
Cardinality I

Definition 1.1

Two sets X,Y are sait to have the same cardinality if there exists a bijection ϕ : X Ñ Y . In this case we write
CardpXq “ CardpYq.

Exercise 1

Show that having the same cardinality is an equivalence relation.

Definition 1.2

The subsets r1 : ns “ t1, 2, . . . nu of N are called "initial segments". We say that they have cardinality n, finite.
A set X has finite cardinality n if there is n P N for which CardpXq “ Cardpr1 : nsq. The empty set has zero
cardinality. X is infinite (infinite cardinality) if it is not finite.

Proposition 1.1 (Exercise)

1 If A is (in)finite and CardpAq “ CardpBq then B is (in)finite;
2 If A is finite and B Ă A then B is finite;
3 If B is infinite and B Ă A then A is infinite;

Definition 1.3

A sequence with values in a set X is a function f : NÑ X. The notation is f pnq “ xn and pxnqnPN.
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Proposition 1.2

The set X is infinite if and only if there is an injective map φ : X Ñ U where U is a proper subset of X.

Proof. In class. �

Proposition 1.3 (Exercise)

1 If A is finite and there is φ : A Ñ B, surjective, then B is finite.
2 If A is infinite and there is φ : A Ñ B, injective, then B is infinite.

Definition 1.4

A set X is countable if CardpXq “ CardpNq, i.e. whenever there is a bijective sequence. It is uncountable if it
is infinite and CardpXq ‰ CardpNq.
On occasion the term at most countable means (finite or countable).

Proposition 1.4

1 Let CardpAq “ CardpBq. A is (un)countable if and only if B is (un)countable;
2 if A is countable and B Ă A then B is at most countable;
3 if B is uncountable and B Ă A then A is uncountable.

Proof. We prove only the second point, the other being left as exercises. If B is finite, there is nothing to prove.
Suppose B is infinite. Since the elements of A can be enumerated panqnPN then the elements of B can be
obtained by induction as follows; B “ tan1 , an2 , . . . , u where nj ă nj`1. The map ψpjq “ bj “ anj is the
required bijection. �
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Similar to Prop. 1.4 is the following

Proposition 1.5

1 Suppose f : A Ñ B is injective; if B is countable, then A is countable. (Contrapositive: if A is
uncountable, then B is uncountable).

2 Suppose f : A Ñ B is surjective; if B is uncountable then A is uncountable. (Contrapositive: if A is
countable, then B is countable).

Proof. [1] Since f is injective, then f : A Ñ Ranpf q is a bijection; we can construct a surjective partial inverse
h : Ranpf q Ñ A as follows. For any b P Ranpf q, define hpbq “ a where a is the unique element in
a P f´1ptbuq. h is injective. Thus, A has the same cardinality as Ranpf q; since Ranpf q is a subset of the
countable set B, then (by Prop. 1.4p2q) Ranpf q is countable and thus so is A.
[2] Since f is surjective, there is a partial inverse h : B Ñ A as follows; for each b P B define hpbq “ a where a
is any chosen (once and for all) element a P f´1ptbuq (the Axiom of Choice guarantees that it is possible to do
so). Then h is injective and it gives a bijection between B and Ranphq Ă A. If B is uncountable, then also
Ranphq is uncountable and thus also A by Prop. 1.4p3q. �
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Lemma 1

The set N ˆ N is countable.

Proof The map φpn,mq “ 2n3m is injective by the unique factorization theorem. Hence N ˆ N has the
cardinality of a subset of N. Thus N ˆ N is countable by Prop. 1.4p2q (here A “ N ˆ N and B “ N). �

Corollary 1.1

A finite Cartesian product of countable sets is countable.

Proof. Let us show that Nr is countable, where r is a fixed finite integer.
Let p1, . . . , pr be the first r prime numbers P t2, 3, 5, 7, 11, 13, . . . u. Then the map Φ : Nr Ñ N

Φpn1, . . . , nr q “ pn1
1 ¨ ¨ ¨ pnr

r . (1)

is injective. Then we argue as in the lemma that Nr is countable. The general statement about countable sets is
left as exercise. �

Remark 1.1

The above corollary is not true if we lift the assumption that the Cartesian product is finite.

Proposition 1.6

The countable union of (at most)countable sets is (at most) countable.

Proof. We construct a surjective map Φ : N ˆ NÑ
Ť

λPΛ Aλ so that we can use the contrapositive form of
Prop. 1.4p2q. Let pλnqnPN be a surjective sequence in Λ. For each λn let gn : NÑ Aλn be a surjective
sequence with values in Aλn . Then Φpn, jq “ gnpjq is the required surjection. �

(Give informal proof with zig-zag picture for clarity).
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Theorem 1.1 (Schröder–Bernstein)

Suppose A,B are sets and there are injective maps f : A Ñ B and g : B Ñ A. Then CardpAq “ CardpBq.

We skip the proof (can be found in Larson). It is worth remarking that the proof is constructive.

Definition 1.5

We say that CardpAq ď CardpBq if there is a injective map φ : A Ñ B. We say that CardpAq ě CardpBq if
there is a surjective map φ : A Ñ B.

Remark 1.2

The Schröder–Bernstein theorem is then saying that
pCardpAq ď CardpBqq ^ pCardpBq ď CardpAqq ñ pCardpAq “ CardpBqq.

Definition 1.6

The power set of a set A is the set of all subsets of A and it is denoted by PpAq or 2A.

Remark 1.3

The notation 2A is a convention based on the following observation; if CardpAq “ n (finite) then the number of
elements of PpAq is 2CardpAq. This is seen by assigning a word of n bits to each subset S of A, where a 1 in the
k-th place indicates that the k-th element belongs to S.
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Proposition 1.7

The cardinality of the power set PpAq is strictly greater than the cardinality of A.

Proof. If A “ H then PpAq “ tHu and thus CardpAq “ 0, CardpPpAqq “ 1.
Let A be not empty. Then note that the map Sing : A Ñ PpAq that associates the singletons

Singpaq “ tau P PpAq (2)

is clearly an injection. Thus CardpAq ď CardpPpAqq . We need to show that there is no possibility of a
bijection. We proceed by contradiction; suppose that there is a bijection

Φ : A Ñ PpAq. (3)

Let T “ ta P A : a R Φpaqu. Since Φ is a bijection and T P PpAq, there must be a b P A such that
T “ Φpbq.
We now reach a contradiction; either b P T or not. if b P T then b R Φpbq. But Φpbq “ T and hence
pb P Tq ^ pb R Tq. If b R T then b P Φpbq. But Φpbq “ T and hence the same contradiction arises.
Thus there is no bijection. �

Remark 1.4

It is worth noticing that this proof is a genuine proof by contradiction; we need to prove α “ ”A is a set” implies
β “ "There is no bijection between A and PpAq". We have assumed α ^  β and we reached the statement
γ ^  γ, where γ “ pb P Tq. The statement γ is a statement that is not just a reformulation of α or β.
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Example 1.1

1 Q is countable;
2 Z is countable;
3 The set of polynomials with integer (or rational) coefficients is countable.
4 The set of points in Rn with rational coordinates is countable.
5 PpNq is uncountable. This set is bijectively equivalent to the set of infinite binary sequences, by the

remark 1.3.

We now address the issue of finding an uncountable set; for this purpose we will assume a working knowledge of
the real numbers R.

Proposition 1.8

The interval J “ p0, 1q Ă R is uncountable (and hence also R itself is).

Proof. The proof is important also on a general conceptual level because it uses “Cantor’s diagonal trick”. We
proceed by contradiction. Suppose J is countable. Assume that pxnqnPN is a surjective and injective sequence of
real numbers. We write the numbers in their decimal expansion

xn “ 0, dpnq1 dpnq2 . . . (4)

where dpnqj is the j-th digit in the decimal expansion of the n-th number. We now construct a number that does
not belong to the list of existing numbers, thus proving the contradiction (since the sequence was supposed
surjective). Let x0 be the number such that the j-th digit is different from 9, dpjqj . Thus x0 ‰ xj for all j P N.

The exclusion of 9 prevents infinite expansion of 9, which is equal to another number with a terminating expansion
(i.e. with a tail of zeroes). �
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Corollary 1.2

The countable Cartesian product of set containing at least two elements is uncountable.

The proof is an exercise using a similar incarnation of the diagonal trick.

Remark 1.5

The countable Cartesian product of sets An is simply the set of sequences pa1, a2, . . . , q where each aj P Aj .
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