The sequence $\sin (n)$

Marco Bertola, Dep. Mathematics and Statistics, Concordia University Centre de recherches mathématiques (CRM), UdeM.

October 30, 2009

We consider the sequence

$$
\begin{equation*}
x_{n}:=\sin (n), \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

The sequence is bounded $-1 \leqslant x_{n} \leqslant 1$,

Theorem

For any $L \in[-1,1]$ there is a subsequence $x_{n_{k}}=\sin \left(n_{k}\right)$ that converges to L.
We will use the following facts without proof

Fact

- The function $\sin : \mathbb{R} \rightarrow[-1,1]$ is periodic of period 2π, continuous and surjective.
- The number π is irrational.

We recall that

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if for any sequence $x_{n} \rightarrow \alpha$ we have $f\left(x_{n}\right) \rightarrow f(\boldsymbol{\alpha})$.

Preparatory remarks

Since $\sin (z)$ is surjective and periodic, for any $L \in[-1,1]$ there is a unique $\alpha \in[0,2 \pi)$ such that $\sin (\alpha)=L$. In order to prove the theorem it is sufficient to show that there is a sequence of pairs of integers n_{k}, m_{k} such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|n_{k}-2 \pi m_{k}-\alpha\right|=0 \tag{2}
\end{equation*}
$$

Indeed if this is the case we have $n_{k}-2 \pi m_{k} \rightarrow \alpha$ and hence

$$
\begin{equation*}
\sin \left(n_{k}-2 \pi m_{k}\right) \stackrel{\text { by periodicity }}{=} \sin \left(n_{k}\right) \longrightarrow \sin (\alpha)=L \tag{3}
\end{equation*}
$$

We will prove that the numbers of the form $n-2 \pi m, m, n \in \mathbb{N}$ are dense in $[0,2 \pi)$.

The main lemma

Lemma (Main lemma)

We have $\inf _{n, m \in \mathbb{N}}|n-2 \pi m|=0$.

Proof.

Denote by $\langle x\rangle=x-\lfloor x\rfloor$ the fractional part of the real number x, which is a number in $[0,1)$. Then I claim that

$$
\begin{equation*}
\forall \epsilon>0 \quad \exists n_{0}, m_{0} \in \mathbb{N}: \quad\left|n_{0}-2 \pi m_{0}\right|<\epsilon . \tag{4}
\end{equation*}
$$

Once this is proved, the lemma also will follow from the properties of inf. To prove the claim consider all the numbers $\langle 2 \pi a\rangle, a \in \mathbb{N}$: they all belong to $[0,1)$ and since they are infinitely many, by the Pigeonhole principle there are two (distinct!) $a, b \in \mathbb{N}$ which are less than ϵ apart from each other:

$$
\begin{equation*}
\epsilon>|<2 \pi a>-<2 \pi b>|=|2 \pi(a-b)-\lfloor 2 \pi a\rfloor+\lfloor 2 \pi b\rfloor| \tag{5}
\end{equation*}
$$

We can assume $a<b$ (if not, just rename the numbers) and hence we have the claim with $n_{0}=\lfloor 2 \pi a\rfloor-\lfloor 2 \pi b\rfloor$ and $m=b-a$. The lemma now follows from the property of the inf of a set (0 is a lower bound for our set and also an accumulation point!).

Remark

It is important to note that the number $n_{0}-2 \pi m_{0}$ in (4) cannot be zero because 2π is irrational.

Lemma (Second Lemma)

The set $K=\{n-2 \pi m: n, m \in \mathbb{N}\}$ is dense in $[0,2 \pi)$.

Proof.

Let $\alpha \in[0,2 \pi$) and let $\epsilon>0$ be arbitrary. From (4) in the Main Lemma we have that there exist $n_{0}, m_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
-\epsilon<\overbrace{n_{0}-2 \pi m_{0}}^{=: Q}<\epsilon \tag{6}
\end{equation*}
$$

At this point there are two possibilities according to $\epsilon>Q>0$ or $-\epsilon<Q<0$. If $Q>0$ we consider the integer k

$$
\begin{equation*}
k=\left\lfloor\frac{\alpha}{Q}\right\rfloor \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\alpha}{Q}-k<1 \Rightarrow \alpha-k Q=\alpha-\left(k n_{0}-2 \pi k m_{0}\right)<Q<\epsilon \tag{8}
\end{equation*}
$$

[....continues...]

cont'd.

If $-\epsilon<Q<0$ we set instead

$$
\begin{equation*}
k=\left\lfloor\frac{\alpha-2 \pi}{Q}\right\rfloor>0 \tag{9}
\end{equation*}
$$

and then

$$
\begin{equation*}
0<\frac{\alpha-2 \pi}{Q}-k<1 \Rightarrow Q<\alpha-2 \pi-k Q=\alpha-\left(k n_{0}-2 \pi\left(k m_{0}-1\right)\right)<0 \tag{10}
\end{equation*}
$$

In either cases $(Q<0$ or $Q>0)$ we have found an element of K (in the form $k n_{0}-2 \pi m_{0}$ or $k n_{0}-2 \pi m_{0}+2 \pi$) that lie in the ϵ-neighborhood of α. Since $\epsilon>0$ was chosen arbitrarily, this proves that K is dense in $[0,2 \pi)$.

Proof of the Theorem.

Since $K=\{n-2 \pi m: n, m \in \mathbb{N}\}$ is dense in $[0,2 \pi$) (by the Second Lemma) then for any $\alpha \in[0,2 \pi)$ we can find a sequence $x_{k}=n_{k}-2 \pi m_{k}$ of numbers in K that converges to α. Thus

$$
\begin{equation*}
\sin \left(x_{k}\right)=\sin \left(n_{k}-2 \pi m_{k}\right) \longrightarrow \sin (\alpha) . \tag{11}
\end{equation*}
$$

Since sin is surjective on $[-1,1]$ and 2π-periodic, for any $L \in[-1,1]$ there is a (unique) $\alpha \in[0,2 \pi)$ such that $\sin (\alpha)=L$ and the proof is complete.

