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CHAPTER 2

Preliminaries

After a brief review of measure theory, this chapter presents various re-

sults about functions of bounded variation, which will play an important

role throughout this text.

2.1 Review of Measure Theory

We recall some fundamental ideas from measure theory. Let X be a set.

In most cases we will assume that X is a compact metric space.

De¯nition 2.1.1. A family B of subsets of X is called a ¾-algebra

if and only if:

1) X 2 B;

2) for any B 2 B; XnB 2 B;

3) if Bn 2 B, for n = 1; 2; :::; then
S1

n=1 Bn 2 B.

Elements of B are usually referred to as measurable sets.

De¯nition 2.1.2. A function ¹ : B ! R+ is called a measure on

B if and only if:

1) ¹(;) = 0;

2) for any sequence fBng of disjoint measurable sets, Bn 2 B; n =

1; 2; :::,

¹(
1[

n=1

Bn) =
1X

n=1

¹(Bn):

The triplet (X; B; ¹) is called a measure space. If ¹(X) = 1, we say it

is a normalized measure space or probability space. If X is a countable

union of sets of ¯nite ¹-measure, then we say that ¹ is a ¾-¯nite measure.

Later on we shall work with probability spaces.

De¯nition 2.1.3. A family A of subsets of X is called an algebra

if:

1) X 2 A;

2) for any A 2 A; XnA 2 A;

3) for any A1; A2 2 A; A1 [ A2 2 A.
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For any family J of subsets of X there exists a smallest ¾-algebra,

B, containing J. We say that J generates B and write B = ¾(J).

In practice, when de¯ning a measure ¹ on a space (X;B), ¹ is known

only on an algebra A generating B. We would like to know if ¹ can be

extended to a measure on B. The answer is contained in

Theorem 2.1.1. Given a set X and an algebra A of subsets of X,

let ¹1: A ! R+ be a function satisfying ¹1(X) = 1 and

¹1(
[

n

An) =
X

n

¹1(An)

whenever An 2 A; for n = 1; 2; :::;[1
n=1An 2 A and fAng disjoint. Then

there exists a unique normalized measure ¹ on B = ¾(A) such that

¹(A) = ¹1(A) whenever A 2 A.

Proposition 2.1.1. Let (X;B; ¹) be a normalized measure space.

If A is an algebra that generates the ¾-algebra B, then for any B 2 B

and " > 0 there exists A 2 A such that ¹(A¢B) < ", where A¢B =

(AnB) [ (BnA) is the symmetric di®erence of A and B.

De¯nition 2.1.4. A family P of subsets of X is called a ¼-system

if and only if for any A; B in P their intersection A \ B is also in P .

We shall often refer to the following uniqueness theorem [Billingsley,

1968]:

Theorem 2.1.2. Let P be a ¼-system and B = ¾(P). If ¹1 and ¹2

are measures on B and ¹1(B) = ¹2(B) for any B 2 P, then ¹1 = ¹2.

De¯nition 2.1.5. Let X be a topological space. Let O denote a

family of open sets of X. Then the ¾-algebra B = ¾(O) is called the

Borel ¾-algebra of X and its elements, Borel subsets of X.

De¯nition 2.1.6. Let (X; B; ¹) be a measure space. The function

f : X ! R is said to be measurable if for all c 2 R; f¡1(c; 1) 2 B, or,

equivalently, if f¡1(A) 2 B for any Borel set A ½ R.

If X is a topological space and B is the ¾-algebra of Borel subsets

X , then each continuous function f : X ! R is measurable.

De¯nition 2.1.7. Let Bn be a ¾-algebra, n = 1; 2 : : : . Let n1 <

n2 < ::: < nr be integers and Ani 2 Bni ; i = 1; :::; r. We de¯ne a

cylinder set to be a set of the form

C(An1
; :::; Anr

) = ffxjg 2 X : xni
2 Ani

; 1 · i · rg:
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De¯nition 2.1.8. (Direct Product of Measure Spaces)

Let (Xi;Bi; ¹i), i 2 Z be normalized measure spaces. The direct product

measure space (X; B; ¹) = ¦1
i=¡1(Xi; Bi; ¹i) is de¯ned by

X = ¦1
i=¡1Xi and ¹(C(An1 ; :::; Anr)) = ¦r

i=1¹ni(Ani):

It is easy to see that ¯nite unions of cylinders form an algebra of subsets

of X. By Theorem 2.1.1 it can be uniquely extended to a measure on

B, the smallest ¾-algebra containing all cylinders.

2.2 Spaces of Functions and Measures

Let F be a linear space. A function k ¢ k : F ! R+ is called a norm if it

has the following properties:

kfk = 0 , f ´ 0

k®fk = j ® j kfk
kf + gk · kfk + kgk;

for f; g 2 F and ® 2 R: The space F endowed with a norm k ¢ k is called

a normed linear space.

De¯nition 2.2.1. A sequence ffng in a normed linear space is a

Cauchy sequence if, for any " > 0, there exists an N ¸ 1 such that for

any n;m ¸ N ,

kfn ¡ fmk < ":

Every convergent sequence is a Cauchy sequence.

De¯nition 2.2.2. A normed linear space F is complete if every

Cauchy sequence converges, i.e., if for each Cauchy sequence ffng there

exists f 2 F such that fn ! f . A complete normed space is called a

Banach space.

Let (X;B; ¹) be a normalized measure space.

De¯nition 2.2.3. Let 1 · p < 1. The family of real valued mea-

surable functions (or rather a.e.-equivalence classes of them) f : X ! R
satisfying Z

X

jf (x)jpd¹ < 1 (2.2.1)
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is called the Lp(X;B; ¹) space and is denoted by Lp(¹) when the under-

lying space is clearly known, and by Lp where both the space and the

measure are known.

The integral in (2.2.1) is assigned a special notation

kfkp =

µZ

X

jf (x)jpd¹

¶ 1
p

;

and is called the Lp norm of f . Lp with the norm k ¢ kp is a complete

normed space, i.e., a Banach space.

The space of almost everywhere bounded measurable functions on

(X;B; ¹) is denoted by L1. Functions that di®er only on a set of ¹-

measure 0 are considered to represent the same element of L1. The L1

norm is given by

kfk1 = ess supjf(x)j = inf fM : ¹fx : f(x) > Mg = 0g:

The space L1 with the norm k ¢ k1 is a Banach space.

De¯nition 2.2.4. The space of bounded linear functionals on a

normed space F is called the adjoint space to F and is denoted by F¤.
The weak convergence in F is de¯ned as follows: A sequence ffng1

1 ½ F

converges weakly to an f 2 F if and only if for any F 2 F¤, F (fn) ! F (f)

as n ! +1: Similarly, a sequence of functionals fFng1
1 ½ F¤ converges

in the weak-¤ topology to a functional F 2 F¤ if and only if for any f 2 F,

Fn(f) ! F (f) as n ! +1.

Theorem 2.2.1. Let 1 · p · 1 and let q satisfy

1

p
+

1

q
= 1 ; (

1

1 = 0):

Then Lq is the adjoint space of Lp.

If f 2 Lp; g 2 Lq, then fg is integrable and the HÄolder inequality

holds: Z

X

jfgj d¹ · kfkpkgkq:

Let g 2 Lq. We de¯ne a functional Fg on Lp by setting

Fg(f) =

Z

X

fgd¹

kFgk = sup
f 6=0

f j Fg(f) j
kfk g:

Clearly Fg is linear.
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Proposition 2.2.1. Each function g 2 Lq de¯nes a bounded linear

functional Fg on LP with Fg(f) =
R

X
fgd¹ and kFgk = kgkq.

Theorem 2.2.2. (Riesz Representation Theorem) [Dunford and

Schwartz, 1964, Ch. IV, 8.5]

Let F be a bounded linear functional on Lp; 1 · p < 1. Then there

exists a function g in Lq such that

F (f) =

Z

X

fgd¹:

Furthermore, kFk = kgkq.

We will use the following kinds of convergence in Lp spaces.

(1) Norm (or strong) convergence:

fn ! f in Lp ¡ norm () kfn ¡ fkp ! 0; n ! +1:

(2) Weak convergence: fn ! f weakly in Lp, 1 · p < +1; ()

8g 2 Lq;

Z
fngd¹ !

Z
fgd¹; where

1

p
+

1

q
= 1:

(3) Pointwise convergence:

fn ! f almost everywhere (a.e.) () fn(x) ! f(x);

for almost every x 2 X .

The following results give several characterizations of these types of

convergence and connections between them:

Theorem 2.2.3. Let a sequence ffng1
n=1; fn 2 L1; n = 1; 2; :::

satisfy

(1) kfnk1 · M for some M ;

(2) 8" > 0 9 ± > 0 such that for any A 2 B, if ¹(A) < ± then for all n,

j
Z

A

fnd¹j < ":

Then ffng contains a weakly convergent subsequence, i.e., ffng is weakly

compact.

Corollary 2.2.1. If there exists g 2 L1 such that fn · g for n =

1; 2; :::, then ffng is weakly compact.
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Theorem 2.2.4. (Sche®¶e's Theorem) [Billingsley, 1985] If fn ¸ 0;R
fnd¹ = 1; n = 1; 2; ::: and fn ! f a.e. with

R
fd¹ = 1; then fn ! f

in L1-norm.

Theorem 2.2.5. If fn ! f weakly in L1 and almost everywhere,

then fn ! f in L1-norm.

We now consider spaces of continuous and di®erentiable functions.

Let X be a compact metric space.

De¯nition 2.2.5. C0(X) = C(X) is the space of all continuous

real functions f : X ! R, with the norm

kfkC0 = sup
x2X

j f (x) j :

De¯nition 2.2.6. Let r ¸ 1. Cr(X) denotes the space of all r-times

continuously di®erentiable real functions f : X ! R with the norm

kfkCr = max
0·k·r

sup
x2X

j f (k)(x) j;

where f (k)(x) is the k-th derivative of f(x) and f (0)(x) = f(x).

De¯nition 2.2.7. M(X) denotes the spaces of all measures ¹ on

B(X). The norm, called the total variation norm on M(X), is de¯ned

by

k¹k = sup
A1[:::[AN=X

fj ¹(A1) j + : : :+ j ¹(AN ) jg;

where the supremum is taken over all ¯nite partitions of X.

A more frequently used topology on M(X) is the weak topology of

measures, which we can de¯ne with the aid of the following result [Dun-

ford and Schwartz, 1964, Ch. IV, 6.3]:

Theorem 2.2.6. Let X be a compact metric space. Then the ad-

joint space of C(X), C¤(X), is equal to M(X).

De¯nition 2.2.8. The weak topology of measures is a topology of

weak convergence on M(X), i.e.,

¹n ! ¹ ,
Z

X

gd¹n !
Z

X

gd¹; for any g 2 C(X):

In view of Theorem 2.2.6 this is sometimes referred to as the topology

of weak-¤ convergence.
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Theorem 2.2.7. The weak topology of measures is metrizable and

any bounded (in norm) subset of M(X) is compact in the weak topology

of measures.

We now present two important corollaries of Theorem 2.2.6.

Corollary 2.2.2. Two measures ¹1 and ¹2 are identical if and only

if Z

X

gd¹1 =

Z

X

gd¹2

for all g 2 C(X).

Corollary 2.2.3. The set of probability measures is compact in the

weak topology of measures.

For excellent accounts on the weak topology of measures, the reader

is referred to [Billingsley, 1968] and [Parthasarathy, 1967].

We now collect a number of results which will be needed in the

sequel.

Theorem 2.2.8. [Dunford and Schwartz, 1964, Ch II, 3.6] Let F;G

be Banach spaces and let fTng be a sequence of bounded linear operators

on F into G. Then the limit Tf = limn!+1 Tnf exists for every f in F

if and only if

(i) the limit Tf exists for every f in a set dense in F

and

(ii) for each f in F, supn jTnf j < 1.

When the limit Tf exists for each f in F, the operator T is bounded

and

kTk · lim infn!+1 kTnk · supn kTnk < +1:

Theorem 2.2.9. (Rota's Theorem) [Schaefer, 1974] If P is a pos-

itive operator on L1(X;B; ¹), then the set

f ¸

j¸j : ¸ is an eigenvalue of P; j¸j = kPkg

forms a multiplicative subgroup of the unit circle.

De¯nition 2.2.8. Let º and ¹ be two measures on the same mea-

sure space (X;B). We say that º is absolutely continuous with respect

to ¹ if for any A 2 B, such that ¹(A) = 0, it follows that º(A) = 0. We

write º << ¹.

A useful condition for testing absolute continuity is given by
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Theorem 2.2.10. º << ¹ if and only if given " > 0 there exists

± > 0 such that ¹(A) < ± implies º(A) < ".

The proof of this theorem can be found in [Dunford and Schwartz,

1964].

If º << ¹, then it is possible to represent º in terms of ¹. This is

the essence of the Radon{Nikodym Theorem.

Theorem 2.2.11. (Radon-Nikodym) Let (X; B) be a space and let

º and ¹ be two normalized measures on (X; B). If º << ¹, then there

exists a unique f 2 L1(X; B; ¹) such that for every A 2 B,

º(A) =

Z

A

fd¹:

f is called the Radon{Nikodym derivative and is denoted by dº
d¹ .

De¯nition 2.2.9. Let º and ¹ be two measures on the same mea-

sure space (X; B). We say that º and ¹ are mutually singular if and

only if there exist disjoint sets A¹; Aº 2 B such that X = A¹ [ Aº and

¹(Aº) = 0 = º(A¹): We write º ? ¹.

Theorem 2.2.12. (Lebesgue Decomposition Theorem) Let º and

¹ be two measures on the same measure space (X;B). Then there exists

a unique decomposition of measure º into two measures º = º1 +º2 such

that º1 << ¹ and º2 ? ¹.

De¯nition 2.2.10. Let X be a compact metric space and let ¹ be

a measure on (X;B), where B is the Borel ¾-algebra of subsets of X.

We de¯ne the support of ¹ as the smallest closed set of full ¹ measure,

i.e.,

supp(¹) = X n
[

O¡open
¹(O)=0

O:

It is worth noting that two mutually singular measures may have the

same support.

Let M(X) denote the space of measures on (X; B). Let ¿ : X ! X

be a measurable transformation (i.e., ¿¡1(A) 2 B for A 2 B). ¿ induces

a transformation ¿¤ on M(X) by means of the de¯nition: (¿¤¹)(A) =

¹(¿¡1A). Since ¿ is measurable, it is easy to see that ¿¤¹ 2 M(X).

Hence, ¿¤ is well de¯ned.
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De¯nition 2.2.11. Let (X;B; ¹) be a normalized measure space.

Then ¿ : X ! X is said to be nonsingular if and only if ¿¤¹ << ¹, i.e.,

if for any A 2 B such that ¹(A) = 0, we have ¿¤¹(A) = ¹(¿¡1A) = 0.

Proposition 2.2.2. Let (X;B; ¹) be a normalized measure space,

and let ¿ : X ! X be nonsingular. Then, if º << ¹; ¿¤º << ¿¤¹ << ¹.

Proof. Since º << ¹; ¹(A) = 0 ) º(A) = 0. Since ¿ is non-singular,

¹(A) = 0 ) ¹(¿¡1A) = 0 ) º(¿¡1A) = 0. Thus, ¿¤º << ¿¤¹. Since ¿

is nonsingular, ¿¤¹ << ¹. ¤

De¯nition 2.2.12. Let (X;B; ¹) be a normalized measure space.

Let

D = D(X; B; ¹) = ff 2 L1(X;B; ¹) : f ¸ 0 and kfk1 = 1g
denote the space of probability density functions. A function f 2 D is

called a density function or simply a density.

If f 2 D, then

¹f(A) =

Z

A

fd¹ << ¹

is a measure and f is called the density of ¹f and is written as d¹f=d¹.

Let º << ¹. We saw in Proposition 2.2.2 that ¿¤º is absolutely

continuous with respect to ¹. Hence the density of º is transformed into

a density of ¿¤º. This transformation, denoted by P¿ , will be studied in

detail in Chapter 4. Clearly P¿ : D ! D. The operators ¿¤ : M(X) !
M(X) and P¿ : D ! D are closely related. Since P¿ acts on L1 it is

often easier to work with it than with ¿¤. The main mathematical tool of

this book is P¿ , which is called the Frobenius{Perron operator associated

with ¿ .

In Chapter 4, we shall encounter integrals whose analysis is greatly

facilitated by a change of variable. Consider the integral
Z a

c

f(g(x))g0(x)dx;

where f and g are real-valued functions. We let u = g(x). Then du =

g0(x)dx and Z b

a

f(g(x))g0(x)dx =

Z g(b)

g(a)

f(u)du:

We now collect a number of results from functional analysis. Let K

be a convex subset of a vector space F, i.e., for any g1; g2 2 K, the whole
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interval ftg1 + (1 ¡ t)g2 : 0 · t · 1g is in K. A point in K is called

an extreme point if it is not an interior point of any line segment lying

in K. Thus f is extreme if and only if whenever f = tg1 + (1 ¡ t)g2

with 0 < t < 1, we have g1 =2 K or g2 =2 K, i.e., we cannot represent an

extreme point as a convex combination of two points in K.

The intersection of all (closed) convex sets containing a set K is the

smalest (closed) convex set containing K. This set is called the (closed)

convex hull of K and denoted by co(K) (co(K)).

Theorem 2.2.13. (Mazur Theorem) [Dunford and Schwartz, 1964]

Let F be a Banach space with A ½ F where A, the closure of A, is

compact. Then co(A) is compact.

Theorem 2.2.14. (Kakutani{Yosida Theorem) [Dunford and

Schwartz, 1964] Let F be a Banach space and let T : F ! F be a

bounded linear operator. Assume there exists c > 0 such that kTnk ·
c; n = 1; 2; :::. Furthermore, if for any f 2 A ½ F, the sequence ffng,

where

fn =
1

n

nX

k=1

T kf ;

contains a subsequence ffnkg which converges weakly in F, then for any

f 2 A,

1

n

nX

k=1

T kf ! f¤ 2 F

(norm convergence) and T (f¤) = f¤.

Theorem 2.2.15. (Minkowski Theorem) Let K be a closed boun-

ded and convex subset of Rn. Then every boundary point of K is a

convex combination of at most n extreme points of K and every interior

point is a convex combination of at most n + 1 extreme points of K.

2.3 Functions of Bounded Variation in One Dimension

Let [a; b] ½ R be a bounded interval and let ¸ denote Lebesgue measure

on [a; b]. For any sequence of points a = x0 < x1 < ::: < xn¡1 < xn =

b ; n ¸ 1, we de¯ne a partition P = fIi = [xi¡1; xi) : i = 1; :::; ng of

[a; b]. The points fx0; x1; :::; xng are called end-points of the partition P.

Sometimes we will write P = Pfx0; x1; :::; xng.
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De¯nition 2.3.1. Let f : [a; b] ! R and let P = Pfx0; x1; :::; xng
be a partition of [a; b]. If there exists a positive number M such that

nX

k=1

jf(xk) ¡ f(xk¡1)j · M

for all partitions P, then f is said to be of bounded variation on [a; b].

If f is increasing or if it satis¯es the Lipschitz condition

jf(x) ¡ f(y)j < Kjx ¡ yj;

then it is of bounded variation.

Note that the HÄolder condition

jf(x) ¡ f(y)j < Hjx ¡ yj"; 0 < " < 1 ;

is not enough to guarantee that f is of bounded variation. This can be

seen by considering the function

f(x) =

½
x sin( 1

x); 0 < x · 2¼;

0; x = 0;

which is HÄolder continuous, but not of bounded variation (see Problem

2.3.2).

De¯nition 2.3.2. Let f : [a; b] ! R be a function of bounded

variation. The number

V[a;b]f = sup
P

f
nX

k=1

jf(xk) ¡ f (xk¡1)jg

is called the total variation or, simply, the variation of f on [a; b].

Many of the following results are well known and can be found in

the excellent book [Natanson, 1955].

Theorem 2.3.1. If f is of bounded variation on [a; b], then f is

bounded on [a; b]. In fact,

jf(x)j · jf(a)j + V[a;b]f

for all x 2 [a; b].
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Lemma 2.3.1. Let f be a function of bounded variation such that

kfk1 < 1. Then jf (x)j · V[a;b]f + kfk1

b¡a for all x 2 [a; b], where k ¢ k1 is

the L1 norm on [a; b].

Proof. We claim there exists y 2 [a; b] such that jf(y)j · kfk1

b¡a . If

not, then for any x 2 [a; b]

(b ¡ a)jf(x)j > kfk1:

Hence, kfk1 =
R b

a
jf(x)jd¸(x) >

R b

a
kfk1

b¡a
d¸(x) = kfk1 and we have a

contradiction.

Since

j f(x) j·j f(x) ¡ f(y) j + j f(y) j
we have

jf(x)j · V[a;b]f +
kfk1

b ¡ a
:

¤

Theorem 2.3.2. Let f and g be of bounded variation on [a; b].

Then so are their sum, di®erence and product. Also, we have

V[a;b](f § g) · V[a;b]f + V[a;b]g

and

V[a;b](f ¢ g) · AV[a;b]f + BV[a;b]g;

where A = supfjg(x)j : x 2 [a; b]g; B = supfjf(x)j : x 2 [a; b]g.

Quotients are not included in Theorem 2.3.2 because the reciprocal

of a function of bounded variation need not be of bounded variation. For

example, if f(x) ! 0 as x ! x0, then 1=f will not be bounded on any

interval containing x0 and therefore 1=f cannot be of bounded variation

on such an interval. To extend Theorem 2.3.2 to quotients, we must

exclude functions whose values can be arbitrarily close to zero.

Theorem 2.3.3. Let f : [a; b] ! R be of bounded variation and

assume f is bounded away from 0; i.e., there exists a positive number

® > 0 such that jf(x)j ¸ ® for all x 2 [a; b]. Then g = 1=f is of bounded

variation on [a; b] and

V[a;b]g · 1

®2
V[a;b]f:
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Proof. Let fx0; :::; xng be a partition of [a; b]. Since f 2 BV [a; b],

we have
nX

k=1

jf (xk) ¡ f(xk¡1)j < M1

Then,

nX

k=1

j 1

f (xk)
¡ 1

f(xk¡1)
j =

nX

k=1

jf(xk) ¡ f(xk¡1)j
jf(xk)jjf(xk¡1)j

· 1

®2
M1:

Therefore, 1
f 2 BV [a; b] and V[a;b]

1
f · 1

®2 V[a;b]f . ¤

If we keep f ¯xed and study the total variation as a function of the

interval [a; b], we have the following property:

Theorem 2.3.4. Let f : [a; b] ! R be of bounded variation and

assume c 2 (a; b). Then f is of bounded variation on [a; c] and on [c; b]

and we have

V[a;b]f = V[a;c]f + V[c;b]f:

The following result characterizes functions of bounded variation.

Theorem 2.3.5. Let f be de¯ned on [a; b]. Then f is of bounded

variation if and only if f can be expressed as the di®erence of two in-

creasing functions.

Theorem 2.3.6. Let f be of bounded variation on [a; b]. If x 2
[a; b], let V (x) = V[a;x]f and let V (a) = 0. Then every point of continuity

of f is also a point of continuity of V . The converse is also true.

Combining the two foregoing theorems, we have

Theorem 2.3.7. Let f : [a; b] ! R be continuous. Then f is of

bounded variation on [a; b] if and only if f can be represented as the

di®erence of two increasing continuous functions.

We now distinguish an important subspace of functions of bounded

variation.

De¯nition 2.3.3. Let f : [a; b] ! R. f is called an absolutely

continuous function if and only if for any " > 0 there exists a ± > 0 such
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that for any fsi; tigN
i=1

NX

i=1

jti ¡ sij < ± =)
NX

i=1

jf(ti) ¡ f(si)j < ":

If f has a continuous derivative (or more generally, if f is absolutely

continuous), there is a very useful representation for its variation.

Theorem 2.3.8. Let f : [a; b] ! R have a continuous derivative f 0

on [a; b]. Then

V[a;b]f =

Z b

a

jf 0(x)jd¸(x):

We now brie°y discuss the interesting relation between absolute con-

tinuity (nonsingularity) of a function and nonsingularity of a transfor-

mation de¯ned by this function (De¯nition 2.2.11).

Recall, that f : [0; 1] ! [0; 1] is called nonsingular (as a transfor-

mation) , for any A 2 B([0; 1]) ¸(A) = 0 ) ¸(f¡1(A)) = 0 (i.e.

, f¤¸ << ¸ for f¤¸(A) = ¸(f¡1(A))). Then, by the Radon{Nikodym

Theorem, there exists a function g(x) ¸ 0 such that

¸(f¡1(A)) =

Z

A

g(t)d¸(t); (2.3.1)

for all A 2 B([0; 1]): Note that the function g may vanish on some set

of positive measure. If f(0) = 0, then applying the formula (2.3.1) to

A = [0; x], we obtain

f¡1(x) =

Z x

0

g(t)d¸(t) for x 2 [0; 1]:

On the other hand, the function ' : [0; 1] ! [0; 1] is called nonsin-

gular or absolutely continuous (as a function) , ' is di®erentiable a.e.,

and

'(x) =

Z x

0

'0(t)d¸(t) for x 2 [0; 1]:

(This characterization is equivalent to De¯nition 2.3.3).

The following proposition is a direct consequence of the de¯nitions:

Proposition 2.3.1. Let f : [0; 1] ! [0; 1]. If f¡1 exists and is

absolutely continuous as a function, then f is nonsingular as a transfor-

mation.

The following result was proved in [Quas, 1996].
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Proposition 2.3.2. Let f : [0; 1] ! [0; 1] be a homeomorphism.

If f is absolutely continuous as a function and f 0 > 0, a.e., then f is

nonsingular as a transformation.

Proof. For each x 2 [0; 1]; we have

f (x) =

Z x

0

f 0(t)d¸(t): (2.3.2)

Let ¹ = f 0 ¢ ¸: The measure ¹ is equivalent to ¸. By (2.3.2), we have

¸(f([0; x])) =

Z x

0

f 0d¸ = ¹([0; x]); x 2 [0; 1]:

Since the intervals f[0; x]; x 2 [0; 1]g generate B([0; 1]) we have

¸(f(A)) = ¹(A)

for any measurable A ½ [0; 1]. Thus, ¸(f(A)) = 0 , ¹(A) = 0 ,
¸(A) = 0. Since f is a homeomorphism we have ¸(B) = 0 , ¸(f¡1(B)) =

0, for any measurable B. This implies that f is nonsingular as a trans-

formation. ¤

Below we present an example of f : [0; 1] ! [0; 1] that is nonsingular

as a transformation but not absolutely continuous as a function.

Example 2.3.1. Let c be the Cantor function (sometimes called

the \devil's staircase" [Devaney, 1989]). It is a continuous, increasing

function transforming the Cantor set onto [0; 1]. The derivative of c,

c0, is equal to 0 almost everywhere. Let f(x) = 1
2(c(x) + x). Then

f : [0; 1] ! [0; 1] is a homeomorphism. For any measurable A ½ [0; 1],

we have

¸(A) ¸
Z

f¡1(A)

f 0(x)d¸(x) =
1

2
¸(f¡1(A)):

Thus, ¸(A) = 0 implies ¸(f¡1(A)) = 0 and f is nonsingular as a

transformation. We also have

f(1) = 1 >
1

2
=

Z

I

f 0(x)d¸(x);

so f is not absolutely continuous as a function.

We now show that the assumption f 0 > 0 a.e. is important in

Proposition 2.3.2.
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Example 2.3.2. Let f be the homeomorphism of the previous ex-

ample. f transforms the Cantor set c into the Cantor set c 1
2

of measure

1=2. The inverse homeomorphism f¡1 is absolutely continuous as a func-

tion. Its derivative (f¡1)0 is equal to 0 on c 1
2

and equal to 2 elsewhere.

It is not di±cult to check that, for any x 2 [0; 1];

f¡1(x) =

Z x

0

(f¡1)0(t)d¸(t):

Obviously, f¡1 is not nonsingular as a transformation, since ¸(c) = 0

and ¸(c 1
2
) = ¸((f¡1)¡1(c)) = 1

2 .

We now present a result due to E. Helly that has many important

applications.

Theorem 2.3.9. (Helly's First Theorem) [Natanson, 1955]

Let an in¯nite family of functions F = ffg be de¯ned on an interval

[a; b]. If all functions of the family and the total variation of all functions

of the family are bounded by a single number, i.e.,

jf(x)j · K; V[a;b]f · K 8f 2 F;

then there exists a sequence ffng ½ F that converges at every point of

[a; b] to some function f¤ of bounded variation, and V[a;b]f
¤ · K.

Two inequalities that will play an important role in the sequel follow:

Theorem 2.3.10. Let f : [a; b] ! R be of bounded variation. Let

x; y 2 [a; b] and x < y. Then

jf(x)j + jf(y)j · V[x;y]f +
2

jy ¡ xj

Z y

x

jf(t)jdt:

Proof. We have

jf (x)j + jf(y)j · 2 inf
x·t·y

jf(t)j + jf(x) ¡ f(t)j + jf(t) ¡ f(y)j:

By the Mean Value Theorem for integrals, we obtain

j f(x) j + j f(y) j· 2

j y ¡ x j

Z y

x

j f(t) j d¸(t) + V[x;y]f:

¤
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Theorem 2.3.11. (Yorke's Inequality) [Lasota and Mackey, 1985,

p. 118]

Let f : [a; b] ! R be of bounded variation. Let [c; d] ½ [a; b] and let

Â[c;d] be the characteristic function of the interval [c; d]. Then

V[a;b](fÂ[c;d]) · 2V[c;d]f +
2

d ¡ c

Z d

c

jf(t)jd¸(t):

We now make the space of functions of bounded variation into a

Banach space. Let

BV ([a; b]) = ff 2 L1 : inf
f1=fa:e:

V[a;b]f1 < +1g:

Note that the in¯mum is taken over all functions a.e. equal to f . For

example, the function

f(x) =

½
n; if x = 1

n ; n = 1; 2; : : :

0; otherwise

clearly has in¯nite variation, but f 2 BV ([0; 1]) since f1 ´ 0 is a.e. equal

to f and V[0;1]f1 = 0.

We de¯ne a norm on BV ([a; b]) as follows: For f 2 BV ([a; b]),

kfkBV = kfk1 + inf
f1=fa:e:

V[a;b]f1:

Without the L1-norm, k¢kBV would not be a norm, since a function that

is not 0 could have 0 variation.

We now collect some miscellaneous properties of BV ([a; b]).

Proposition 2.3.3. BV ([a; b]) is dense in L1([a; b]).

Proof. Since C1([a; b]) is dense in L1([a; b]) and BV ([a; b]) contains

C1([a; b]), the result is true. ¤

Proposition 2.3.4. A bounded set in BV ([a; b]) is strongly com-

pact in L1([a; b]).

Proof. If ff®g®2A ½ BV ([a; b]) is bounded, there exists K1 < 1
such that

kf®kBV · K1 8® 2 A:

From the de¯nition of k ¢ kBV it follows that ff®g®2A is uniformly

bounded, i.e., there exists K2 < 1 such that

jf®(x)j · K2 8® 2 A:
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Let K = max(K1;K2). By Helly's Theorem, there exists a subsequence

ff®kg such that

f®k
! f¤

everywhere. Since ff®g®2A is weakly compact (it is uniformly bounded)

and f®k ! f¤, Theorem 2.2.5 implies that f®k
! f¤ in L1([a; b]). Hence

ff®g®2A is strongly compact in L1([a; b]). ¤

Proposition 2.3.5. If V[a;b]fn · K for all n and fn ! f in L1 =

L1([a; b]), then

V[a;b]f · K:

Proof. Since fn ! f in L1([a; b]), we can assume that some sub-

sequence fnk
! f everywhere after changing the functions on a set of

measure 0. Consider the partition a = x0 < x1 < ::: < xn = b. Then we

have
NX

i=1

jfnk
(xi) ¡ fnk

(xi¡1)j · K; k = 1; 2; ::::

Taking the limit as k ! 1, we obtain

NX

i=1

jf(xi) ¡ f(xi¡1)j · K:

Since the partition was arbitrary, we have V[a;b]f · K. ¤

Proposition 2.3.6. Let f 2 BV ([a; b]) and assume ¸fx : f(x) 6=
0g > 0. Let suppf = fx : f (x) 6= 0g denote the support of f . Then the

interior of supp f 6= ;.

Proof. Since f is continuous except at a countable number of points,

we can choose x0 such that jf(x0)j = h 6= 0 and f is continuous at x0.

Since h 6= 0, there is a neighborhood of f(x0); U , such that 0 =2 U . Since

f is continuous at x0; f
¡1(U), is open, i.e., jf(x)j 6= 0 for x in some

neighborhood of x0. Hence the support of f contains a nonempty open

set. ¤

For n-dimensional functions of bounded variation, this property is

not necessarily true [G¶ora and Boyarsky, 1992].

Below we present two results of [Keller, 1982], which we will use

in Section 11.2. Let us de¯ne the inde¯nite integral
R

(©) of a function

© 2 L1 by
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Z
(©)(z) =

Z

x·z

©(x)d¸(x):

Lemma 2.3.2. Let f 2 BV and © 2 L1: Then,

j
Z

f©d¸j · V (f) ¢ k
Z

(©)k1 + j
Z

©d¸j ¢ kfk1 · 2kfkBV k
Z

(©)k1:

Proof. Let J1; : : : ; JM be a partition of I = [0; 1] into subintervals

Ji = [ai; ai+1] such that 0 = a0 < a1 < ¢ ¢ ¢ < aM = 1 and assume that

© is constant on each Ji: Let G =
R
(©). Then

j
Z

f ¢ ©ḑ j = j
MX

i=1

Z

Ji

f ¢ ©ḑ j = j
MX

i=1

ui

Z

Ji

©ḑ j

= j
MX

i=1

ui[G(ai) ¡ G(ai¡1)]j

·
M¡1X

i=1

jui+1 ¡ uij ¢ kGk1 + jG(0) ¢ u1j + jG(1) ¢ uM j

· V (f ) ¢ kGk1 + jG(1)j ¢ kfk1 · 2kfkBV ¢ kGk1;

where ui 2 cof(Ji), the closed convex hull of f(Ji): For a general ©, the

required inequality follows by approximation. ¤

Theorem 2.3.12. For f 2 L1,

V (f ) = sup
©

¯̄
¯̄
Z

f©ḑ

¯̄
¯̄ ;

where the supremum extends over all © 2 L1 with k
R

(©)k1 · 1 andR
©ḑ = 0.

Proof. By Lemma 2.3.2, it follows that

V (f ) ¸ sup j
Z

f ¢ ©ḑ j:

Hence, we need only prove the reverse inequality. Let S = sup
©

j
R

f ¢
©ḑ j, the supremum being taken as in the statement of the theorem, and

assume that S < 1. Let us choose a sequence fPng of ¯nite partitions

of I into subintervals, Pn+1 ¯ner then Pn, which generates the Borel

¾-algebra on I. Then, the conditional expectations E[f jPn] ! f a.e.
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with respect to ¸ (see Section 2.4). This implies that for each version f

of f
1

¸(In(x))

Z

In(x)

fḑ ! f; as n ! 1;

everywhere except for a set N(f) of zero ¸ measure, where In(x) denotes

the element of Pn containing x. Now sums of the type
kP

i=1
jf(ai) ¡

f (ai¡1)j; with ai =2 N(f), can be approximated by the integrals
R

f ¢©ḑ ,

with © as required (see Problem 2.3.9). Then,

sup
a0<¢¢¢<ak

ai =2N(f)

kX

i=1

jf(ai) ¡ f(ai¡1)j · S < 1:

That is, f jInN(f) is of bounded variation and can be extended to a

function
=

f on all of I (by using one-sided limits) such that

sup
a0<¢¢¢<ak

kX

i=1

j
=

f (ai) ¡
=

f (ai¡1)j · S:

Since
=

f is also a version of f (i.e.,
=

f = fa:e:), we ¯nally have V (f) · S.

¤

2.4 Conditional Expectations

Let (X;B; ¹) be a normalized measure space. Let C ½ B be a ¾-algebra.

For f 2 L1(X;B; ¹), we de¯ne the conditional expectation of f with

respect to C as follows:

De¯nition 2.4.1. Let (X;B; ¹) be a normalized measure space and

let C ½ B be a ¾-algebra. For f 2 L1(X;B; ¹), we de¯ne the conditional

expectation of f with respect to C as the Radon{Nikodym derivative of

the measure f¹jC with respect to the measure ¹jC and denote it by

E(f jC):

E(f jC) =
d(f¹jC )

d(¹jC )
:
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Theorem 2.4.1. For a function g 2 L1(X;C; ¹), we have g =

E(f jC) if and only if Z

A

gd¹ =

Z

A

fd¹

for any A 2 C.

Example 2.4.1. Let (X;B; ¹) be a normalized measure space and

let X =
S1

n=1 An, where An 2 B and An \ Am = ; for m;n = 1; 2; ::::

and n 6= m. The partition fAng1
n=1 generates a ¾-algebra A. In this

case, for any f 2 L1(X;B; ¹); we have

E(f jA) =
1X

n=1

1

¹(An)

Z

An

fd¹ ¢ ÂAn :

It is easy to check that the right hand side of the above equality satis¯es

the condition given in Theorem 2.4.1.

Conditional expectations have all the properties of integrals. Some

other basic properties of conditional expectations are listed in the fol-

lowing:

Theorem 2.4.2. Let (X;B; ¹) be a normalized measure space.

(a) If C1 ½ C2 ½ B and f 2 L1(X;B; ¹), then

E(E(f jC2)jC1) = E(f jC1):

(b) If Cn ½ B; n = 1; 2; :::; is an increasing sequence of ¾-algebras

(Cn ½ Cn+1; for any n ¸ 1) and C = ¾(
S

n¸1 Cn), then

E(f jCn) ¡! E(f jC)

¹-a.e. and in L1(X;C; ¹).

(c) If Cn ½ B; n = 1; 2; :::; is a decreasing sequence of ¾-algebras

(Cn ¾ Cn+1; for any n ¸ 1) and C =
T

n¸1 Cn, then

E(f jCn) ¡! E(f jC)

¹-a.e. and in L1(X;B; ¹).

Problems for Chapter 2

Problem 2.2.1. Prove Sche®¶e's Theorem (Theorem 2.2.4).
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Problem 2.3.1. Let f(x) = sin(x); x ¸ 0.

(a) Prove that f 2 BV [0; 2¼].

(b) Find V (x) = V[0;x]f , for any x > 0.

Problem 2.3.2. Prove that the function f : [0; 2¼] ! R de¯ned by

f(x) =

½
x sin ( 1

x); if 0 < x · 2¼

0; if x = 0

is not of bounded variation on [0; 2¼].

Problem 2.3.3. Let

f(x) =

½
x2 sin ( 1

x
); if 0 < x · 2¼

0; if x = 0:

Prove that f 2 BV [0; 2¼].

Problem 2.3.4. Prove that if f 2 BV [a; b], then f is bounded on

[a; b].

Problem 2.3.5. Suppose f; g 2 BV [a; b]. Prove that fg 2 BV [a; b].

Problem 2.3.6. Let f; g be functions of bounded variation, g(x) ¸
¾ > 0. Prove that f(x)

g(x) is of bounded variation.

Problem 2.3.7. Let f : [a; b] ! R satisfy a Lipschitz condition.

Prove that f 2 BV [a; b].

Problem 2.3.8. Let f have support in [b; c] and let it be of bounded

variation. Let g have support in [¡a; a] and
R a

¡a jg(t)jd¸(t) · 1. Prove

that

V[b¡a;c+a](f ¤ g) · V[b¡a;c+a]f ;

where * denotes convolution:

f ¤ g(t) =

Z +1

¡1
f(s)g(t ¡ s)d¸(s) =

Z +1

¡1
g(s)f(t ¡ s)d¸(s);

t 2 R:

Problem 2.3.9. Let f 2 BV [0; 1] and let points 0 = a0 < a1 <

¢ ¢ ¢ < ak = 1 be given. Construct a sequence of functions ©n 2 L1;

k
R
(©n)k1 · 1;

R
©nd¸ = 0, n = 1; 2; : : : , such that the integralsR

f©nd¸ approximate
Pk

i=1 jf(ai) ¡ f(ai¡1)j:


