Invariant densities for piecewise linear maps

Paweł Góra

Concordia University
June 2008

Contents

Piecewise linear map
τ-expansion of numbers Matrix \mathbf{S}
τ-invariant density
Conjecture
Ergodic properties
Application
References

Contents

Piecewise linear map
τ-expansion of numbers
Matrix S
τ-invariant density

Conjecture

Ergodic properties
Application

Rediscovery

Rediscovery, by a different method, of the results of Christoph Kopf (Insbruck) Invariant measures for piecewise linear transformations of the interval, Applied Mathematics and Computation 39 (1990), issue 2, 123-144.

Piecewise linear map

Contents

Piecewise linear map
τ-expansion of numbers Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References

N branches, three vectors:

1. slopes $\beta=[3,3,-4,-5,-2]$
2. lengths $\alpha=[1,0.35,0.8,1,0.3]$
3. heights of lower end $\gamma=[0,0.2,0.1,0,0.7]$

Digits

Contents

Piecewise linear map
Map τ can be conveniently represented using "digits" if $\beta_{j}>0$, then $a_{j}=\beta_{j} b_{j}-\gamma_{j}$, if $\beta_{j}<0$, then $a_{j}=\beta_{j} \boldsymbol{b}_{j}-\left(\gamma_{j}+\alpha_{j}\right), \quad j=1, \ldots, N$.

Then, map τ is

$$
\tau(x)=\beta_{j} \cdot x-a_{j}, \quad \text { for } \quad x \in I_{j}, j=1,2, \ldots, N .
$$

In the example the digits are:

$$
a=\{0,0.8,-2.7,-4.25,-2.7\} .
$$

τ-expansion of numbers

For any $x \in[0,1]$ we define its "index" $j(x)$ and its "digit" $a(x)$:

$$
j(x)=j \quad \text { for } \quad x \in I_{j}, j=1,2, \ldots, N,
$$

and

$$
a(x)=a_{j(x)} .
$$

We define the cumulative slopes for iterates of points as follows:

$$
\begin{aligned}
& \beta(x, 1)=\beta_{j(x)} \\
& \beta(x, n)=\beta(x, n-1) \cdot \beta_{j\left(\tau^{n-1}(x)\right)}, \quad n \geq 2
\end{aligned}
$$

Then, the following expansion holds:

$$
x=\sum_{n=1}^{\infty} \frac{a\left(\tau^{n-1}(x)\right)}{\beta(x, n)}
$$

Example: Binary expansion

Contents

Piecewise linear map
τ-expansion of numbers

Matrix S

τ-invariant density
Conjecture
Ergodic properties

Application

References

$$
\tau(x)= \begin{cases}2 x & \text { if } 0 \leq x<1 / 2 \\ 2 x-1 & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

Example: Binary expansion 2

$$
\begin{array}{rlrl}
x & =0.23, & \tau(x)=0.46, & \\
\tau^{2}(x)=0.92 \\
\tau^{3}(x)=0.84, & \tau^{4}(x)=0.68, & & \tau^{5}(x)=0.36 \\
\tau^{6}(x)=0.72, & \tau^{7}(x)=0.44, & & \tau^{8}(x)=0.88 \\
\tau^{9}(x) & =0.76, & \tau^{10}(x)=0.52, & \ldots
\end{array}
$$

Contents

Piecewise linear map
τ-expansion of numbers

Matrix S

τ-invariant density
Conjecture
Ergodic properties
Application
References

$$
\begin{aligned}
& x=\quad \frac{0}{2}+\frac{0}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{0}{2^{6}} \\
&+\frac{1}{2^{7}}+\frac{0}{2^{8}}+\frac{1}{2^{9}}+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\ldots
\end{aligned}
$$

Example: Classical β-map , $\beta=3.3$

$$
\tau(x)=\beta \cdot x \quad \bmod 1
$$

$$
\begin{aligned}
x & =0.23, \tau(x)=0.759, \tau^{2}(x)=0.505, \\
\tau^{3}(x) & =0.666, \tau^{4}(x)=0.196, \tau^{5}(x)=0.674, \\
\tau^{6}(x) & =0.136, \tau^{7}(x)=0.450, \tau^{8}(x)=0.486, \\
\tau^{9}(x) & =0.603, \tau^{10}(x)=0.989, \ldots
\end{aligned}
$$

Contents

Piecewise linear map
τ-expansion of numbers

Matrix S

τ-invariant density
Conjecture
Ergodic properties
Application
References

Classical β-map , $\beta=3.3$

$$
\begin{array}{r}
x=\quad \frac{0}{3.3}+\frac{2}{3.3^{2}}+\frac{1}{3.3^{3}}+\frac{2}{3.3^{4}}+\frac{0}{3.3^{5}}+\frac{2}{3.3^{6}} \\
+\frac{0}{3.3^{7}}+\frac{1}{3.3^{8}}+\frac{1}{3.3^{9}}+\frac{1}{3.3^{10}}+\frac{3}{3.3^{11}}+\ldots
\end{array}
$$

Contents

Piecewise linear map
τ-expansion of numbers

Matrix S

τ-invariant density
Conjecture
Ergodic properties

Application

References

Classical β-map , $\beta=3.3$

$$
\begin{array}{r}
x=\quad \frac{0}{3.3}+\frac{2}{3.3^{2}}+\frac{1}{3.3^{3}}+\frac{2}{3.3^{4}}+\frac{0}{3.3^{5}}+\frac{2}{3.3^{6}} \\
+\frac{0}{3.3^{7}}+\frac{1}{3.3^{8}}+\frac{1}{3.3^{9}}+\frac{1}{3.3^{10}}+\frac{3}{3.3^{11}}+\ldots
\end{array}
$$

Contents

Piecewise linear map
τ-expansion of numbers
Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References
Parry's invariant density:

$$
h(x)=1+\sum_{n=1}^{\infty} \chi_{\left[0, \tau^{n}(1)\right]} \frac{1}{\beta^{n}}
$$

Back to the first example:

$$
\begin{array}{rlrl}
x & =0.23, & \tau(x)=0.69, & \\
\tau^{2}(x)=0.80 \\
\tau^{3}(x)=0.25, & \tau^{4}(x)=0.75, & & \tau^{5}(x)=0.50 \\
\tau^{6}(x)=0.70, & \tau^{7}(x)=0.75, & & \tau^{8}(x)=0.50 \\
\tau^{9}(x) & =0.70, & \tau^{10}(x)=0.75, & \ldots
\end{array}
$$

Contents

indices:

$$
1,4,4,1,4,3,4,4,3,4,4, \ldots
$$

$$
\begin{aligned}
x= & \frac{0}{3}+\frac{-4.25}{-15}+\frac{-4.25}{75}+\frac{0}{225}+\frac{-4.25}{-1125}+\frac{-2.7}{4500} \\
& +\frac{-4.25}{-22500}+\frac{-4.25}{112500}+\frac{-2.7}{-450000}+\frac{-4.25}{2250000}+\frac{-4.25}{-11250000}+\ldots
\end{aligned}
$$

Special points: $c_{i}, i=1,2, \ldots, K+L$

"Greedy", "lazy" and "hanging" branches. K - number of shorter branches, L - number of hanging branches.

Contents

Piecewise linear map
τ-expansion of numbers
Matrix \mathbf{S}
τ-invariant density
Conjecture
Ergodic properties
Application
References
c_{i} 's are endpoints of partition intervals whose image is
not 0 or 1 . Some of them are diunlicated

Special points: $c_{i}, i=1,2, \ldots, K+L$

"Greedy", "lazy" and "hanging" branches. K - number of shorter branches, L-number of hanging branches.
c_{i} 's are endpoints of partition intervals whose image is not 0 or 1 . Some of them are duplicated.

Special points: $c_{i}, i=1,2, \ldots, K+L$

Contents
"Greedy", "lazy" and "hanging" branches. K - number of shorter branches, L- number of hanging branches.
c_{i} 's are endpoints of partition intervals whose image is not 0 or 1 . Some of them are duplicated.
c_{i} 's are grouped into "left" U_{l} and "right" U_{r} and also into "upper" W_{u} and "lower" W_{l} points.

Numbers $S_{i, j}, 1 \leq i, j \leq K+L, \tau$ increasing

Matrix \mathbf{S} is constructed in a way somewhat similar to the construction of kneading matrix.

If all branches are increasing: $U_{r}=W_{u}$ and $U_{l}=W_{l}$.

$$
\begin{aligned}
& S_{i, j}=\sum_{n=1}^{\infty} \frac{1}{\beta\left(c_{i}, n\right)} \delta\left(\tau_{u}^{n}\left(c_{i}\right)>c_{j}\right), \text { for } c_{i} \in W_{u} \text { and all } c_{j}, \\
& S_{i, j}=\sum_{n=1}^{\infty} \frac{1}{\beta\left(c_{i}, n\right)} \delta\left(\tau_{l}^{n}\left(c_{i}\right)<c_{j}\right), \text { for } c_{i} \in W_{l} \text { and all } c_{j}
\end{aligned}
$$

τ-expansion of numbers
Matrix \mathbf{S}
τ-invariant density

Numbers $S_{i, j}, 1 \leq i, j \leq K+L, \tau$ general

In general:

$$
\begin{aligned}
s_{i, j}=\sum_{n=1}^{\infty} \frac{1}{\left|\beta\left(c_{i}, n\right)\right|} & {\left[\delta\left(\beta\left(c_{i}, n\right)>0\right) \delta\left(\tau^{n}\left(c_{i}\right)>c_{j}\right)\right.} \\
+ & \left.\delta\left(\beta\left(c_{i}, n\right)<0\right) \delta\left(\tau^{n}\left(c_{i}\right)<c_{j}\right)\right], \\
& \text { for } c_{i} \in U_{r} \text { and all } c_{j},
\end{aligned}
$$

Contents

$$
\begin{aligned}
S_{i, j}=\sum_{n=1}^{\infty} \frac{1}{\left|\beta\left(c_{i}, n\right)\right|} & {\left[\delta\left(\beta\left(c_{i}, n\right)<0\right) \delta\left(\tau^{n}\left(c_{i}\right)>c_{j}\right)\right.} \\
+ & \left.\delta\left(\beta\left(c_{i}, n\right)>0\right) \delta\left(\tau^{n}\left(c_{i}\right)<c_{j}\right)\right] \\
& \text { for } \quad c_{i} \in U_{l} \text { and all } c_{j} .
\end{aligned}
$$

Equation for coefficients $D=\left[D_{1}, \ldots, D_{K+L}\right]$

$$
\left(-\mathbf{S}^{T}+\mathbf{I d}\right) D=D_{0} \mathbf{v}
$$

where $\mathbf{v}=[1,1, \ldots, 1]$.
Parameter D_{0} is taken to be 1 if the system is solvable with $D_{0}=1$ and we take $D_{0}=0$ otherwise. The system always has non-vanishing solution with one of the values of the parameter.

Contents

Piecewise linear map
τ-expansion of numbers Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application

Invariant density, τ piecewise increasing

Contents

Piecewise linear map
τ-expansion of numbers

Matrix S

τ-invariant density
Conjecture

$$
\begin{aligned}
& h(x)=D_{0}+\sum_{i \in W_{u}} D_{i} \sum_{n=1}^{\infty} \chi_{\left[0, \tau^{n}\left(c_{i}\right)\right]} \frac{1}{\beta\left(c_{i}, n\right)} \\
&+\sum_{i \in W_{l}} D_{i} \sum_{n=1}^{\infty} \chi_{\left[\tau^{n}\left(c_{i}\right), 1\right]} \frac{1}{\beta\left(c_{i}, n\right)}
\end{aligned}
$$

Invariant density, τ general

Let us define:

$$
\chi(\beta, x)= \begin{cases}\chi_{[0, x]}, & \text { for } \beta>0 \\ \chi_{[x, 1]}, & \text { for } \beta<0\end{cases}
$$

Contents

Piecewise linear map
τ-expansion of numbers Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References

Invariant density，τ general

Let us define：

$$
\chi(\beta, x)= \begin{cases}\chi_{[0, x]}, & \text { for } \beta>0 \\ \chi_{[x, 1]}, & \text { for } \beta<0\end{cases}
$$

For general τ ：

Contents

Piecewise linear map
τ－expansion of numbers
Matrix S
τ－invariant density
Conjecture
Ergodic properties

Application

$$
\begin{aligned}
h(x)=D_{0} & +\sum_{c_{i} \in U_{r}} D_{i} \sum_{n=1}^{\infty} \frac{\chi\left(\beta\left(c_{i}, n\right), \tau^{n}\left(c_{i}\right)\right)}{\left|\beta\left(c_{i}, n\right)\right|} \\
& +\sum_{c_{i} \in U_{l}} D_{i} \sum_{n=1}^{\infty} \frac{\chi\left(-\beta\left(c_{i}, n\right), \tau^{n}\left(c_{i}\right)\right)}{\left|\beta\left(c_{i}, n\right)\right|},
\end{aligned}
$$

ロ岛 三 ミ 三 引

Invariant density for the first example

Contents

Piecewise linear map
τ-expansion of numbers

Matrix S

τ-invariant density
Conjecture
Ergodic properties
Application
References

The invariant density of τ of our main example.

Conjecture

Contents
Piecewise linear map
τ-expansion of numbers
Matrix \mathbf{S}
τ-invariant density
Conjecture
Ergodic properties
Application
References

Conjecture: Let τ be piecewise linear, piecewise increasing and eventually piecewise expanding map. Then,
1 is not an eigenvalue of matrix $\mathbf{S} \Longrightarrow$ dynamical system $(\tau, h \cdot m)$ is ergodic on $[0,1]$.

The conjecture is proved for greedy maps (all shorter branches touch 0). (Thus, it also holds for lazy maps,i.e., maps with all shorter branches touching 1.)

Conjecture fails for maps with decreasing branches

Contents

Piecewise linear map
τ－expansion of numbers

Matrix \mathbf{S}

τ－invariant density
Conjecture
Ergodic properties
Application
References
$N=2$,

$$
\alpha=[1,0.8], \quad \beta=[1.8,-1.8], \quad \gamma=[0,0.2]
$$

τ is ergodic on a smaller interval $[0.2,1]$ ．
ロ岛 三 ミ 三 引

Conjecture fails for maps with decreasing branches

Matrix $\mathbf{S}=\left[S_{1,1}\right]=[1.125]$ has an eigenvalue 1.125 and system (15) is solvable for $D_{0}=1$. We have $D_{1}=-0.8$.

For the corresponding piecewise increasing map, i.e., if we keep the same α 's and γ 's and change β to $\beta=[1.8,1.8]$, matrix $\mathbf{S}=\left[S_{1,1}\right]=[1]$ has an eigenvalue 1.

Inverse of the Conjecture does not hold

Contents

Piecewise linear map
τ－expansion of numbers

Matrix S

τ－invariant density
Conjecture
Ergodic properties
Application
References

The slope β is constant．Then，τ is ergodic on $[0,1]$ and 1 is an eigenvalue of \mathbf{S} ．
ロ向 三 ミ ミ 三

Ergodic properties of τ

Contents
Piecewise linear map
τ-expansion of numbers
Matrix \mathbf{S}
τ-invariant density
Conjecture
Ergodic properties
Application
References

A map without hanging branches has at most two ergodic components.

A greedy map with an invariant density supported on $[0,1]$ is exact.

Examples of maps without hanging

 branches

Let $N=4$ and τ be defined by vectors
$\alpha=\left[\frac{4}{6}, \frac{1}{6}, \frac{2}{6}, \frac{1}{6}\right], \beta=[1,2,2,2], \gamma=\left[\frac{2}{6}, 0,0, \frac{5}{6}\right]$.
τ is eventually expanding and
$C_{0}=\left[0, \frac{1}{6}\right] \cup\left[\frac{2}{6}, \frac{3}{6}\right] \cup\left[\frac{4}{6}, \frac{5}{6}\right], C_{1}=\left[\frac{1}{6}, \frac{2}{6}\right] \cup\left[\frac{3}{6}, \frac{4}{6}\right] \cup\left[\frac{5}{6}, 1\right]$ are its ergodic components.

Supports of ergodic components

Contents

Piecewise linear map
τ-expansion of numbers

Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References

$$
C_{0}=\left[0, \frac{1}{6}\right] \cup\left[\frac{2}{6}, \frac{3}{6}\right] \cup\left[\frac{4}{6}, \frac{5}{6}\right] \quad C_{1}=\left[\frac{1}{6}, \frac{2}{6}\right] \cup\left[\frac{3}{6}, \frac{4}{6}\right] \cup\left[\frac{5}{6}, 1\right]
$$

Application: approximation of acim for arbitrary map

Map modeling the movement of rotary drill (A. Lasota and P. Rusek [15], also [3]): τ_{Λ} depends on Froude number

$$
\Lambda=\frac{v^{2} M}{F R}
$$

The more uniform is the invariant density of τ_{Λ} the more efficient is the use of the drill.

Map modeling the movement of rotary drill

Contents

Piecewise linear map

τ-expansion of numbers Matrix \mathbf{S}
τ-invariant density
Conjecture
Ergodic properties
Application
References
$\tau_{3.5}$ rescaled from $[0,0.9]$.

Piecewise linear approximation

Contents

Piecewise linear approximation on the partition $\{0,0.111,0.138,0.2,0.333,0.383,0.5,0.6,0.75,0.9,1\}$.

Approximations of the $\tau_{3.5}$-invariant density

Contents
Piecewise linear map
τ-expansion of numbers
Matrix \mathbf{S}
τ-invariant density
Conjecture
Ergodic properties
Application
References

Approximations of the $\tau_{3.5}$-invariant density obtained: as invariant density h of the piecewise linear approximation (green);
h_{U} by Ulam's method on the same partition (red).

Errors of the approximations

Errors：$\left|P_{\tau_{3.5}} h-h\right|-$ green

$$
\left|P_{\tau_{3.5}} h_{U}-h_{U}\right|-\text { red }
$$

Integrals of the errors functions are 0.19 and 0.12 ， correspondingly．
句 三 ミ 三 ミ

Ulam's method in a nutshell

Contents

If $\mathbf{v}=\left[v_{1}, v_{2}, \ldots, v_{N}\right]$ is the stationary (left) vector of \mathbb{P}, then

$$
h_{U}=\sum_{i=1}^{N} \frac{v_{i}}{m\left(l_{i}\right)} \chi_{l_{i}}
$$

is an approximation of τ-invariant density.

Piecewise linear approximation on actual

 Ulam's partitionUlam's method uses Markov linear approximation on finer partition, which can be seen from the transition matrix:

Contents
Piecewise linear map
τ-expansion of numbers Matrix S
τ-invariant density
Conjecture

```
0.397368 0.089818 0.196142 0.316671 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.589628 0.347872 0.062500
0.000000 0.000000 0.000000 0.000000 0.184216 0.467794 0.299714 0.048277 0.000000 0.000000
0.275252 0.102510 0.217319 0.376598 0.028320 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.390801 0.382753 0.226446 0.000000 0.000000
0.000000 0.000000 0.000000 0.633478 0.203218 0.163305 0.000000 0.000000 0.000000 0.000000
0.000000}0.0581870.718809 0.223005 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.771484 0.228516 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
```


Piecewise linear approximation on actual Ulam's partition

Using this finer partition for our piecewise linear approximation we obtain density h (green)

Contents

Errors of the approximations

Contents

Errors: $\left|P_{\tau_{3.5}} h-h\right|-$ green $\left|P_{\tau_{3.5}} h_{U}-h_{U}\right|$ - red .
Integrals of the errors functions are 0.105 and 0.117 , correspondingly.

References I

Alves, J. F., Fachada, J. L., Sousa Ramos, J., Detecting topological transitivity of piecewise monotone interval maps, Topology Appl. 153 (2005), no. 5-6, 680-697, MR2201481 (2007k:37046).

Boyarsky, Abraham; Góra, Paweł, Laws of chaos. Invariant measures and dynamical systems in one dimension, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1997, MR1461536 (99a:58102).
Chakvetadze, G., Stochastic stability in a model of drilling, J. Dynam. Control Systems 6 (2000), no. 1, 75-95.
Dajani, Karma; Hartono, Yusuf; Kraaikamp, Cor, Mixing properties of (α, β)-expansions, preprint.
Dajani, Karma; Kraaikamp, Cor, Ergodic theory of numbers, Carus Mathematical Monographs, 29, Mathematical Association of America, Washington, DC, 2002, MR1917322 (2003f:37014).

Contents

Piecewise linear map
τ-expansion of numbers
Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References

References II

Dajani, Karma; Kalle, Charlene Random β-expansions with deleted digits, Discrete Contin. Dyn. Syst. 18 (2007), no. 1, 199-217, MR2276494 (2007m:37016).

Dajani, Karma; Kalle, Charlene A note on the greedy β-transformations with deleted digits, to appear in SMF Séminaires et Congres, Number 19, 2008.

Dajani, Karma; Kalle, Charlene A natural extension for the greedy β-transformation with three deleted digits, preprint arXiv:0802.3571.
Eslami, Peyman, Eventually expanding maps, preprint.
Gelfond, A. O., A common property of number systems (Russian), Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959), 809-814, MR0109817 (22 \#702).
Góra, P., Invariant densities for generalized β-transformations, Ergodic Th. and Dynamical Systems 27, Issue 05, October 2007, 1583-1598.

Contents

Piecewise linear map
τ-expansion of numbers
Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References

References III

Islam, Shafiqul, Absolutely continuous invariant measures of linear interval maps, Int. J. Pure Appl. Math. 27 (2006), no. 4, 449-464, MR2223985 (2006k:37100).

Kopf, Christoph, Invariant measures for piecewise linear transformations of the interval, Applied Mathematics and Computation 39 (1990), issue 2, 123-144.

Lasota, Andrzej; Mackey, Michael C., Chaos, fractals, and noise. Stochastic aspects of dynamics, Second edition, Applied Mathematical Sciences 97, Springer-Verlag, New York, 1994, MR1244104 (94;:58102).

Lasota, A., and Rusek, P., An application of ergodic theory to the determination of the efficiency of cogged drilling bits, Arch. Górnictwa 19 (1974), 281-295. (Polish)
A. Lasota; J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations , Trans. Amer. Math. Soc. 186 (1973), 481-488 (1974); MR0335758 (49 \#538).

Contents
Piecewise linear map
τ-expansion of numbers
Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References

References IV

T. Y. Li; J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235 (1978), 183-192; MR0457679 (56 \#15883).

Milnor, John; Thurston, William, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986-87), 465-563, Lecture Notes in Math., 1342, Springer, Berlin, 1988, MR0970571 (90a:58083).

Henryk Minc, Nonnegative matrices, John Wiley\& Sons, New York, 1988.

Parry, W., On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416, MR0142719 (26 \#288).

Parry, W., Representations for real numbers, Acta Math. Acad. Sci. Hungar. 15 (1964), 95-105, MR0166332 (29 \#3609).

Pedicini, Marco, Greedy expansions and sets with deleted digits, Theoret. Comput. Sci. 332 (2005), no. 1-3, 313-336, MR2122508 (2005k:11013).

Contents

Plecewise linear map
τ-expansion of numbers
Matrix S
τ-invariant density
Conjecture
Ergodic properties
Application
References

References V

Contents

Piecewise linear map
τ-expansion of numbers Matrix \mathbf{S}
τ-invariant density
Conjecture

Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493, MR0097374 (20 \#3843).

Ergodic properties
Application
References

