Proof of a theorem presented in class hopefully better explained now.
 At the end: second proof.

Theorem: For a sequence $\left(x_{n}\right)$ there exist subsequences $\left(x_{n_{k}}\right)$ and $\left(x_{n_{\ell}}\right)$ such that

$$
\lim _{k \rightarrow \infty} x_{n_{k}}=\limsup _{n \rightarrow \infty} x_{n} \quad, \quad \lim _{\ell \rightarrow \infty} x_{n_{\ell}}=\liminf _{n \rightarrow \infty} x_{n}
$$

Proof. First, a remark about notation: Let $\left(x_{n}\right)$ be a sequence: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)$. We will be choosing from it subsequences $\left(x_{n(k)}^{(k)}\right)$ for natural numbers $k=1,2,3 \ldots$ The upper (k) is just the number of the subsequence (not a power) and probably could be removed without any loss. $n(k)$ is a sequence of indices, a subsequence of natural numbers. For example, if

$$
\left(x_{n(6)}^{(6)}\right)=\left(x_{8}, x_{12}, x_{13}, x_{27}, x_{34}, x_{35}, x_{64}, x_{91}, \ldots\right)
$$

then $n(6)=(8,12,13,27,34,35,64,91, \ldots)$. In particular, $n(6)_{3}=13$ and $x_{n(6)_{3}}^{(6)}=$ x_{13}. Similarly, $n(6)_{8}=91$ and $x_{n(6)_{8}}^{(6)}=x_{91}$.

Now, we can start roofing. Let A be the set of all partial limits of $\left(x_{n}\right)$, i.e., $a \in A$ if and only if there is a convergent subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ with $a=\lim _{k \rightarrow \infty} x_{n_{k}}$. The set A is not empty as every sequence either goes to infinity or contains a bounded subsequence. And a bounded subsequence contains a convergent one by BolzanoWeierstrass theorem. Let $\alpha=\sup A$, possibly infinity.

If $\alpha=-\infty$, this means that $x_{n} \rightarrow-\infty$ and there is nothing to prove.
If $\alpha=+\infty$, the sequence $\left(x_{n}\right)$ is unbounded above and we know that unbounded above sequence contains a subsequence convergent to $+\infty$. Again, nothing to proof.

We assume that α is a finite number.
Then, by the definition of the supremum, for any $k=1,2,3, \ldots$ there is an element $a_{k} \in A$ such that

$$
\alpha-\frac{1}{k}<a_{k} \leq \alpha .
$$

In turn, for any $k=1,2,3, \ldots$ there is a subsequence of $\left(x_{n}\right)$, we call it $\left(x_{n(k)}^{(k)}\right)$, such that

$$
x_{n(k)}^{(k)} \rightarrow a_{k} \text { as } n(k) \rightarrow \infty
$$

We start the construction of the subsequence of $\left(x_{n}\right)$ converging to α.
$k=1$: The subsequence $x_{n(1)}^{(1)} \rightarrow a_{1}$ so for large indices $n(1)_{i}$ in $n(1)$ the elements $x_{n(1)_{i}}^{(1)}$ are close (say with error <1) to a_{1}. We can find $x_{n(1)_{s(1)}}^{(1)}$ such that

$$
\alpha-1-1<a_{1}-1<x_{n(1)_{s(1)}}^{(1)}<a_{1}+1<\alpha+1 .
$$

$k=2$: The subsequence $x_{n(2)}^{(2)} \rightarrow a_{2}$ so for arbitrarily large indices $n(2)_{i}$ in $n(2)$ the elements $x_{n(2)_{i}}^{(2)}$ are close (say with error $\left.<1 / 2\right)$ to a_{2}. We can find $x_{n(2)_{s(2)}}^{(2)}$ with index $n(2)_{s(2)}>n(1)_{s(1)}$ such that

$$
\alpha-\frac{1}{2}-\frac{1}{2}<a_{2}-\frac{1}{2}<x_{n(2)_{s(2)}}^{(2)}<a_{2}+\frac{1}{2}<\alpha+\frac{1}{2} .
$$

We make requirement $n(2)_{s(2)}>n(1)_{s(1)}$ because the indices in a subsequence must be strictly increasing.

We proceed by induction: We assume that we have already chosen the elements $x_{n(k)_{s(k)}}^{(k)}, k=1,2,3, \ldots, m-1$ satisfying $n(k+1)_{s(k+1)}>n(k)_{s(k)}$ and

$$
\alpha-\frac{1}{k}-\frac{1}{k}<a_{k}-\frac{1}{k}<x_{n(k)_{s(k)}}^{(k)}<a_{k}+\frac{1}{k}<\alpha+\frac{1}{k} .
$$

We will choose the next m th element of $\left(x_{n}\right)$.
$k=m$: The subsequence $x_{n(m)}^{(m)} \rightarrow a_{m}$ so for arbitrarily large indices $n(m)_{i}$ in $n(m)$ the elements $x_{n(m)_{i}}^{(m)}$ are close (say with error $<1 / m$) to a_{m}. Thus, we can find $x_{n(m)_{s(m)}^{(m)}}^{(m i t h ~ i n d e x ~} n(m)_{s(m)}>n(m-1)_{s(m-1)}$ such that

$$
\alpha-\frac{1}{m}-\frac{1}{m}<a_{m}-\frac{1}{m}<x_{n(m)_{s(m)}}^{(m)}<a_{m}+\frac{1}{m}<\alpha+\frac{1}{m} .
$$

 strictly increasing) such that for each $k=1,2,3 \ldots$ we have

$$
\alpha-\frac{2}{k}<x_{n(k)_{s(k)}}^{(k)}<\alpha+\frac{1}{k} .
$$

By "squeeze" theorem

$$
x_{n(k)_{s(k)}^{(k)}} \rightarrow \alpha \text { as } k \rightarrow \infty
$$

This actually shows that $\alpha \in A$.
The limsup part of the theorem has been proved. The liminf part is proven similarly.

Another proof:

Let $\alpha=\lim \sup _{n \rightarrow \infty} x_{n}$. We want to show that there exists a subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha$. We will consider finite and infinite cases separately.
(1) α is finite. We want to show that

$$
\forall_{\varepsilon>0} \forall_{N \geq 1} \exists_{n \geq N}\left|x_{n}-\alpha\right|<\varepsilon .
$$

Let us assume that this does not hold, i.e.,

$$
\text { (*) } \quad \exists \varepsilon>0 \quad \exists_{N \geq 1} \forall_{n \geq N}\left|x_{n}-\alpha\right| \geq \varepsilon .
$$

Let us fix such an $\varepsilon_{0}>0$ and the corresponding $N_{0} \geq 1$. Since $\alpha=\sup A$, where A is the set of all partial limits of $\left(x_{n}\right)$, we can find a partial limit a such that $\alpha-\varepsilon_{0} / 3<a \leq \alpha$. There is a subsequence $\left\{x_{n_{\ell}}\right\}$ converging to a, i.e., satisfying

$$
\forall_{\varepsilon>0} \exists_{M \geq 1} \exists \ell \geq M\left|x_{n_{\ell}}-a\right|<\varepsilon / 3 .
$$

In particular, there exists an element $x_{n_{\ell}}$ with $n_{\ell}>N_{0}$ satisfying $\left|x_{n_{\ell}}-a\right|<\varepsilon_{0} / 3$. Then,

$$
\left|x_{n_{\ell}}-\alpha\right|<\left|x_{n_{\ell}}-a\right|+|a-\alpha|<\varepsilon_{0} / 3+\varepsilon_{0} / 3<\varepsilon_{0}
$$

which contradicts $(*)$.
(1) $\alpha=+\infty$. The idea of the proof is exactly the same but formally it looks different.

We want to show that

$$
\forall_{K>0} \forall{ }_{N \geq 1} \exists_{n \geq N} x_{n}>K .
$$

Let us assume that this does not hold, i.e.,

$$
\text { (*) } \exists_{K>0} \exists_{N \geq 1} \forall_{n \geq N} x_{n} \leq K \text {. }
$$

Let us fix such an $K_{0}>0$ and the corresponding $N_{0} \geq 1$. Since $+\infty=\sup A$, where A is the set of all partial limits of $\left(x_{n}\right)$, we can find a partial limit a (assume that it is finite, if not there is nothing to prove) such that $a>3 K_{0}$. There is a subsequence $\left\{x_{n_{\ell}}\right\}$ converging to a, i.e., satisfying

$$
\forall_{\varepsilon>0} \exists_{M \geq 1} \exists \ell \geq M\left|x_{n_{\ell}}-a\right|<\varepsilon .
$$

In particular, for $\varepsilon=K_{0}$, there exists an element $x_{n_{\ell}}$ with $n_{\ell}>N_{0}$ satisfying $a-K_{0}<$ $x_{n_{\ell}}$. Then,

$$
x_{n_{\ell}}>a-K_{0}>3 K_{0}-K_{0}>K_{0}
$$

which contradicts $(*)$.

