 + a)k1

a − 1 + 2/(2 + a)k1
gl − 2Al

1

(1 + a)(2 + a)k1
,

where |gl| ≤ 1 and lima→0 Al = −1. Using Lemma 3.3 once again, we can show

that, for any subinterval J ⊂ [0, 1], we have

lim
a→0

1

a

∫

J

(fh − fl)dλ = 0 .

For J = [0, 1] this means that the normalizations of fl and fh are asymptotically the

same. Thus, the limit for a general J implies that the ∗-weak limit of normalized

measures defined using fl is the same as for those defined using fh. Together with

inequality (10) this proves Theorem 2.1.

4. Computational Results

We present in Fig. 2 graphs of Wa normalized invariant densities for a): a = 0.1,

b): a = 0.05 and c): a = 0.01. They were obtained using Maple 13. Note that the

vertical scales of the graphs are very different.

Figure 2. Wa-invariant pdf’s for a): a = 0.1, b): a = 0.05 and c): a = 0.01.

Acknowledgment: The authors are grateful to an anonymous reviewer for

comments.
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