The sequence sin(n)

Marco Bertola, Dep. Mathematics and Statistics, Concordia University Centre de recherches mathématiques (CRM), UdeM.

October 30, 2009

<ロ> <同> <同> < 同> < 同> < 三> < 三>

We consider the sequence

$$x_n := \sin(n), \quad n \in \mathbb{N} \tag{1}$$

The sequence is bounded $-1 \leq x_n \leq 1$,

Theorem

For any $L \in [-1, 1]$ there is a subsequence $x_{n_k} = \sin(n_k)$ that converges to *L*.

We will use the following facts without proof

Fact

- The function $\sin : \mathbb{R} \to [-1, 1]$ is periodic of period 2π , continuous and surjective.
- The number π is irrational.

We recall that

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is **continuous** if for any sequence $x_n \to \alpha$ we have $f(x_n) \to f(\alpha)$.

Since $\sin(z)$ is surjective and periodic, for any $L \in [-1, 1]$ there is a unique $\alpha \in [0, 2\pi)$ such that $\sin(\alpha) = L$. In order to prove the theorem it is sufficient to show that there is a sequence of pairs of integers n_k, m_k such that

$$\lim_{k \to \infty} |n_k - 2\pi m_k - \alpha| = 0 \tag{2}$$

Indeed if this is the case we have $n_k - 2\pi m_k \rightarrow \alpha$ and hence

$$\sin(n_k - 2\pi m_k) \stackrel{\text{by periodicity}}{=} \sin(n_k) \longrightarrow \sin(\alpha) = L$$
(3)

We will prove that the numbers of the form $n - 2\pi m$, $m, n \in \mathbb{N}$ are dense in $[0, 2\pi)$.

The main lemma

Lemma (Main lemma)

We have $\inf_{n,m\in\mathbb{N}} |n-2\pi m| = 0$.

Proof.

Denote by $\langle x \rangle = x - \lfloor x \rfloor$ the **fractional part** of the real number *x*, which is a number in [0, 1). Then I claim that

$$\forall \epsilon > 0 \ \exists n_0, m_0 \in \mathbb{N} : \ |n_0 - 2\pi m_0| < \epsilon.$$
(4)

Once this is proved, the lemma also will follow from the properties of inf. To prove the claim consider all the numbers $\langle 2\pi a \rangle$, $a \in \mathbb{N}$: they all belong to [0,1) and since they are infinitely many, by the Pigeonhole principle there are two (distinct!) $a, b \in \mathbb{N}$ which are less than ϵ apart from each other:

$$\epsilon > | < 2\pi a > - < 2\pi b > | = |2\pi(a-b) - \lfloor 2\pi a \rfloor + \lfloor 2\pi b \rfloor|$$
(5)

We can assume a < b (if not, just rename the numbers) and hence we have the claim with $n_0 = \lfloor 2\pi a \rfloor - \lfloor 2\pi b \rfloor$ and m = b - a. The lemma now follows from the property of the inf of a set (0 is a lower bound for our set and also an accumulation point!). \Box

.

Remark

It is important to note that the number $n_0 - 2\pi m_0$ in (4) cannot be zero because 2π is irrational.

Lemma (Second Lemma)

The set $K = \{n - 2\pi m : n, m \in \mathbb{N}\}$ is dense in $[0, 2\pi)$.

Proof.

Let $\alpha \in [0, 2\pi)$ and let $\varepsilon > 0$ be arbitrary. From (4) in the Main Lemma we have that there exist $n_0, m_0 \in \mathbb{N}$ such that

$$-\epsilon < \overbrace{n_0 - 2\pi m_0}^{=:Q} < \epsilon \tag{6}$$

At this point there are two possibilities according to $\,\epsilon>Q>0$ or $-\epsilon< Q<0.$ If Q>0 we consider the integer k

$$k = \left\lfloor \frac{\alpha}{Q} \right\rfloor \tag{7}$$

Then

$$\frac{\alpha}{Q} - k < 1 \implies \alpha - kQ = \alpha - (kn_0 - 2\pi km_0) < Q < \epsilon$$
(8)

[....continues...]

)) Q (~ 5/7

cont'd.

If $-\epsilon < Q < 0$ we set instead

$$k = \left\lfloor \frac{\alpha - 2\pi}{Q} \right\rfloor > 0 \tag{9}$$

and then

$$0 < \frac{\alpha - 2\pi}{Q} - k < 1 \implies Q < \alpha - 2\pi - kQ = \alpha - (kn_0 - 2\pi(km_0 - 1)) < 0$$
 (10)

In either cases (Q < 0 or Q > 0) we have found an element of K (in the form $kn_0 - 2\pi m_0 \text{ or } kn_0 - 2\pi m_0 + 2\pi$) that lie in the ϵ -neighborhood of α . Since $\epsilon > 0$ was chosen arbitrarily, this proves that K is dense in $[0, 2\pi)$.

Proof of the Theorem.

Since $K = \{n - 2\pi m : n, m \in \mathbb{N}\}$ is dense in $[0, 2\pi)$ (by the Second Lemma) then for any $\alpha \in [0, 2\pi)$ we can find a sequence $x_k = n_k - 2\pi m_k$ of numbers in K that converges to α . Thus

$$\sin(x_k) = \sin(n_k - 2\pi m_k) \longrightarrow \sin(\alpha).$$
(11)

Since sin is surjective on [-1,1] and 2π -periodic, for any $L \in [-1,1]$ there is a (unique) $\alpha \in [0,2\pi)$ such that $\sin(\alpha) = L$ and the proof is complete.