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Abstract. We find an explicit formula for the invariant density h of a piecewise linear,

piecewise increasing map τ of an interval [0, 1]. We do not assume that the slopes

of the branches are the same and we allow arbitrary number of shorter branches

touching 0 or touching 1 or hanging in between. The construction involves matrix S

which is defined in a way somewhat similar to the definition of the kneading matrix

of a continuous piecewise monotonic map. Under some additional assumptions, we

prove that if 1 is not an eigenvalue of S, then dynamical system (τ, h ·m) is ergodic

with full support.

1. Introduction

In this paper we continue the investigations of invariant densities (with respect to

Lebesgue measure m) for piecewise linear, piecewise increasing maps. The first

results about the classical β-maps were obtained by Rényi [19], Parry [16] and

Gelfond [8]. Later, Parry generalized [17] them further. These maps have constant

slope, all the branches increasing and only the first or the last (or both) branches

can be shorter.

The maps with both increasing and decreasing branches were investigated in [9].

Again, these maps have constant slope (in modulus) and shorter branches were

allowed only as the first or the last one.

In this paper we consider piecewise linear maps τ of [0, 1] onto itself with

increasing branches. We do not assume that the slopes of the branches are the

same and allow arbitrary number of shorter branches touching 0 or touching 1 or

hanging in between. We assume that τ is onto and that it is eventually piecewise

expanding, i.e., for some iterate |(τn)′| > 1, wherever it exists.

In our main result, Theorem 2, we find an explicit formula for τ -invariant density

h.

The construction of τ -invariant density h involves a matrix S defined in a way

somewhat similar to defining of the kneading matrix of a continuous piecewise
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monotonic map [1, 14]. In some simple cases we proved that if 1 is not an eigenvalue

of S, then dynamical system (τ, h ·m) is ergodic on [0, 1]. During the work on this

paper we performed great number of computer experiments and always found that

this holds. Therefore, we state the following conjecture.

Conjecture 1: Let τ be piecewise linear, piecewise increasing and eventually

piecewise expanding map . Then, 1 is not an eigenvalue of matrix S =⇒ dynamical

system (τ, h · m) is ergodic on [0, 1].

There are matrix methods of detecting topological transitivity of piecewise

monotone continuous interval maps [1, 14], which is implied by ergodicity for our

class of maps. Perhaps, matrix S can be used for this purpose in a more general

setting.

The inverse of Conjecture 1 does not hold. It is shown in Example 4.

There are few papers dealing with our type of piecewise linear maps.

Absolutely continuous invariant measures for greedy maps with constant slope were

investigated in [6, 7] by other methods. A two branches expanding-contracting

(α, β)-maps were considered in [3]. Since Theorem (3.1) of [10] implies that (α, β)-

maps considered there are eventually piecewise expanding, they are included in our

model.

In Section 2 we define all necessary notions and prove the main theorem. In

Proposition 1 we introduce τ -expansion of numbers in [0, 1] related to our map τ .

It is crucial in the considerations of this paper. Similar expansions were considered

before under more restrictive assumptions. We followed mainly the ideas of Pedicini

[18] who studied so called ”greedy” expansions with deleted digits. More general

expansions were studied in [5] which we recommend for further information and

references.

In Section 3 we discuss the ergodic properties of maps we consider.

In the next three sections we discuss special cases: greedy maps for which shorter

branches touch 0, lazy maps with shorter branches touching 1 and the mixed type

maps with shorter branches touching either 0 or 1 but not hanging in between. We

prove a number of results which hold specifically for these classes. In particular, in

Section 4 we discuss special cases of greedy maps with 2,3 or 4 branches.

In this paper we are mainly interested in absolutely continuous τ -invariant

measure. The general theory of such measures for piecewise expanding maps of

an interval is well developed and we often refer to its results. The classical papers

are [12] and [13] among many others. There is a number of books on the subject,

see, e. g., [2] or [11].

While working on this project the author used extensively the computer program

Maple 11. The programs with examples and illustrations, as well as their pdf print-

outs, are available at http://www.mathstat.concordia.ca/faculty/pgora/deleted .

2. Description of the map and the main result.

In this section we introduce necessary notation and describe the maps we consider.

then, we prove the main theorem.
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Invariant densities for piecewise linear, piecewise increasing maps 3

Throughout the paper δ(condition) will denote 1 when the condition is satisfied

and 0 otherwise. We denote Lebesgue measure on [0, 1] by m.

Let τ be a piecewise linear, piecewise increasing map of interval [0, 1] onto itself.

Let N denote the number of branches of τ and K ≤ N the number of shorter, not

onto, branches. We allow L ≤ K shorter branches not to touch 0 or 1. We will call

them ”hanging” branches.

The map τ can be described by three sequences of N numbers: the lengths of

branches α1, α2, . . . , αN , with 0 < αj ≤ 1, j = 1, . . . , N ; the heights of the left

hand side endpoints of branches γ1, γ2, . . . , γN , with 0 ≤ γj ≤ 1−αj, j = 1, . . . , N ;

and the slopes of branches β1, β2, . . . , βN . We assume 0 < βj , j = 1, . . . , N and we

have
α1

β1
+

α2

β2
+ · · · +

αN

βN

= 1 . (1)

We do not assume that 1 < βi but we will assume that τ is eventually piecewise

expanding, i.e., for some iterate τn we have (τn)′ > 1, whenever it is defined. This

is necessary for the convergence of the series we consider below.

A shorter branch is called ”greedy” if corresponding γj = 0, ”lazy” if γj +αj = 1

and ”hanging” if 0 < γj and γj + αj < 1.

The endpoints of the domains of branches are b1 = 0, bj = α1

β1
+ · · · +

αj−1

βj−1
,

j = 2, 3, . . . , N + 1. Note, bN+1 = 1.

We assume that map τ is defined on the partition Pτ = {I1, I2, . . . , IN}, where

I1 = [0, b2) ;

Ij = (bj , bj+1) for 2 ≤ j ≤ N − 1 ;

IN = (bN , 1] .

(2)

This means that τ is not defined for a countable subset of [0, 1], the points bj,

j = 2, . . . , N and their preimages. Since we will have to consider iterates of the

points bj we create two extensions τu (upper) and τl (lower) of τ . τu is the extension

of τ by continuity to partition

Pu = {[0, b2], (b2, b3], . . . , (bN−1, bN ], (bN , 1]},

and τl is the extension of τ by continuity to partition

Pl = {[0, b2), [b2, b3), . . . , [bN−1, bN), [bN , 1]}.

Now, we define the points ci, i = 1, 2, . . . , K +L which will play major role in the

further study. They are the endpoints of the domains of shorter branches at which

τ does not touch 0 or 1. Since a point can be the endpoint of two such domains we

have to allow for duplication of them.

Each point ci is actually a pair (c, j) where c ∈ [0, 1] and 1 ≤ j ≤ N and c is one

of the endpoints of interval Ij . We define index function on points ci: j(ci, k) = k.

We define K + L points ci. They are:

the right hand side endpoints of domains of shorter branches touching 0

(”greedy” branches);
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the left hand side endpoints of of domains of shorter branches touching 1 (”lazy”

branches);

both endpoints of domains of shorter ”hanging” branches.

We number them in such a way that c1 < c2 < · · · < cK+L−1 < cK+L, where

(c, j) < (d, k) if either c < d or c = d and j < k. Note, the indices ”i” of points ci

do not correspond directly to indices of intervals Ij . We group ci’s into two disjoint

sets: Wu containing ci’s associated with ”greedy” branches and right hand side

endpoints of domains of ”hanging” branches ; Wl containing ci’s associated with

”lazy” branches and left hand side endpoints of domains of ”hanging” branches.

When we consider τ (ci) we apply it to the first element of the pair. We always

use τu to act on elements of Wu and τl to act on elements of Wl. Note,

τ (ci) = τu(ci) = αj + γj for ci ∈ Wu , where j = j(ci) ,

τ (ci) = τl(ci) = γj for ci ∈ Wl , where j = j(ci) .

Map τ can be conveniently represented using a set of ”digits” A =

{a1, a2, . . . , aN}, where

aj = βjbj − γj = βjbj+1 − (γj + αj) , j = 1, . . . , N .

Then, map τ is

τ (x) = β · x − aj , for x ∈ Ij , j = 1, 2, . . . , N .

Note that each aj is between the minimal, ”lazy” digit al
j = βbj+1 − 1 and

maximal, ”greedy” digit au
j = βbj , j = 1, 2, . . . , N . If the jth branch is onto, then

aj = al
j = au

j .

For any x ∈ [0, 1] \ {b2, . . . , bN} we define its ”index” j(x) and its ”digit” a(x):

j(x) = j for x ∈ Ij , j = 1, 2, . . . , N ,

and

a(x) = aj(x).

We can also define (for all x ∈ [0, 1]) the indices ju(x), jl(x) and the digits au(x),

al(x) using partitions Pu and Pl, correspondingly.

We define the cumulative slopes for iterates of points as follows:

β(x, 1) = βj(x) ;

β(x, n) = β(x, n − 1) · βj(τn−1(x)) , n ≥ 2 .

The following proposition describes τ -expansion of numbers in [0, 1]. It is similar

to many known expansions, in particular to β-expansion [16] and ”greedy” and

”lazy” expansions with deleted digits [5].

Proposition 1. If τ is eventually expanding, then for any x ∈ [0, 1]\ {b2, . . . , bN}
we have

x =

∞
∑

n=1

a(τn−1(x))

β(x, n)
.
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Invariant densities for piecewise linear, piecewise increasing maps 5

Moreover,

τk(x) = β(x, k) ·
∞
∑

n=k+1

a(τn−1(x))

β(x, n)
,

for any k ≥ 0.

Proof: We have τ (x) = βj(x)x − a(x) or

x =
a(x)

β(x, 1)
+

τ (x)

β(x, 1)
.

Using this equality inductively n-times we obtain

x =
a(x)

β(x, 1)
+

a(τ (x))

β(x, 2)
+ · · ·+ a(τn−1(x))

β(x, n)
+

τn(x)

β(x, n)
,

which proves both statements. Since τ is eventually expanding β(x, n) → 0 as

n → +∞ and the series giving the expansion is convergent. 2

We will call the representation defined in Proposition 1 the τ -expansion of x. In

the same way we define ”greedy” and ”lazy” expansions using maps τu and τl. All

three expansions are identical for almost all x ∈ [0, 1]. To represent points ci we

will use ”greedy” expansion if ci ∈ Wu and ”lazy” expansion if ci ∈ Wl.

An integrable nonnegative function h is a density of an m-absolutely continuous

τ -invariant measure if and only if it satisfies Perron-Frobenius equation:

h(x) =
∑

y:τ(y)=x

h(y)/|τ ′(y)| = (Pτ(h))(x),

for almost all x ∈ [0, 1]. Operator Pτ is called Perron-Frobenius operator [2].

Let us define

Si, j =

∞
∑

n=1

1

β(ci, n)
δ(τn

u (ci) > cj) , for ci ∈ Wu and all cj ,

Si, j =

∞
∑

n=1

1

β(ci, n)
δ(τn

l (ci) < cj) , for ci ∈ Wl and all cj .

(3)

Let S be the matrix (Si,j)1≤i,j≤K+L
and Id denote (K + L) × (K + L) identity

matrix. Let v = [1, 1, . . . , 1, 1] be (K + L)-dimensional vector of 1’s and let

D = [D1, . . . , DK+L] denote the solution of the system

(−ST + Id)D = D0v , (4)

where AT denotes the transpose of A and parameter D0 is either 1 or 0. We make

here some comments about the parameter D0 although their meaning may become

clear only later. Since the non-normalized invariant density (5) is defined up to a

multiplicative constant we consider only D0 = 1 or D0 = 0. In most cases we will

use D0 = 1. There may be a few reasons for the equation (4) to be unsolvable with

D0 = 1. First, τ can be ergodic but with support of invariant density I strictly

smaller that [0, 1]. In this case we consider τ restricted to I and rescaled back to

[0, 1] rather than considering D0 = 0. Secondly, τ may be either ergodic on [0, 1]

or nonergodic with union of supports of invariant densities equal to [0, 1] but with

matrix S having 1 as an eigenvalue. In these cases we consider D0 = 0.
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6 Pawe l Góra

Theorem 2. Let τ will be the map defined in this section, i.e., any piecewise

linear, piecewise increasing map which is eventually piecewise expanding. System

(4) always has a non-vanishing solution. If 1 is not an eigenvalue of S, then with

D0 = 1. If 1 is an eigenvalue of S, then at least with D0 = 0. Let

h(x) = D0 +
∑

i∈Wu

Di

∞
∑

n=1

χ[0,τn
u (ci)]

1

β(ci, n)
+

∑

i∈Wl

Di

∞
∑

n=1

χ[τn
l

(ci),1]
1

β(ci, n)
, (5)

where constants Di, i = 1, . . . , K, satisfy the system (4). Then h is τ -invariant.

If all values τ (ci), i = 1, . . . , K +L, are different, then the inverse statement also

holds: If h is τ -invariant, then the constants D0, D1, . . . , DK+L satisfy the system

(4).

In particular, system (4) is uniquely solvable (i.e., 1 is not an eigenvalue of S) if

min1≤j≤N βj > K +L+1. If the last branch is ”greedy ” or ”hanging” and the first

branch is ”lazy” or ”hanging”, then condition min1≤j≤N βj > K + L is sufficient.

Proof: Let x ∈ [0, 1] and x(j), j = 1, 2, . . . , N be the jth τ -preimage of x, if it

exists. We need to show that

h(x) =

N
∑

j=1

h(x(j))

βj

,

for almost all x ∈ [0, 1].

We have

N
∑

j=1

1(x(j))

βj

=

N
∑

j=1

1

βj

−
∑

ck∈Wu

δ(x > τ(ck))

βj(ck)
−

∑

ck∈Wl

δ(x < τ(ck))

βj(ck)
. (6)

For ck ∈ Wu we have

N
∑

j=1

χ[0,τn(ck)](x(j))

βj

=

j(τn(ck))−1
∑

j=1

1

βj

+
δ(x ≤ τn+1(ck))

βj(τn(ck))

−
∑

ci∈Wu

δ(x > τ(ci)) · δ(τn(ck) > ci)

βj(ci)

−
∑

ci∈Wl

δ(x < τ(ci)) · δ(τn(ck) > ci)

βj(ci)
.

(7)

For ck ∈ Wl we have

N
∑

j=1

χ[τn(ck),1](x(j))

βj

=

N
∑

j=j(τn(ck))+1

1

βj

+
δ(x ≥ τn+1(ck))

βj(τn(ck))

−
∑

ci∈Wu

δ(x > τ(ci)) · δ(τn(ck) < ci)

βj(ci)

−
∑

ci∈Wl

δ(x < τ(ci)) · δ(τn(ck) < ci)

βj(ci)
.

(8)
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Invariant densities for piecewise linear, piecewise increasing maps 7

Let us define

Sk =
∞
∑

n=1

j(τn(ck))−1
∑

j=1

1

βj · β(ck, n)
, for ck ∈ Wu ,

Sk =

∞
∑

n=1

N
∑

j=j(τn(ck))+1

1

βj · β(ck, n)
, for ck ∈ Wl .

(9)

Using previous equalities and βj(τn(ck)) · β(ck , n) = β(ck , n + 1), we write

N
∑

j=1

h(x(j))

βj

= D0

[

N
∑

j=1

1

βj

−
∑

ck∈Wu

δ(x > τ(ck))

βj(ck)
−

∑

ck∈Wl

δ(x < τ(ck))

βj(ck)

]

+
∑

ck∈Wu

Dk

[

Sk +

∞
∑

n=1

δ(x ≤ τn+1(ck))

β(ck, n + 1)

−
∑

ci∈Wu

δ(x > τ(ci))
Sk,i

βj(ci)
−

∑

ci∈Wl

δ(x < τ(ci))
Sk,i

βj(ci)

]

+
∑

ck∈Wl

Dk

[

Sk +

∞
∑

n=1

δ(x ≥ τn+1(ck))

β(ck , n + 1)

−
∑

ci∈Wu

δ(x > τ(ci))
Sk,i

βj(ci)
−

∑

ci∈Wl

δ(x < τ(ci))
Sk,i

βj(ci)

]

.

(10)

Adding and subtracting D0,
∑

ck∈Wu
Dk

δ(x≤τ(ck))
β(ck,1) and

∑

ck∈Wl
Dk

δ(x≥τ(ck))
β(ck ,1) we

eliminate h(x) from the right hand side of (10) and we see that we are looking for

constants Di, i = 1, . . . , K + L, such that the following equality (11) is satisfied for

all x ∈ [0, 1] except possibly the images of points ci.

∑

ck∈Wu

Dk

[

Sk − δ(x ≤ τ (ck))

β(ck, 1)

−
∑

ci∈Wu

δ(x > τ(ci))
Sk,i

βj(ci)
−

∑

ci∈Wl

δ(x < τ(ci))
Sk,i

βj(ci)

]

+
∑

ck∈Wl

Dk

[

Sk − δ(x ≥ τ (ck))

β(ck , 1)

−
∑

ci∈Wu

δ(x > τ(ci))
Sk,i

βj(ci)
−

∑

ci∈Wl

δ(x < τ(ci))
Sk,i

βj(ci)

]

= D0

[

1 −
N

∑

j=1

1

βj

+
∑

ck∈Wu

δ(x > τ(ck))

βj(ck)
+

∑

ck∈Wl

δ(x < τ(ck))

βj(ck)

]

.

(11)

Let us assume tentatively that all values τ (ci), i = 1, . . . , K + L, are different.

Then, they divide interval (0, 1) into K + L + 1 disjoint open subinterval. Let us

chose one point x from each of the subintervals and number them in the increasing

order x0 < x1 < x2 < · · · < xK+L. If equality (11) holds for these points, then
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it holds for almost every x ∈ [0, 1]. Substituting points xi into (11) we obtain

equations which we denote by Ei, i = 0, . . . , K + L. Together, we obtain system of

K + L + 1 equations which we denote by ES. Rather than write it down we create

from it a simplified equivalent system denoted by EQS. We proceed as follows:

consider two consecutive points xi < τ (ck) < xi+1. If ck ∈ Wu, then the difference

EQk = Ei+1 − Ei is

−
K+L
∑

j=1
j 6=k

Dj

Sk,j

βj(ck)
− Dk

[ Sk,k

βj(ck)
− 1

βj(ck)

]

=
D0

βj(ck)
. (12)

If ck ∈ Wl, then the difference EQk = Ei−Ei+1 is of the above form. The equations

{EQ1, EQ2, . . . , EQK+L} form the system EQS which is obviously equivalent to

the system {βj(c1)EQ1, βj(c2)EQ2, . . . , βj(cK+L)EQK+L}, which is the system (4).

In ES we have one more equation which can be reduced to EQK+L+1 of the form

K+L
∑

k=1

Dk

[

Sk − 1

βj(ck)

]

= D0

[

1 −
N

∑

j=1

1

βj

]

. (13)

If some level xi intersects all branches of τ , then equation Ei is of form (13). If

not, then we take xi which level intersects most branches of τ and reduce if to form

(13) subtracting appropriate equations EQk.

The systems ES and EQS ∪ {EQK+L+1} are equivalent since we can recover

equations of ES from equations EQ1, . . . , EQK+L, EQK+L+1. To prove the

equivalence of systems ES and EQS it is enough to show that EQK+L+1 is a

linear combination of equations EQi, i = 1, . . . , K + L. We will do it as follows:

If ck ∈ Wu we set ηk = 1 − γj(ck) − αj(ck). If ck ∈ Wl we set ηk = γj(ck). Note

that if ck is the right hand side endpoint of the domain of greedy branch, then

ηk = 1−αj(ck) and if ck is the left hand side endpoint of the domain of lazy branch,

then also ηk = 1 − αj(ck). Then, we have

EQK+L+1 +

K+L
∑

k=1

ηk · EQk ⇐⇒ 0 = 0 .

First, let us consider the right hand side of the summed up equations. We have

1 −
N

∑

j=1

1

βj

+

K+L
∑

k=1

ηk

1

βj(ck)
= 1 −

N
∑

j=1

1

βj

+
∑

1≤k≤N
k-th branch is shorter

1 − αk

βk

= 1 −
N

∑

j=1

αj

βj

= 0 .

(14)

Now, let us consider the summed up coefficients of Dk (summed up k-th column of

the system). We have to show

Sk − 1

βj(ck)
−

K+L
∑

j=1

ηj

Sk,j

βj(cj)
+ ηk

1

βj(ck)
= 0 . (15)
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Invariant densities for piecewise linear, piecewise increasing maps 9

First, we consider ck ∈ Wu. Then, we have

−1

βj(ck)
+ ηk

1

βj(ck)
=

−(γj(ck) + αj(ck))

βj(ck)
=

−τ (ck)

βj(ck)
. (16)

On the other hand

Sk −
K+L
∑

j=1

ηj

Sk,j

βj(cj)
=

∞
∑

n=1

1

β(ck, n)

[

j(τn(ck))−1
∑

j=1

1

βj

−
K+L
∑

j=1

ηj

δ(τn(ck) > cj)

βj(cj)

]

. (17)

Let us fix n for a moment and consider the expression in the brackets above. Let

j0 = j(τn(ck)). The expression in the brackets is equal to

j0−1
∑

j=1

1

βj

−
∑

j<j0
j-th branch is shorter

1 − αj(cj)

βj(cj)
− γj0

βj0

= bj0 −
γj0

βj0

=
a(τn(ck))

βj(τn(ck))
.

Thus, the sum on the right hand side of (17) is

∞
∑

n=1

1

β(ck, n)

a(τn(ck))

βj(τn(ck))
=

∞
∑

n=1

a(τn(ck))

β(ck, n + 1)
=

τ (ck)

βj(ck)
.

With (16) this proves (15) for ck ∈ Wu.

Now, let us consider ck ∈ Wl. We have

−1

βj(ck)
+ ηk

1

βj(ck)
=

−1 + γj(ck)

βj(ck)
=

−(1 − τ (ck))

βj(ck)
, (18)

and

Sk−
K+L
∑

j=1

ηj

Sk,j

βj(cj)
=

∞
∑

n=1

1

β(ck , n)

[

N
∑

j=j(τn(ck))+1

1

βj

−
K+L
∑

j=1

ηj

δ(τn(ck) < cj)

βj(cj)

]

. (19)

Let us fix n for a moment and consider the expression in the brackets above. Let

j0 = j(τn(ck)). This expression is equal to

N
∑

j=j0+1

1

βj

−
∑

j>j0
j-th branch is shorter

1 − αj(cj)

βj(cj)
− 1 − γj0 − αj0

βj0

= 1 − bj0+1 − 1 − γj0 − αj0

βj0

= 1 − 1

βj(τn(ck))
− a(τn(ck))

βj(τn(ck))
.

Thus, the series on the right hand side of (19) equals

∞
∑

n=1

1

β(ck , n)
−

∞
∑

n=1

1

β(ck, n + 1)
−

∞
∑

n=1

a(τn(ck))

β(ck, n = 1)
=

1

βj(ck)
− τ (ck))

βj(ck)
.

With (18) this proves (15) for ck ∈ Wl. We have proved the equivalence of the

systems ES and EQS (or (4)) when all values τ (ci), i = 1, . . . , K +L, are different.
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Now, we briefly describe the situation when some of the values τ (ci), i =

1, . . . , K+L, coincide. The systems ES and (4) may not be equivalent but solutions

of (4) always satisfy ES as well.

If τ (ci1) = τ (ci2) and the points ci1 , ci2 are of different type, i.e., ci1 ∈ Wu and

ci2 ∈ Wl or vice versa, then substituting point x = τ (ci1) = τ (ci2) into (11) gives

us an equation which ”separates” ci1 and ci2 . Everything proceeds as in the case

of different values τ (ci).

If τ (ci1) = τ (ci2) and the points ci1 , ci2 are of the same type, then we cannot

produce sufficient number of test points xi and the number of equations in ES is

smaller than K + L + 1. Similarly as before we can obtain equations EQi for ci

with distinct values and an equation EQi1,i2 corresponding to points ci1 , ci2 . If

more groups of of ci’s of the same type with equal values occurs, then there will be

more such common equations. The equation EQi1,i2 is the sum of two equations of

the form (12) corresponding to indices k = i1 and k = i2. Any common equation

is a sum of the corresponding equations of the form (12). Thus, any solution of the

system (4) satisfies the system ES. The linear dependence of the extra equation

(13) is proved exactly as above. (Note that if τ (ci1) = τ (ci2) and they are of the

same type, then ηi1 = ηi2 .) This completes the proof of the first part of the theorem.

In the proof of the second part we will use the following fragment of Perron-

Frobenius theorem for non-negative matrices [15].

Theorem 3. If S = (Si,j)1≤i,j≤M is a matrix with non-negative entries, then all

eigenvalues λ of S satisfy

|λ| ≤ max
1≤i≤M

M
∑

j=1

Si,j . (20)

Note that the assumptions of the second part imply that β = min1≤j≤N βj > 1.

For each Si,j we have

Si,j ≤
∞
∑

n=1

1

βn
=

1

β − 1
.

Thus, if β > K + L + 1 we have K+L
β−1 < 1 which by Perron-Frobenius estimate

implies that 1 is not an eigenvalue of S and the system (4) is uniquely solvable.

If the last branch of τ is greedy or hanging then cK+L = 1. Then, for any

ci ∈ Wu we have Si,K+L = 0. Similarly, if the first branch is lazy or hanging, then

c1 = 0 and for any ci ∈ Wl we have Si,1 = 0. Thus, if both conditions occur at the

same time there is at least one 0 in each row of S and Perron-Frobenius estimate

implies that 1 is not an eigenvalue of S for β > K + L. 2

In the two examples below we illustrate the proof of Theorem 2.

Example 1: In this example all values τ (ci) are different. Let N = 4 and let τ be

defined by the vectors

α = [0.7, 0.2, 1, 0.45] , β = [2, 3, 4, 1.35] , γ = [0, 0.2, 0, 0.55] .

We have K = 3 and L = 1. The graph of τ is shown in Figure 1 a). The digits
are {0, 0.85, 1.66 . . . , 0.35}. The first branch of τ is greedy, the second hanging,
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the third onto and the last one is lazy. The points ci are c1 = 0.35 = (0.35, 1),
c2 = 0.35 = (0.35, 2), c3 = 0.4166 . . ., c4 = 0.66 . . . . c1, c3 ∈ Wu and c2, c4 ∈ Wl.
We have 0 < τ (c2) < τ (c3) < τ (c4) < τ (c1) < 1 and taking the points
x0 < x1 < x2 < x3 < x4 between them we obtain the system ES: (we show
only the coefficients)

S1 −

S1,2
β2

−

S1,4
β4

−

1
β1

S2 −

S2,2
β2

−

S2,4
β4

S3 −

S3,2
β2

−

S3,4
β4

−

1
β2

S4 −

S4,2
β2

−

S4,4
β4

1 −

1
β1

−

1
β3

S1 −

S1,4
β4

−

1
β1

S2 −

S2,4
β4

−

1
β2

S3 −

S3,4
β4

−

1
β2

S4 −

S4,4
β4

1 −

1
β1

−

1
β2

−

1
β3

S1 −

S1,3
β2

−

S1,4
β4

−

1
β1

S2 −

S2,3
β2

−

S2,4
β4

−

1
β2

S3 −

S3,3
β2

−

S3,4
β4

S4 −

S4,3
β2

−

S4,4
β4

1 −

1
β1

−

1
β3

S1 −

S1,3
β2

−

1
β1

S2 −

S2,3
β2

−

1
β2

S3 −

S3,3
β2

S4 −

S4,3
β2

−

1
β4

1 −

1
β1

−

1
β3

−

1
β4

S1 −

S1,1
β1

−

S1,3
β2

S2 −

S2,1
β1

−

S2,3
β2

−

1
β2

S3 −

S3,1
β1

−

S3,3
β2

S4 −

S4,1
β1

−

S4,3
β2

−

1
β4

1 −

1
β3

−

1
β4

System ES is simplified to equivalent system EQS∪{EQK+L+1}: EQ1 = E4−E3,
EQ2 = E0 − E1, EQ3 = E2 − E1 and EQ4 = E3 − E2. The fifth equation can be
obtained as EQ5 = E3 − EQ3.

−

S1,1

β1
+ 1

β1
−

S2,1

β1
−

S3,1

β1
−

S4,1

β1

1

β1

−

S1,2

β2
−

S2,2

β2
+ 1

β2
−

S3,2

β2
−

S4,2

β2

1

β2

−

S1,3

β2
−

S2,3

β2
−

S3,3

β2
+ 1

β2
−

S4,3

β2

1

β2

−

S1,4

β4
−

S2,4

β4
−

S3,4

β4
−

S4,4

β4
+ 1

β4

1

β4

S1 −

1

β1
S2 −

1

β2
S3 −

1

β2
S4 −

1

β4
1 −

1

β1
−

1

β2
−

1

β3
−

1

β4

For D0 = 1 the solution of system (4) is D ' [−0.876,−0.876,−0.883,−16.539].

The normalizing constant is ' −7.812. The normalized τ -invariant density is shown

in Figure 2 a).

Figure 1. Maps τ of a) Example 1 and b) Example 2.

Example 2: Here, we have τ (c1) = τ (c2). Let N = 4 and let τ be defined by the

vectors

α = [1, 0.5, 0.5, 0.7] , β = [4, 3, 2, 2.1] , γ = [0, 0, 0, 0.3] .

We have K = 3, L = 0. The graph of τ is shown in Figure 1 b). The
digits are {0, 0.75, 0.833 . . . , 1.1}. The first branch of τ is onto, the second and
third are greedy and the last one is lazy. The points ci are c1 = 0.4166 . . .,
c2 = 0.66 · · · = (0.66 . . . , 3), c3 = 0.66 · · · = (0.66 . . . , 4). c1, c2 ∈ Wu and c3 ∈ Wl.

Prepared using etds.cls



12 Pawe l Góra

We have 0 < τ (c3) < τ (c1) = τ (c2) < 1 and taking the points x0 < x1 < x2

between them we obtain the system ES: (again, we show only the coefficients)

S1 −

S1,3

β4
−

1

β2
S2 −

S2,3

β4
−

1

β3
S3 −

S3,3

β4
1 −

1

β1
−

1

β2
−

1

β3

S1 −

1

β2
S2 −

1

β3
S3 −

1

β4
1 −

1

β1
−

1

β2
−

1

β3
−

1

β4

S1 −

S1,1

β2
−

S1,2

β3
S2 −

S2,1

β2
−

S2,2

β3
S3 −

S3,1

β2
−

S3,2

β3
−

1

β4
1 −

1

β1
−

1

β4

Again, system ES is simplified to equivalent system EQS ∪ {EQK+L+1}: EQ1 =
EQ2 = E2 − E1, EQ3 = E0 − E1. The third (or formally the fourth) equation can
be obtained as EQ4 = E1.

−

S1,1

β2
−

S1,2

β3
+ 1

β2
−

S2,1

β2
−

S2,2

β3
+ 1

β3
−

S3,1

β2
−

S3,2

β3

1

β2
+ 1

β3

−

S1,3

β4
S2 −

S2,3

β4
−

S3,3

β4
+ 1

β4

1

β4

S1 −

1

β2
S2 −

1

β3
S3 −

1

β4
1−

1

β1
−

1

β2
−

1

β3
−

1

β4

(21)

The solution of system (4), for D0 = 1, is D ' [8.794, 3.382, 3.382]. System (21)

is not equivalent to (4), but solution of (4) satisfies also (21). System (21) has

infinitely many solutions D(t) ' [t, 9.2447− 0.6667t, 3.382]. We have D = D(t) for

t = D1. The functions

h1 =

∞
∑

n=1

χ[0,τn(c1)]
1

β(c1, n)
and h2 =

∞
∑

n=1

χ[0,τn(c2)]
1

β(c2 , n)

are proportional, β2h1 = β3h2, and the invariant density h stays the same whether

we use constants D1, D2, D3 or D
(t)
1 , D

(t)
2 , D

(t)
3 for arbitrary t. The normalizing

constant is ' 5.989. The normalized τ -invariant density is shown in Figure 2 b).

Figure 2. Invariant densities for maps of a) Example 1 and b) Example 2.

In the next example we show a map τ which is not ergodic. Matrix S has

an eigenvalue 1. The system (4) with D0 = 1 is solvable (non-uniquely). Both

methods, i.e., using D0 = 1 or D0 = 0, of finding τ -invariant density agree.
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Invariant densities for piecewise linear, piecewise increasing maps 13

Example 3: Let N = 8 and τ be defined by the constant slope β = 3 and the vectors

α = [0.5, 0.25, 0.25, 0.5, 0.5, 0.25, 0.25, 0.5] , γ = [0, 0, 0.1, 0, 0.5, 0.65, 0.75, 0.5] .

The graph of τ is shown in Figure 3 a). The matrix

S '



































0.5 0.5 0.34654 0.35 0.5 0 0 0.5 0 0

0.5 0 0.34654 0.35 0.5 0 0 0.5 0 0

0.5 0 0.34654 0.35 0.5 0 0 0.5 0 0

0.5 0 0.5 0.35 0.5 0 0 0.5 0 0

0 0 0.5 0 0 0 0 0.5 0 0

0 0 0.5 0 0 0 0 0.5 0 0

0 0 0.5 0 0 0.5 0.45 0.487037 0 0.5

0 0 0.5 0 0 0.5 0.45 0.45 0 0.5

0 0 0.5 0 0 0.5 0.45 0.45 0 0.5

0 0 0.5 0 0 0.5 0.45 0.116667 0.5 0.5



































.

For D0 = 1 system (4) has solutions

D(t) '
[

t,
2t

3
,

2t

3
, 0.769231t, 0,

0, −0.691358t− 2.074074, −2t

3
− 2, −2t

3
− 2, −0.77778t− 7

3

]

.

The eigenvector of S corresponding to the eigenvalue 1 is

Dv ' [−0.943423, −0.628949, −0.628949, −0.725710, 0,

0, 0.652243, 0.628949, 0.628949, 0.733774] .

The τ -invariant densities are shown in Figure 3 b). Density for D0 = 1 and

constants D(−0.5) is shown in black, density for D0 = 1 and constants D(−1.9)

is shown in gray, and density for D0 = 0 and constants Dv is shown in gray dash

line. The last one happens to be a combination of negative density for one ergodic

component and a positive density for the other one.

3. Ergodic properties of piecewise linear, piecewise increasing maps

In this section we discuss the ergodic implication of having invariant density with

full support. In particular, this applies to any τ satisfying the assumptions of

Theorem 2 with D0 = 1.

Theorem 4. Let τ be a piecewise linear, piecewise increasing and eventually

piecewise expanding map which admits an invariant density supported on [0, 1].

Then, if at least one branch of τ is onto then τ has at most two ergodic components.

If at least two branches are onto, then τ is exact.

Proof: It follows from the general theory (for example [2, Chapter 8]) that τ has

finite number of ergodic components and the support of each ergodic component

consists of a finite number of intervals. To prove exactness of an ergodic component

it is enough to show that the images of arbitrarily small interval in the component

grow to cover the whole domain of the component.
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14 Pawe l Góra

Figure 3. Map τ of Example 3 and three versions of its invariant density.

If τ has an onto branch, then let x0 be a fixed point in the domain of this branch.

There are two possibilities:

a) Some neighborhood J of x0 is contained in one ergodic component of τ . Then,

the images τn(J) grow to cover the whole [0, 1] and τ has one exact component.

b) τ has at least two ergodic components and some intervals J1 of one component

and J2 of the second component touch x0. Let J1 ⊂ [0, x0). Then, the images τn(J1)

grow to cover [0, x0) and the images τn(J2) grow to cover (x0, 1]. τ has two ergodic

components.

If τ has at least two onto branches, then the fixed points in these branches, x0

and x1 are different. Each of intervals [0, x0], [0, x1], [x0, 1], [x1, 1], is completely

contained in a support of an ergodic component. Thus, we have at most one ergodic

component. Since arbitrary neighborhood of any of these fixed points grows under

iteration to cover the whole [0, 1] the system is exact. 2

Corollary 5. If 1 is not an eigenvalue of S and τ has at least two onto branches,

then the system (τ, h ·m) is exact.

In Example 4 we show that the inverse of Corollary 5 is not always true.

Example 4: Let τ be as in Figure 4 a). The slope β is constant, the first and the

third branches are onto, the second is hanging. Let α = α2 < 1 and γ = γ2 = 1−α
2 .

Then, β = 2 + α. The digits are {0, (1 + α)/2, 1 + α} = {0 · d, 1 · d, 2 · d}, where

d = (1 + α)/2. Using the symmetry of map τ and definition (9) in this special case

we obtain

S1 =

∞
∑

n=1

N − j(τn(c1))

βn+1
=

∞
∑

n=1

j(τn(c2)) − 1

βn+1

=
1

dβ

∞
∑

n=1

(j(τn(c2)) − 1) · d
βn

=
τ (c2)

dβ
=

1

β
.

(22)

By the symmetry of τ we have S1,1 = S2,2 and S1,2 = S2,1. We will show that

S1,1 + S2,1 = 1 (and also S1,2 + S2,2 = 1). In the proof of Theorem 2 we showed
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Figure 4. Map of Example 4 and its invariant density.

that
−S1,1 + 1

β
γ2 +

−S1,2

β
(1 − γ2 − α2) = S1 −

1

β
.

In our case we have γ2 = 1 − γ2 − α2 = (1 − α)/2 so equality (22) implies

−S1,1 + 1 − S1,2 = 0 ,

which in turn gives S1,1+S2,1 = 1 and S1,2+S2,2 = 1. This shows that the matrix S

has eigenvalue 1. At the same time τ is exact and has unique absolutely continuous

invariant measure supported on [0, 1]. For D0 = 1 the system (4) is contradictory

and does not have any solutions. For D0 = 0 it is solvable and D1 = D2 = 1 is one

of the solutions. Thus, τ -invariant density is

h =
∞

∑

n=1

χ[0,τn(c2)]
1

βn
+

∞
∑

n=1

χ[τn(c1),1]
1

βn
.

It is shown in Figure 4 b).

Let us note that the smallest change from the symmetry of this example results

in a solvable system (4) with D0 = 1 and the invariant density for τ can be obtained

as a limit of densities for perturbed maps with perturbations converging to zero.

Another example with the same properties is given by τ2. It preserves the same

density h. 2

In the following example we show that τ with one ergodic component is not

necessarily exact.

Example 5: Let N = 4 and let τ be defined by the vectors

α = [0.5, 0.5, 0.5, 0.5] , β = [2, 2, 2, 2] , γ = [0.5, 0.5, 0, 0] .

We have K = 4 and L = 0. τ is obviously ergodic and τ2 has two exact components.

System (4) with D0 = 1 is solvable, D1 = D4 = −0.5, D2 = D3 = −1 and

normalizing factor is −1. h ≡ 1.

Example 6 shows a non-ergodic map τ . Matrix S has 1 as an eigenvalue, although

h ≡ 1 is a τ -invariant density.
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Example 6: Let N = 3, and let τ be defined by the vectors

α = [0.5, 1, 0.5] , β = [2, 2, 2] , γ = [0, 0, 0.5] .

We have K = 2 and L = 0. τ obviously has two exact components and h ≡ 1 is

a τ -invariant density. Matrix S has an eigenvalue 1 and system (4) is not solvable

for D0 = 1. For D0 = 0, any pair D1, D2 satisfies system (4) which agrees with the

fact that

h1 = D1

∞
∑

n=1

χ[0,τn(c1)]
1

2n
and h2 = D2

∞
∑

n=1

χ[τn(c2),1]
1

2n
,

are invariant densities for the ergodic components of τ .

4. Special case: Greedy maps

In this section we discuss maps related to the greedy expansion with deleted

digits [5, 18], i.e., piecewise linear, piecewise increasing maps for which all shorter

branches touch 0. They are called greedy since the digits are the largest possible

for given α’s and β’s.

Absolutely continuous invariant measures for such maps with constant slope were

investigated in [6, 7] by other methods.

Our definition of a greedy map is a little more general than the one usually used.

We give the standard definition for reference. It is assumed that the last branch is

onto and the slope is constant β > 1. Under these conditions the digits define the

map τ . Let the digits be {a1, a2, . . . , aN}. We want to define τ on [0, 1] so we will

make some unrestrictive assumptions: a1 = 0 and

Ma = max
1≤j≤N−1

(aj+1 − aj) = 1 . (23)

Any set of digits can be shifted and scaled to satisfy these assumptions. The maps

for both sets are linearly conjugated. Now, we set β = aN +1 and define bi = ai/β,

i = 1, . . . , N , bN+1 = 1. We have αi = bi+1−bi

β
, for i = 1, . . . , N . All γ’s are 0 by

assumption.

We return to our, slightly more general, setting. For greedy maps we have γi = 0

for all i = 1, . . . , N . We assume that at least one branch is onto as otherwise τ

should be considered on a different interval. Since the set Wl is in this case empty,

we have

h = D0 +

K
∑

i=1

Di ·
∞
∑

n=1

χ[0,τn(ci)]
1

β(ci, n)
.

We will prove a number of results specific to the greedy maps.

Theorem 6. Let us assume that τ is a greedy map. If the system (4) is solvable,

then h is a non-normalized τ -invariant density. If the system (4) is solvable for

D0 = 1, then the system (τ, h · m) is exact.

In particular, system (4) is uniquely solvable (1 is not an eigenvalue of S)

if min1≤j≤N βj > K + 1. If the last branch is greedy, then the condition

min1≤j≤N βj > K is sufficient and the coefficient DK = 1.
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Proof: Most of the claims of the Theorem follow by Theorem 2. We will prove

exactness. Since we assume that τ has at least one onto branch, τ has at most two

ergodic components by Theorem 4. From general theory (for example [2, Chapter

8]), we know that the support of each ergodic component contains a neighborhood

J of some inner partition point. Then, the image τ (J) touches 0. This proves there

is only one ergodic component. To show exactness, note that for arbitrarily small

neighborhood J1 of the fixed point on the onto branch its images τn(J1) grow to

cover the whole [0, 1].

If the last branch is shorter, then cK = 1. We have SK,i = 0 for all i = 1, . . . , K

and Perron-Frobenius estimate on the modulus of eigenvalues of S is K−1
β−1

. Thus,

β > K is sufficient in this case. The last equation in system (4) is then DK · 1 = 1

and DK = 1. 2

In a very special case of greedy map with only one shorter branch, K = 1, and

constant slope β we have the following

Proposition 7. Let τ be a greedy map with K = 1 and constant slope β = βi,

i = 1, . . . , N . If the first branch is onto, then the non-normalized τ -invariant

density h is given by the formula

h = 1 + D1 ·
∞

∑

n=1

χ[0,τn(c1)]
1

β(c1, n)
,

where D1 = 1
1−S1,1

, and the system (τ, h ·m) is exact.

If the first branch is not onto, then the support of τ -invariant absolutely

continuous measure is the interval [0, α1]. The restricted map τ|[0,α1]
is again a

greedy map with one shorter branch.

Proof: The second part of the claim holds since τ (c1) < x0, where x0 is the fixed

point on the second branch. This, in turn, is true since β1 = β2.

To show the first part, we only have to show that S1,1 6= 1. If τ has at least two

onto branches, then β > 2 and S1,1 ≤ 1
β−1

< 1.

If β ≤ 2, then τ has two branches (as K = 1) and we consider two cases:

a) The second branch is shorter: Then, c1 = 1 and δ(τn(c1) > c1) = 0 for all

n ≥ 1. Thus, S1,1 = 0 and D1 = 1. We obtained classical Parry’s formula [16].

b) The first branch is shorter: The τ -invariant absolutely continuous measure is

supported on [0, α1]. τ restricted to this interval is a map from case a). 2

We have proved

Proposition 8. If τ is a greedy map with K = 1 and constant slope β, then τ is

ergodic on [0, 1] if and only if S1,1 6= 1.

Example 7: Let τ be a greedy map with K = 1 and the first branch shorter. If

β2 = min2≤j≤N βj and α1 = τ (c1) > x0, where x0 is the fixed point on the second

branch, then S1,1 6= 1 and the claims of Proposition 7 hold.
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The second branch of τ is τ (x) = β2x−β2
α1

β1
. Thus, x0 = α1β2

β1(β2−1) and τ (c1) > x0

gives β2

β1(β2−1)
< 1. At the same time, we have

S1,1 ≤
∞

∑

n=1

1

β1β
n−1
2

=
β2

β1(β2 − 1)
< 1 .

2

Now, we consider greedy maps τ with constant slope β > 1 with K = 2 shorter

branches satisfying β ≤ 3, or β ≤ 2 if the last branch is shorter.

We will first consider cases when τ has two shorter branches, β ≤ 2 and the last

branch is shorter. This means that τ has 3 branches.

(A) The first branch is onto: Then, τ is exact, which can be proved as in

Theorem 6. Since c2 = 1 we have S1,2 = S2,2 = 0 and D2 = 1. D1 has to satisfy

D1(−S1,1 + 1) = 1 + S2,1. We will show that

S1,1 < 1 . (24)

Let us assume that τ (c1) = α2 ≥ α3 = τ (c2). We have β = 1 + α1 + α2 ≤ 2 so

α2 < β−1. The fixed point on the second branch would be x0 such that βx0−1 = x0

which gives x0 = 1
β−1 ≥ 1. Thus, the second branch is always below the diagonal.

In particular, α2 < c1. Also, whenever τn(c1) > c1 then τn+1(c1) ≤ α3 < c1. Thus,

S1,1 < 1
β2−1 and (24) is shown at least for β > β(1) =

√
2 such that (β(1))2 −1 = 1.

Assume that β ≤ β(1). Then, (β + 1)(β − 1) ≤ 1 or β − 1 < 1
β+1 . Since

α2 < β − 1 this means that α2 < 1
β

and τ2(c1) = βα2 ≤ β
β+1

β
β
≤ 2

β+1
1
β

< 1
β

< c1.

Thus, τ (c1) < c1 and τ2(c1) < c1. Moreover, whenever τn(c1) > c1 then the next

two iterates are smaller then 1
β

. Thus, S1,1 < 1
β3−1 and (24) is shown at least for

β > β(2) = 3
√

2 such that (β(2))3 − 1 = 1.

Assume again that β ≤ β(2). Then, (β2 + β + 1)(β − 1) ≤ 1 or α2 < 1
β2+β+1

which means that τk(c1) < c1 for k = 1, 2, 3, 4. Moreover, whenever τn(c1) > c1

then the next four iterates are smaller then 1
β

. Thus, S1,1 < 1
β5−1 and (24) is shown

at least for β > β(3) = 5
√

2 such that (β(3))5 − 1 = 1.

Since the roots n
√

2 converge to 1 as n converges to infinity, repeating the above

reasoning inductively, we can prove (24) for all β > 1.

Now, let us assume that τ (c1) = α2 < α3 = τ (c2). The proof is similar.

Again, τ (c1) ≤ c1 which gives S1,1 ≤ 1
β(β−1) . Thus, (24) is shown at least for

β > β(0) = (1 +
√

5)/2 ' 1.618 such that β(0)(β(0) − 1) = 1.

Assume that β ≤ β(0). Then, β(β −1) ≤ 1 or β−1 < 1
β

. Since α2 < α3 < β−1,

we have τ (c1) ≤ c1 and whenever τn(c1) > c1 then τn+1(c1) ≤ α3 < 1
β

. This

gives S1,1 ≤ 1
(β2−1) . Thus, (24) is shown at least for β > β(1) =

√
2 such that

(β(1))2 − 1 = 1. Then, the proof proceeds as in the previous case.

Example 8: τ considered in case (A) gives an example of maps for which invariant

density h exists although β can be arbitrarily close to 1.
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(B) The first branch is shorter. Then, the fixed point in the middle onto branch

is x0 = α1/(β − 1) and x0 ≥ α1. The support of absolutely continuous invariant

measure is the interval [0, α1] and τ restricted to this interval is classical β-map.

Now, we consider situation where the last branch is onto and β ≤ 3. This means

that τ has 3 or 4 branches.

3 branches case: Since the last branch of τ is onto, the first and the second

branch are shorter.

(C) α1 ≤ α2: There are two possibilities:

(Ca) α1 is below the fixed point on the second branch (or this fix point does not

exist). Then, map τ has unique absolutely continuous invariant measure supported

on [0, α1]. τ restricted to this interval is a classical β-map and the invariant density

can be found by Parry’s formula (or our formula after rescaling).

(Cb) The image of the first branch covers the fixed point on the second branch.

Then, map τ has unique absolutely continuous invariant measure supported on

[0, α2]. τ restricted to this interval has the first and the last branches shorter. This

situation is considered in (B).

(D) α1 > α2: Map τ has unique absolutely continuous invariant measure

supported on [0, α1]. τ restricted to this interval has the first branch onto. This

situation is considered in (A).

4 branches case: The last branch of τ is onto.

(E) The first branch is onto. 2 < β ≤ 3. τ is exact. We will prove that 1 is not

an eigenvalue of S.

First, we will show that it is not possible for both α2, α3 to be above the point

c1 = 1+α2

β
.

Assume α2 ≤ α3. Since β = 2+α2+α3 ≤ 3 we have α2 ≤ 1
2
. Then, if α2 > 1+α2

β
,

we would have β > 1+α2

α2
≥ 3, a contradiction.

Assume α2 > α3. Now, we have α3 ≤ 1
2 . If α3 > 1+α2

β
> 1+α3

β
, we would have

β > 1+α3

α3
≥ 3, again a contradiction.

Thus, at least one of the images τ (ci), i = 1, 2 is below both points c1, c2. This

makes Perron-Frobenius estimate on eigenvalues of S (or ST ) equal to 1
β−1

+ 1
β(β−1)

.

Let β(1) be the positive solution of

1

β − 1
+

1

β(β − 1)
= 1 .

We proved that 1 is not an eigenvalue of S for β > β(1) =
√

2 + 1.

Now, we assume that β ≤ β(1). We have α2 + α3 ≤ β(1) − 2. We will show that

both α2, α3 are below the point c1 > 1
β

. The worst case scenario is when the smaller

of α’s is almost 0 and and the other one is almost β(1) − 2. Since 1
β(1) = β(1) − 2,

inequality β(1) − 2 ≤ 1
β

is satisfied for all 2 < β ≤ β(1). We proved that both

images τ (ci), i = 1, 2 are below both points c1, c2. Now, Perron-Frobenius estimate

becomes 2
β(β−1)

. Since

2

β(β − 1)
< 1 ,
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for all β > 2 we completed the proof.

(F) The two first branches are shorter. 2 < β ≤ 3.

Assume first α1 ≤ α2: Since the fixed point in the second branch is x0 = α1

β−1 <

α1 the image of the first branch covers it. There are two cases:

(Fa) If α2 is above the fixed point in the third, onto branch, then τ is exact. The

third branch is τ (x) = βx− (α1 +α2) so this fixed point is x0 = α1+α2

β−1 . Conditions

α2 > x0 and α1 + α2 < 1 lead to inequality

α1 < min{1 − α2,
α2

2

1 − α2
} .

(Fb) If α2 is below the fixed point in the third, onto branch, then map τ has

unique absolutely continuous invariant measure supported on [0, α2]. τ restricted to

this interval has the first and the last branches shorter. This situation is considered

in (B).

Now, assume α1 > α2: Again, there are two cases:

(Fc) If α1 is above the fixed point in the third, onto branch, then τ is exact.

This fixed point is again x0 = α1+α2

β−1 . Conditions α1 > x0 and α1 + α2 < 1 lead to

inequality

α2 < min{1 − α1,
α2

1

1 − α1
} .

(Fd) If α1 is below the fixed point in the third, onto branch, then map τ has

unique absolutely continuous invariant measure supported on [0, α1]. τ restricted to

this interval has the second and the third (the last) branches shorter. This situation

is considered in (A).

(G) The first and the third branches are shorter. 2 < β ≤ 3. Since again the

image of the first branch covers the fixed point in the second onto branch, map τ

is exact.

We have c2 = 1 − 1
β

. We will find when both α1 and α3 are below the point

c2. Let α = max{α1, α3}. We need α ≤ c2. Since α < β − 2 it is enough to

have β − 2 ≤ 1 − 1
β

. Let β(2) = (3 +
√

5)/2 ' 2.618 be the larger solution of

equation β − 2 = 1 − 1
β

. For β ≤ β(2) Perron-Frobenius estimate on eigenvalues

of S is 1
β−1 + 1

β(β−1) . For β > β(1) ' 2.414 of case (E), this implies that 1

is not an eigenvalue of S. Thus, this holds in our case for β(1) < β ≤ β(2) or

2.414 < β ≤ 2.618.

We have proved the following

Proposition 9. If τ is a greedy map with K = 2 and constant slope β and τ

satisfies assumptions of case (A), (E) or (G) with 2.414 < β ≤ 2.618 then τ is

ergodic on [0, 1] if and only if 1 is not an eigenvalue of S. For cases (B), (C), (D),

(Fb) and (Fd) analogous statement is true for τ restricted to a smaller interval.

Cases (Fa), (Fc) and (G) outside the mentioned interval of β’s are open to further

investigation.

In all computer experiments we performed during the work on this paper,

matrices S for greedy ergodic maps never had an eigenvalue 1. Therefore we state
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the following conjecture.

Conjecture 2: Let τ be a greedy map, i.e., a piecewise linear, piecewise increasing

map with shorter branches touching 0. Then, 1 is not an eigenvalue of matrix S

⇐⇒ dynamical system (τ, h ·m) is exact on [0, 1].

5. Special case: Lazy maps.

In this section we consider piecewise linear maps of an interval [0, 1] with all

branches increasing and such that the images of shorter branches touch 1. This

means that αi + γi = 1 for all i = 1, . . . , N . Such maps are related to so called

”lazy expansions with deleted digits” [5]. They are called lazy since the digits are

the smallest possible for the given α’s and β’s.

We will show that any lazy map is conjugated by a linear map to a corresponding

greedy map so all results proven in the previous section hold, after necessary

changes, for lazy maps as well.

Let τ̃ be a lazy map. Let α̃, β̃ and γ̃ = 1 − α̃ denote vectors of α’s, β’s and γ’s

defining τ̃ . The partition points are defined, as in the general case, by

b̃1 = 0 , b̃j =

j−1
∑

i=1

α̃i

β̃i

, j = 2 . . . , N + 1 .

Note, that b̃N+1 = 1. Let Ĩj = (b̃j , b̃j+1), j = 1 . . . , N. The digits Ã =

{ã1, ã2, . . . , ãN}, are as before defined by

ãj = β̃j b̃j − γ̃j = β̃j b̃j+1 − 1 , j = 1, . . . , N .

We will now show that lazy map τ̃ is conjugated to some greedy map τ by

diffeomorphism f(x) = 1 − x on [0, 1]. First we define ”conjugated” vectors α, β

and γ by

αj = α̃N−j+1 ,

βj = β̃N−j+1 , j = 1, 2, . . . , N ,

γj = 0 .

This defines the ”conjugated” partition points

b1 = 0 , bj =

j−1
∑

i=1

αi

βi

=

j−1
∑

i=1

α̃N−i+1

β̃N−i+1

= 1 − b̃N−j+2 , j = 2 . . . , N + 1 .

This defines also the conjugated set of digits A = {a1, a2, . . . , aN} with

aj = βjbj = β̃N−j+1(1 − b̃N−j+2) = β̃N−j+1 − 1 − ãN−j+1 , j = 1, 2, . . . , N .

In particular, a1 = 0. For standard greedy and lazy maps this reduces to

aj = ãN − ãN−j+1, j = 1, 2, . . . , N . The lengths of intervals Ĩj and IN−j+1 are

equal since bN−j+2 − bN−j+1 = (1 − b̃j) − (1 − b̃j+1) = b̃j+1 − b̃j , j = 1, 2, . . . , N .
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Figure 5. Graphs of a) lazy map and b) greedy map of Example 9.

Theorem 10. The maps τ̃ and τ are conjugated by the diffeomorphism f(x) =

1−x. If h is a τ -invariant density, then the density h̃(x) = h(1−x) is τ̃ -invariant.

We have

h̃(x) = D0 +

K
∑

i=1

D̃i

∞
∑

n=1

χ[τ̃n(c̃i),1]
1

β̃(c̃i, n)
,

where constants D̃i = DK−i+1, i = 1, . . . , K, satisfy the system (4) (for τ̃), and

points c̃i = 1 − ci, i = 1, . . . , K are the special points for τ̃ .

Proof: Both τ and f ◦ τ̃ ◦ f−1 are piecewise linear, piecewise increasing maps and

the images of shorter intervals touch 0. The equality of the lengths of the intervals

Ij and ĨN−j+1 and of the slopes βj = β̃N−j+1, j = 1, 2, . . . , N , proves that they are

identical. Then, h̃(x) = h(1 − x) since |f ′| = 1. The formula for h̃ follows by the

general Theorem 2. 2

Example 9: Let the lazy map τ̃ be defined by N = 4, K = 3 and

α̃ = [0.5, 1, 0.8, 0.3] , β̃ = [2, 3, 4, 1.3846] , γ̃ = [0.5, 1, 0.2, 0.7] .

The digits are Ã = {−0.5, 0.75, 2.13 . . . , 0.3846}. The graph of τ̃ is shown in Figure

5 a). The conjugated greedy map τ is defined by

α = [0.3, 0.8, 1, 0.5] , β = [1.3846, 4, 3, 2] , γ = [0, 0, 0, 0] .

The digits are A = {0, 0.866 . . . , 1.25, 1.5}. The graph of map τ is shown in Figure 5

b). Using Maple 11 we calculated, for D0 = 1, D̃1 = 1, D̃2 ' 7.9992, D̃3 ' 99.671.

We have Di = D̃K−i+1, i = 1, . . . , K. The normalizing constant of the density is

' 33.7996. The graph of τ̃ -invariant density is shown in Figure 6 a)and the graph

of τ -invariant density is shown in Figure 6 b) .
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Figure 6. Invariant densities of a) lazy map and b) greedy map of Example 9.

6. Special case: mixed greedy-lazy maps.

In this section we consider maps with some shorter branches touching 0 and others

touching 1. We do not assume that there is at least one onto branch.

We prove some results which are specific for mixed type maps.

Theorem 11. Let τ be an eventually piecewise expanding map of mixed type. If

there exist an invariant density h with full support, in particular if the system (4)

is solvable with D0 = 1, then the dynamical system {τ, h ·m} can have at most two

ergodic components. If τ has at least two onto branches, then it is exact.

Proof: It follows from the general theory that the support of each ergodic

component contains neighborhood of some inner endpoint of the partition. Since

the image of each branch touches either 0 or 1, there can be at most two ergodic

components. The second statement was proved in general in Theorem 4. 2

Example 6 shows that mixed type map can actually have two ergodic

components. In this specific case system (4) is not solvable for D0 = 1.

We will describe the situation in the case of two ergodic components in more

detail.

Let τ be a mixed type map with an invariant density h with support equal to

[0, 1]. Let us assume there are two ergodic components. Since 0 belongs to one

component and 1 belongs to the other component we will denote the supports of

the components by C0 and C1 respectively. There are two possibilities:

(C1): there exists x0 ∈ [0, 1] such that C0 = [0, x0] and C1 = [x0, 1]. Let

τ0 = τ |C0
and τ1 = τ |C1

. For example, this happens if τ has at least one onto

branch.

We have τn(ck) ≤ cj for all n ≥ 1 and all ck ∈ C0, cj ∈ C1 and τn(ck) ≥ cj for
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all n ≥ 1 and all ck ∈ J1, cj ∈ J0. Thus, matrix S is a block matrix

S =

(

S0 = (Si,j)1≤i, j≤M 0

0 S1 = (Si,j)M+1≤i, j≤K+L

)

,

where c1, . . . , cM ∈ C0 and cM+1, . . . , cK+L ∈ C1.

The image of at least one ci0 ∈ C0 and at least one ci1 ∈ C1 is equal to x0 as

otherwise there would be a hole in the support of h. Even if x0 is a fixed point in

a common onto branch od τ , there must exist such points.

Since h has full support, each of the systems (τ0, h ·m|C0
), (τ1, h ·m|C1

) is exact

by Theorem 6. Each can be considered separately and the invariant densities can

be combined.

(C2): Each component C0 and C1 consists of some number of disjoint

subintervals separated by the subintervals of the other component. A map τ with

each Ci consisting of 2 subintervals is given in Example 10 and a map where each

Ci has 3 subintervals is given in Example 11. Examples with more subintervals in

each Ci can be constructed in analogous way.

Example 10: Let N = 4 and τ be defined by vectors

α =

[

2

4
,

1

4
,
2

4
,
1

4

]

, β = [1, 2, 2, 2] , γ =

[

2

4
, 0, 0,

3

4

]

.

τ is eventually expanding and C0 = [0, 1
4 ] ∪ [ 1

2 , 3
4 ], C1 = [ 1

4 , 1
2 ] ∪ [ 3

4 , 1].

Example 11: Let N = 4 and τ be defined by vectors

α =

[

4

6
,

1

6
,
2

6
,
1

6

]

, β = [1, 2, 2, 2] , γ =

[

2

6
, 0, 0,

5

6

]

.

τ is eventually expanding and C0 = [0, 1
6 ]∪ [ 2

6 , 3
6 ]∪ [ 4

6 , 5
6 ], C1 = [ 1

6 , 2
6 ]∪ [ 3

6 , 4
6 ]∪ [ 5

6 , 1].
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