Cardinality I

Definition 1.1

Two sets X, Y are sait to have the same cardinality if there exists a bijection $\varphi: X \rightarrow Y$. In this case we write $\operatorname{Card}(X)=\operatorname{Card}(Y)$.

Exercise 1

Show that having the same cardinality is an equivalence relation.

Definition 1.2

The subsets $[1: n]=\{1,2, \ldots n\}$ of \mathbb{N} are called "initial segments". We say that they have cardinality n, finite. A set X has finite cardinality n if there is $n \in \mathbb{N}$ for which $\operatorname{Card}(X)=\operatorname{Card}([1: n])$. The empty set has zero cardinality. X is infinite (infinite cardinality) if it is not finite.

Proposition 1.1 (Exercise)

(1) If A is (in)finite and $\operatorname{Card}(A)=\operatorname{Card}(B)$ then B is (in)finite;
(2) If A is finite and $B \subset A$ then B is finite;
(3) If B is infinite and $B \subset A$ then A is infinite;

Definition 1.3

A sequence with values in a set X is a function $f: \mathbb{N} \rightarrow X$. The notation is $f(n)=x_{n}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$.

Proposition 1.2

The set X is infinite if and only if there is an injective map $\phi: X \rightarrow U$ where U is a proper subset of X.
Proof. In class.

Proposition 1.3 (Exercise)

(1) If A is finite and there is $\phi: A \rightarrow B$, surjective, then B is finite.
(2) If A is infinite and there is $\phi: A \rightarrow B$, injective, then B is infinite.

Definition 1.4

A set X is countable if $\operatorname{Card}(X)=\operatorname{Card}(\mathbb{N})$, i.e. whenever there is a bijective sequence. It is uncountable if it is infinite and $\operatorname{Card}(X) \neq \operatorname{Card}(\mathbb{N})$.
On occasion the term at most countable means (finite or countable).

Proposition 1.4

Let $\operatorname{Card}(A)=\operatorname{Card}(B) . A$ is (un)countable if and only if B is (un)countable;
(2) if A is countable and $B \subset A$ then B is at most countable;
(3) if B is uncountable and $B \subset A$ then A is uncountable.

Proof. We prove only the second point, the other being left as exercises. If B is finite, there is nothing to prove. Suppose B is infinite. Since the elements of A can be enumerated $\left(a_{n}\right)_{n \in \mathbb{N}}$ then the elements of B can be obtained by induction as follows; $B=\left\{a_{n_{1}}, a_{n_{2}}, \ldots,\right\}$ where $n_{j}<n_{j+1}$. The map $\psi(j)=b_{j}=a_{n_{j}}$ is the required bijection.

Proposition 1.5

(1) Suppose $f: A \rightarrow B$ is injective; if B is countable, then A is countable. (Contrapositive: if A is uncountable, then B is uncountable).
(2) Suppose $f: A \rightarrow B$ is surjective; if B is uncountable then A is uncountable. (Contrapositive: if A is countable, then B is countable).

Proof. [1] Since f is injective, then $f: A \rightarrow \operatorname{Ran}(f)$ is a bijection; we can construct a surjective partial inverse $h: \operatorname{Ran}(f) \rightarrow A$ as follows. For any $b \in \operatorname{Ran}(f)$, define $h(b)=a$ where a is the unique element in $a \in f^{-1}(\{b\}) . h$ is injective. Thus, A has the same cardinality as $\operatorname{Ran}(f)$; since $\operatorname{Ran}(f)$ is a subset of the countable set B, then (by Prop. $\left.1.4_{(2)}\right) \operatorname{Ran}(f)$ is countable and thus so is A.
[2] Since f is surjective, there is a partial inverse $h: B \rightarrow A$ as follows; for each $b \in B$ define $h(b)=a$ where a is any chosen (once and for all) element $a \in f^{-1}(\{b\})$ (the Axiom of Choice guarantees that it is possible to do so). Then h is injective and it gives a bijection between B and $\operatorname{Ran}(h) \subset A$. If B is uncountable, then also $\operatorname{Ran}(h)$ is uncountable and thus also A by Prop. 1.4(3).

Lemma 1

The set $\mathbb{N} \times \mathbb{N}$ is countable.

Proof The map $\phi(n, m)=2^{n} 3^{m}$ is injective by the unique factorization theorem. Hence $\mathbb{N} \times \mathbb{N}$ has the cardinality of a subset of \mathbb{N}. Thus $\mathbb{N} \times \mathbb{N}$ is countable by Prop. $1.4_{(2)}$ (here $A=\mathbb{N} \times \mathbb{N}$ and $B=\mathbb{N}$).

Corollary 1.1

A finite Cartesian product of countable sets is countable.
Proof. Let us show that \mathbb{N}^{r} is countable, where r is a fixed finite integer.
Let p_{1}, \ldots, p_{r} be the first r prime numbers $\in\{2,3,5,7,11,13, \ldots\}$. Then the map $\Phi: \mathbb{N}^{r} \rightarrow \mathbb{N}$

$$
\begin{equation*}
\Phi\left(n_{1}, \ldots, n_{r}\right)=p_{1}^{n_{1}} \cdots p_{r}^{n_{r}} \tag{1}
\end{equation*}
$$

is injective. Then we argue as in the lemma that \mathbb{N}^{r} is countable. The general statement about countable sets is left as exercise.

Remark 1.1

The above corollary is MOt true if we lift the assumption that the Cartesian product is finite.

Proposition 1.6

The countable union of (at most)countable sets is (at most) countable.
Proof. We construct a surjective map $\Phi: \mathbb{N} \times \mathbb{N} \rightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda}$ so that we can use the contrapositive form of Prop. $1.4_{(2)}$. Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a surjective sequence in Λ. For each λ_{n} let $g_{n}: \mathbb{N} \rightarrow A_{\lambda_{n}}$ be a surjective sequence with values in $A_{\lambda_{n}}$. Then $\Phi(n, j)=g_{n}(j)$ is the required surjection.
(Give informal proof with zig-zag picture for clarity).

Theorem 1.1 (Schröder-Bernstein)

Suppose A, B are sets and there are injective maps $f: A \rightarrow B$ and $g: B \rightarrow A$. Then $\operatorname{Card}(A)=\operatorname{Card}(B)$.

We skip the proof (can be found in Larson). It is worth remarking that the proof is constructive.

Definition 1.5

We say that $\operatorname{Card}(A) \leqslant \operatorname{Card}(B)$ if there is a injective map $\phi: A \rightarrow B$. We say that $\operatorname{Card}(A) \geqslant \operatorname{Card}(B)$ if there is a surjective map $\phi: A \rightarrow B$.

Remark 1.2

The Schröder-Bernstein theorem is then saying that
$(\operatorname{Card}(A) \leqslant \operatorname{Card}(B)) \wedge(\operatorname{Card}(B) \leqslant \operatorname{Card}(A)) \Rightarrow(\operatorname{Card}(A)=\operatorname{Card}(B))$.

Definition 1.6

The power set of a set A is the set of all subsets of A and it is denoted by $\mathcal{P}(A)$ or 2^{A}.

Remark 1.3

The notation 2^{A} is a convention based on the following observation; if $\operatorname{Card}(A)=n$ (finite) then the number of elements of $\mathcal{P}(A)$ is $2^{\operatorname{Card}(A)}$. This is seen by assigning a word of n bits to each subset S of A, where a 1 in the k-th place indicates that the k-th element belongs to S.

Proposition 1.7

The cardinality of the power set $\mathcal{P}(A)$ is strictly greater than the cardinality of A.
Proof. If $A=\varnothing$ then $\mathcal{P}(A)=\{\varnothing\}$ and thus $\operatorname{Card}(A)=0, \operatorname{Card}(\mathcal{P}(A))=1$.
Let A be not empty. Then note that the map Sing : $A \rightarrow \mathcal{P}(A)$ that associates the singletons

$$
\begin{equation*}
\operatorname{Sing}(a)=\{a\} \in \mathcal{P}(A) \tag{2}
\end{equation*}
$$

is clearly an injection. Thus $\operatorname{Card}(A) \leqslant \operatorname{Card}(\mathcal{P}(A))$. We need to show that there is no possibility of a bijection. We proceed by contradiction; suppose that there is a bijection

$$
\begin{equation*}
\Phi: A \rightarrow \mathcal{P}(A) \tag{3}
\end{equation*}
$$

Let $T=\{a \in A: \quad a \notin \Phi(a)\}$. Since Φ is a bijection and $T \in \mathcal{P}(A)$, there must be a $b \in A$ such that $T=\Phi(b)$.
We now reach a contradiction; either $b \in T$ or not. if $b \in T$ then $b \notin \Phi(b)$. But $\Phi(b)=T$ and hence $(b \in T) \wedge(b \notin T)$. If $b \notin T$ then $b \in \Phi(b)$. But $\Phi(b)=T$ and hence the same contradiction arises. Thus there is no bijection.

Remark 1.4

It is worth noticing that this proof is a genuine proof by contradiction; we need to prove $\alpha=$ " A is a set" implies $\beta=$ "There is no bijection between A and $\mathcal{P}(A)$ ". We have assumed $\alpha \wedge \neg \beta$ and we reached the statement $\gamma \wedge \neg \gamma$, where $\gamma=(b \in T)$. The statement γ is a statement that is not just a reformulation of α or β.

Example 1.1

\mathbb{Q} is countable;
(2) \mathbb{Z} is countable;
(3) The set of polynomials with integer (or rational) coefficients is countable.
(4) The set of points in \mathbb{R}^{n} with rational coordinates is countable.
(5) $\mathcal{P}(\mathbb{N})$ is uncountable. This set is bijectively equivalent to the set of infinite binary sequences, by the remark 1.3.

We now address the issue of finding an uncountable set; for this purpose we will assume a working knowledge of the real numbers \mathbb{R}.

Proposition 1.8

The interval $J=(0,1) \subset \mathbb{R}$ is uncountable (and hence also \mathbb{R} itself is).

Proof. The proof is important also on a general conceptual level because it uses "Cantor's diagonal trick". We proceed by contradiction. Suppose J is countable. Assume that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a surjective and injective sequence of real numbers. We write the numbers in their decimal expansion

$$
\begin{equation*}
x_{n}=0, d_{1}^{(n)} d_{2}^{(n)} \cdots \tag{4}
\end{equation*}
$$

where $d_{j}^{(n)}$ is the j-th digit in the decimal expansion of the n-th number. We now construct a number that does not belong to the list of existing numbers, thus proving the contradiction (since the sequence was supposed surjective). Let x_{0} be the number such that the j-th digit is different from $9, d_{j}^{(j)}$. Thus $x_{0} \neq x_{j}$ for all $j \in \mathbb{N}$. The exclusion of 9 prevents infinite expansion of $\overline{9}$, which is equal to another number with a terminating expansion (i.e. with a tail of zeroes).

Corollary 1.2

The countable Cartesian product of set containing at least two elements is uncountable.
The proof is an exercise using a similar incarnation of the diagonal trick.

Remark 1.5

The countable Cartesian product of sets A_{n} is simply the set of sequences $\left(a_{1}, a_{2}, \ldots,\right)$ where each $a_{j} \in A_{j}$.

