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Rediscovery

Rediscovery, by a different method, of the results of

Christoph Kopf (Insbruck)

Invariant measures for piecewise linear

transformations of the interval, Applied Mathematics

and Computation 39 (1990), issue 2, 123–144.
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Piecewise linear map

N branches, three vectors:

1. slopes β = [3, 3,−4,−5,−2]

2. lengths α = [1, 0.35, 0.8, 1, 0.3]

3. heights of lower end γ = [0, 0.2, 0.1, 0, 0.7]
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Digits

Map τ can be conveniently represented using "digits"

if βj > 0, then aj = βjbj − γj ,

if βj < 0, then aj = βjbj − (γj + αj) , j = 1, . . . , N .

Then, map τ is

τ(x) = βj · x − aj , for x ∈ Ij , j = 1, 2, . . . , N .

In the example the digits are:

a = {0, 0.8,−2.7,−4.25,−2.7}.
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τ -expansion of numbers

For any x ∈ [0, 1] we define its "index" j(x) and its

"digit" a(x):

j(x) = j for x ∈ Ij , j = 1, 2, . . . , N ,

and

a(x) = aj(x).

We define the cumulative slopes for iterates of points

as follows:

β(x , 1) = βj(x) ;

β(x , n) = β(x , n − 1) · βj(τ n−1(x)) , n ≥ 2 .

Then, the following expansion holds:

x =

∞
∑

n=1

a(τn−1(x))

β(x , n)
.
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Example: Binary expansion

τ(x) =

{

2x if 0 ≤ x < 1/2;

2x − 1 if 1/2 ≤ x ≤ 1 .
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Example: Binary expansion 2

x = 0.23, τ(x) = 0.46, τ2(x) = 0.92,

τ3(x) = 0.84, τ4(x) = 0.68, τ5(x) = 0.36,

τ6(x) = 0.72, τ7(x) = 0.44, τ8(x) = 0.88,

τ9(x) = 0.76, τ10(x) = 0.52, . . .

x = 0
2

+ 0
22 + 1

23 + 1
24 + 1

25 + 0
26

+ 1
27 + 0

28 + 1
29 + 1

210 + 1
211 + . . .
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Example: Classical β-map , β = 3.3

τ(x) = β · x mod 1

x = 0.23,τ(x) = 0.759, τ2(x) = 0.505,

τ3(x) = 0.666,τ4(x) = 0.196, τ5(x) = 0.674,

τ6(x) = 0.136,τ7(x) = 0.450, τ8(x) = 0.486,

τ9(x) = 0.603,τ10(x) = 0.989, . . .
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Classical β-map , β = 3.3

x = 0
3.3

+ 2
3.32 + 1

3.33 + 2
3.34 + 0

3.35 + 2
3.36

+ 0
3.37 + 1

3.38 + 1
3.39 + 1

3.310 + 3
3.311 + . . .

Parry’s invariant density:

h(x) = 1 +

∞
∑

n=1

χ[0,τ n(1)]
1

βn
.
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Classical β-map , β = 3.3

x = 0
3.3

+ 2
3.32 + 1

3.33 + 2
3.34 + 0

3.35 + 2
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Back to the first example:

x = 0.23, τ(x) = 0.69, τ2(x) = 0.80,

τ3(x) = 0.25, τ4(x) = 0.75, τ5(x) = 0.50,

τ6(x) = 0.70, τ7(x) = 0.75, τ8(x) = 0.50,

τ9(x) = 0.70, τ10(x) = 0.75, . . .

indices:

1, 4, 4, 1, 4, 3, 4, 4, 3, 4, 4, . . .

x = 0
3 + −4.25

−15 + −4.25
75 + 0

225 + −4.25
−1125 + −2.7

4500

+ −4.25
−22500

+ −4.25
112500

+ −2.7
−450000

+ −4.25
2250000

+ −4.25
−11250000

+ . . .
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Special points: ci , i = 1, 2, . . . , K + L

"Greedy", "lazy" and "hanging" branches. K - number

of shorter branches, L - number of hanging branches.

ci ’s are endpoints of partition intervals whose image is

not 0 or 1. Some of them are duplicated.

ci ’s are grouped into "left" Ul and "right" Ur and also

into "upper" Wu and "lower" Wl points.
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Numbers Si ,j , 1 ≤ i, j ≤ K + L, τ increasing

Matrix S is constructed in a way somewhat similar to

the construction of kneading matrix.

If all branches are increasing: Ur = Wu and Ul = Wl .

Si, j =

∞
∑

n=1

1

β(ci , n)
δ(τn

u (ci) > cj) , for ci ∈ Wu and all cj ,

Si, j =

∞
∑

n=1

1

β(ci , n)
δ(τn

l (ci) < cj) , for ci ∈ Wl and all cj .
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Numbers Si ,j , 1 ≤ i, j ≤ K + L, τ general

In general:

Si, j =

∞
∑

n=1

1

|β(ci , n)|

[

δ(β(ci , n) > 0)δ(τn(ci) > cj)

+ δ(β(ci , n) < 0)δ(τn(ci) < cj)
]

,

for ci ∈ Ur and all cj ,

Si, j =

∞
∑

n=1

1

|β(ci , n)|

[

δ(β(ci , n) < 0)δ(τn(ci) > cj)

+ δ(β(ci , n) > 0)δ(τn(ci) < cj)
]

,

for ci ∈ Ul and all cj .
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Equation for coefficients D = [D1, . . . , DK+L]

(−ST + Id)D = D0v ,

where v = [1, 1, . . . , 1].

Parameter D0 is taken to be 1 if the system is solvable

with D0 = 1 and we take D0 = 0 otherwise. The

system always has non-vanishing solution with one of

the values of the parameter.
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Invariant density, τ piecewise increasing

For τ piecewise increasing:

h(x) = D0 +
∑

i∈Wu

Di

∞
∑

n=1

χ[0,τ n(ci)]
1

β(ci , n)

+
∑

i∈Wl

Di

∞
∑

n=1

χ[τ n(ci),1]
1

β(ci , n)
,
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Invariant density, τ general

Let us define:

χ(β, x) =

{

χ[0,x ] , for β > 0 ,

χ[x ,1] , for β < 0 .

For general τ :

h(x) = D0 +
∑

ci∈Ur

Di

∞
∑

n=1

χ(β(ci , n), τn(ci))

|β(ci, n)|

+
∑

ci∈Ul

Di

∞
∑

n=1

χ(−β(ci , n), τn(ci))

|β(ci , n)|
,
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Invariant density for the first example

The invariant density of τ of our main example.
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Conjecture

Conjecture: Let τ be piecewise linear, piecewise

increasing and eventually piecewise expanding map.

Then,

1 is not an eigenvalue of matrix S =⇒ dynamical

system (τ, h · m) is ergodic on [0, 1].

The conjecture is proved for greedy maps (all shorter

branches touch 0). (Thus, it also holds for lazy

maps,i.e., maps with all shorter branches touching 1.)
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Conjecture fails for maps with decreasing

branches

N = 2,

α = [1, 0.8] , β = [1.8,−1.8] , γ = [0, 0.2] .

τ is ergodic on a smaller interval [0.2, 1].
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Conjecture fails for maps with decreasing

branches

Matrix S = [S1,1] = [1.125] has an eigenvalue 1.125

and system (15) is solvable for D0 = 1. We have

D1 = −0.8.

For the corresponding piecewise increasing map, i.e.,

if we keep the same α’s and γ ’s and change β to

β = [1.8, 1.8], matrix S = [S1,1] = [1] has an

eigenvalue 1.
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Inverse of the Conjecture does not hold

The slope β is constant. Then, τ is ergodic on [0,1]

and 1 is an eigenvalue of S.
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Ergodic properties of τ

Theorem
Let τ be a piecewise linear and eventually piecewise

expanding map which admits an invariant density

supported on [0, 1]. Then, if at least one branch of τ is

onto then τ has at most two ergodic components. If at

least two branches are onto, then τ is exact.

A map without hanging branches has at most two

ergodic components.

A greedy map with an invariant density supported on

[0,1] is exact.
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Examples of maps without hanging

branches

Let N = 4 and τ be defined by vectors

α =

[

4

6
,
1

6
,
2

6
,
1

6

]

, β = [1, 2, 2, 2] , γ =

[

2

6
, 0, 0,

5

6

]

.

τ is eventually expanding and

C0 = [0, 1
6 ] ∪ [2

6 , 3
6 ] ∪ [4

6 , 5
6 ], C1 = [1

6 , 2
6 ] ∪ [3

6 , 4
6 ] ∪ [5

6 , 1]
are its ergodic components.
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Supports of ergodic components

C0 = [0,
1

6
]∪[

2

6
,
3

6
]∪[

4

6
,
5

6
] C1 = [

1

6
,
2

6
]∪[

3

6
,
4

6
]∪[

5

6
, 1]
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Application: approximation of acim for

arbitrary map

Map modeling the movement of rotary drill (A. Lasota

and P. Rusek [15], also [3]): τΛ depends on Froude

number

Λ =
v2M

FR
.

The more uniform is the invariant density of τΛ the

more efficient is the use of the drill.
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Map modeling the movement of rotary drill

τ3.5 rescaled from [0, 0.9].
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Piecewise linear approximation

Piecewise linear approximation on the partition

{0, 0.111, 0.138, 0.2, 0.333, 0.383, 0.5, 0.6, 0.75, 0.9, 1}.



Invariant densities

Contents

Piecewise linear map

τ -expansion of numbers

Matrix S

τ -invariant density

Conjecture

Ergodic properties

Application

References

Approximations of the τ3.5-invariant density

Approximations of the τ3.5-invariant density obtained:

as invariant density h of the piecewise linear

approximation (green);

hU by Ulam’s method on the same partition (red).
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Errors of the approximations

Errors: |Pτ3.5
h − h| - green

|Pτ3.5
hU − hU | - red .

Integrals of the errors functions are 0.19 and 0.12,

correspondingly.
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Ulam’s method in a nutshell

Let P = {I1, I2, . . . , IN} be a partition of [0, 1]. Map τ is

modeled by a Markov chain with transition matrix

P =

[

m(Ii ∩ τ−1(Ij))

m(Ii)

]

.

If v = [v1, v2, . . . , vN] is the stationary (left) vector of P,

then

hU =

N
∑

i=1

vi

m(Ii)
χIi ,

is an approximation of τ -invariant density.
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Piecewise linear approximation on actual

Ulam’s partition

Ulam’s method uses Markov linear approximation on

finer partition, which can be seen from the transition

matrix:
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Piecewise linear approximation on actual

Ulam’s partition

Using this finer partition for our piecewise linear

approximation we obtain density h (green)
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Errors of the approximations

Errors: |Pτ3.5
h − h| - green

|Pτ3.5
hU − hU | - red .

Integrals of the errors functions are 0.105 and 0.117,

correspondingly.
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