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Abstract. We find an explicit formula for the invariant density h of piecewise linear,

piecewise increasing map τ of an interval [0, 1] with constant slope β > 1, at least

for β large enough. The construction involves matrix S which is defined in a way

somewhat similar to the defining of kneading matrix of a continuous piecewise

monotonic map. We prove that if 1
β

is not an eigenvalue of S, then dynamical

system (τ, h · m) is ergodic.

1. Introduction

In this paper we continue the investigations of invariant densities (with respect to

Lebesgue measure m) for piecewise linear maps with a constant slope β > 1. The

first results about the classical β-maps were obtained by Rényi [15], Parry [12] and

Gelfond [5]. Later, Parry generalized [13] them further. These maps have all the

branches increasing.

The maps with both increasing and decreasing branches were investigated in [6].

Both just mentioned classes of maps allowed the shorter (i.e., not onto) branch

only as the last or/and the first branch of the map. In this paper we consider

piecewise linear maps with increasing branches and allow middle branches to be

not onto as well. We consider four increasingly general classes of maps. First,

we assume that images of shorter branches touch 0 (Sections 2–5). Such maps

are related to the so called ”greedy” expansions with deleted digits. The notion

was introduces by Pedicini [14]. We recommend [4] for further information and

references. Next, we investigate a similar class of maps with images of shorter

branches touching 1 (Section 6) . These are related to so called ”lazy” expansions

with deleted digits [4]. Maps of the next class have shorter branches of both kinds

(Section 7). Finally, in Section 8 we consider the general case of piecewise linear,

piecewise increasing maps of constant slope β > 1, with images of shorter branches

touching 0, or touching 1, or hanging in between.
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2 Pawe l Góra

The construction of τ -invariant density h involves a matrix S defined in a

way somewhat similar to defining of kneading matrix of a continuous piecewise

monotonic map [1, 10]. We proved that if 1
β

(= e−entropy) is not an eigenvalue

of S, then dynamical system (τ, h · m) is ergodic. We conjecture that the inverse

of this statement also holds. Note that for our class of maps ergodicity implies

topological transitivity.

If τ has all branches onto, then Lebesgue measure is τ -invariant. Therefore, we

consider only maps with at least one shorter branch. Since β > 1, our τ always

admits an absolutely continuous invariant measure. We will denote it by µ.

We are mainly interested in absolutely continuous τ -invariant measure. The

general theory of such measures for piecewise expanding maps of an interval is well

developed and we often refer to its results. The classical papers are [8] and [9]

among many others. There is a number of books on the subject, see, e. g., [2] or

[7].

While working on this project the author used extensively the computer program

Maple 11. The programs with examples and illustrations, as well as their pdf print-

outs, are available at http://www.mathstat.concordia.ca/faculty/pgora/deleted .

2. Maps related to the greedy expansion with deleted digits

In this section we describe maps related to so called greedy expansion with deleted

digits [4, 14]. Throughout the paper δ(condition) will denote 1 when the condition

is satisfied and 0 otherwise.

Let τ be a piecewise linear, piecewise increasing map interval [0, 1] onto itself,

such that the image of each branch touches 0 and with constant slope β > 1. Let

N ≥ 2 be the number of branches of τ and K < N the number of shorter branches,

i.e., not onto. Let α1 ≤ α2 ≤ · · · ≤ αK be the heights of the shorter branches and

let 1 ≤ k1, k2, . . . , kK ≤ N denote the numbers of these branches correspondingly.

We do not assume any order of kj’s. Then, we have

β = N − K + α1 + α2 + · · · + αK .

The endpoints of the maximal intervals of monotonicity of τ are 0 = b1 < b2 <

· · · < bN < bN+1 = 1 and

bj =
1

β

(
j − 1 −

K∑

i=1

δ(j > ki)(1 − αki
)

)
, j = 1, . . . , N .

The map τ is defined on the partition Pτ = {I1, I2, . . . , IN−1, IN}, of the interval

[0, 1], where

I1 = [0, b2] ;

Ij = (bj, bj+1] for 2 ≤ j ≤ N − 1 ;

IN = (bN , 1] .

(1)

The points

ci = bki+1, i = 1, . . . , K ,
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Invariant densities for piecewise linear and increasing maps 3

the right hand side endpoints of the domains of the shorter branches of τ , play

special role in further study. Note,

τ (ci) = αi .

We define the set of ”digits” A = {a1, a2, . . . , aN}, where

aj = bj · β , j = 1, 2, . . . , N .

Note,

Ma = max
1≤j≤N−1

(aj+1 − aj) = 1 and β ≤ 1 +
aN

Ma

, (2)

as β = aN + 1 if ki < N for i = 1, 2, . . . , K, or β = aN + αi if ki = N .

Map τ (occasionally denoted also by τA) is defined as

τ (x) = β · x − aj , for x ∈ Ij , j = 1, 2, . . . , N .

For any x ∈ [0, 1] we define its ”index” j(x) and its ”digit” a(x):

j(x) = j for x ∈ Ij , j = 1, 2, . . . , N ,

and

a(x) = aj(x).

Figure 1. Graphs of maps of a) Example 1 and b) Example 2.

The following proposition describes the ”greedy expansion with deleted digits”.

It is called like this since if we allow different scaling of the set {a1, . . . , aN},

then the numbers can be represented using non-consecutive digits. For example

a1 = 0, a2 = 2, a3 = 3 gives expansion of numbers in [0, 2] using digits 0, 2, 3.

Proposition 1 is a special case of a theorem proved in [14].
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Proposition 1. For any x ∈ [0, 1] we have

x =

∞∑

n=0

a(τn(x))

βn+1
.

Moreover,

τk(x) = βk ·

∞∑

n=k

a(τn(x))

βn+1
,

for any k ≥ 0.

Proof: We have τ (x) = βx − a(x) or

x =
a(x)

β
+

τ (x)

β
.

Using this equality inductively n-times we obtain

x =
a(x)

β
+

a(τ (x))

β2
+ · · · +

a(τn−1(x))

βn
+

τn(x)

βn
,

which proves both statements. 2

We will call the representation defined in Proposition 1 the τ -expansion of x.

Under our assumptions, the only number with finite τ -expansion is x = 0. It holds

since τ (x) > 0 for x > 0 and the only fixed point of τ in I1 is 0. Thus, all other

numbers have infinite τ -expansions. When τ (1) = 1 and such an expansion, starting

from some place M +1 (assuming ajM
< aN), contains only aN ’s, then we can write

x =

M∑

n=0

ajn

βn+1
+

∞∑

n=M+1

aN

βn+1
=

M∑

n=0

ajn

βn+1
+

aN

βM+2

β

β − 1
=

M−1∑

n=0

ajn

βn+1
+

ajM
+ 1

βM+1
,

and consider it a finite expansion.

3. Invariant density

In this section we find an invariant density of τ in a special case of K = 1. The

case of larger K is considered in the next sections. We denote Lebesgue measure

on [0, 1] by m.

An integrable nonnegative function h is a density of an m-absolutely continuous

τ -invariant measure if and only if it satisfies Perron-Frobenius equation:

h(x) =
∑

y:τ(y)=x

h(y)/|τ ′(y)| = (Pτ(h))(x),

for almost all x ∈ [0, 1]. Operator Pτ is called Perron-Frobenius operator [2]. The

preimages of x are x(j) = (x + aj)/β, j = 1, . . . , N , with the remark that the

preimage x(k1) corresponding to the shorter branch of τ exists only for x ∈ [0, α1].

In our case the Perron-Frobenius equation becomes

β · h(x) =
∑

j

h(x(j)). (3)
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Invariant densities for piecewise linear and increasing maps 5

Theorem 2. Let τ = τA satisfy the assumption of Section 2 and K = 1. If the

first branch is onto, then the non-normalized τ -invariant density h is given by the

formula

h(x) =
1

β
+ D1 ·

∞∑

n=1

χ[0,τn(c1)](x)
1

βn+1
,

where

D1 =
1

1 − βS1,1
,

and S1,1 is defined in (4). If the first branch is not onto, the support of τ -invariant

absolutely continuous measure is the interval [0, α1]. The restricted map τ|[0,α1]
is

a classical β-map. The formula for the density applies after necessary changes.

The proof of Theorem 1 follows the method of Parry [12].

Proof: We want to calculate
∑

j h(x(j)) for any x ∈ [0, 1]. Recall that δ(condition)

is 1 if the condition is satisfied and 0 otherwise. We have∑

j

δ(x(j) ≤ τn(c1)) = j(τn(c1)) − 1 + δ(x ≤ τn+1(c1))

− δ(x > τ(c1)) · δ(τn(c1) > c1) .

We obtain:
∑

j

h(x(j)) =
1

β
[N − 1 + δ(x ≤ τ (c1))]

+ D1 ·

∞∑

n=1

1

βn+1

[
j(τn(c1)) − 1 + δ(x ≤ τn+1(c1)) − δ(x > τ(c1)) · δ(τn(c1) > c1)

]

=
1

β
[N − 1 + δ(x ≤ τ (c1))]

+ D1 ·
∞∑

n=1

1

βn+1
[j(τn(c1)) − 1 − δ(x > τ(c1)) · δ(τn(c1) > c1)]

+ D1 ·

∞∑

n=1

1

βn+1
δ(x ≤ τn+1(c1)) + D1

δ(x ≤ τ (c1))

β
+ 1 − D1

δ(x ≤ τ (c1))

β
− 1 .

Since

D1 ·

∞∑

n=1

1

βn+1
δ(x ≤ τn+1(c1)) + D1

δ(x ≤ τ (c1))

β
+ 1 = βh(x) ,

we only need to find a constant D1 such that

0 =
1

β
[N − 1 + δ(x ≤ τ (c1))] − D1

δ(x ≤ τ (c1))

β
− 1

+ D1 ·

∞∑

n=1

1

βn+1
[j(τn(c1)) − 1 − δ(x > τ(c1)) · δ(τn(c1) > c1)] .

Let us define

S1 =

∞∑

n=1

j(τn(c1)) − 1

βn+1
and S1,1 =

∞∑

n=1

δ(τn(c1) > c1)

βn+1
. (4)
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For x ≤ τ (c1) we obtain

0 =
N

β
−

D1

β
− 1 + D1S1 .

For x > τ(c) we obtain

0 =
N − 1

β
− 1 + D1S1 − D1S1,1 .

We need to solve the system of equations

D1

(
S1 −

1

β

)
= 1 −

N

β
;

D1 (S1 − S1,1) = 1 −
N − 1

β
,

or an equivalent system

D1

(
S1 −

1

β

)
= 1 −

N

β
;

D1

(
−S1,1 +

1

β

)
=

1

β
.

Since

S1 − S1,1(1 − α1) =

∞∑

n=1

j(τn(c1)) − 1 − δ(τn(c1) > c1)(1 − α1)

βn+1

=

∞∑

n=1

a(τn(c1))

βn+1
=

τ (c1)

β
=

α1

β
.

(5)

and β −N + 1 = α1 adding the first equation to the second multiplied by (1 −α1)

we obtain 0 = 0. Thus, the equations are dependent and D1 can be calculated from

any of them. We will use the second one. We have

S1,1 =

∞∑

n=1

δ(τn(c1) > c1)

βn+1
≤

∞∑

n=1

1

βn+1
=

1

β(β − 1)
.

If β > 2, we get S1,1 < 1
β

and D1 = 1/(1 − βS1,1).

If β ≤ 2, then τ has two branches (as K = 1) and we consider two cases:

a) k1 = 2: Then, c1 = 1 and δ(τn(c1) > c1) = 0 for all n ≥ 1. Thus, S1,1 = 0

and D1 = 1. We obtained classical Parry’s formula [12].

b) k1 = 1: The τ -invariant absolutely continuous measure is supported on [0, α1].

τ restricted to this interval is a map from case a). 2

Example 1: Let N = 3, K = 2 and α1 = 0.4, k1 = 3, α2 = 0.5, k2 = 2 . Then,

β = 1.9. The digits are A = {0, 1, 1.5}. The graph of map τ is shown in Figure 1

a). Using Maple 11 we calculated D1 = 1.00 and D2 ' 1.48988. The normalizing

constant of the density is ' 1.32347. The graph of τ is shown in Figure 1 a) and

its normalized density h in Figure 2 a).
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Invariant densities for piecewise linear and increasing maps 7

Figure 2. Invariant densities for maps of Examples 1 and 2.

Example 2: Let N = 4, K = 1 and α1 = 0.45, k1 = 2. The digits are

A = {0, 1, 1.45, 2.45}, β = 3.45. The graph of map τ is shown in Figure 1 b).

Using Maple 11 we calculated and D ' 1.41271. The normalizing constant of the

density is ' 0.35169. The graph of τ is shown in Figure 1 b) and its normalized

density h in Figure 2 b).

The following proposition describes the ergodic properties of τ .

Proposition 3. Let us consider a dynamical system {τ, h · m}, where τ is a map

of Theorem 1 and h its invariant density. Then, τ is exact on the support of h.

Proof: It follows from the general theory, e.g. [2, Chapter 8], that the support of

h consists of a finite number of intervals. To show exactness it is enough to prove

that iterates of some interval in the support grow to cover the whole [0, 1]. It is

also known that this support contains a neighborhood J of some inner endpoint of

the partition Pτ . Then, the image τ (J) covers a neighborhood of 0. If the first

branch is onto, then the consecutive iterates grow to cover the whole [0, 1]. If the

first branch is not onto, we consider two cases: If β > 2, then the longest connected

component of iterates of J grows until it covers two consecutive inner endpoints of

the partition Pτ . Since the first branch is the only non-onto one, the next image

covers [0, 1]. If β ≤ 2, we are in situation of case b) of the previous proof. τ

restricted to [0, α1] has the first branch onto. 2

4. Maps with two or more shorter branches

In this section we generalize the result of Section 3 to maps related to greedy

expansion with deleted digits which have more than one shorter (not onto) branches.

We will use the following fragment of Perron-Frobenius theorem for non-negative

matrices [11].
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Theorem A. If S = (Si,j)1≤i,j≤M is a matrix with non-negative entries, then all

eigenvalues λ of S satisfy

|λ| ≤ max
1≤i≤M

M∑

j=1

Si,j . (6)

Theorem 4. Let τ = τA will be the map defined in Section 2 and K > 1. Let

h(x) =
1

β
+

K∑

i=1

Di

∞∑

n=1

χ[0,τn(ci)]
1

βn+1
, (7)

where constants Di, i = 1, . . . , K, satisfy the system (11). If the system (11) is

solvable, then h is τ -invariant and the dynamical system {τ, h · m} is exact. In

particular, this holds if β > K + 1. If the last branch is shorter, then condition

β > K is sufficient.

Remark 1: If the system (11) is solvable, then it is uniquely solvable. The existence

of a solution implies the existence of invariant density h with full support and

exactness. Then, the invariant density h is unique up to a multiplicative constant.

Existence of another solution would create a different invariant density, which is

not a multiple of h because of 1
β

summand and since τ (ci) = αi < 1.

We will prove Theorem 4 in a special case K = 2 first and then we will present

the general proof. We will discuss the examples with β ≤ K + 1 afterwards.

Proof of the case K = 2: We have to show that the invariant density is of the form

h(x) =
1

β
+ D1

∞∑

n=1

χ[0,τn(c1)]
1

βn+1
+ D2

∞∑

n=1

χ[0,τn(c2)]
1

βn+1
,

where constants D1, D2 can be found from the system (9). Again we need to

calculate
∑

j h(x(j)) for any x ∈ [0, 1]. For i = 1, 2 have

∑

j

δ(x(j) ≤ τn(ci)) = j(τn(ci)) − 1 + δ(x ≤ τn+1(ci))

− δ(x > τ(c1)) · δ(τn(ci) > c1) − δ(x > τ(c2)) · δ(τn(ci) > c2) .
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Invariant densities for piecewise linear and increasing maps 9

We obtain:
∑

j

h(x(j)) =
1

β

[
N − δ(x > τ(c1)) − δ(x > τ(c2))

]

+ D1 ·

∞∑

n=1

1

βn+1

[
j(τn(c1)) − 1 + δ(x ≤ τn+1(c1)) − δ(x > τ(c1)) · δ(τn(c1) > c1)

− δ(x > τ(c2)) · δ(τn(c1) > c2)
]

+ D2 ·

∞∑

n=1

1

βn+1

[
j(τn(c2)) − 1 + δ(x ≤ τn+1(c2)) − δ(x > τ(c1)) · δ(τn(c2) > c1)

− δ(x > τ(c2)) · δ(τn(c2) > c2)
]

= β · h(x)

+
1

β

[
N − δ(x > τ(c1)) − δ(x > τ(c2))

]

+ D1S1 − D1δ(x > τ(c1))S1,1 − D1δ(x > τ(c2))S1,2 −
D1

β
δ(x ≤ τ (c1))

+ D2S2 − D2δ(x > τ(c1))S2,1 − D2δ(x > τ(c2))S2,2 −
D2

β
δ(x ≤ τ (c2)) − 1 ,

(8)

where

Si =

∞∑

n=1

1

βn+1

(
j(τn(ci)) − 1

)
and

Si,j =

∞∑

n=1

1

βn+1
δ(τn(ci) > cj) , i, j = 1, 2 .

We need to find the constants D1, D2 such that the last three lines of (8) sum up

to 0. Substituting x < τ(c1), τ (c1) ≤ x < τ(c2) and x > τ(c2) we obtain system of

equations:

D1

(
S1 −

1

β

)
+ D2

(
S2 −

1

β

)
= 1 −

N

β
;

D1 (S1 − S1,1) + D2

(
S2 − S2,1 −

1

β

)
= 1 −

N − 1

β
;

D1 (S1 − S1,1 − S1,2) + D2 (S2 − S2,1 − S2,2) = 1 −
N − 2

β
.

Subtracting the second equation from the third and the first from the second we

obtain a nicer equivalent system:

D1

(
S1 −

1

β

)
+ D2

(
S2 −

1

β

)
= 1 −

N

β
;

D1

(
−S1,1 +

1

β

)
+ D2 (−S2,1) =

1

β
; (9)

D1 (−S1,2) + D2

(
−S2,2 +

1

β

)
=

1

β
.
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The rank of the system is 2. We can show this multiplying the second equation by

(1 − α1), the third equation by 1 − α2 and summing up all three equations. The

sum of coefficients in the first column is

S1 − S1,1(1 − α1) − S1,2(1 − α2) −
α1

β
=

∞∑

n=1

a(τn(c1))

βn+1
−

α1

β
=

τ (c1)

β
−

α1

β
= 0 ,

and similarly the sum of coefficients in the first column is

S2 − S2,1(1 − α1) − S2,2(1 − α2) −
α2

β
=

∞∑

n=1

a(τn(c2))

βn+1
−

α2

β
=

τ (c2)

β
−

α2

β
= 0 .

The third column sums up to

1 −
N

β
+

1 − α1

β
+

1 − α2

β
= 1 −

N − 2 + α1 + α2

β
= 0 ,

since β = N − 2 + α1 + α2. Let us define matrix

S =

(
S1,1 S2,1

S1,2 S2,2

)
.

The system of the last two equations in (9) has unique solution if and only if 1
β

is not

an eigenvalue of S. We have Si,j ≤ 1
β(β−1) , for i, j = 1, 2. Thus, by Theorem A all

the eigenvalues of S have modulus smaller than 2
β(β−1) . The condition 2

β(β−1) < 1
β

is equivalent to β > 3. Thus, at least for β > 3 the constants D1, D2 exist and the

formula for the τ -invariant density is valid.

If the last branch is shorter, then one of ci’s, say ci0 = 1. We have Si0,i = 0

for i = 1, 2 and Perron-Frobenius estimate on the modulus of eigenvalues of S is
1

β(β−1)
. Thus, β > 2 is sufficient in this case. Note, then Di0 = 1.

To prove exactness, as in the proof of Proposition 3 it is enough to show that an

interval J in the support of an ergodic absolutely invariant measure grows under

iteration to cover the whole [0, 1]. Since h is supported on [0, 1] we can find either J

covering the fixed point in an onto branch or a pair J1, J2 touching the fixed point

x0 in an inner onto branch. In the first case images τn(J) grow to cover the whole

[0, 1]. In the second case images τn(J1) grow to cover [0, x0] and images τn(J2)

grow to cover [x0, 1]. Since it is an inner branch the image of [x0, 1] touches 0,

which shows uniqueness of absolutely continuous invariant measure and exactness.

2

Proof of the general case:

h(x) =
1

β
+

K∑

i=1

Di

∞∑

n=1

χ[0,τn(ci)]
1

βn+1
,

where constants Di, i = 1, . . . , K satisfy the system (11). Again we need to calculate∑
j h(x(j)) for any x ∈ [0, 1]. For i = 1, . . . , K have

∑

j

δ(x(j) ≤ τn(ci)) = j(τn(ci)) − 1 + δ(x ≤ τn+1(ci))

−
K∑

k=1

δ(x > τ(ck)) · δ(τn(ci) > ck) .
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We obtain:

∑

j

h(x(j)) =
1

β

[
N −

K∑

i=1

δ(x > τ(ci))

]

+

K∑

i=1

Di ·

∞∑

n=1

1

βn+1

[
j(τn(ci)) − 1 + δ(x ≤ τn+1(ci))

−

K∑

k=1

δ(x > τ(ck)) · δ(τn(ci) > ck)
]

= β · h(x)

+
1

β

[
N −

K∑

i=1

δ(x > τ(ci))

]

+

K∑

i=1

DiSi −

K∑

i=1

Di

K∑

k=1

δ(x > τ(ck))Si,k −

K∑

i=1

Di

β
δ(x ≤ τ (ci)) − 1 ,

(10)

where

Si =

∞∑

n=1

1

βn+1

(
j(τn(ci)) − 1

)
and

Si,k =

∞∑

n=1

1

βn+1
δ(τn(ci) > ck) , i, k = 1, 2, . . . , K .

We need to find the constants Di, i = 1, 2, . . . , K, such that the last two lines of

(10) sum up to 0. Substituting x < τ(c1), τ (ci) ≤ x < τ(ci+1) for i = 1, 2, . . . , K−1

and x > τ(cK) we obtain system of K + 1 equations (below index k numbering the

equations changes from 0 to K):

D1

(
S1 −

1

β

)
+ · · · + Di

(
Si −

1

β

)
+ · · ·+ DK

(
SK −

1

β

)
= 1 −

N

β
;

D1 (S1 − S1,1) + · · · + Di

(
Si − Si,1 −

δ(i ≥ 2)

β

)
+ . . .

+ DK

(
SK − SK,1 −

1

β

)
= 1 −

N − 1

β
;

D1 (S1 − S1,1 − S1,2) + · · · + Di

(
Si − Si,1 − Si,2 −

δ(i ≥ 3)

β

)
+ . . .

+ DK

(
SK − SK,1 − SK,2 −

1

β

)
= 1 −

N − 2

β
;

...

D1


S1 −

k∑

j=1

S1, j


+ · · · + Di


Si −

k∑

j=1

Si, j −
δ(i ≥ k + 1)

β


+ . . .
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+ DK



SK −

k∑

j=1

SK, j −
1

β



 = 1 −
N − k

β
;

...

D1



S1 −

K∑

j=1

S1, j



+ · · · + Di



Si −

K∑

j=1

Si, j



+ . . .

+ DK



SK −

K∑

j=1

SK, j



 = 1 −
N − K

β
.

Subtracting the (K − 1)’st equation from the K’th one, then K − 2’nd from the

K − 1’st, etc, we obtain a nicer equivalent system (again 0 ≤ k ≤ K) :

D1

(
S1 −

1

β

)
+ · · ·+ Di

(
Si −

1

β

)
+ · · ·+ DK

(
SK −

1

β

)
= 1 −

N

β
;

D1

(
−S1,1 +

1

β

)
+ · · ·+Di (−Si,1) + · · ·+ DK (−SK,1) =

1

β
;

D1 (−S1,2) + · · ·+ Di

(
−Si,2 +

δ(i = 2)

β

)
+ · · ·+DK (−SK,2) =

1

β
;

(11)

...

D1 (−S1,k) + · · ·+ Di

(
−Si,k +

δ(i = k)

β

)
+ · · ·+DK (−SK,k) =

1

β
;

...

D1 (−S1,K ) + · · ·+ Di (−Si,K) + · · ·+ DK

(
−SK,K +

1

β

)
=

1

β
.

The rank of the system is K. We can show this multiplying the k’th equation by

(1 − αk), k = 1, . . . , K and summing up all the equations. The sum of coefficients

in the i’th column, i = 1, . . . , K, is

Si −

K∑

k=1

Si,k(1 − αk) −
αi

β
=

∞∑

n=1

a(τn(ci))

βn+1
−

αi

β
=

τ (ci)

β
−

αi

β
= 0 .

The K + 1’st, right hand side, column sums up to

1 −
N

β
+

K∑

k=1

1 − αk

β
= 1 −

N − K + α1 + · · · + αK

β
= 0 ,

since β = N − K + α1 + · · ·+ αK. Let us define K × K matrix

S =




S1,1 . . . S1,K

... · · ·
...

SK,1 . . . SK,K


 .
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The matrix of the system of the last K equations in (11) is ST ( AT denotes the

transpose of A). The system has unique solution if and only if 1
β

is not an eigenvalue

of S. We have Si,k ≤ 1
β(β−1) , for i, k = 1, . . . , K. Thus, by Theorem A all the

eigenvalues of S have modulus smaller than K
β(β−1) . The condition K

β(β−1) < 1
β

is equivalent to β > K + 1. Thus, at least for β > K + 1 the constants Di,

i = 1, 2, . . . , K exist and the formula for the τ -invariant density is valid.

The estimate for β in case of shorter last branch and the exactness of τ is proven

in the same way as for K = 2. 2

The number 1
β

can be written as 1
β

= exp(−H) where H is the entropy of the

system {τ, h · m}. We have proved the following

Corollary 5. If no eigenvalue of the matrix S is equal to exp(−H), then the

system {τ, h · m} is exact.

There are matrix methods of detecting topological transitivity of piecewise

monotone continuous interval maps [1, 10], which is implied by exactness for our

class of maps. Perhaps matrix S can be used for this purpose in a more general

setting. We conjecture that the inverse of the Corollary 5 also holds. We proved

this for maps τA with one shorter branch.

Conjecture 1: Let τ be piecewise linear, piecewise increasing map of constant slope

β > 1 with shorter branches touching 0. Then, 1/β is not an eigenvalue of matrix

S ⇐⇒ dynamical system τ, µ is exact, where µ is absolutely continuous τ -invariant

measure supported on [0, 1].

Here, we prove a proposition which we will use below.

Proposition 6. Let us define additional (and artificial) points ci as the right hand

side endpoints of the domains of onto branches. Let us extend system of equations

(11) by adding columns and rows corresponding to these added points.Then, the

new larger matrix S̄ has 1
β

as an eigenvalue. This means that the extended system

of equations is not solvable.

Proof: Let us assume that there is only one additional point ci and put the

additional row and column as first in the matrix S̄. The general case can be proved

in a similar way.

Let denote the additional unknown by D0. Let hk =
∑∞

n=1 χ[0,τn(ck)]
1

βn+1 ,

k = 0, 1, . . . , K denote the function next to coefficient Dk in the formula for the

density h.

We will prove the proposition by contradiction. Let us assume that 1
β

is not an

eigenvalue of S̄. Then, the extended system of equations is uniquely solvable and

h =
1

β
+ D0h0 +

K∑

i=1

Dihi

is the invariant density. We consider two cases:
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First, assume that the last branch is onto. We have

h0 =

∞∑

n=1

χ[0,τn(c0)]
1

βn+1
=

1

β(β − 1)
.

For any real s we can write a multiple of invariant density h

hs = (1 +
s

β − 1
)

(
1

β
+ D0h0 +

K∑

i=1

Dihi

)

=
1

β
+ (s + (1 +

s

β − 1
)D0)h0 +

K∑

i=1

(1 +
s

β − 1
)Dihi .

Since it is of the form (7) the constants [s + (1 + s
β−1 )D0, (1 + s

β−1)D1, . . . , (1 +
s

β−1 )DK ] satisfy the extended system of equations for any s. This is a contradiction.

Now, assume that the last branch is not onto, i.e., ci0 = 1 for some 1 ≤ i0 ≤ K

and Di0 = 1. We have

h0 =

∞∑

n=1

χ[0,τn(c0)]
1

βn+1
=

1

β2
+

1

β
hi0 .

Again, we can write a multiple of invariant density

hs = (1 +
s

β
)




1

β
+ D0h0 + hi0 +

K∑

i=1
i6=i0

Dihi




=
1

β
+

s

β2
+ (1 +

s

β
)D0h0 + (1 +

s

β
)hi0 +

K∑

i=1
i6=i0

(1 +
s

β
)Dihi .

Since Di0 = 1 the constants [(1 + s
β

)D0 + s, (1 + s
β

)D1 , . . . , Di0 , . . . , (1 + s
β

)DK ]

satisfy the extended system of equations for any s. This, again, is a contradiction.

2

5. Special cases

In this section we consider maps τA with K = 2 shorter branches satisfying β ≤ 3,

or β ≤ 2 if the last branch is shorter.

We will first consider cases when τ has two shorter branches, β ≤ 2 and the last

branch is shorter. This means that τ has 3 branches.

(A) The first branch is onto: Then, τ is exact, which can be proved as in

Proposition 3. Let us assume that c1 = 1. Then, S1,1 = S2,1 = 0 and D1 = 1. D2

has to satisfy D2(−S2,2 + 1
β

) = 1
β

+ S1,2. We will show that

S2,2 <
1

β
. (12)

We have α1+α2 ≤ 1 so τ (c2) ≤ c2. Also, whenever τn(c2) > c2 then τn+1(c2) ≤ c2.

Thus, S2,2 < 1
β2(β2−1) and (12) is shown at least for β > β1 ' 1.32472 such that

1
β2
1(β2

1−1)
= 1

β1
.
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Assume that β ≤ β1. Then, (β + 1)(β − 1) ≤ 1
β

. Since α2 < β − 1 this means

that τ (c2) < c2 and τ2(c2) < c2. Moreover, whenever τn(c2) > c2 then the next

two iterates are smaller then 1
β

. Thus, S2,2 < 1
β3(β3−1) and (12) is shown at least

for β > β2 ' 1.19385 such that 1
β3
2(β3

2−1)
= 1

β2
.

Assume again that β ≤ β2. Then, β(β2 + β + 1)(β − 1) ≤ 1
β

which means that

τk(c2) < c2 for k = 1, 2, 3, 4. Moreover, whenever τn(c2) > c2 then the next four

iterates are smaller then 1
β

. Thus, S2,2 < 1
β5(β5−1) and (12) is shown at least for

β > β3 ' 1.10735 such that 1
β5
3(β5

3−1)
= 1

β3
.

Since the positive solutions of xn(xn − 1) = x converge to 1 as n converges to

infinity, repeating the above reasoning inductively we can prove (12) for all β > 1.

The case c2 = 1 can be proven similarly.

Example 3: τ considered in case (A) gives an example of maps for which invariant

density h exists although β can be arbitrarily close to 1. On the other hand the set

of digits A = 0, 0.5, 1 provides an example of a map τA with the slope β = 2 which

is not exact (on [0, 1]) and for which the formula for h is not valid.

(B) The first branch is shorter. Assume that it corresponds to index k2. Then,

the fixed point in the middle onto branch is x0 = α2/(β − 1) and x0 ≥ α2. The

support of absolutely continuous invariant measure is the interval [0, α2] and τ

restricted to this interval is classical β-map.

Now, we consider situation where the last branch is onto and β ≤ 3. This means

that τ has 3 or 4 branches.

3 branches case: Since the last branch of τ is onto, the first and the second

branch are shorter. We always have α1 ≤ α2.

(C) k1 = 1, k2 = 2: There are two possibilities:

(Ca) α1 is below the fixed point on the second branch (or this fix point does not

exist). Then, map τ has unique absolutely continuous invariant measure supported

on [0, α1]. τ restricted to this interval is a classical β-map and the invariant density

can be found by Parry’s formula (or our formula after rescaling).

(Cb) The image of the first branch covers the fixed point on the second branch.

Then, map τ has unique absolutely continuous invariant measure supported on

[0, α2]. τ restricted to this interval has the first and the last branches shorter. This

situation is considered in (B).

(D) k2 = 1, k1 = 2: Map τ has unique absolutely continuous invariant measure

supported on [0, α2]. τ restricted to this interval has the first branch onto. This

situation is considered in (A).

4 branches case: The last branch of τ is onto.

(E) The first branch is onto. 2 < β ≤ 3. τ is exact.

(F) The two first branches are shorter. 2 < β ≤ 3.

k1 = 1, k2 = 2: Since the fixed point in the second branch is x0 = α1

β−1 < α1 the

image of the first branch covers it. There are two cases:

(Fa) If α2 is above the fixed point in the third, onto branch, then τ is exact.

(Fb) If α2 is below the fixed point in the third, onto branch, then map τ has

unique absolutely continuous invariant measure supported on [0, α2]. τ restricted to
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this interval has the first and the last branches shorter. This situation is considered

in (B).

k1 = 2, k2 = 1: Situation is similar as in cases (Fa), (Fb).

(G) The first and the third branches are shorter. 2 < β ≤ 3. Since again the

image of the first branch covers the fixed point in the second onto branch, map τ

is exact.

6. Maps with the shorter branches ”at the top”

In this section we consider piecewise linear maps of an interval [0, 1] with constant

slope β > 1, all branches increasing and such that the images of shorter branches

touch 1. Such maps are related to so called ”lazy expansions with deleted digits”

[4].

Let τ̃ be a map described above. Let N ≥ 2 be the number of branches of τ̃ and

K < N the number of shorter branches, i.e., not onto. Let α1 ≤ α2 ≤ · · · ≤ αK

be the heights of the shorter branches and let 1 ≤ k̃1, k̃2, . . . , k̃K ≤ N denote the

numbers of these branches correspondingly. We do not assume any order of k̃j’s.

Then, we have

β = N − K + α1 + α2 + · · · + αK .

The endpoints of the maximal intervals of monotonicity of τ̃ are 0 = b̃1 < b̃2 <

· · · < b̃N < b̃N+1 = 1 and

b̃j =
1

β

(
j − 1 −

K∑

i=1

δ(j > k̃i)(1 − αk̃i
)

)
, j = 1, . . . , N .

The map τ̃ is defined on the partition Pτ̃ = {J1, J2, . . . , JN−1, JN}, of the interval

[0, 1], where

J1 = [0, b̃2) ;

Jj = [b̃j, b̃j+1) for 2 ≤ j ≤ N − 1 ;

JN = [b̃N , 1] .

Note that intervals Jj are open (closed) on different side than intervals Ij for τ .

The points

c̃i = b̃k̃i
, i = 1, . . . , K ,

the left hand side endpoints of the domains of the shorter branches of τ̃ , play special

role in further study. Note,

τ̃ (c̃i) = 1 − αi , i = 1, . . . , K .

We define the set of ”digits” Ã = {ã1, ã2, . . . , ãN}, where

ãj =

(
j − 1 −

K∑

i=1

δ(j > k̃i − 1)(1 − αk̃i
)

)
, j = 1, . . . , N .

We also have

ãj = β(b̃j+1 − b̃1) − 1, j = 1, . . . , N .
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Map τ̃ (occasionally denoted also by τ̃Ã) is given by

τ̃(x) = β · x − ãj, for x ∈ Jj , j = 1, 2, . . . , N .

Note, if the first branch is not onto, then some digits are negative.

For any x ∈ [0, 1] we define its ”index” j̃(x) and its ”digit” ã(x):

j̃(x) = j for x ∈ Jj , j = 1, 2, . . . , N ,

and

ã(x) = ãj̃(x).

The ”lazy expansion with deleted digits ” is defined using Ã and τ̃ similarly as

the ”greedy” one and an analog of Proposition 1 holds. See [4] for more information.

We will now show that map τ̃Ã is conjugated to some map τA by diffeomorphism

f(x) = 1 − x on [0, 1]. First we define a ”conjugated” set of digits A =

{a1, a2, . . . , aN} with aj = ãN − ãN−j+1, j = 1, 2, . . . , N . In particular, a1 = 0

and aN = ãN − ã1. This defines the endpoints of maximal monotonicity intervals

for τ : bj = aj/β, j = 1, 2, . . . , N . Note that b1 = 0 and bN = 1. We define intervals

Ij as in (1). The lengths of Jj and IN−j+1 are equal, j = 1, 2, . . . , N . The shorter

intervals are k1, . . . , kK where ki = N − k̃i + 1, i = 1, . . . , K.

Theorem 7. The maps τ̃Ã and τA are conjugated by the diffeomorphism f(x) =

1−x. If h is a τA-invariant density, then the density h̃(x) = h(1−x) is τ̃Ã-invariant.

We have

h̃(x) =
1

β
+

K∑

i=1

D̃i

∞∑

n=1

χ[τn(c̃i),1]
1

βn+1
,

where constants D̃i = Di, i = 1, . . . , K, satisfy the system (11). D̃i’s can be also

obtained directly from the system similar to (11), where quantities Si,j are replaced

by

S̃i, j =
∞∑

n=1

δ(τn(c̃i) < c̃j)

βn+1
, 1 ≤ i, j ≤ K .

Proof: Both τA and f ◦ τ̃Ã ◦ f−1 are piecewise linear, piecewise increasing maps

with constant slope β and the images of shorter intervals touch 0. The equality of

the lengths of the intervals Ij and JN−j+1, j = 1, 2, . . . , N , proves that they are

identical. Then, the formula for h̃ follows, using the fact that τ̃n(c̃i) = 1 − τn(ci),

for all n ≥ 0 and i = 1, . . . , K. 2

Example 4: Let N = 5, K = 3, α1 = 0.4, k̃1 = 1, α2 = 0.5,k̃2 = 3, α3 = 0.7,

k̃3 = 2. Then, Ã = {−0.6, 0.1, 0.6, 1.6, 2.6} and β = 3.6. The conjugated set of

digits is A = {0, 1, 2, 2.5, 3.2}. Using Maple 11 we calculated D1 = D̃1 = 1.00,

D2 = D̃2 ' 1.38693, D3 = D̃3 ' 1.00166. The normalizing constant for both

densities is ' 0.45935. The maps are shown in Figure 3 and the normalized densities

h̃ and h are shown in Figure 4.
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Figure 3. Maps τ̃
Ã

and τA of Example 4.

Figure 4. Invariant densities for maps of Example 4: a) τ̃
Ã

, b) τA.

7. Maps related to ”mixed” expansions.

In this section we join the results of previous sections and consider maps with some

shorter branches touching 0 and others touching 1.

Let τ be a piecewise linear, piecewise increasing map of interval [0, 1] onto

itself with constant slope β > 1. Let N denote the number of branches of

τ and K ≤ N the number of shorter, not onto, branches. We removed the

requirement of having at least one onto branch but still assume that τ is onto.

Let 1 ≤ k1 < k2 < · · · < kK ≤ N be the indices of shorter branches. In this section

we have changed the convention and assume that these indices are numbered in

increasing order. Let αi denote the hight of ki’th branch, i = 1, . . . , K. We do not
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assume any order among αi’s. We define also a vector U = [U1, . . . , UN ]. We set

Uj = 0 if the jth branch is onto or ”greedy” and Uj = 1 if the jth branch is ”lazy”.

As in the previous sections, we have

β = N − K + α1 + α2 + · · · + αK .

The endpoints of the maximal intervals of monotonicity of τ are 0 = b1 < b2 <

· · · < bN < bN+1 = 1 and

bj =
1

β

(
j − 1 −

K∑

i=1

δ(j > ki)(1 − αki
)

)
, j = 1, . . . , N . (13)

We assume that map τ is defined on the partition Pτ = {I1, I2, . . . , IN−1, IN}, of

the interval [0, 1], where

I1 = [0, b2) ;

Ij = (bj , bj+1) for 2 ≤ j ≤ N − 1 ;

IN = (bN , 1] .

(14)

It may be not possible to reasonably define τ at some inner bj ’s. This problem

affects a countable set of points, preimages of inner bi’s. Since we will need to

iterate some of these points we define two extensions of τ : τg the extension by

continuity to partition

Pg = {[0, b2], (b2, b3], . . . , (bN−1, bN ], (bN , 1]},

and τl the extension by continuity to partition

Pl = {[0, b2), [b2, b3), . . . , [bN−1, bN), [bN , 1]}.

Now, we will define points ci. It may happen that two of them are equal as

numbers but we want to consider them as different so strictly speaking each ci

below should be treated as a pair (c, j), where c ∈ [0, 1] and 1 ≤ j ≤ N . Let us

define the points ci, i = 1, . . . , K as follows

ci = bki+1 = (bki+1, ki), if Uki
= 0 and ci = bki

= (bki
, ki), if Uki

= 1 .

These are the right hand side endpoints of the domains of the ”greedy” branches

and the left hand side endpoints of the domains of the ”lazy” branches, respectively.

We group points ci into two disjoint sets: Wg contains ci’s associated with ”greedy”

branches (Uki
= 0) and Wl contains ci’s associated with ”lazy” branches (Uki

= 1).

Note,

τ (ci) = αi for ci ∈ Wg ,

τ (ci) = 1 − αi for ci ∈ Wl .

We define the set of ”digits” A = {a1, a2, . . . , aN}, where

aj = j − 1 −

K∑

i=1

δ(j > ki − Uj)(1 − αki
) , j = 1, . . . , N .
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aj can be also calculated as

aj = βbj , if Uj = 0 and aj = βbj+1 − 1, if Uj = 1 .

Now, we can write map τ as

τ (x) = β · x − aj , for x ∈ Ij , j = 1, 2, . . . , N .

For any x ∈ [0, 1] \ {b2, . . . , bN} we define its ”index” j(x) and its ”digit” a(x):

j(x) = j for x ∈ Ij , j = 1, 2, . . . , N ,

and

a(x) = aj(x).

We also define (for all x ∈ [0, 1]) the indices jg(x), jl(x) and digits ag(x), al(x). The

expansions analogous to described in Proposition 1 are then defined and analogues

of of this proposition hold (for almost all x in case of τ -expansion). These expansions

are identical for almost all x ∈ [0, 1]. To represent points ci we will use ”greedy”

expansion if ci ∈ Wg and ”lazy” expansion if ci ∈ Wl.

We now prepare for the description of τ -invariant density h. Let us define

Si, j =

∞∑

n=1

1

βn+1
δ(τn

g (ci) > cj) , for ci ∈ Wg and all cj ,

Si, j =

∞∑

n=1

1

βn+1
δ(τn

l (ci) < cj) , for ci ∈ Wl and all cj .

(15)

Let S be the matrix (Si,j)1≤i,j≤K
and Id denote K × K identity matrix. Let

vβ =
[

1
β
, . . . , 1

β

]
be K-dimensional vector and let D = [D1, . . . , DK ] denote the

solution of the system

(−ST +
1

β
Id)D = vβ , (16)

where AT denotes the transpose of A.

Theorem 8. Let τ = τA will be the map defined in this section, i.e., any piecewise

linear, piecewise increasing map with the images of shorter branches touching 0 or

1. Let

h(x) =
1

β
+
∑

i∈Wg

Di

∞∑

n=1

χ[0,τn
g (ci)]

1

βn+1
+
∑

i∈Wl

Di

∞∑

n=1

χ[τn
l

(ci),1]
1

βn+1
, (17)

where constants Di, i = 1, . . . , K, satisfy the system (16). If the system (16) is

solvable, then h is τ -invariant and the dynamical system {τ, h · m} is ergodic.

In particular, system (16) is uniquely solvable if β > K + 1. If the last branch is

”greedy ” or if the first branch is ”lazy”, then condition β > K is sufficient. When

both possibilities are realized it is enough to have β > K−1. Whenever one of these

cases happens the corresponding constant Di = 1.

The dynamical system {τ, µ} can have at most two ergodic components. If there

are actually two such components, then 1
β

is an eigenvalue of matrix S and system

(16) is not solvable. If τ has at least two onto branches, then it is exact.
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Remark 2: If the system (16) is solvable, then it is uniquely solvable. This can be

proved exactly as Remark 1 since ergodicity of {τ, h ·m} implies the uniqueness of

invariant density (up to a multiplicative constant).

Proof: The proof of Theorem 8 is analogous to that of Theorem 4. h satisfies Perron-

Frobenius equation almost everywhere, for all x except possibly preimages of inner

endpoints of partition Pτ intervals. We only have to prove the ergodic properties

part. It follows from the general theory that the support of each ergodic component

contains neighborhood of some inner endpoint of the partition. Since image of each

branch touches either 0 or 1, there can be at most two ergodic components.

Let us assume that there are two ergodic components. Since h is supported on

[0, 1] there exists x0 ∈ [0, 1] such that the support of one component is J0 = [0, x0]

and the support of the other is J1 = [x0, 1]. Let τ0 = τ |J0
and τ1 = τ |J1

.

We have τn
g (ck) ≤ cj for all n ≥ 1 and all ck ∈ J0, cj ∈ J1 and τn

l (ck) ≥ cj for

all n ≥ 1 and all ck ∈ J1, cj ∈ J0. Thus, matrix S is a block matrix

S =

(
S0 = (Si,j)1≤i, j≤L 0

0 S1 = (Si,j)L+1≤i, j≤K

)
,

where c1, . . . , cL ∈ J0 and cL+1, . . . , cK ∈ J1.

The image of at least one ci0 ∈ J0 and at least one ci1 ∈ J1 is equal to x0 as

otherwise there would be a hole in the support of h. Even if x0 is a fixed point in

a common onto branch od τ , there must exist such points.

Thus, the matrix S0 is the extended matrix for map τ0 on J0 described in

Proposition 6. Thus, 1
β

is an eigenvalue of S0. Similarly, it is an eigenvalue of

S1. Thus, the solution for constants Di is not unique.

Since h has full support, each of the systems τ0, h · m|J0
, τ1, h · m|J1

is exact.

Each can be considered separately and the invariant densities can be combined.

If τ has at least two onto branches, then the fixed points in these branches, x0

and x1 are different. Each of intervals [0, x0], [0, x1], [x0, 1], [x1, 1], is completely

contained in a support of an ergodic component. Thus, we have at most one ergodic

component. Since arbitrary neighborhood of any of these fixed points grows under

iteration to cover the whole [0, 1] the system is exact. 2

In the case we consider now, when τ can have branches touching 0 or 1 we proved

a weaker following statement and we make a weaker conjecture:

Corollary 9. If 1/β is not an eigenvalue of matrix S, then system τ, h · m is

ergodic.

Conjecture 2: Let τ be a map which has shorter branches touching 0 and shorter

branches touching 1. If 1/β is not an eigenvalue of matrix S ⇐⇒ dynamical system

τ, µ is ergodic, where µ is absolutely continuous τ -invariant measure supported on

[0, 1].

Example 8 shows that we cannot always expect exactness when system (16) is

solvable.
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Example 5: Let N = 6, K = 4, k1 = 1, α1 = 0.4, k2 = 3, α2 = 0.5, k3 = 4, α3 = 0.7,

k4 = 5, α4 = 0.7, U = [1, 0, 1, 0, 1, 0]. Then, A = {−0.6, 0.4, 0.9, 1.9, 2.3, 3.3} and

β = 4.3. We have c1 = 0, c2 ' 0.33, c3 = c4 ' 0.60. c3 ∈ Wg and the three

others are in Wl. Using Maple 11 we calculated D1 ' 3.18872, D2 ' 5.1468,

D3 = D4 ' 7.22277. The normalizing constant is ' 0.45935. Map τ is shown in

Figure 5 a) and the normalized density h in Figure 6 a).

Example 6: Let N = 6, K = 2, k1 = 1, α1 = 0.4, k2 = 6, α2 = 0.5,

U = [1, 0, 0, 0, 0, 0]. Then, A = {−0.6, 0.4, 1.4, 2.4, 3.4, 4.4} and β = 4.9. We

have c1 = 0 ∈ Wl and c2 = 1 ∈ Wg . This is example of Parry’s (β, α)-map,

τ(β,α) = βx + α (mod 1), with our β and α = 1 − α1. Since the first branch is

”lazy”, the last ”greedy” and there are no other shorter branches τ is exact for

all β > 1. Using Maple 11 we calculated D1 = D2 ' 1.34483. The normalizing

constant is ' 0.26459. The normalized τ -invariant density h is shown in Figure 6

b). Our h is exactly equal to the density from Parry’s formula although represented

differently.

Example 7: Let N = 3, K = 2, k1 = 1, α1 = 0.5, k2 = 3, α2 = 0.5, U = [0, 0, 1].

Then, A = {0, 1/2, 1} and β = 2. τ obviously has two exact components. Matrix

S has an eigenvalue 1/2 and system (16) is not uniquely solvable. Graph of a more

complex map with similar properties is shown in Figure 5 b). In this case matrix

S also has 1
β

as an eigenvalue.

Example 8: Let N = 4, K = 4, k1 = 1, k2 = 2, k3 = 3, k4 = 4, α1 = α2 =

α3 = α4 = 1/2, U = [1, 1, 0, 0]. Then, A = {−0.5, 0, 1, 1.5} and β = 2. τ

obviously is ergodic and τ2 has two exact components. System (16) is solvable,

D1 = D4 = −0.5, D2 = D3 = −1 and normalizing factor is −0.5.

Figure 5. Graphs of a) map τ of Example 5 and b) map τ mentioned in Example 7.
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Figure 6. Invariant densities for maps of a) Example 5 and b) Example 6 .

8. General maps with shorter branches touching 0 or 1 or hanging in between.

In this section we further generalize the results of previous sections and consider

maps with some shorter branches hanging in between 0 and 1.

Let τ be a piecewise linear, piecewise increasing map of interval [0, 1] onto itself

with constant slope β > 1. Again let N denote the number of branches of τ and

K ≤ N the number of shorter, not onto, branches. We allow L ≤ K shorter

branches not to touch 0 or 1. We will call them ”hanging” branches.

Let 1 ≤ k1 < k2 < · · · < kK ≤ N be the indices of shorter branches and

1 ≤ l1 < l2 < · · · < lL ≤ N the indices of hanging branches. For each li we have a

kji
such that li = kji

.

As before let αi denote the hight of ki’th branch, i = 1, . . . , K. We also denote

by γi, i = 1, . . . , L the heights of images of the left hand side endpoints of the

domains of hanging branches. We always have αji
+ γi < 1, for li = kji

.

We again define vector U = [U1, . . . , UN ] and a new vector UU = [UU1, . . . , UUN ]

to indicate the positions of hanging branches. We set Uj = 0 if the jth branch is

onto, ”greedy” or hanging and Uj = 1 if the jth branch is ”lazy”. We set UUj = 1

if the jth branch is ”hanging” and 0 for all other branches.

As in the previous sections, we have

β = N − K + α1 + α2 + · · · + αK .

The endpoints of the maximal intervals of monotonicity of τ are 0 = b1 < b2 < · · · <

bN < bN+1 = 1 and are again expressed by formula (13). We assume that map τ is

defined on the partition Pτ defined in (14) and again create its two extensions τg

and τl.

The definition of the points ci is again complicated as in the previous section.

Each of them will actually be a pair (c, j) where c ∈ [0, 1] and 1 ≤ j ≤ N and

c is one of the endpoints of interval Ij . We define index function on points ci:

j(ci, k) = k. We define K + L points ci. They are:
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the right hand side endpoints of domains of shorter branches touching 0

(”greedy” branches);

the left hand side endpoints of of domains of shorter branches touching 1 (”lazy”

branches);

both endpoints of domains of shorter ”hanging” branches.

We number them in such a way that c1 < c2 < · · · < cK+L−1 < cK+L, where

(c, j) < (d, k) if either c < d or c = d and j < k. The indices of points ci no longer

correspond directly to indices of αj’s. We group them into two disjoint sets: Wg

containing ci’s associated with ”greedy” branches and right hand side endpoints of

domains of ”hanging” branches ; Wl containing ci’s associated with ”lazy” branches

and left hand side endpoints of domains of ”hanging” branches. Note,

τ (ci) = αs for ci ∈ Wg if ks = j(ci), Uj(ci) = UUj(ci) = 0 ,

τ (ci) = αs + γz for ci ∈ Wg if ks = lz = j(ci), UUj(ci) = 1 ,

τ (ci) = 1 − αs for ci ∈ Wl if ks = j(ci), Uj(ci) = 1 ,

τ (ci) = γz for ci ∈ Wl if lz = j(ci), UUj(ci) = 1 .

When we consider τ (ci) we apply it to the first element of the pair. Since we

always use τg to act on elements of Wg and τl to act on elements of Wl there is no

problem with recognizing the image.

We define the set of ”digits” A = {a1, a2, . . . , aN}, where

aj = j − 1 −

K∑

i=1

[
δ(j > ki−Uj)(1 − αki

) − δ(j = ki)γs

]
,

where ls = ki = j , j = 1, . . . , N .

aj can be also calculated as

aj = βbj , if Uj = UUj = 0 ;

aj = βbj − γs , if ls = j, Uj = 0, UUj = 1 ;

aj = βbj+1 − 1, if Uj = 1 .

Note that each aj is between the minimal, ”lazy” digit al
j = βbj+1 − 1 and

maximal, ”greedy” digit ag
j = βbj , j = 1, 2, . . . , N . If the jth branch is onto

then aj = al
j = ag

j .

Now, we can write map τ as

τ (x) = β · x − aj , for x ∈ Ij , j = 1, 2, . . . , N .

For any x ∈ [0, 1] \ {b2, . . . , bN} we define its ”index” j(x) and its ”digit” a(x):

j(x) = j for x ∈ Ij , j = 1, 2, . . . , N ,

and

a(x) = aj(x).

As in the previous section, we also define (for all x ∈ [0, 1]) the indices jg(x), jl(x)

and digits ag(x), al(x). The expansions analogous to described in Proposition 1 are
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then defined and analogues of of this proposition hold (for almost all x in case of

τ -expansion). These expansions are identical for almost all x ∈ [0, 1]. To represent

points ci we will use ”greedy” expansion if ci ∈ Wg and ”lazy” expansion if ci ∈ Wl.

We define the (K + L) × (K + L) matrix S, the K + L-dimensional vector of

constants D = [D1, . . . , DK+L] and the density h in the same way as in the previous

section by equations (15)-(17).

The theorem below describes invariant density for all piecewise linear, piecewise

increasing maps τ of constant slope β > 1, at least for β large enough .

Theorem 10. Let τ = τA will be the map defined in this section, i.e, any piecewise

linear, piecewise increasing map of constant slope β > 1. If the system (16) is

solvable, then h is τ -invariant density and dynamical system {τ, h ·m} is ergodic.

In particular, system (16) is uniquely solvable if β > K+L+1. If the last branch

is ”greedy ” or hanging or if the first branch is ”lazy” or hanging, then condition

β > K + L is sufficient. When both possibilities are realized it is enough to have

β > K + L − 1. Whenever one of these cases happens the corresponding constant

Di = 1.

The dynamical system {τ, h·m} can have any finite number of ergodic subsystems.

If this number is larger than 1, then 1
β

is an eigenvalue of matrix S and system

(16) is not solvable.

If τ has one onto branch, then it has at most two ergodic components. If τ has

at least two onto branches, then τ is exact.

Remark 3: If the system (16) is solvable, then it is uniquely solvable. This is proved

exactly as Remark 2.

Again, the proof of Theorem 10 closely follows the proofs from the previous

sections.

We again proved the following

Corollary 11. Let τ be a piecewise linear, piecewise increasing map of constant

slope β > 1. If 1/β is not an eigenvalue of matrix S, then system τ, h ·m is ergodic.

Conjecture 3: Let τ be a piecewise linear, piecewise increasing map of constant

slope β > 1. 1/β is not an eigenvalue of matrix S ⇐⇒ dynamical system τ, µ is

ergodic, where µ is absolutely continuous τ -invariant measure supported on [0, 1].

Example 9: Let N = 6, K = 5, L = 2, k1 = 1, α1 = 0.4, k2 = 3, α2 = 0.5,

k3 = 4, α3 = 0.3, k4 = 5, α4 = 0.6, k5 = 6, α5 = 0.7, U = [1, 0, 0, 0, 1, 0].

Also, γ1 = 0.3, γ2 = 0.2 and UU = [0, 0, 1, 0, 0, 1]. Then, greedy digits are

{0, 0.4, 1.4, 1.9, 2.2, 2.8}, lazy digits are {−0.6, 0.4, 0.9, 1.2, 1.8, 2.5} and the digits

are A = {−0.6, 0.4, 1.1, 1.9, 1.8, 2.6}. We have β = 3.5 and c1 = 0, c2 = 0.4,

c3 ' 0.54, c4 = (c4, 4) ' 0.63, c5 = (c5, 5) ' 0.63, c6 = 0.8, c7 = 1. c3, c4, c7 ∈ Wg

and the four others are in Wl. Using Maple 11 we calculated D1 ' −0.613,

D2 ' −1.076, D3 ' −1.554,D4 = D5 ' −1.652, D6 ' −1.226, D7 ' −0.826.

The normalizing constant is ' −0.161. Map τ is shown in Figure 7 a) and the

normalized density h in Figure 8 a).
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Example 10: Let N = 9, K = 9, L = 3, ki = i for i = 1, . . . , 9, α1 = α2 = α3 = 0.3,

α4 = α5 = α6 = 0.2, α7 = α8 = α9 = 0.5, U = [0, 0, 0, 0, 0, 0, 1, 1, 1]. Also,

γ1 = γ2 = γ3 = 0.3 and UU = [0, 0, 0, 1, 1, 1, 0, 0, 0].

Then, greedy digits are {0, 0.3, 0.6, 0.9, 1.1, 1.3, 1.5, 2.0, 2.5}, lazy dig-

its are {−0.7,−0.4,−0.1, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0} and the digits are A =

{0, 0.3, 0.6, 0.6, 0.8, 1.0, 1.0, 1.5, 2.0}. We have β = 3 and c1 = 0.1, c2 = 0.2,

c3 = (c3, 3) = 0.3, c4 = (c4, 4) = 0.3, c5 = (c5, 4) ' 0.367, c6 = (c6, 5) ' 0.367,

c7 = (c7, 5) ' 0.433, c8 = (c8, 6) ' 0.433, c9 = (c9, 6) = 0.5, c10 = (c10, 7) = 0.5,

c11 =' 0.667, c12 ' 0.833. We have c1, c2, c3, c5, c7, c9 ∈ Wg and the six others are

in Wl. τ has 3 ergodic components and 1/3 is an eigenvalue of matrix S. Lebesgue

measure is obviously invariant. Map τ is shown in Figure 7 b).

Figure 7. Maps of a) Example 9 and b) Example 10.
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Figure 8. Invariant density for τ of Example 9.
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