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Abstract. We find an explicit formula for the invariant density h of piecewise linear,
piecewise increasing map 7 of an interval [0, 1] with constant slope 8 > 1, at least
for B large enough. The construction involves matrix S which is defined in a way
somewhat similar to the defining of kneading matrix of a continuous piecewise
monotonic map. We prove that if % is not an eigenvalue of S, then dynamical
system (7, h - m) is ergodic.

1. Introduction
In this paper we continue the investigations of invariant densities (with respect to
Lebesgue measure m) for piecewise linear maps with a constant slope 3 > 1. The
first results about the classical S-maps were obtained by Rényi [15], Parry [12] and
Gelfond [5]. Later, Parry generalized [13] them further. These maps have all the
branches increasing.

The maps with both increasing and decreasing branches were investigated in [6].

Both just mentioned classes of maps allowed the shorter (i.e., not onto) branch
only as the last or/and the first branch of the map. In this paper we consider
piecewise linear maps with increasing branches and allow middle branches to be
not onto as well. We consider four increasingly general classes of maps. First,
we assume that images of shorter branches touch 0 (Sections 2-5). Such maps
are related to the so called "greedy” expansions with deleted digits. The notion
was introduces by Pedicini [14]. We recommend [4] for further information and
references. Next, we investigate a similar class of maps with images of shorter
branches touching 1 (Section 6) . These are related to so called "lazy” expansions
with deleted digits [4]. Maps of the next class have shorter branches of both kinds
(Section 7). Finally, in Section 8 we consider the general case of piecewise linear,
piecewise increasing maps of constant slope 8 > 1, with images of shorter branches
touching 0, or touching 1, or hanging in between.
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2 Pawet Gora

The construction of 7-invariant density h involves a matrix S defined in a
way somewhat similar to defining of kneading matrix of a continuous piecewise
monotonic map [1, 10]. We proved that if % (= eentropy) ig not an eigenvalue
of S, then dynamical system (7, h - m) is ergodic. We conjecture that the inverse
of this statement also holds. Note that for our class of maps ergodicity implies
topological transitivity.

If 7 has all branches onto, then Lebesgue measure is 7-invariant. Therefore, we
consider only maps with at least one shorter branch. Since § > 1, our 7 always
admits an absolutely continuous invariant measure. We will denote it by p.

We are mainly interested in absolutely continuous 7-invariant measure. The
general theory of such measures for piecewise expanding maps of an interval is well
developed and we often refer to its results. The classical papers are [8] and [9]
among many others. There is a number of books on the subject, see, e. g., [2] or
7).

While working on this project the author used extensively the computer program
Maple 11. The programs with examples and illustrations, as well as their pdf print-
outs, are available at http://www.mathstat.concordia.ca/faculty /pgora/deleted .

2. Maps related to the greedy expansion with deleted digits

In this section we describe maps related to so called greedy expansion with deleted
digits [4, 14]. Throughout the paper ¢(condition) will denote 1 when the condition
is satisfied and 0 otherwise.

Let 7 be a piecewise linear, piecewise increasing map interval [0, 1] onto itself,
such that the image of each branch touches 0 and with constant slope 3 > 1. Let
N > 2 be the number of branches of 7 and K < N the number of shorter branches,
i.e., not onto. Let o < ag < -+ < ai be the heights of the shorter branches and
let 1 < ki,ko,...,kx < N denote the numbers of these branches correspondingly.
We do not assume any order of k;’s. Then, we have

b=N-K+4+a+as+ - -+ax .

The endpoints of the maximal intervals of monotonicity of 7 are 0 = b; < by <
<o+ <by <byy1=1and

K
1=1

The map 7 is defined on the partition P, = {I1, I5,...,In—1,In}, of the interval
[0, 1], where

Il = [O,bQ] ;
I; = (bj,bj41] for 2<j<N-—-1; 1)
IN - (bN,l] .

The points
(&) :bki+1) 1= 15"'5Ka
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Invariant densities for piecewise linear and increasing maps 3

the right hand side endpoints of the domains of the shorter branches of 7, play
special role in further study. Note,

T(¢) = oy .
We define the set of "digits” A = {a1,aq,...,an}, where
aj=b;-B, j=12,... N.
Note,

aN
M, = 13?13%(71(%“ —aj)=1 and f<1+ M, (2)

asf=any+1ifk; <N fori=1,2,....K,or=any+ «; if k; = N.
Map 7 (occasionally denoted also by 74) is defined as

r(x)=p-z—a;, for wel;, j=1,2,...,N.
For any z € [0, 1] we define its ”index” j(z) and its "digit” a(x):

jlz)y=4 for zel;,j=12,...,N,

and
a(z) = aj(z)-

1 1
T(Cz):az" _
T(cl):al" T(CI)_al

0 ¢, ¢ 1 0 c=(1+a)/pB 1
indices: 1 2 3 indices: 1 2 3 4
digits: 0 1 1.5 digits: 0 1 I+o, 2+a,
a) b)

FIGURE 1. Graphs of maps of a) Example 1 and b) Example 2.

The following proposition describes the ”greedy expansion with deleted digits”.
It is called like this since if we allow different scaling of the set {ai,...,an},
then the numbers can be represented using non-consecutive digits. For example
a; = 0,a2 = 2,a3 = 3 gives expansion of numbers in [0, 2] using digits 0,2, 3.
Proposition 1 is a special case of a theorem proved in [14].
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4 Pawet Gora

PROPOSITION 1. For any = € [0, 1] we have

b S )

n+1
n=0 6
Moreover,
- a(m (@)
@) =8y g
n=~k
for any k > 0.

Proof: We have 7(z) = Sz — a(x) or

_a@) @)
B B

Using this equality inductively n-times we obtain

_a(e) a(r(@) | a(rl(@) | ()
TTE T T T T

which proves both statements. o

We will call the representation defined in Proposition 1 the 7-expansion of x.
Under our assumptions, the only number with finite 7-expansion is x = 0. It holds
since 7(z) > 0 for x > 0 and the only fixed point of 7 in I3 is 0. Thus, all other
numbers have infinite 7-expansions. When 7(1) = 1 and such an expansion, starting
from some place M +1 (assuming a;,, < an), contains only an’s, then we can write

M
v Z Ajy, Z Z aj,, Z Gjn_ | s + 1
- 6n+1 6n+1 6n+1 5M+2 6n+1 5M+1 ’
n=0

n=M-+1

and consider it a finite expansion.

3. Invariant density
In this section we find an invariant density of 7 in a special case of K = 1. The
case of larger K is considered in the next sections. We denote Lebesgue measure
on [0, 1] by m.

An integrable nonnegative function h is a density of an m-absolutely continuous
T-invariant measure if and only if it satisfies Perron-Frobenius equation:

= Y. /17 W) = (Pr(h)(x),
yir(y)==

for almost all z € [0, 1]. Operator P is called Perron-Frobenius operator [2]. The
preimages of = are z(j) = (x +a;)/B8, j = 1,..., N, with the remark that the
preimage (k1) corresponding to the shorter branch of 7 exists only for z € [0, a4].
In our case the Perron-Frobenius equation becomes

= 3" ha(i). )
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Invariant densities for piecewise linear and increasing maps 5

THEOREM 2. Let 7 = 74 satisfy the assumption of Section 2 and K = 1. If the
first branch is onto, then the non-normalized T-invariant density h is given by the

formula
1 1
h’( ): B+D1 ZXOT"(CI) ( )6n+1 )
n=1
where
D — 1
LTG5

and S11 is defined in (4). If the first branch is not onto, the support of T-invariant
absolutely continuous measure is the interval [0, o). The restricted map Tlo.ay) 8

a classical B-map. The formula for the density applies after necessary changes
The proof of Theorem 1 follows the method of Parry [12].

Proof:  We want to calculate 3 h(z(j)) for any x € [0, 1]. Recall that 6(condition)
is 1 if the condition is satisfied and 0 otherwise. We have

Z 3(x(s) < 7"(er)) = 5(r" (1)) =1+ 8z < 7" (er))

—0(x>71(c1)) - 0("(c1) > 1) -
We obtain:

() = % [N =145z < 7(c1))]

o Z 5% [(F™(c1)) = 14 8(z < 7" (e1)) — 8z > 7(er)) - 8(r"(c1) > e1)]

- % [N —1+6(z < 7(c1))]

DY i B ) = 1= 8(a > r(en)) - 6(r"e1) > o)

5z < 7(c1))

D1 . Zl ﬁis(fb < 7-n+1(cl)) + Dl_T +1-— Dlw

—1.
B

Since .
Dy - Zlﬁw <7 (er)) +Dl5("”§’# +1 = Bh(z)

we only need to find a constant D; such that

Ly 1 s < ey - D, S S Ten)
0—5[1\] 1+6(z < 7(e1))] — Dv 5

2 i (™ ) = 1= 8(a > 7)) 8" en) > )]
Let us define

Slzi‘m and 1 Z >Cl) ) (4)

6n+1

-1

n=1 n=1
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6 Pawet Gora

For 2 < 7(c1) we obtain
N D

For x > 7(c) we obtain
N -1
0= T_1+DISI_DISI,1 .

We need to solve the system of equations
or an equivalent system

Since

o i7" (1) = 1 = 8(1"(e1) > e1)(1 — )
- Sult-an =3 i
n=1

- (5)
Shalre) o) _ar

prtt B B
and 8 — N + 1 = a7 adding the first equation to the second multiplied by (1 — ay)
we obtain 0 = 0. Thus, the equations are dependent and D; can be calculated from
any of them. We will use the second one. We have

= O(T(e1) > ) = 1 1
=L T S L HE oD

n=1

Ifﬁ > 2, we get 8171 < % and D = 1/(1 —68171).

If 8 <2, then 7 has two branches (as K = 1) and we consider two cases:

a) k1 = 2: Then, ¢; =1 and §(7"(c1) > ¢1) =0 for all n > 1. Thus, S1,; =0
and D; = 1. We obtained classical Parry’s formula [12].

b) k1 = 1: The 7-invariant absolutely continuous measure is supported on [0, a4].
T restricted to this interval is a map from case a). O

Example 1: Let N =3, K =2 and a3 = 0.4, ky = 3, ag = 0.5, ks = 2 . Then,
B = 1.9. The digits are A = {0,1,1.5}. The graph of map 7 is shown in Figure 1
a). Using Maple 11 we calculated D; = 1.00 and Dy ~ 1.48988. The normalizing
constant of the density is ~ 1.32347. The graph of 7 is shown in Figure 1 a) and
its normalized density h in Figure 2 a).
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Invariant densities for piecewise linear and increasing maps 7
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a) b)

FI1GURE 2. Invariant densities for maps of Examples 1 and 2.

Example 2: Let N = 4, K = 1 and a3 = 0.45, k; = 2. The digits are
A ={0,1,1.45,2.45}, 8 = 3.45. The graph of map 7 is shown in Figure 1 b).
Using Maple 11 we calculated and D ~ 1.41271. The normalizing constant of the
density is ~ 0.35169. The graph of 7 is shown in Figure 1 b) and its normalized
density h in Figure 2 b).

The following proposition describes the ergodic properties of 7.

PROPOSITION 3. Let us consider a dynamical system {7, h-m}, where T is a map
of Theorem 1 and h its invariant density. Then, T is exact on the support of h.

Proof: Tt follows from the general theory, e.g. [2, Chapter 8], that the support of
h consists of a finite number of intervals. To show exactness it is enough to prove
that iterates of some interval in the support grow to cover the whole [0,1]. Tt is
also known that this support contains a neighborhood J of some inner endpoint of
the partition P,. Then, the image 7(J) covers a neighborhood of 0. If the first
branch is onto, then the consecutive iterates grow to cover the whole [0, 1]. If the
first branch is not onto, we consider two cases: If § > 2, then the longest connected
component of iterates of J grows until it covers two consecutive inner endpoints of
the partition P.. Since the first branch is the only non-onto one, the next image
covers [0,1]. If 8 < 2, we are in situation of case b) of the previous proof. 7
restricted to [0, o;] has the first branch onto. O

4.  Maps with two or more shorter branches

In this section we generalize the result of Section 3 to maps related to greedy

expansion with deleted digits which have more than one shorter (not onto) branches.
We will use the following fragment of Perron-Frobenius theorem for non-negative

matrices [11].
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8 Pawet Gora

THEOREM A. If S = (S;j)i<ij<m 1S a matriz with non-negative entries, then all
eigenvalues A of S satisfy

M
|)\| S max Si,j . (6)

1<i<M 4
Jj=1

THEOREM 4. Let 7 = 74 will be the map defined in Section 2 and K > 1. Let

K )
1 1
h(z) = B + Z D; Z X[0,77(¢4)] W ) (7)
1=1 n=1

where constants D;, i = 1,..., K, satisfy the system (11). If the system (11) is
solvable, then h is T-invariant and the dynamical system {T,h -m} is exact. In
particular, this holds if 3 > K + 1. If the last branch is shorter, then condition
0 > K is sufficient.

Remark 1: If the system (11) is solvable, then it is uniquely solvable. The existence
of a solution implies the existence of invariant density h with full support and
exactness. Then, the invariant density h is unique up to a multiplicative constant.
Existence of another solution would create a different invariant density, which is
not a multiple of h because of % summand and since 7(¢;) = a; < 1.

We will prove Theorem 4 in a special case K = 2 first and then we will present
the general proof. We will discuss the examples with § < K + 1 afterwards.

Proof of the case K = 2: We have to show that the invariant density is of the form

1 > 1 > 1
h(z) = 5t DY X(0,m 0] ot F D2 ) X0, (ea)] Bt

n=1 n=1

where constants Dy, D can be found from the system (9). Again we need to
calculate > h(2(j)) for any x € [0, 1]. For i = 1,2 have

Z 3(a(5) < 7"(ei)) = (7" (1)) = 1+ bz < 7" (ci))

— (x> 7(c1)) - 6(1™ (i) > 1) — 6(x > T(c2)) - 6(7™(¢i) > c2) .
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Invariant densities for piecewise linear and increasing maps 9

We obtain:

Z h(z(§)) = =[N = 8(z > 7(c1)) — 8(z > 7(c2))]

=

o Z 5% [ (1)) = 14 8(x < 7" (1)) — 8 > 7(cr) - 87" (e1) > 1)

—8(z > 7(c2)) - 6(7™(c1) > c2)]

+he ) @) = 14 00 < 7 @) = 6 > 7len)) 377 e) > )

—0(x > 7(c2)) - 0(7™(c2) > 02)]

— 5 h(a)
4 %[N (e > () — 8z > 7(ea)]
4 D1S) — Did(@ > 7(e1))Sh1 — Did(a > 7(e2))Shs — %5@ < ()
+ D2Ss — Dad(x > 7(e1)) St — Dad(a > 7(cz))Sas — %5@ <rlea)) -1,
(8)
where

S; = Zl 5"1“ (j(T"(cl-)) - 1) and

=1 . o
Sl'yj = Z W(S(T (Cl) > Cj) , 1,5=1,2.
n=1

We need to find the constants Dy, Dy such that the last three lines of (8) sum up
to 0. Substituting = < 7(c1), 7(c1) < x < 7(c2) and x > 7(c2) we obtain system of

equations:
1 1 N

1 N -1
Dl(Sl_Sl71)+D2(82_82’1_B>_I_T;
N -2

Dy (S1— 511 —S12) + Do (S2 =821 — S22) =1 — 5

Subtracting the second equation from the third and the first from the second we
obtain a nicer equivalent system:

N R
D, (-Sl,l + %) + D3 (—521) = % ; 9)
Dy (=S12) + D2 (—32,2 + %) = % :
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10 Pawet Gora

The rank of the system is 2. We can show this multiplying the second equation by
(1 — al), the third equation by 1 — g and summing up all three equations. The
sum of coefficients in the first column is

ar s=a(t(c1)) a1 7(c1)
Sl_8171(1_()[1)_8172(1_&2)_F:;W_F: 5 _FZO’
and similarly the sum of coeflicients in the first column is
@ x=a(t"(c2)) az  T(c2) o
52—32,1(1—041)—52,2(1—042)—F:;W—F: 3 —F:O.
The third column sums up to
N 1—0[1 1—0[2 N—2—|—O[1—|—O[2
1——=+ + =1- =0,
5 5 5 B

since = N — 24 a1 + as. Let us define matrix
S— (31,1 S2,1> '
S12 S22

The system of the last two equations in (9) has unique solution if and only if % is not
an eigenvalue of S. We have 5; ; < ﬁ, for 4,7 = 1,2. Thus, by Theorem A all
the eigenvalues of S have modulus smaller than m The condition m < %
is equivalent to # > 3. Thus, at least for 8 > 3 the constants D, D5 exist and the
formula for the 7-invariant density is valid.

If the last branch is shorter, then one of ¢;’s, say ¢;, = 1. We have S;, ; = 0
for ¢ = 1,2 and Perron-Frobenius estimate on the modulus of eigenvalues of S is
ﬁ. Thus, 8 > 2 is sufficient in this case. Note, then D;, = 1.

To prove exactness, as in the proof of Proposition 3 it is enough to show that an
interval J in the support of an ergodic absolutely invariant measure grows under
iteration to cover the whole [0, 1]. Since h is supported on [0, 1] we can find either .J
covering the fixed point in an onto branch or a pair Ji, Jy touching the fixed point
Zo in an inner onto branch. In the first case images 7" (J) grow to cover the whole
[0,1]. In the second case images 7 (J1) grow to cover [0, zo] and images 7"(J2)
grow to cover [xg,1]. Since it is an inner branch the image of [zg, 1] touches 0,
which shows uniqueness of absolutely continuous invariant measure and exactness.
a

Proof of the general case:

K 0o
1 1
h(z) = B + Z D; Z X[O,T"(Ci)]w )
i=1  n=1

where constants D;,i =1, ..., K satisfy the system (11). Again we need to calculate
> M (4)) for any x € [0,1]. Fori=1,..., K have

Z 3(a(5) < 7"(er)) = (7" (i) = 1+ 8(x < 7" (ci))
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Invariant densities for piecewise linear and increasing maps 11

We obtain:
K
> b)) = % [N I T<ci>>]

K 00
#3000 Y g [ )~ 14 8 < 7 (@)

K
=Y o> (k) 07" (i) > )
k=1
=0 h(z)
1 K
+=|IN=D o> T(cl))]
6 =1
K K K K D
+ZD1$’1—ZDiZ5(x>Tck Z—l (x <7(¢;)) -1,
=1 =1 k=1 =1 6
(10)
where
=1
S; Zl ot (j(T"(Cl)) - 1) and
m—zﬂnﬂ D >en), k=1,2,.. K.

We need to find the constants D;, ¢ = 1,2,..., K, such that the last two lines of
(10) sum up to 0. Substituting z < 7(c1), 7(¢;) < < 7(¢ig1) fori =1,2,..., K—1
and x > 7(cx) we obtain system of K + 1 equations (below index k numbering the
equations changes from 0 to K):

1 1 1 N
D (31—5>+-~-+D1- (&-—B>+~--+DK (SK—B>_1—E,

ot >2
Dl(Sl_Sl,l)‘i‘""i‘Di (Si_Si,l— (Z— )>+

B
1 N -1
+DK(SK—SK,1—B>—1_T§
6(1>3
Dy (S1—511—512)+ -+ D (Si—Si,l—Sm— (Zﬂ_ )>+
1 N -2
+ Dk (SK—SK,I—SKQ—B)—I_T;

k k .
0(i>k+1
1(31—5 Sl,j)+"'+Di (Si_g Si,j_%)-l-...
i=1
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12 Pawet Gora

1 N —k
+ Dg SK_ZSKJ | =1-—
2 5 5
K
Dl Sl ZSlJ + +D'L Sl_ZSlJ +
j=1
K
N-K
+ Dg SK_ZSKJ = —T
j=1

Subtracting the (K — 1)’st equation from the K’th one, then K — 2’nd from the
K — 1’st, etc, we obtain a nicer equivalent system (again 0 < k < K) :

N .
E )

1 1 1
D1(31—5>+"'+ Di(Si—B>+"'+ DK(SK—B> =1-
1 1
D, —31,14-5 +-4+D; (=Si1)+ -+ Dy (—Sk1) = 3 ;
0(i =2 1
Dy (=512) +--+ D; (_Si,2+ (15 )> + -+ Dk (—Sk.2) =5
(11)
0=k 1
Dy (=S1k) + -+ D; (—Si,k + ( 3 )> +-+Dk (—Sk k) = 3 ;
1 1
Dy (=S1,k)+ -+ D (=Six)+- -+ Dk (_SK,K‘FB) =5
The rank of the system is K. We can show this multiplying the £’th equation by
(1 —-ag), k=1,...,K and summing up all the equations. The sum of coeflicients
in the #’th column, i =1,..., K, is
a; T(Ci) a;
S Slkl—ozk—— — = ——=0.
Z Z Wl 3= 5 "5
The K + 1 st, right hand side, column sums up to
l—ak N—K+a1+~~~+aK
1—— = =0,
Z 3
since 6:N—K+a1+~~~+aK. Let us define K x K matrix
8171 e SI,K
S — . .
SKJ SK,K
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Invariant densities for piecewise linear and increasing maps 13

The matrix of the system of the last K equations in (11) is ST ( AT denotes the
transpose of A). The system has unique solution if and only if % is not an eigenvalue
of S. We have S, < %, for i,k = 1,..., K. Thus, by Theorem A all the
eigenvalues of S have modulus smaller than % The condition % < %
is equivalent to # > K + 1. Thus, at least for 3 > K + 1 the constants D;,
i=1,2,..., K exist and the formula for the 7-invariant density is valid.

The estimate for 8 in case of shorter last branch and the exactness of 7 is proven
in the same way as for K = 2. O

The number % can be written as % = exp(—H) where H is the entropy of the

system {7, h-m}. We have proved the following

COROLLARY 5. If no eigenvalue of the matriz S is equal to exp(—H), then the
system {7, h - m} is exact.

There are matrix methods of detecting topological transitivity of piecewise
monotone continuous interval maps [1, 10], which is implied by exactness for our
class of maps. Perhaps matrix S can be used for this purpose in a more general
setting. We conjecture that the inverse of the Corollary 5 also holds. We proved
this for maps 74 with one shorter branch.

Conjecture 1: Let 7 be piecewise linear, piecewise increasing map of constant slope
(B > 1 with shorter branches touching 0. Then, 1/4 is not an eigenvalue of matrix
S <= dynamical system 7, u is exact, where p is absolutely continuous 7-invariant
measure supported on [0, 1].

Here, we prove a proposition which we will use below.

PROPOSITION 6. Let us define additional (and artificial) points ¢; as the right hand
side endpoints of the domains of onto branches. Let us extend system of equations
(11) by adding columns and rows corresponding to these added points. Then, the
new larger matriz S has % as an eigenvalue. This means that the extended system

of equations is not solvable.

Proof: Let us assume that there is only one additional point ¢; and put the
additional row and column as first in the matrix S. The general case can be proved
in a similar way.

Let denote the additional unknown by Dy. Let hp = > 00, X[Oyfn(ck)]ﬁn%,
k =0,1,..., K denote the function next to coefficient Dy in the formula for the
density h.

We will prove the proposition by contradiction. Let us assume that % is not an
eigenvalue of S. Then, the extended system of equations is uniquely solvable and

K
1
h:B+D0h0+;Dihi

is the invariant density. We consider two cases:
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14 Pawet Gora

First, assume that the last branch is onto. We have

= 1 1
ho = Z X[0,77(co)] TrT = :
— prtt o BB 1)

For any real s we can write a multiple of invariant density h

K
he=(1+ ﬁ) (% + Doho + ZD@-)

=1

1

Since it is of the form (7) the constants [s + (1 + ﬂ)DO, (I+ 557)D1,.... (1 +
ﬁ)D k| satisfy the extended system of equations for any s. This is a contradiction.

——)Do)

Now, assume that the last branch is not onto, i.e., ¢;; = 1 for some 1 < iy < K
and D;, = 1. We have

> 1 1 1
ho = ZX[O,T"(CQ)] — = 5+ Zhi -
—~ gt B* B

Again, we can write a multiple of invariant density

K
1
=+ Doho + hi, + Y Dihi

S
hs =1+ =
izig
1
:B+@+(1+6)D0h0+ 1+ - h10+2 1+

1#10

Since Dj, = 1 the constants [(1+ 3)Do +s,(1 + 5)D1,..., Diy, ..., (1 + 5)Dk]
satisfy the extended system of equat1ons for any s. T his, again, is a contradlctlon
a

5.  Special cases
In this section we consider maps 74 with K = 2 shorter branches satisfying 5 < 3,
or 3 < 2 if the last branch is shorter.

We will first consider cases when 7 has two shorter branches, § < 2 and the last
branch is shorter. This means that 7 has 3 branches.

(A) The first branch is onto: Then, 7 is exact, which can be proved as in
Proposition 3. Let us assume that ¢; = 1. Then, S11 = 521 =0and D; =1. Dy
has to satisfy Da(—S2.2 + %) = % + 51,2. We will show that

1

8272 < B . (12)

We have a1 +as < 1so 7(ca) < ca. Also, whenever 7" (c2) > co then 71 (ca) < ca.
Thus Sa.2 < ﬁg(ﬁg T and (12) is shown at least for § > 1 ~ 1.32472 such that

ﬁl (ﬁlfl) - ﬁl

Prepared using etds.cls



Invariant densities for piecewise linear and increasing maps 15

Assume that 8 < ;. Then, (B+ 1)(8—1) < % Since ay < B — 1 this means
that 7(c2) < c2 and 72(c2) < 02 Moreover, whenever T"(e2) > co then the next
two iterates are smaller then = T hus S22 < FE-D ﬁg T and (12) is shown at least
for B > (B2 ~ 1.19385 such that ﬁg(ﬁ Ty = ﬁ2

Assume again that 3 < 3. Then, (3% +8+1)(8—1) < % which means that
7k(cy) < e for k = 1,2,3,4. Moreover, whenever T"(¢c2) > co then the next four

iterates are smaller then % Thus S22 < 7 (ﬁ) T and (12) is shown at least for

B > (3 ~ 1.10735 such that s (ﬁ) 0=

Since the positive solutions of z™(z™ — 1) = z converge to 1 as n converges to
infinity, repeating the above reasoning inductively we can prove (12) for all 5 > 1.
The case ca = 1 can be proven similarly.

Ezample 3: T considered in case (A) gives an example of maps for which invariant
density h exists although [ can be arbitrarily close to 1. On the other hand the set
of digits A =0,0.5, 1 provides an example of a map 74 with the slope 8 = 2 which
is not exact (on [0, 1]) and for which the formula for A is not valid.

(B) The first branch is shorter. Assume that it corresponds to index kz. Then,
the fixed point in the middle onto branch is g = az/(8 — 1) and z¢ > ag. The
support of absolutely continuous invariant measure is the interval [0, as] and 7
restricted to this interval is classical S-map.

Now, we consider situation where the last branch is onto and § < 3. This means
that 7 has 3 or 4 branches.

3 branches case: Since the last branch of 7 is onto, the first and the second
branch are shorter. We always have al < a2.

(C) k1 =1, kg = 2: There are two possibilities:

(Ca) oy is below the fixed point on the second branch (or this fix point does not
exist). Then, map 7 has unique absolutely continuous invariant measure supported
on [0, @1]. 7 restricted to this interval is a classical S-map and the invariant density
can be found by Parry’s formula (or our formula after rescaling).

(Cb) The image of the first branch covers the fixed point on the second branch.
Then, map 7 has unique absolutely continuous invariant measure supported on
[0, aw]. 7 restricted to this interval has the first and the last branches shorter. This
situation is considered in (B).

(D) ko =1, k1 = 2: Map 7 has unique absolutely continuous invariant measure
supported on [0, ag]. 7 restricted to this interval has the first branch onto. This
situation is considered in (A).

4 branches case: The last branch of 7 is onto.

(E) The first branch is onto. 2 < 5 < 3. 7 is exact.

(F) The two first branches are shorter. 2 < 5 < 3.

k1 =1, ke = 2: Since the fixed point in the second branch is x¢ = ﬁo‘jl
image of the first branch covers it. There are two cases:

(Fa) If «s is above the fixed point in the third, onto branch, then 7 is exact.

(Fb) If s is below the fixed point in the third, onto branch, then map 7 has
unique absolutely continuous invariant measure supported on [0, as]. 7 restricted to
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this interval has the first and the last branches shorter. This situation is considered
in (B).
k1 =2, ky = 1: Situation is similar as in cases (Fa), (Fb).
(G) The first and the third branches are shorter. 2 < § < 3. Since again the
image of the first branch covers the fixed point in the second onto branch, map 7
is exact.

6. Maps with the shorter branches ”at the top”

In this section we consider piecewise linear maps of an interval [0, 1] with constant
slope 8 > 1, all branches increasing and such that the images of shorter branches
touch 1. Such maps are related to so called ”lazy expansions with deleted digits”
[4].

Let 7 be a map described above. Let N > 2 be the number of branches of 7 and
K < N the number of shorter branches, i.e., not onto. Let a; < as < --- < ag
be the heights of the shorter branches and let 1 < 121, 122, .. .,I;K < N denote the
numbers of these branches correspondingly. We do not assume any order of I;j’s.
Then, we have

b=N-K+4+a+as+ - -+ax .

The endpoints of the maximal intervals of monotonicity of 7 are 0 = by < by <
<o <by <byj1=1and

-1 K _
bj_B(j—1—25(j>ki)(1—a,;i)> , J=1,...,N.
=1

The map 7 is defined on the partition Pz = {J1, Ja, ..., JN—1, N}, of the interval
[0, 1], where

Jl = [0552) )
J; = [bj,bj+1) for 2<j<N-1;
Iy = [bn, 1] .

Note that intervals J; are open (closed) on different side than intervals I; for 7.
The points
G=bp, i=1,... K,

the left hand side endpoints of the domains of the shorter branches of 7, play special
role in further study. Note,

7:(51):1—011, ’L:L,K
We define the set of "digits” A = {a1,ase,...,an}, where

K
8 = <j_1_25<j>/21-—1>(1—a,;i>> . j=1...N.

i=1
We also have
a; =Bbj1 —b1)—1, j=1,...,N.
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Map 7 (occasionally denoted also by 7;) is given by
T(x)=p-z—a;, for zeJ;,j=12,....,N.

Note, if the first branch is not onto, then some digits are negative.
For any z € [0, 1] we define its ”index” j(x) and its ”digit” a(x):

jx)=35 for z€J;,j=12,...,N,

and

”

The ”lazy expansion with deleted digits ” is defined using A and 7 similarly as
the ”greedy” one and an analog of Proposition 1 holds. See [4] for more information.

We will now show that map 75 is conjugated to some map 74 by diffeomorphism
f(x) = 1 — 2 on [0,1]. First we define a ”conjugated” set of digits A =
{ai,as,...,an} with a;j = ay —an—j+1, § = 1,2,...,N. In particular, a1 = 0
and ay = ay — a1. This defines the endpoints of maximal monotonicity intervals
for 7: b; = a;/B, 5 =1,2,...,N. Note that by = 0 and by = 1. We define intervals
I; as in (1). The lengths of J; and In_j41 are equal, j = 1,2,..., N. The shorter

intervals are k1, ..., kx where ki:N—I;i—Fl,i:l,...,K.

THEOREM 7. The maps T; and T4 are conjugated by the diffeomorphism f(z) =
1—z. Ifh is a Ta-invariant density, then the density h(x) = h(1—z) is T4 -invariant.
We have

K [eS) 1
Z ZIX[T"(@)J]W )

where constants D; = D;, i =1,...,K, satisfy the system (11). D;’s can be also
obtained directly from the system similar to (11), where quantities S; ; are replaced

by

QI'—‘

SIS e

Proof: Both 74 and f o750 f~! are piecewise linear, piecewise increasing maps
with constant slope § and the images of shorter intervals touch 0. The equality of
the lengths of the intervals I; and Jy_j41, 7 = 1,2,..., N, proves that they are
identical. Then, the formula for & follows, using the fact that 77(¢;) = 1 — 7"(c;),
foraln>0andi=1,..., K. O

Ezample 4: Let N =5, K =3, a1 =04, k1 = 1, ap = 0.5,ks = 3, a3 = 0.7,
ks = 2. Then, A = {-0.6,0.1,0.6,1.6,2.6} and 8 = 3.6. The conjugated set of
digits is A = {0,1,2,2.5,3.2}. Using Maple 11 we calculated D; = Dy = 1.00,
Dy = D2 ~ 1.38693, D3 = D3 ~ 1.00166. The normalizing constant for both
densities is ~ 0.45935. The maps are shown in Figure 3 and the normalized densities
h and h are shown in Figure 4.
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1 1
1—0(l a,
1-a., 1oL,
—0L;+ Q,
¢=0 6'3 éz 1 0 c, c3T c 1
indices: 1 2 3 4 5 indices: 1 2 3 4 5
digits: -0.6 0.1 0.6 1.6 2.6 digits: 0 1 2 2532
a) map Tx b) map 1 A

FIGURE 3. Maps 75 and 74 of Example 4.

FIGURE 4. Invariant densities for maps of Example 4: a) 77, b) 74.

7. Maps related to "mized” expansions.

In this section we join the results of previous sections and consider maps with some
shorter branches touching 0 and others touching 1.

Let 7 be a piecewise linear, piecewise increasing map of interval [0, 1] onto
itself with constant slope 0 > 1. Let N denote the number of branches of
7 and K < N the number of shorter, not onto, branches. We removed the
requirement of having at least one onto branch but still assume that 7 is onto.
Let 1 < ki <ky <---< kg <N be the indices of shorter branches. In this section
we have changed the convention and assume that these indices are numbered in
increasing order. Let a; denote the hight of k;’th branch, i =1,..., K. We do not

Prepared using etds.cls



Invariant densities for piecewise linear and increasing maps 19

assume any order among «;'s. We define also a vector U = [Uq,...,Un]|. We set
U; = 0if the jth branch is onto or "greedy” and U; = 1 if the jth branch is "lazy”.
As in the previous sections, we have

b=N-K+4+a+as+ - -+ax .

The endpoints of the maximal intervals of monotonicity of 7 are 0 = b; < by <
<o+ <by <byy1=1and

K

We assume that map 7 is defined on the partition P, = {I1,Is,...,In—-1,In}, of
the interval [0, 1], where

IIZ[O,bQ);
I = (bj,bj41) for 2<j<N-—-1; (14)
IN:(bN,l].

It may be not possible to reasonably define 7 at some inner b;’s. This problem
affects a countable set of points, preimages of inner b;’s. Since we will need to
iterate some of these points we define two extensions of 7: 7, the extension by
continuity to partition

Py = {[0,b2], (b2, bs], . . ., (bn—1,bn], (bn, 1]},
and 7; the extension by continuity to partition
P = {[Oa b2)a [b2a b3)a SR [bela bN)a [bNa 1]}

Now, we will define points ¢;. It may happen that two of them are equal as
numbers but we want to consider them as different so strictly speaking each ¢;
below should be treated as a pair (¢, j), where ¢ € [0,1] and 1 < j < N. Let us
define the points ¢;, e =1, ..., K as follows

C; = bkiJrl = (bki+1, kl), if Uki =0 and C; = bki = (bki; kl), if Uki =1

These are the right hand side endpoints of the domains of the ”greedy” branches
and the left hand side endpoints of the domains of the ”lazy” branches, respectively.
We group points ¢; into two disjoint sets: W, contains ¢;’s associated with ” greedy”
branches (U, = 0) and W contains ¢;’s associated with ”lazy” branches (Ui, = 1).
Note,

7(¢;) = oy for ¢ eW,,

T(;)=1—q; for ¢ eW,.

We define the set of "digits” A = {a1,aq,...,an}, where

K
aj=j—1-3 6(j>ki-U)(l—ar), j=1,..,N.

=1
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a; can be also calculated as
CLj:ﬂbj, if UJZO and CLj:ﬂijrl—l, if UJ:1
Now, we can write map 7 as
T(x)=p-z—a;, for zel;, j=12,...,N.
For any z € [0,1]\ {b2,...,bn} we define its ”index” j(z) and its "digit” a(x):
jlz)y=4 for z€l;,j=12,...,N,
and
a(x) = aj(z).
We also define (for all z € [0, 1]) the indices j,(z), ji(z) and digits ag(x), a;(z). The
expansions analogous to described in Proposition 1 are then defined and analogues
of of this proposition hold (for almost all z in case of T-expansion). These expansions
are identical for almost all = € [0,1]. To represent points ¢; we will use ”greedy”
expansion if ¢; € W, and ”lazy” expansion if ¢; € W.

We now prepare for the description of 7-invariant density h. Let us define

o0

1 n
Si ;= Z W(S(Tg (ci) > ¢j), for ¢ €W, andall ¢;,
. , (15)
Si ;= Z W(S(T["(Ci) <¢j) for ¢ €W, andall ¢; .
n=1

Let S be the matrix (S;;),<,; j<; and Id denote K x K identity matrix. Let

vg = [%, . ,%] be K-dimensional vector and let D = [Dy,..., Dk] denote the

solution of the system

(-sT + %Id)D =g, (16)

where AT denotes the transpose of A.

THEOREM 8. Let 7 = 74 will be the map defined in this section, i.e., any piecewise

linear, piecewise increasing map with the images of shorter branches touching 0 or
1. Let

1 — 1 — 1
h(z) = B + Z D; ZX[O,T;(CI-)]W + Z D; ZX[TZ"(Ci),l]W ) (17)
icWy n=1 ieW; n=1
where constants D;, i = 1,..., K, satisfy the system (16). If the system (16) is
solvable, then h is T-invariant and the dynamical system {7,h-m} is ergodic.

In particular, system (16) is uniquely solvable if 3 > K + 1. If the last branch is
“greedy ” or if the first branch is "lazy”, then condition 8 > K is sufficient. When
both possibilities are realized it is enough to have B > K —1. Whenever one of these
cases happens the corresponding constant D; = 1.

The dynamical system {7, u} can have at most two ergodic components. If there
are actually two such components, then % is an eigenvalue of matriz S and system
(16) is not solvable. If T has at least two onto branches, then it is exact.
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Remark 2: If the system (16) is solvable, then it is uniquely solvable. This can be
proved exactly as Remark 1 since ergodicity of {7, h-m} implies the uniqueness of
invariant density (up to a multiplicative constant).

Proof: The proof of Theorem 8 is analogous to that of Theorem 4. h satisfies Perron-
Frobenius equation almost everywhere, for all x except possibly preimages of inner
endpoints of partition P, intervals. We only have to prove the ergodic properties
part. It follows from the general theory that the support of each ergodic component
contains neighborhood of some inner endpoint of the partition. Since image of each
branch touches either 0 or 1, there can be at most two ergodic components.

Let us assume that there are two ergodic components. Since h is supported on
[0, 1] there exists xg € [0, 1] such that the support of one component is Jy = [0, 0]
and the support of the other is J; = [z, 1]. Let 7o = 7|, and 11 =17, .

We have T;(Ck) <c¢jforalln >1and all ¢t € Jo, ¢; € J1 and 7% (¢cx) > ¢; for
all n > 1 and all ¢, € J1, ¢; € Jo. Thus, matrix S is a block matrix

S = (SO = (Sij)i<i <t 0 )
0 S1 = (Sij)Lri<ij<x)’

where ¢1,...,cp € Jg and ¢p41,...,cKx € J1.

The image of at least one ¢;, € Jy and at least one ¢;; € Jy is equal to zg as
otherwise there would be a hole in the support of h. Even if zq is a fixed point in
a common onto branch od 7, there must exist such points.

Thus, the matrix Sy is the extended matrix for map 7 on .Jy described in
Proposition 6. Thus, % is an eigenvalue of Sp. Similarly, it is an eigenvalue of
S;. Thus, the solution for constants D; is not unique.

Since h has full support, each of the systems 79,h-m, , 71,h - m, Is exact.
Each can be considered separately and the invariant densities can be combined.

If 7 has at least two onto branches, then the fixed points in these branches, xg
and x; are different. Each of intervals [0, zo], [0, z1], [xo, 1], [%1, 1], is completely
contained in a support of an ergodic component. Thus, we have at most one ergodic
component. Since arbitrary neighborhood of any of these fixed points grows under
iteration to cover the whole [0, 1] the system is exact. O

In the case we consider now, when 7 can have branches touching 0 or 1 we proved
a weaker following statement and we make a weaker conjecture:

COROLLARY 9. If 1/ is not an eigenvalue of matriz S, then system T,h - m is
ergodic.

Conjecture 2: Let 7 be a map which has shorter branches touching 0 and shorter
branches touching 1. If 1/ is not an eigenvalue of matrix S <= dynamical system
T, i is ergodic, where p is absolutely continuous 7-invariant measure supported on
[0, 1].

Example 8 shows that we cannot always expect exactness when system (16) is
solvable.
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Example 5: Let N =6, K =4, k1 =1,a1 =04, ks =3,a2 =0.5, ks =4, ag = 0.7,
ky =5, a4 = 0.7, U =[1,0,1,0,1,0]. Then, A = {-0.6,0.4,0.9,1.9,2.3,3.3} and
B = 43. We have ¢c; = 0, ¢z ~ 0.33, c3 = ¢4 ~ 0.60. c3 € W, and the three
others are in W;. Using Maple 11 we calculated D; ~ 3.18872, Dy ~ 5.1468,
D3 = Dy ~ 7.22277. The normalizing constant is ~ 0.45935. Map 7 is shown in
Figure 5 a) and the normalized density h in Figure 6 a).

Example 6: Let N = 6, K = 2, ky = 1, a1 = 04, ks = 6, as = 0.5,
U = [1,0,0,0,0,0]. Then, A = {-0.6,0.4,1.4,2.4,3.4,4.4} and 8 = 4.9. We
have ¢ = 0 € W, and ¢ = 1 € W,. This is example of Parry’s (3, o)-map,
T(3,a) = Br + a (mod 1), with our 3 and a = 1 — ;. Since the first branch is
"lazy”, the last "greedy” and there are no other shorter branches 7 is exact for
all g > 1. Using Maple 11 we calculated D; = Dy ~ 1.34483. The normalizing
constant is ~ 0.26459. The normalized 7-invariant density h is shown in Figure 6
b). Our h is exactly equal to the density from Parry’s formula although represented
differently.

Ezample 7: Let N =3, K =2, k1 =1, a1 = 0.5, ko = 3, a2 = 0.5, U = [0,0, 1].
Then, A ={0,1/2,1} and 8 = 2. 7 obviously has two exact components. Matrix
S has an eigenvalue 1/2 and system (16) is not uniquely solvable. Graph of a more
complex map with similar properties is shown in Figure 5 b). In this case matrix

S also has L

5 as an eigenvalue.

Example 8: Let N =4, K =4, k) =1, kg = 2, ks = 3, ky = 4, 1 = ag =
ag = a4 = 1/2, U = [1,1,0,0]. Then, A = {-0.5,0,1,1.5} and 8 = 2. 7T
obviously is ergodic and 72 has two exact components. System (16) is solvable,
Dy =Dy = —0.5, D3 = D3 = —1 and normalizing factor is —0.5.

1 1
1 1:((:3):(13 A,T(CG) =1- O
7(c,)=a, Tr(c,)=1-0,
w(e)=1-of (e)—a, 12
A'T(sz):l_az: /0
(c)=a,
0c1 éz c;c4 1 0 ¢ ¢ ¢ ¢, C Gl
indices: 1 2 3 4 5 6 indices: 1 2 3 4 5 67
digits: -0.6 0.4 09 1.9 23 33 digits: 0 0.3 0.8 12 1.6 2.124
a) b)

FIGURE 5. Graphs of a) map 7 of Example 5 and b) map 7 mentioned in Example 7.
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a) b)

FIGURE 6. Invariant densities for maps of a) Example 5 and b) Example 6 .

8.  General maps with shorter branches touching 0 or 1 or hanging in between.
In this section we further generalize the results of previous sections and consider
maps with some shorter branches hanging in between 0 and 1.

Let 7 be a piecewise linear, piecewise increasing map of interval [0, 1] onto itself
with constant slope § > 1. Again let N denote the number of branches of 7 and
K < N the number of shorter, not onto, branches. We allow L < K shorter
branches not to touch 0 or 1. We will call them "hanging” branches.

Let 1 < k1 < ko < --- < kg < N be the indices of shorter branches and
1<l <ls <--- <l <N the indices of hanging branches. For each I; we have a
kji such that ll = kh

As before let a; denote the hight of k;’th branch, ¢ = 1,..., K. We also denote
by v, ¢ = 1,..., L the heights of images of the left hand side endpoints of the
domains of hanging branches. We always have o, +7; < 1, for l; = kj,.

We again define vector U = [Uy, ..., Uy] and a new vector UU = [UUy, ..., UUN]|
to indicate the positions of hanging branches. We set U; = 0 if the jth branch is
onto, "greedy” or hanging and U; = 1 if the jth branch is "lazy”. We set UU; = 1
if the jth branch is "hanging” and 0 for all other branches.

As in the previous sections, we have

b=N-K+4+a+as+ - -+ax .

The endpoints of the maximal intervals of monotonicity of 7 are 0 = b < by < -+ <
by < bnt1 = 1 and are again expressed by formula (13). We assume that map 7 is
defined on the partition P, defined in (14) and again create its two extensions 7,
and 7.

The definition of the points ¢; is again complicated as in the previous section.
Each of them will actually be a pair (c,j) where ¢ € [0,1] and 1 < j < N and
c is one of the endpoints of interval I;. We define index function on points c;:
j(ei, k) = k. We define K + L points ¢;. They are:
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the right hand side endpoints of domains of shorter branches touching 0

("greedy” branches);
the left hand side endpoints of of domains of shorter branches touching 1 (”lazy”

branches);
both endpoints of domains of shorter "hanging” branches.
We number them in such a way that ¢ < ¢c2 < -+ < cx4+r-1 < ckx+1, Where

(¢,7) < (d, k) if either ¢ < d or ¢ =d and j < k. The indices of points ¢; no longer
correspond directly to indices of o;’s. We group them into two disjoint sets: W,
containing c¢;’s associated with ”greedy” branches and right hand side endpoints of
domains of "hanging” branches ; W, containing c¢;’s associated with ”lazy” branches
and left hand side endpoints of domains of "hanging” branches. Note,

7(c;) = as for c; € Wy if ks = j(ci), Uje,) = UUjes) =0,
7(¢;) = as + 72 for ;e Wy if ky=1.=j(ci), UUje,) =1,
7(e;) =1— as for c; e Wi if ks =j(ci), Ujey =1,

7(¢) =72 for c; €Wy if I =j(ci), UUje,) = 1.

When we consider 7(¢;) we apply it to the first element of the pair. Since we
always use 7, to act on elements of W, and 7; to act on elements of W; there is no
problem with recognizing the image.

We define the set of "digits” A = {a1,aq,...,an}, where

K
aj=j7—1-> [6(j > ki—Uj)(1 — ax,) — 6(j = ki)vs] .

i=1
where ls=k; =35, j=1,....,N .
a; can be also calculated as
a; = Bb;, if U; =U0U; =0;
a; =pb; —vs, if ,=73, U; =0, UU; =1;
aj =pBbjy1 —1, if Uj=1.
Note that each a; is between the minimal, "lazy” digit aé— = Bbjy1 — 1 and

maximal, ”greedy” digit a? = Bb;, j = 1,2,...,N. If the jth branch is onto

9
then aj =a; = aj.

Now, we can write map 7 as
T(x)=p-z—a;, for zel;, j=12,...,N.
For any x € [0,1]\ {b2,...,bn} we define its ”index” j(z) and its ”digit” a(x):
jlz)y=4 for z€l;,j=12,...,N,

and

a(x) = aj(z).
As in the previous section, we also define (for all z € [0, 1]) the indices jq(x), ji(x)
and digits ag(x), a;(z). The expansions analogous to described in Proposition 1 are
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then defined and analogues of of this proposition hold (for almost all  in case of
7-expansion). These expansions are identical for almost all « € [0, 1]. To represent
points ¢; we will use ”greedy” expansion if ¢; € W, and ”lazy” expansion if ¢; € W;.

We define the (K + L) x (K + L) matrix S, the K 4+ L-dimensional vector of
constants D = [Dy, ..., Dk 1] and the density h in the same way as in the previous
section by equations (15)-(17).

The theorem below describes invariant density for all piecewise linear, piecewise
increasing maps 7 of constant slope 3 > 1, at least for 3 large enough .

THEOREM 10. Let 7 = 74 will be the map defined in this section, i.e, any piecewise
linear, piecewise increasing map of constant slope 5 > 1. If the system (16) is
solvable, then h is T-invariant density and dynamical system {7, h-m} is ergodic.

In particular, system (106) is uniquely solvable if 3 > K+ L+1. If the last branch
is “greedy 7 or hanging or if the first branch is “lazy” or hanging, then condition
8 > K + L is sufficient. When both possibilities are realized it is enough to have
08> K+ L —1. Whenever one of these cases happens the corresponding constant
D;=1.

The dynamical system {1, h-m} can have any finite number of ergodic subsystems.
If this number is larger than 1, then % is an eigenvalue of matriz S and system
(16) is not solvable.

If 7 has one onto branch, then it has at most two ergodic components. If T has
at least two onto branches, then T is ezxact.

Remark 8: If the system (16) is solvable, then it is uniquely solvable. This is proved
exactly as Remark 2.

Again, the proof of Theorem 10 closely follows the proofs from the previous
sections.

We again proved the following

COROLLARY 11. Let 7 be a piecewise linear, piecewise increasing map of constant
slope B> 1. If 1/ is not an eigenvalue of matriz S, then system T, h-m is ergodic.

Conjecture 3: Let 7 be a piecewise linear, piecewise increasing map of constant
slope 8 > 1. 1/ is not an eigenvalue of matrix S <= dynamical system 7,y is
ergodic, where p is absolutely continuous 7-invariant measure supported on [0, 1].

Example 9: Let N =6, K =5, L =2, k1 =1, ag = 04, ks = 3, az = 0.5,
ks =4, a3 = 0.3, ks =5, ag = 0.6, ks = 6, a5 = 0.7, U = [1,0,0,0,1,0].
Also, 1 = 0.3, %2 = 0.2 and UU = [0,0,1,0,0,1]. Then, greedy digits are
{0,0.4,1.4,1.9,2.2,2.8}, lazy digits are {—0.6,0.4,0.9,1.2,1.8,2.5} and the digits
are A = {—0.6,0.4,1.1,1.9,1.8,2.6}. We have § = 3.5 and ¢; = 0, ¢ca = 0.4,
c3 =~ 0.54, cq = (c4,4) >~ 0.63, c5 = (¢5,5) ~ 0.63, ¢c¢ = 0.8, ¢c; = 1. c3,cq,07 € Wy
and the four others are in W;. Using Maple 11 we calculated D; ~ —0.613,
Dy ~ —1.076, D3 ~ —1.5564,D4 = D5 ~ —1.652, Dg ~ —1.226, D7y ~ —0.826.
The normalizing constant is ~ —0.161. Map 7 is shown in Figure 7 a) and the
normalized density h in Figure 8 a).

2
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Example 10: Let N =9, K=9, L=3,k;=ifort=1,...,9, a1 = as = az = 0.3,
ay = a5 = ag = 0.2, a7 = ag = ag = 0.5, U = [0,0,0,0,0,0,1,1,1]. Also,
M =9 =73 =0.3and UU =[0,0,0,1,1,1,0,0,0].

Then, greedy digits are {0,0.3,0.6,0.9,1.1,1.3,1.5,2.0,2.5}, lazy dig-
its are {-0.7,-0.4,—0.1,0.1,0.3,0.5,1.0,1.5,2.0} and the digits are A =
{0,0.3,0.6,0.6,0.8,1.0,1.0,1.5,2.0}. We have § = 3 and ¢; = 0.1, co = 0.2,
cs = (c3,3) = 0.3, ca = (cq,4) = 0.3, ¢5 = (¢5,4) ~ 0.367, ¢ = (c6,5) ~ 0.367,
cr = (¢7,5) ~ 0.433, cg = (cs,6) ~ 0.433, cg = (c9,6) = 0.5, c19 = (c10,7) = 0.5,
c11 =2~ 0.667, c12 >~ 0.833. We have ¢y, ¢z, ¢3, ¢5, ¢7,c9 € W, and the six others are
in W;. 7 has 3 ergodic components and 1/3 is an eigenvalue of matrix S. Lebesgue
measure is obviously invariant. Map 7 is shown in Figure 7 b).

1 YZ+ Q‘S 1

Vit oL

1-a,
o+, 1_07

t(c,)=1-a, Iy | / / / 12
ta, a,

YT
YaT /

1 1032’0(1052“(:10 Il I
OCI ¢, e G G 0 ¢cie,d&dE ¢y ¢, |
indices: 1 2 3 4 5 6 indices: 1 2 3456 7 8 9
digits: -0.6 04 1.11.91.8 2.6 digits: 0 0.3 0.6X \ \1.0 1.5 2.0
0.60.81.0
a) b)

FIGURE 7. Maps of a) Example 9 and b) Example 10.
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FIGURE 8. Invariant density for 7 of Example 9.
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