
Proof of a theorem presented in class

hopefully better explained now.

At the end: second proof.

Theorem: For a sequence (xn) there exist subsequences (xnk
) and (xn`

) such that

lim
k→∞

xnk
= lim sup

n→∞

xn , lim
`→∞

xn`
= lim inf

n→∞
xn .

Proof. First, a remark about notation: Let (xn) be a sequence : (x1, x2, x3, x4, x5, . . . ).

We will be choosing from it subsequences
(

x
(k)
n(k)

)

for natural numbers k = 1, 2, 3 . . .

The upper (k) is just the number of the subsequence (not a power) and probably

could be removed without any loss. n(k) is a sequence of indices, a subsequence of

natural numbers. For example, if

(

x
(6)

n(6)

)

= (x8, x12, x13, x27, x34, x35, x64, x91, . . . ) ,

then n(6) = (8, 12, 13, 27, 34, 35, 64, 91, . . . ). In particular, n(6)3 = 13 and x
(6)
n(6)3

=

x13. Similarly, n(6)8 = 91 and x
(6)
n(6)8

= x91.

Now, we can start roofing. Let A be the set of all partial limits of (xn), i.e., a ∈ A if

and only if there is a convergent subsequence (xnk
) of (xn) with a = limk→∞ xnk

. The

set A is not empty as every sequence either goes to infinity or contains a bounded

subsequence. And a bounded subsequence contains a convergent one by Bolzano-

Weierstrass theorem. Let α = sup A, possibly infinity.

If α = −∞, this means that xn → −∞ and there is nothing to prove.

If α = +∞, the sequence (xn) is unbounded above and we know that unbounded

above sequence contains a subsequence convergent to +∞. Again, nothing to proof.

We assume that α is a finite number.

Then, by the definition of the supremum, for any k = 1, 2, 3, . . . there is an element

ak ∈ A such that

α −
1

k
< ak ≤ α .

In turn, for any k = 1, 2, 3, . . . there is a subsequence of (xn), we call it
(

x
(k)
n(k)

)

, such

that

x
(k)
n(k) → ak as n(k) → ∞ .

We start the construction of the subsequence of (xn) converging to α.
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k = 1: The subsequence x
(1)
n(1) → a1 so for large indices n(1)i in n(1) the elements

x
(1)
n(1)i

are close (say with error < 1) to a1. We can find x
(1)
n(1)s(1)

such that

α − 1 − 1 < a1 − 1 < x
(1)
n(1)s(1)

< a1 + 1 < α + 1 .

k = 2: The subsequence x
(2)

n(2) → a2 so for arbitrarily large indices n(2)i in n(2) the

elements x
(2)

n(2)i
are close (say with error < 1/2) to a2. We can find x

(2)

n(2)s(2)
with index

n(2)s(2) > n(1)s(1) such that

α −
1

2
−

1

2
< a2 −

1

2
< x

(2)
n(2)s(2)

< a2 +
1

2
< α +

1

2
.

We make requirement n(2)s(2) > n(1)s(1) because the indices in a subsequence must

be strictly increasing.

We proceed by induction: We assume that we have already chosen the elements

x
(k)
n(k)s(k)

, k = 1, 2, 3, . . . , m − 1 satisfying n(k + 1)s(k+1) > n(k)s(k) and

α −
1

k
−

1

k
< ak −

1

k
< x

(k)
n(k)s(k)

< ak +
1

k
< α +

1

k
.

We will choose the next mth element of (xn).

k = m: The subsequence x
(m)
n(m) → am so for arbitrarily large indices n(m)i in

n(m) the elements x
(m)
n(m)i

are close (say with error < 1/m) to am. Thus, we can find

x
(m)
n(m)s(m)

with index n(m)s(m) > n(m− 1)s(m−1) such that

α −
1

m
−

1

m
< am −

1

m
< x

(m)
n(m)s(m)

< am +
1

m
< α +

1

m
.

By induction, we constructed a subsequence
(

x
(k)

n(k)s(k)

)

of (xn) (the indices are

strictly increasing) such that for each k = 1, 2, 3 . . . we have

α −
2

k
< x

(k)
n(k)s(k)

< α +
1

k
.

By ”squeeze” theorem

x
(k)
n(k)s(k)

→ α as k → ∞ .

This actually shows that α ∈ A.

The lim sup part of the theorem has been proved. The lim inf part is proven

similarly.
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Another proof:

Let α = lim supn→∞ xn. We want to show that there exists a subsequence {xnk
}

such that limk→∞ xnk
= α. We will consider finite and infinite cases separately.

(1) α is finite. We want to show that

∀ ε>0 ∀ N≥1 ∃ n≥N |xn − α| < ε.

Let us assume that this does not hold, i.e.,

(∗) ∃ ε>0 ∃ N≥1 ∀ n≥N |xn − α| ≥ ε.

Let us fix such an ε0 > 0 and the corresponding N0 ≥ 1. Since α = sup A, where

A is the set of all partial limits of (xn), we can find a partial limit a such that

α − ε0/3 < a ≤ α. There is a subsequence {xn`
} converging to a, i.e., satisfying

∀ ε>0 ∃ M≥1 ∃ `≥M |xn`
− a| < ε/3.

In particular, there exists an element xn`
with n` > N0 satisfying |xn`

− a| < ε0/3.

Then,

|xn`
− α| < |xn`

− a|+ |a − α| < ε0/3 + ε0/3 < ε0,

which contradicts (∗).

(1) α = +∞. The idea of the proof is exactly the same but formally it looks

different.

We want to show that

∀ K>0 ∀ N≥1 ∃ n≥N xn > K.

Let us assume that this does not hold, i.e.,

(∗) ∃ K>0 ∃ N≥1 ∀ n≥N xn ≤ K.

Let us fix such an K0 > 0 and the corresponding N0 ≥ 1. Since +∞ = sup A, where

A is the set of all partial limits of (xn), we can find a partial limit a (assume that it

is finite, if not there is nothing to prove) such that a > 3K0. There is a subsequence

{xn`
} converging to a, i.e., satisfying

∀ ε>0 ∃ M≥1 ∃ `≥M |xn`
− a| < ε.

In particular, for ε = K0, there exists an element xn`
with n` > N0 satisfying a−K0 <

xn`
. Then,

xn`
> a − K0 > 3K0 − K0 > K0,
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which contradicts (∗).
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