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Definition

Let (xn)n∈N be a sequence of real numbers: we define its set of subsequential limits

E = E[xn] := {L ∈ R] : there is a subsequence xnk → L} (1)

The set E[xn] is always nonempty: if xn is bounded then by B.W. there is a convergent

subsequence and hence E contains at least its limit. If xn is unbounded above, then xn

has a subsequence that goes to +∞. If it is unbounded below then we can find a

subsequence that goes to −∞.
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Proposition

The number α := sup E[xn] := lim supn xn belongs to E[xn].

Proof.

If α = −∞ it means that E = {−∞} and there is nothing to prove.

If α = +∞ then the sequence xn must be unbounded above. If it were bounded above

then

∃M ∈ R : ∀n ∈N xn < M (2)

For any L ∈ E let xnk be a subsequence that converges to L; since we have xn < M this

must hold also for the given subsequence. In particular L ≤M. Thus M is an upper

bound for E and sup E ≤M < +∞, a contradiction.

Since xn is unbounded above it admits an (increasing) subsequence that tends to +∞

and hence α ∈ E. Such a sequence is constructed by induction as follows. n1 = 1, n2 is

chosen so that n2 ≥ n1 + 1 and xn2 > 2 and nk so that nk ≥ nk−1 + 1 and xnk > k. At

each step the existence of such nk is guaranteed by the fact that xn is unbounded

above. The constructed subsequence satisfies xnk > k. [...continues...] �
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...cont’d.

It remains the case where α = sup E ∈ R is a finite number. If α is not an
accumulation point for E then it must belong to E and there is nothing else to prove.

It only remains to prove that if α = sup E is an accumulation point for E then α ∈ E.

Since this is true in general (whether α is the sup or not) we prove it separately

below. �
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Theorem (Closure of E)

Let α be an accumulation point for the set E of all subsequential limits of the sequence
(xn)n∈N. Then α ∈ E (i.e. it is itself a subsequential limit).

Proof.

By definition of accumulation point, we can find a sequence yj ∈ E such that

|yj − α| <
1
j . We now construct a subsequence xnj as follows (by induction): n1 is

chosen such that |xn1 − y1| < 1. Since y2 is also a subsequential limit there is a

subsequence xñk
→ y2. Thus there must be a ñk0 > n1 such that |xñk0

− y2| <
1
2 . We

take this ñk0 and call it n2, so that n2 > n1 and |xn2 − y2| <
1
2 . Proceeding by induction

after j − 1 steps we have nj−1 such that |xnj−1 − yj−1| <
1

j−1 . Consider yj: there is a

subsequence xn̂k → yj: we can find a n̂k0 > nj−1 such that |xn̂k0
− yj| <

1
j . We call this

n̂k0 by nj and so on.

We have thus constructed a subsequence xnj such that |xnj − yj| <
1
j .

I claim that xnj → α. Indeed

|xnj − α| = |xnj − yj + yj − α| ≤ |xnj − yj| + |yj − α| <
2
j
−→
j→∞

0 (3)

�
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Alternative definition of lim sup and lim inf

Consider the sequence

Sn := sup{xk : n ≥ k} (4)

This sequence is decreasing (exercise): Ln+1 ≤ Ln. It thus has a limit in R] (equal to

its inf). Then

lim sup
n→∞

xn = lim
n→∞

Sn = inf{Sn : n ∈N} = lim
n→∞

sup{xk : n ≥ k} (5)

Similarly

Ln := inf{xk : n ≥ k} (6)

is increasing and hence has limit (equal to its sup). Then

lim inf
n

xn = lim
n→∞

Ln = sup{Ln : n ∈N} = lim
n→∞

inf{xk : k ≥ n} (7)
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Yet another characterization of lim sup

α = lim sup xn if and only if the following two conditions apply:

for any M > α the sequence is eventually less than M (this condition is void if

α = ∞);

for any L < α and any N ∈N there is a n0 ≥ N such that xn0 > L.

Exercise

Prove that the the three definitions of lim sup are equivalent.
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