Proof of a theorem presented in class hopefully better explained now. At the end: second proof.

Theorem: For a sequence (x_n) there exist subsequences (x_{n_k}) and (x_{n_ℓ}) such that

$$\lim_{k \to \infty} x_{n_k} = \limsup_{n \to \infty} x_n \quad , \quad \lim_{\ell \to \infty} x_{n_\ell} = \liminf_{n \to \infty} x_n \, .$$

Proof. First, a remark about notation: Let (x_n) be a sequence : $(x_1, x_2, x_3, x_4, x_5, ...)$. We will be choosing from it subsequences $\left(x_{n(k)}^{(k)}\right)$ for natural numbers k = 1, 2, 3...The upper (k) is just the number of the subsequence (not a power) and probably could be removed without any loss. n(k) is a sequence of indices, a subsequence of natural numbers. For example, if

$$\left(x_{n(6)}^{(6)}\right) = \left(x_8, x_{12}, x_{13}, x_{27}, x_{34}, x_{35}, x_{64}, x_{91}, \dots\right),$$

then n(6) = (8, 12, 13, 27, 34, 35, 64, 91, ...). In particular, $n(6)_3 = 13$ and $x_{n(6)_3}^{(6)} = x_{13}$. Similarly, $n(6)_8 = 91$ and $x_{n(6)_8}^{(6)} = x_{91}$.

Now, we can start roofing. Let A be the set of all partial limits of (x_n) , i.e., $a \in A$ if and only if there is a convergent subsequence (x_{n_k}) of (x_n) with $a = \lim_{k\to\infty} x_{n_k}$. The set A is not empty as every sequence either goes to infinity or contains a bounded subsequence. And a bounded subsequence contains a convergent one by Bolzano-Weierstrass theorem. Let $\alpha = \sup A$, possibly infinity.

If $\alpha = -\infty$, this means that $x_n \to -\infty$ and there is nothing to prove.

If $\alpha = +\infty$, the sequence (x_n) is unbounded above and we know that unbounded above sequence contains a subsequence convergent to $+\infty$. Again, nothing to proof.

We assume that α is a finite number.

Then, by the definition of the supremum, for any k = 1, 2, 3, ... there is an element $a_k \in A$ such that

$$\alpha - \frac{1}{k} < a_k \le \alpha \,.$$

In turn, for any k = 1, 2, 3, ... there is a subsequence of (x_n) , we call it $(x_{n(k)}^{(k)})$, such that

$$x_{n(k)}^{(k)} \to a_k \text{ as } n(k) \to \infty$$

We start the construction of the subsequence of (x_n) converging to α .

k = 1: The subsequence $x_{n(1)}^{(1)} \to a_1$ so for large indices $n(1)_i$ in n(1) the elements $x_{n(1)_i}^{(1)}$ are close (say with error < 1) to a_1 . We can find $x_{n(1)_{s(1)}}^{(1)}$ such that

$$\alpha - 1 - 1 < a_1 - 1 < x_{n(1)_{s(1)}}^{(1)} < a_1 + 1 < \alpha + 1.$$

k = 2: The subsequence $x_{n(2)}^{(2)} \to a_2$ so for arbitrarily large indices $n(2)_i$ in n(2) the elements $x_{n(2)_i}^{(2)}$ are close (say with error < 1/2) to a_2 . We can find $x_{n(2)_{s(2)}}^{(2)}$ with index $n(2)_{s(2)} > n(1)_{s(1)}$ such that

$$\alpha - \frac{1}{2} - \frac{1}{2} < a_2 - \frac{1}{2} < x_{n(2)_{s(2)}}^{(2)} < a_2 + \frac{1}{2} < \alpha + \frac{1}{2}.$$

We make requirement $n(2)_{s(2)} > n(1)_{s(1)}$ because the indices in a subsequence must be strictly increasing.

We proceed by induction: We assume that we have already chosen the elements $x_{n(k)_{s(k)}}^{(k)}$, k = 1, 2, 3, ..., m - 1 satisfying $n(k + 1)_{s(k+1)} > n(k)_{s(k)}$ and

$$\alpha - \frac{1}{k} - \frac{1}{k} < a_k - \frac{1}{k} < x_{n(k)_{s(k)}}^{(k)} < a_k + \frac{1}{k} < \alpha + \frac{1}{k}$$

We will choose the next mth element of (x_n) .

k = m: The subsequence $x_{n(m)}^{(m)} \to a_m$ so for arbitrarily large indices $n(m)_i$ in n(m) the elements $x_{n(m)_i}^{(m)}$ are close (say with error < 1/m) to a_m . Thus, we can find $x_{n(m)_{s(m)}}^{(m)}$ with index $n(m)_{s(m)} > n(m-1)_{s(m-1)}$ such that

$$\alpha - \frac{1}{m} - \frac{1}{m} < a_m - \frac{1}{m} < x_{n(m)_{s(m)}}^{(m)} < a_m + \frac{1}{m} < \alpha + \frac{1}{m}.$$

By induction, we constructed a subsequence $\left(x_{n(k)_{s(k)}}^{(k)}\right)$ of (x_n) (the indices are strictly increasing) such that for each k = 1, 2, 3... we have

$$\alpha - \frac{2}{k} < x_{n(k)_{s(k)}}^{(k)} < \alpha + \frac{1}{k}$$

By "squeeze" theorem

$$x_{n(k)_{s(k)}}^{(k)} \to \alpha \text{ as } k \to \infty$$
.

This actually shows that $\alpha \in A$.

The lim sup part of the theorem has been proved. The lim inf part is proven similarly.

Another proof:

Let $\alpha = \limsup_{n \to \infty} x_n$. We want to show that there exists a subsequence $\{x_{n_k}\}$ such that $\lim_{k\to\infty} x_{n_k} = \alpha$. We will consider finite and infinite cases separately.

(1) α is finite. We want to show that

$$\forall_{\varepsilon > 0} \forall_{N \ge 1} \exists_{n \ge N} |x_n - \alpha| < \varepsilon$$

Let us assume that this does not hold, i.e.,

$$(*) \quad \exists_{\varepsilon>0} \exists_{N\geq 1} \forall_{n\geq N} |x_n - \alpha| \geq \varepsilon.$$

Let us fix such an $\varepsilon_0 > 0$ and the corresponding $N_0 \ge 1$. Since $\alpha = \sup A$, where A is the set of all partial limits of (x_n) , we can find a partial limit a such that $\alpha - \varepsilon_0/3 < a \le \alpha$. There is a subsequence $\{x_{n_\ell}\}$ converging to a, i.e., satisfying

$$\forall_{\varepsilon>0} \exists_{M\geq 1} \exists_{\ell\geq M} |x_{n_{\ell}} - a| < \varepsilon/3.$$

In particular, there exists an element $x_{n_{\ell}}$ with $n_{\ell} > N_0$ satisfying $|x_{n_{\ell}} - a| < \varepsilon_0/3$. Then,

$$|x_{n_{\ell}} - \alpha| < |x_{n_{\ell}} - a| + |a - \alpha| < \varepsilon_0/3 + \varepsilon_0/3 < \varepsilon_0,$$

which contradicts (*).

(1) $\alpha = +\infty$. The idea of the proof is exactly the same but formally it looks different.

We want to show that

$$\forall_{K>0} \forall_{N\geq 1} \exists_{n\geq N} x_n > K.$$

Let us assume that this does not hold, i.e.,

$$(*) \quad \exists _{K>0} \exists _{N\geq 1} \forall _{n\geq N} x_n \leq K.$$

Let us fix such an $K_0 > 0$ and the corresponding $N_0 \ge 1$. Since $+\infty = \sup A$, where A is the set of all partial limits of (x_n) , we can find a partial limit a (assume that it is finite, if not there is nothing to prove) such that $a > 3K_0$. There is a subsequence $\{x_{n_\ell}\}$ converging to a, i.e., satisfying

$$\forall_{\varepsilon>0} \exists_{M\geq 1} \exists_{\ell\geq M} |x_{n_{\ell}} - a| < \varepsilon.$$

In particular, for $\varepsilon = K_0$, there exists an element x_{n_ℓ} with $n_\ell > N_0$ satisfying $a - K_0 < x_{n_\ell}$. Then,

$$x_{n_{\ell}} > a - K_0 > 3K_0 - K_0 > K_0,$$

4

which contradicts (*).