Proof of a theorem presented in class
hopefully better explained now.
At the end: second proof.

Theorem: For a sequence (z,,) there exist subsequences (z,, ) and (x,,) such that

lim z,, =limsupz, , limz,, =liminfx,.
f—00
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Proof. First, a remark about notation: Let (z,) be a sequence : (x1, g, T3, T4, Ts5, ... ).
We will be choosing from it subsequences <a:£:2€)) for natural numbers £k =1,2,3...
The upper (k) is just the number of the subsequence (not a power) and probably
could be removed without any loss. n(k) is a sequence of indices, a subsequence of

natural numbers. For example, if
) = )
Toe) ) = \ T8y L12, L13, L27, L34, L35, L64; X915 - - - )

then n(6) = (8,12,13,27,34,35,64,91,...). In particular, n(6); = 13 and 'y =
x13. Similarly, n(6)s = 91 and 5”26()6)8 = Tg;.

Now, we can start roofing. Let A be the set of all partial limits of (x,), i.e., a € A if
and only if there is a convergent subsequence (x,, ) of (z,) with a = limy_,cc . The
set A is not empty as every sequence either goes to infinity or contains a bounded
subsequence. And a bounded subsequence contains a convergent one by Bolzano-
Weierstrass theorem. Let o = sup A, possibly infinity.

If @« = —o0, this means that x,, — —oo and there is nothing to prove.

If @« = +o0, the sequence (z,,) is unbounded above and we know that unbounded
above sequence contains a subsequence convergent to +co. Again, nothing to proof.

We assume that « is a finite number.

Then, by the definition of the supremum, for any k£ = 1,2, 3, ... there is an element

ar € A such that

a——<ap <.
k

In turn, for any £ = 1,2,3,... there is a subsequence of (z,), we call it <:E£:2€)), such

that
:B%) — ay as n(k) — 00.

We start the construction of the subsequence of (z,) converging to a.



k = 1. The subsequence ZES()I) — ay so for large indices n(1); in n(1) the elements

I(l()l)i are close (say with error < 1) to a;. We can find ZES()I) such that

n s(1)
1)

(2)

<a+l<a+1.

k = 2: The subsequence z,),) — az so for arbitrarily large indices n(2); in n(2) the

n(2
elements :Bf()z) are close (say with error < 1/2) to as. We can find :Bf()z) o with index
n(2)s2) > n(1)s1) such that
11 1 1 1
a—§—§<a2—§<xn(2)s(2) <a2—|—§<a—|—§.

We make requirement n(2)42y > n(1)s) because the indices in a subsequence must
be strictly increasing.

We proceed by induction: We assume that we have already chosen the elements

atg%s(k), k=1,2,3,...,m— 1 satisfying n(k + 1)sx+1) > n(k)sx) and
11 1w 1 1
a—E—E<ak—E<xn(k)s(k) <ak+E<a+E'
We will choose the next mth element of (z,,).

(m)

n(m) — Gm so for arbitrarily large indices n(m); in

k = m: The subsequence x
(m)

n(m) the elements z,,, are close (say with error < 1/m) to a,. Thus, we can find
f%m)s(m) with index n(m)sm) > n(m — 1)s@m-1) such that
= — = — <y = — < Ty <Oy T — <o —.

By induction, we constructed a subsequence <:E%€) (k)) of (x,) (the indices are
strictly increasing) such that for each k= 1,2,3... we have

B
O = < Ty, <Ot T

By "squeeze” theorem

(k)
n(k) s (k)

This actually shows that o € A.

— o as k — 00.

The limsup part of the theorem has been proved. The liminf part is proven

similarly.



Another proof:
Let o = limsup,,_,., z,. We want to show that there exists a subsequence {x,, }
such that limy_,. ,, = @. We will consider finite and infinite cases separately.

(1) « is finite. We want to show that
Vieso Vst 3o |on —al <e.
Let us assume that this does not hold, i.e.,
(*) FesoI N1 Vs |20 —al > 6.

Let us fix such an ¢y > 0 and the corresponding Ny > 1. Since o = sup A, where
A is the set of all partial limits of (x,), we can find a partial limit a such that

a—¢g9/3 < a < a. There is a subsequence {x,,} converging to a, i.e., satisfying
Veso 3z F om0, —al <e/3.

In particular, there exists an element x,, with n, > Ny satisfying |z,, — a| < €o/3.
Then,
|zp, — a| < |2n, —al+|a—a| <eo/3+e0/3 < eo,
which contradicts (k).
(1) @ = +o00. The idea of the proof is exactly the same but formally it looks
different.
We want to show that

V k>0 V n>1 3oy 2, > K.
Let us assume that this does not hold, i.e.,
(*) T x>0 I N1 Vpsny 2 < K.

Let us fix such an Ky > 0 and the corresponding Ny > 1. Since +00 = sup A, where
A is the set of all partial limits of (x,), we can find a partial limit a (assume that it
is finite, if not there is nothing to prove) such that a > 3Kj. There is a subsequence

{zn,} converging to a, i.e., satisfying
Veso 3z I om |on, —af <e.

In particular, for ¢ = K|, there exists an element x,,, with n, > Ny satisfying a — Ky <
Zn,. Then,

l’nz>a—K0>3K0—K0>K0,
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which contradicts (k).



