
Continuity and Uniform Continuity of Real Functions

There are two equivalent definitions of continuity of a function f : R → R:

(1) Cauchy (or ε − δ) definition: f is continuous at point x0 ∈ R ⇐⇒

∀ ε>0 ∃ δ>0 ∀ x∈R |x − x0| < δ =⇒ |f(x) − f(x0)| < ε .

(2) Heine (or sequential) definition: f is continuous at point x0 ∈ R ⇐⇒
for any sequence {xn} such that xn −→

n→∞
x0 we have f(xn) −→

n→∞
f(x0).

Theorem 1. Definitions (1) and (2) are equivalent.

Proof. (1) =⇒ (2) : Let {xn} be such that xn −→
n→∞

x0. We need to prove that

f(xn) −→
n→∞

f(x0), i.e.,

(∗) ∀ ε>0 ∃ N≥1 ∀ n≥N |f(xn) − f(x0)| < ε .

Let us fix an ε > 0. By (1), we can find a δ > 0 such that |x − x0| < δ =⇒
|f(x) − f(x0)| < ε. Since xn −→

n→∞
x0, we can find an N ≥ 1 such that for n ≥ N we

have |xn − x0| < δ and then |f(xn) − f(x0)| < ε. (∗) has been proved.

(2) =⇒ (1) : We will prove contrapositive statement ¬(1) =⇒ ¬(2). Let us assume

that (1) does not hold, i.e.,

∃ ε>0 ∀ δ>0 ∃ x∈R |x − x0| < δ and |f(x) − f(x0)| ≥ ε .

Let ε0 > 0 be the ε whose existence is claimed above. It says ”for any δ” so we will

use a sequence od δ’s. Let δn = 1/n > 0, n = 1, 2, . . . . For each δn we can find an xn

such that |xn − x0| < δn and |f(xn) − f(x0)| ≥ ε0. Thus, the sequence xn −→
n→∞

x0,

but f(xn) 6−→
n→∞

f(x0). We proved ¬(2). �

Example: We will prove that f(x) = x2 + 3 is continuous at x0 = 3. Note that

f(3) = 12.

Using definition (1): Let us fix an ε > 0. We have to find δ > 0 such that

|x − 3| < δ =⇒ |f(x) − 12| < ε. This means |x2 + 3 − 12| < ε or |x2 − 9| < ε or

(∗∗) |x− 3||x + 3| < ε .

We have |x − 3| < δ. To estimate |x + 3| (which is unbounded on real line) we make

first assumption on δ: Let δ < 1. Then, |x − 3| < δ is |x − 3| < 1 which implies

2 < x < 4. This, in turn implies |x + 3| < 7. Inequality (**) becomes δ · 7 < ε. We
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will satisfy it making second assumption on δ: Let δ < ε/7. We define

δ =
1

2
min{1, ε/7} .

This δ satisfies both assumptions. Above we proved that if these assumptions are

satisfied and |x − 3| < δ, then |f(x) − 12| < ε. This proves that f is continuous at

x0 = 3.

Using definition (2): Let {xn} be any sequence such that xn → 3 as n → ∞. Using

the theorems about sums and products of limits we obtain:

f(xn) = x2
n + 3 → 32 + 3 = 12 = f(3) .

We proved that f is continuous at x0 = 3.

Three ”Hard” Theorems about Continuous Functions

Theorem 2. Continuous Function on a Compact Interval is Bounded:

Let f : [a, b] → R be continuous on a bounded (compact) interval [a, b]. Then, f is

bounded, i.e., there exists an M > 0 such that |f(x)| ≤ M for all x ∈ [a, b].

Proof. Let us assume that function f is not bounded above, i.e., for any n = 1, 2, 3, . . .

we can find a point xn ∈ [a, b] such that f(xn) ≥ n. The sequence {xn} is bounded

so by Bolzano-Weierstrass theorem it contains a convergent subsequence xnk
→ x0,

as k → ∞. Then, x0 ∈ [a, b]. Since f is continuous we have (Heine definition)

f(xnk
) → f(x0) , k → ∞ .

On the other hand, we have

f(xnk
) ≥ nk , so f(xnk

) → +∞ , k → ∞ .

A contradiction. �

Theorem 3. Continuous Function on a Compact Interval attains its Ex-

tremal Values, the Maximum and the Minimum: Let f : [a, b] → R be con-

tinuous on a bounded (compact) interval [a, b]. Then, there exists a point x1 ∈ [a, b]

such that

f(x1) = m = inf
x∈[a,b]

f(x) ,
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and, there exists a point x2 ∈ [a, b] such that

f(x2) = M = sup
x∈[a,b]

f(x) .

This also means that m = minx∈[a,b] f(x) and M = maxx∈[a,b] f(x).

Proof. We will prove the existence of x1. Since m = infx∈[a,b] f(x) for any n =

1, 2, 3, . . . we can find a point xn ∈ [a, b] such that m ≤ f(xn) ≤ m + 1/n. The

sequence {xn} is bounded so by Bolzano-Weierstrass theorem it contains a convergent

subsequence xnk
→ x1, as k → ∞. Then, x1 ∈ [a, b]. Since f is continuous we have

(Heine definition)

f(xnk
) → f(x1) , k → ∞ .

We also have

m ≤ f(xnk
) ≤ m + 1/nk , so f(xnk

) → m , k → ∞ .

Thus,

f(x1) = m ,

and f attains its infimum on [a, b]. �

Theorem 4. Intermediate Value Theorem: Let f : [a, b] → R be continuous on

a bounded (compact) interval [a, b]. If f(a) < 0 and f(b) > 0, then there exist a point

c ∈ (a, b) such that f(c) = 0.

Proof. Let d = b − a. We will construct approximations of a point c by induction:

1st step: Consider the point t = (a + b)/2 (middle point between a and b).

If f(t) < 0, then define a1 = t, b1 = b. Note that b1 − a1 = d/2.

If f(t) > 0, then define a1 = a, b1 = t. Note that also in this case b1 − a1 = d/2.

2nd step: Consider the point t = (a1 + b1)/2 (middle point between a1 and b1).

If f(t) < 0, then define a2 = t, b2 = b1. Note that b2 − a2 = d/4.

If f(t) > 0, then define a2 = a1, b2 = t. Note that also in this case b2 − a2 = d/4.

Assume that we have points an < bn with f(an) < 0 < f(bn) and bn − an = d/2n.

(If at any time f(t) = 0, then we set c = t and stop the procedure.)

(n+1)st step: Consider the point t = (an + bn)/2 (middle point between an and

bn).

If f(t) < 0, then define an+1 = t, bn+1 = bn. Note that bn+1 − an+1 = d/2n+1 .
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If f(t) > 0, then define an+1 = an, bn+1 = t. Note that also in this case bn+1−an+1 =

d/2n+1.

This way we constructed two sequences: increasing {an} and decreasing {bn} with

bn − an = d/2n. Thus, they converge to the same limit, say c:

an → c , bn → c , n → ∞ .

Moreover, we have f(an) < 0 and f(bn) > 0 for all n. Since, f is continuous we have

f(an) → f(c) , f(bn) → f(c) , n → ∞ .

Thus, f(c) ≤ 0 and f(c) ≥ 0, which means that f(c) = 0. �

Two Definitions of Uniform Continuity

Again, there are two equivalent definitions of the uniform continuity of a function

f : A → R:

(1U) Cauchy (or ε − δ) definition: f is uniformly continuous on set A ⊂ R ⇐⇒

∀ ε>0 ∃ δ>0 ∀ x,y∈A |x − y| < δ =⇒ |f(x) − f(y)| < ε .

(2U) Heine (or sequential) definition: f is uniformly continuous on set A ⊂ R ⇐⇒
for any sequences {xn}, {yn} (contained in A) such that |xn − yn| −→

n→∞
0 we have

|f(xn) − f(yn)| −→
n→∞

0.

(We do not make any other assumptions on these sequences, in particular they do

not have to be convergent.)

Theorem 5. Definitions (1U) and (2U) are equivalent.

Proof. The proof is quite similar to the proof above.

(1U) =⇒ (2U) : Let {xn} and {yn} be such that |xn− yn| −→
n→∞

0. We need to prove

that |f(xn) − f(yn)| −→
n→∞

0, i.e.,

(∗U) ∀ ε>0 ∃ N≥1 ∀ n≥N |f(xn) − f(yn)| < ε .

Let us fix an ε > 0. By (1U), we can find a δ > 0 such that |xn − yn| < δ =⇒
|f(xn)−f(yn)| < ε. Since |xn−yn| −→

n→∞
0, we can find an N ≥ 1 such that for n ≥ N

we have |xn − yn| < δ and then |f(xn) − f(yn)| < ε. (∗U) has been proved.

(2U) =⇒ (1U) : We will prove contrapositive statement ¬(1U) =⇒ ¬(2U). Let us

assume that (1U) does not hold, i.e.,

∃ ε>0 ∀ δ>0 ∃ x,y∈A |x − y| < δ and |f(x) − f(y)| ≥ ε .
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Let ε0 > 0 be the ε whose existence is claimed above. It says ”for any δ” so we will

use a sequence od δ’s. Let δn = 1/n > 0, n = 1, 2, . . . . For each δn we can find an

xn, yn ∈ A such that |xn − yn| < δn = 1/n and |f(xn) − f(yn)| ≥ ε0. Thus, we have

|xn − yn| −→
n→∞

0, but |f(xn) − f(yn)| 6−→
n→∞

0. We proved ¬(2U). �

Main Theorems about Uniformly Continuous Functions

Theorem 6. If f satisfies Lipschitz condition on A,

|f(x) − f(y)| ≤ L|x − y| , x, y ∈ A ,

then f is uniformly continuous on A.

Proof. We use Cauchy definition (1U). Let us fix an ε > 0. Set δ = ε/L. If |x−y| < δ,

then

|f(x) − f(y)| ≤ L|x− y| < L · δ = ε .

�

Example Let f(x) = 1/x2014, x ∈ [1, +∞). We will show that f is uniformly

continuous on [1, +∞). We will show Lipschitz inequality and invoke Theorem 6. By

Mean Value Theorem we have

|f(x) − f(y)| = |f ′(c)||x− y| =

∣

∣

∣

∣

−2014

c2015

∣

∣

∣

∣

|x− y| ≤ 2014|x − y| ,

since c ≥ 1. So f satisfies Lipschitz inequality with L = 2014.

Theorem 7. If f is continuous on a closed bounded interval [a, b], then f is uniformly

continuous on [a, b].

Proof. The proof is immediate if we use Heine definition (2U): Assume that f is not

uniformly continuous on [a, b], i.e, There exist sequences {xn}, {yn} (contained in

[a, b]) such that |xn − yn| −→
n→∞

0 and |f(xn) − f(yn)| 6−→
n→∞

0.

Since |f(xn) − f(yn)| 6−→
n→∞

0 there is a subsequence of natural numbers {nk} such

that |f(xnk
) − f(ynk

)| ≥ η for some η > 0. Both sequences {xnk
} and {ynk

} are

bounded (contained in [a, b]) so we can find a common convergent subsequences {xnkj
}

and {ynkj
}. Since |xn−yn| −→

n→∞
0, they both converge to the same point, say c ∈ [a, b],

i.e., xnkj
−→
j→∞

c and ynkj
−→
j→∞

c. Since f is continuous we have f(xnkj
) −→

j→∞
f(c) and

f(ynkj
) −→

j→∞
f(c) but this contradicts |f(xnk

) − f(ynk
)| ≥ η. �
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Example: Consider f(x) =
√

x for x ∈ [0, 1]. We know that f is continuous on

[0, 1] (it follows by inequality
√

x − √
y ≤ √

x − y for x ≥ y). By Theorem 7 f is

uniformly continuous on [0, 1]. Note that f DOES NOT satisfy Lipschitz inequality on

[0, 1]. For the proof: Assume that it does. Then, in particular, there exist a constant

L such that
√

x − 0 ≤ L(x − 0) or 1√
x
≤ L for all x ∈ [0, 1] which is impossible.

Example: Consider a function f(x) = x cos(x6)
x2+1

, x ∈ R. We will show that f is

uniformly continuous on R. We will use Cauchy definition (1U) and Theorem 7. Let

us fix ε > 0. Since cos is bounded we have limx→±∞ f(x) = 0, i.e., there exists

an M > 0 such that for any x ∈ (M, +∞) we have |f(x)| < ε/2 and also for any

x ∈ (−∞,−M) we have |f(x)| < ε/2. This means that

(♥) for any x, y ∈ (M, +∞) we have |f(x) − f(y)| < ε ,

and also

(♣) for any x, y ∈ (−∞,−M) we have |f(x)− f(y)| < ε .

Consider f on the interval I = [−M − 3, M + 3]. f is continuous on I (as a

combination of continuous functions) so by Theorem 7 f is uniformly continuous on

I . This means that for our ε we can find a δ > 0 such that

(♦) for any x, y ∈ I, |x− y| < δ implies |f(x) − f(y)| < ε .

We can assume that δ < 3. If it is not, then we make it smaller and it will also work.

We will show that this δ works on the whole R. Let |x − y| < δ. Assuming x ≤ y,

there are five possibilities :

(a) x, y ∈ (−∞,−M). Then, |f(x) − f(y)| < ε by (♣);

(b) x ∈ (−∞,−M), y outside. Then, since δ < 3 both x, y ∈ [−M − 3, M + 3] and

|f(x) − f(y)| < ε by (♦);

(c) x, y ∈ [−M, M ]. Then, both x, y ∈ [−M − 3, M + 3] and |f(x) − f(y)| < ε by

(♦);

(d) y ∈ (M, +∞), x outside. Then, since δ < 3 both x, y ∈ [−M − 3, M + 3] and

|f(x) − f(y)| < ε by (♦);

(e) x, y ∈ (M, +∞). Then, |f(x) − f(y)| < ε by (♥).

We proved that f is uniformly continuous on R. Note that

f ′(x) =
(cos x6 − 6x6 sinx6)(x2 + 1) − 2x2 cosx6

(x2 + 1)2
,
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is unbounded on R so f does not satisfy Lipschitz condition, i. e., Mean Value theorem

method would not work to prove uniform continuity of this function.

Theorem 8. If f is uniformly continuous on A and {xn} is a Cauchy sequence

contained in A, then the sequence {f(xn)} is also Cauchy.

Proof. We want to prove

∀ ε>0 ∃ N≥1 ∀ n,m≥N |f(xn) − f(xm)| < ε .

Let us fix an ε > 0. Since f is uniformly continuous, for this ε we can find a δ > 0

such that |x − y| < δ implies |f(x) − f(y)| < ε. Since {xn} is Cauchy, there exists

an N ≥ 1 such that for any n, m ≥ N we have |xn − xm| < δ. We see that this N

works also for the sequence {f(xn)} and ε: if n, m ≥ N , then |xn − xm| < δ and then

|f(xn) − f(xm)| < ε. �

Theorem 8 can be used to show that a function IS NOT uniformly continuous.

Example: Show that f(x) = 1/x2014 is not uniformly continuous on (0, 1]. We

take a sequence xn = 1/n contained in (0, 1]. It is Cauchy since it converges to 0.

The sequence f(xn) = n2014 diverges to +∞ so it is not Cauchy. By Theorem 8 f is

not uniformly continuous on (0, 1].

Another method to prove that a function is not uniformly continuous is just to use

directly the definition. It often requires some ingenuity.

Example: Show that f(x) = sinx2 is not uniformly continuous on [0, +∞). Look-

ing for a hint we calculate f ′(x) = 2x cos x2 and see that the slope of f will be

arbitrary large close to points where cos x2 = 1 or x2 = 2nπ or x =
√

2nπ. Let us

define two sequences xn =
√

2nπ and yn =
√

2nπ + a for some small a > 0. We have

|xn − yn| = |
√

2nπ −
√

2nπ + a| =

∣

∣

∣

∣

2nπ − 2nπ − a√
2nπ +

√
2nπ + a

∣

∣

∣

∣

=

∣

∣

∣

∣

a√
2nπ +

√
2nπ + a

∣

∣

∣

∣

→ 0 ,

as n → +∞. On the other hand, we have

|f(xn) − f(yn)| = | sin(2nπ) − sin(2nπ + a)| = sin a > 0 .

By Heine definition (2U), f is not uniformly continuous on [0, +∞).

Example: Show that f(x) = x16 is not uniformly continuous on [0, +∞). We will

use Cauchy definition (1U). Its negation is:

∃ ε>0 ∀ δ>0 ∃ x,y∈A |x − y| < δ and |f(x) − f(y)| ≥ ε .
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Let us consider points x = z and y = z + δ/2. Then, always |x − y| < δ. We have

|f(y) − f(x)| = (z + δ/2)16 − z16 > (z + δ/2)z15 − z16 = z15δ/2 .

Set ε = 1. For arbitrary δ > 0 we can find z such that |f(y) − f(x)| > 1. We proved

that f is not uniformly continuous on [0, +∞).

Theorem 9. Let f : [a, b] → R. If for any Cauchy sequence {xn} ⊂ [a, b] the sequence

f(xn) is also Cauchy, then f is uniformly continuous on [a, b].

Proof. We will prove this using contrapositive proof. Let us assume that f is NOT uni-

formly continuous on [a, b]. By definition (2U) we can find an ε > 0 and two sequences

{xn}, {yn} ⊂ [a, b] such that xn − yn → 0 and |f(xn) − f(yn)| ≥ ε. Sequence {xn}
is bounded so by Bolzano-Weierstrass theorem it contains a convergent subsequence

xnk
→ x∗. Since, |xnk

− ynk
| → 0 the subsequence ynk

also converges to x∗. Thus,

the sequence {xn1
, yn1

, xn2
, yn2

, xn3
, yn3

, . . . , xnk
, ynk

, . . .} also converges to x∗. As a

convergent sequence it is Cauchy. At the same time we have |f(xnk
)−f(ynk

| ≥ ε for all

k ≥ 1 so the sequence {f(xn1
), f(yn1

), f(xn2
), f(yn2

), f(xn3
), f(yn3

), . . . , f(xnk
), f(ynk

), . . .}
is NOT Cauchy. The theorem is proved. �

Theorem 10. Let f : [a, b] → R. If f is invertible, then the inverse function is also

continuous on its domain.

We will present two proofs. The first one would use the order of the real line, the

second one will not. It will depend on Bolzano-Weierstrass theorem.

Proof. We will prove the theorem by contradiction. Let us assume that f is strictly

increasing.(Being invertible f must be either strictly increasing or strictly decreasing.

Deacreasing case is similar). Then, f−1 is also strictly increasing. Let us assume that

f−1 is NOT continuous at a point y0 = f(x0). We know that a monotonic function

has one sided limits at any point. We will consider three cases:

(1) x0 = a: Then one sided limit f−1(y+
0 ) = limy→y+

0
f−1(y) exist. Since f−1 is not

continuous at y0 we have x0 = f−1(y0) < f−1(y+
0 ). This means that the function f is

not defined on the interval (a, f−1(y+
0 )). Drawing a graph would make this evident.

(2) a < x0 < b: Then both one sided limits f−1(y−
0 ) = limy→y−

0
f−1(y) and

f−1(y+
0 ) = limy→y+

0
f−1(y) exist and f−1(y−

0 ) < f−1(y+
0 ). The function f is not

defined on the interval (f−1(y−
0 ), f−1(y+

0 )). See Figure 1.
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Figure 1. Graph for case (2) of Theorem 10

(3) x0 = b: Then one sided limit f−1(y−
0 ) = limy→y−

0
f−1(y) exists and f−1(y−

0 ) <

f−1(y0) = x0. The function f is not defined on the interval (f−1(y−
0 ), b).

The theorem is proved. �

Proof. Again, let us assume that f−1 is not continuous at y0 = f(x0). This means

that we can find a sequence yn → y0 such that f−1(yn) 6→ f−1(y0) = x0. Let

xn = f−1(yn), n ≥ 1. The sequence {xn} is bounded and does not converge to

x0 so by Bolzano-Weierstrass theorem and some additional reasoning it contains a

convergent subsequence {xnk
} convergent to some x∗ 6= x0. Since f is invertible

we have f(x∗) 6= f(x0) = y0. Since f is continuous f(xnk
) → f(x∗). By initial

assumption f(xnk
) = ynk

→ y0 = f(x0) 6= f(x∗). This is a contradiction and the

theorem is proved. �


