CHAPTER 3

Review of Ergodic Theory

In this chapter we present a brief review of ergodic theory. Many of the
results will be used in the sequel. For a more complete study of ergodic
theory the reader is referred to the excellent texts [Petersen, 1983] or
[Cornfeld, Fomin and Sinai, 1982].

3.1 Measure-Preserving Transformations

Let (X, B, 1) be a normalized measure space.

Definition 3.1.1. The transformation 7 : X — X is measurable if
771(B) C B, ie, BB = 7 1(B) € B, where 771(B) = {x € X :
7(x) € B}.

Definition 3.1.2. We say the measurable transformation 7: X —
X preserves measure p or that p is T-invariant if u(7=*(B)) = u(B) for
all B € ‘8.

Definition 3.1.3. Let (X, B, i) be a normalized measure space and
let 7: X — X preserve u. The quadruple (X, B, u, 7) is called a dynam-
ical system.

In practice, it is usually difficult to check whether 7 preserves a
measure since one does not have explicit knowledge of all members of 8.
However, we often know a m-system P that generates 8. For example,
if X is the unit interval, then the family P of all intervals is a m-system.
The following result is very useful in checking if a transformation is
measure preserving.

Theorem 3.1.1. Let (X,B, u) be a normalized measure space and
let 7 : X — X be measurable. Let P be a w-system (Definition 2.1.4)
that generates B. If u(r=1A) = u(A) for any A € P, then T is measure
preserving (preserves [i).

Proof. Let us define a new measure on B, n(A4) = u(r71(A)) (see
Problem 3.1.10). The measures p and 1 agree on the m-system P. By
Theorem 2.1.2, . = n on ‘B. (]

(p- 29)



30 3 Review of Ergodic Theory

The following theorem gives a necessary and sufficient condition for
T-invariance of u.

Theorem 3.1.2. Let 7 : X — X be a measurable transformation
of (X,B, ). Then T is p-preserving if and only if

/ f(x)dp = / Fr(@))dp (3.1.1)
X X

for any f € £>*. If X is compact and (3.1.1) holds for any continuous
function f, then T is p-preserving.

Two examples of measure-preserving transformations are presented
below. More examples can be found in the problem section at the end
of the chapter.

Example 3.1.1. Let X = [0,1],8 = Borel o-algebra of [0, 1] and
A = Lebesgue measure on [0, 1]. Let 7 : X — X be defined by 7(z) = rx
(mod 1), where r is a positive integer greater than or equal to 2. Then
T is measure preserving.

Proof. Let [a,b] C [0,1] be a subinterval of [0,1]. Its preimage
77([a,b]) consists of r disjoint intervals Iy, ..., I, and A(I;) = 2(b — a)
for i = 1,...,r. Thus, A7 ![a,b]) = A([a,b]). Since the family
P = {[a,b] C [0,1]} is a m-system generating B, Theorem 3.1.1 implies
that A is 7-invariant. O

Example 3.1.2. Let (X,B, 1) be as in Example 3.1.1. Define 7 :
X — X by 7(x) = v + a (mod 1), where « > 0. Then 7 preserves
Lebesgue measure.

Proof. As in Example 3.1.1 it is enough to show that A\(77![a, b]) =
Ala, b] for any subinterval [a, b] C [0, 1]. The preimage 7~ [a, b] consists of
one or two disjoint intervals and (77 1[a, b]) = A([a,b]). A more natural
way to view this example is to interpret it as a rotation of the circle.
Then the 7-invariance of A is obvious. O

The following theorem establishes the existence of invariant measures
for an important class of transformations.

Theorem 3.1.3. (Krylov—Bogoliubov Theorem) [Krylov and Bo-
goliubov, 1937] Let X be a compact metric space and let 7 : X — X be
continuous. Then there exists a T-invariant normalized measure on X.
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Proof. Let v be a normalized measure on X. We consider a sequence

1
fin ==V +Tw+- 70 ),
n

n=1,2,..., where 7 is the operator on the space of measures defined by
T.v = v o7 L By Corollary 2.2.3, the sequence {1, }°°; is precompact
in the weak topology of measures, i.e., it contains a weakly convergent
subsequence { i, 152, Let p be a limit point of this subsequence:
weak
Hnyy —
as k — 4o0o. We will prove that p is 7-invariant, i.e., that u is a fixed
point of 7,. To this end it is enough to show that for any continuous

function g : X — R,
/ gdu :/ g o Tdpu. (3.1.2)
b's b's

We have
lu(g) = ulgo )| = Hm lun,(9) = pn,(907)]

1
e l JE— « ng—1
| (v ey 4 T ) (g)

1
= o (r T T ) g)]

2
= lim i|1/(g)77'f’“1/(g)| < lim 2suplg| =0

k—+o00 N k—+o00 Nk ’

and (3.1.2) is proved. Continuity of 7 is necessary to claim that p(gor) =
limy 4 oo fin, (goT). See Problem 3.1.15 for a counter example. [

3.2 Recurrence and Ergodicity

Let 7: X — X be a transformation. The nth iterate of 7 is denoted by
7", i.e.,
™ (x)=To..oT(x)

n times. In the study of dynamical systems, we are interested in proper-
ties of the orbit {7"(x)}n>0. For example, in the recurrence of orbits of
T, i.e., the property that if the orbit starts in a specified set, it returns to
that set infinitely many times. If 7 is measure preserving, then we have
a simply stated but powerful result regarding the recurrence of orbits.
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Theorem 3.2.1. (Poincaré Recurrence Theorem, 1899)

Let 7 be a measure-preserving transformation on a normalized mea-
sure space (X,B, u). Let E € 9B such that u(E) > 0. Then almost all
points of E return infinitely often to E under iterations of T.

This theorem has interesting physical and philosophical implications.

Proof. Let A be a measurable set with pu(A) > 0, and let us define
the set B of points that never return to A, i.e., B={x € A: 7F(z) ¢
A, k=1,2,...}. We will prove that

T YB)NT(B) =0,

fori >j>0. Ifz € 774(B)N77(B), then 7/(z) € Band 777 (77 (x)) =
7i(x) € B, which contradicts the definition of B. Hence, we have

Y ulrTH(B) = pUer(B)) < p(X) = 1.
1=0

Since p is 7-invariant, this implies that > ;%) u(B) < 1. Therefore,
w(B) =0. O

Example 3.2.1. Poincaré’s Recurrence Theorem has an interesting

consequence for almost every number x € [0,1]. Let 7(z) = 10-2 (mod 1)

on [0,1]. 7 preserves Lebesgue measure A and is closely related to the

decimal expansion of numbers. For any x € [0,1), we have

_a 2 o

TS0 102 T o

where g; = [10- 77 1(z)], i=1,2,...,50 0 <¢; <9. Then

+ ...,

€9 €3 €4
T(x):1—0+1—02+1—03+....

Let A = [0,0.e16265...€,). A(A) > 0, so almost every point visits A
infinitely many times. This means that the group of digits e162e3... ¢,
repeats infinitely many times in the decimal expansion of almost every
number z € [0, 1).

Let (X,®, 1) be a normalized measure space and let 7 : X — X
be a measure-preserving transformation on (X,8,u). If 77'B = B
for some B € 9B, then 77}(X\B) = X\B and the study of 7 splits
into two parts: 7 |gp and 7 |x\p. It is useful to have a concept of
indecomposability for measure-preserving transformations, so that if 7
has this indecomposability property then the study of 7 cannot be split
into separate parts. This property is called ergodicity.
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Definition 3.2.1. We call a measure-preserving transformation
7:(X,B, 1) — (X,B, u) ergodic if for any B € B, such that 771 B = B,
w(B) =0 or u(X \ B) =0.

Since ergodicity is a property of the pair (7, 1), we often say that
(7, 1) is ergodic.

Example 3.1.1 is ergodic (see Example 3.2.2). Example 3.1.2 is er-
godic if and only if « is irrational (see Problem 3.2.1).

Example 3.2.2. We will prove the ergodicity of 7(z) = 2z (mod 1),
x €0, 1].
Let A = 771(A) be an invariant set. Then, whenever x; € A and

T(z1) = 7(22), 22 € A as well. Since 7([0, %]) = 7—([%’ 1)), we have
MM=2MAmp%D:i@DEéD

([0, 51)
or
MAmp%pzmm-Mmgy (3.2.1)
Similarly, A(A N [3,1]) = MA) - A([3,1]). For any B € B, let B; =
77 1(B)N0, 3] and By = 77 (B) N [3,1]. Then
MANTYB) =2-AMANDBy) =2-\ANBy). (3.2.2)

Using (3.2.1) and (3.2.2), we can show by induction that
AMANE)=AA) - \E),

for any dyadic interval E (i.e., one with dyadic endpoints) and then for
any union of dyadic intervals. The set A can be approximated arbitrarily
closely by a union of dyadic intervals and we obtain, for any € > 0,

AMANA) —AA)-NA)] <e.
Since € > 0 is arbitrary, A\(4) = A\?(A), which implies that A\(A) equals
0 or 1. Thus, 7 is ergodic.

The symbol A denotes the symmetric difference of sets: AAB =
(A\B)U(B\A).

Definition 3.2.2. Let (X,,u,7) be a dynamical system. A set
B € B is called 7-invariant if 77'(B) = B and almost 7-invariant if
u(77H(B)AB) = 0. Similarly, a measurable function is called T-invariant
if for = f and almost 7-invariant if f o7 = f p-a.e.
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Theorem 3.2.2. The following three statements are equivalent for
the transformation 7 : (X,B,u) — (X,B, u) preserving a normalized
measure fi:

(1) T is ergodic.
(2) p((r=*B)AB) =0, B€®B = u(B)=0or1.
(3) For any A, B € B with u(A) >0, u(B) > 0, there exists n > 0 such

that u((t1—™A)N B) > 0.

We will prove Theorem 3.2.2 in a series of lemmas that are of inde-
pendent interest.

Lemma 3.2.1. If a normalized measure i is T-invariant and 7~ B C
B, then there exists a set By C B, u(B\B;) =0 and 7=}(By) = Bj.

Proof. Wehave B> 7 'BD> 7 2B > .... Let By =\, *(B).
Then, B; C B and u(B;) = limg_ o u(t7%(B)) = u(B). Also,
T_l(Bl):mzole_k(B) :Bl. O

Lemma 3.2.2. If a normalized measure i is T-invariant and u(7~1(B) A B) =
0, then there exists a set By such that u(B A By) =0, and 7 Y(B;y) =
Bs.

Proof. If u(r=(B)AB) = 0, then p(r—*(B)\ B) = 0. Let B, =
Ureo 77¥(B). We can write

B\B=(|Jr "B\ B= ] " (B)\7H(B)).
k=0 k=0

Since p is T-invariant,
p(B2\ B) <Y p(r* B\ T H(B) =Y _p(r*(r(B)\ B)) = 0.
k=0 k=0

Furthermore, 771(Bs) = Jr—; 7 %(B) C B2. By Lemma 3.2.1, there
exists By C Ba, u(B2 \ B1) = 0 and such that 77!(B1) = B;. We have
w(B1\ B) < (B2 \ B) =0. Thus, u(BAB;) = 0. O

Lemma 3.2.3. If a normalized T-invariant measure j is ergodic,
then for any set B such that 7—1(B) C B, we have u(B) equal to 0 or 1.

Proof. Since 77Y(B) C B, we can find B; C B such that 771(B;) =

By and p(B\ By) = 0 (Lemma (3.2.1). By ergodicity, u(By) = 0 or 1.
Since pu(B \ B1) = 0 we obtain u(B) =0 or 1. O



3.2 Recurrence and Ergodicity 35

Lemma 3.2.4. If a normalized T-invariant measure p is ergodic and
w(A) >0, then p(UL,77%(A)) =1.

Proof. Let B =J;—, 7 %(A). Then 771(B) C B, and pu(B) equals
0 or 1 by Lemma 3.2.3. It cannot be 0 since u(A) > 0. O

Ergodicity can also be characterized by means of functions:

Theorem 3.2.3. Let 7 : (X,B,u) — (X,B,u) be measure pre-
serving. Then the following statements are equivalent:
(1) T is ergodic.
(2) If f is measurable and (f
(2

7)(x) = f(x) a.e., then f is constant a.e.
(3) If f € £2(u) and (f o 7)(x) =

O
)= f(z) a.e., then f is constant a.e.

Proof. 1t follows from Theorem 3.2.2 and the denseness of character-
istic functions both in the space of measurable functions and in £2(u).
([l

Proposition 3.2.1. Let X be a compact metric space and let p
be a Borel normalized measure on X, which gives positive measure to
every non-empty open set. If 7 : X — X is continuous and ergodic with
respect to i, then

p{x: {t"x:n>0}is dense inX}} =1

Proof. Let {Uy,}22; be a base for the topology of X. Then {7"(x
n > 0} is dense in X & 2 € N5, U, 77 *U,. This follows from the
fact that ¥ = U;OZOT_"’UH is the set of points that go into U, after k
iterations of 7 for some k > 0. Since denseness requires that x visits
every U, we need x € N5, U, 7 *U,.

Since p is measure preserving, pu(7-'Y) = u(Y). But

_1(Uz°:07'_kUn) C UzO:OT_kUn.

Hence, p(YA771Y) = 0. By ergodicity, we have p(U ,77*U,) = 0 or
1. Since U ,77*U,, is a non-empty open set (by continuity of 7), we
have j(Up—o7*U,) = 1. Thus,

1(MRzy UiZo T_kUn) =1
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For ergodic transformations we have the following stronger version of
the Poincaré Recurrence Theorem, known as Kac’s Lemma [Kac, 1947].
Let A be a measurable set with p(A) > 0 and let us define, for x € A,
n(z) =min{k > 1: 7%(x) € A}.
n(x) is the time of the first return of x to the set A.

Theorem 3.2.4. (Kac’s Lemma) If p is T-invariant and ergodic,
and A is a measurable set with u(A) > 0, then

/ n(x)du(x) = 1. (3.2.3)
A

In terms of the conditional measure p4(B) = %, this can be

written as
1

/A n(e)dia(x) = 5.

which says that the expected time of return to a set A is ﬁ.

Proof. Let us define Ay = {x € A: n(x) =k}, B, ={z € X :
h(z) € A and Ti(x) ¢ A, for j=1,...,k—1} and Cy = By\ A, k =
1,2,.... It is easy to see that {Ax}72, are mutually disjoint subsets
of A, {By}32, are mutually disjoint subsets of X and A, C By, for
k=1,2,.... Then

(X\Up, B)NT 9 (A) =0, for j =1,2,...,
so u(X\ U2, Bi) =0 by Lemma 3.2.4. Hence, (U2, By) = 1. On the
other hand, for any k > 1, we have 771(C)) = Bjy1 and
#(By) = u(Ag) + p(Cr) = p(Ax) + w(7H(C)) = pu(Ak) + p(Byet1)-

Thus, we can write

1w(By) = p(Ax) + 1(Br1)

= 1(Ar) + p(Ary1) + 1(Braa) = = Y _ p(Ay).
i>k

This implies

L=pu({J Be) =3 uBr) =33 w4
k=1 k=1

k=1i>k
- ZZ“(AZ) = ZZ p(4) = / nduy.
=1 k=1 i=1 A O]
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Some details of this proof are further discussed in Problem 3.2.10.

Theorem 3.2.5. If yy and ps are two different normalized T-ergodic
measures, then py L po (u1 and pe are mutually singular).

Proof. Let p= % Since puy << pand po << p, there exist in-
tegrable functions fi, fo such that py = f1-p and pe = fo-p, respectively.
Let us define A; = {z : fi(z) > 0} and Ay = {z : fo(x) > 0}. We will
prove that A; and Ay are almost invariant (i.e., u(A4;A771(4;)) = 0,
i = 1,2). We have pi(771(A1) \ A1) = 0 (since u1(A;) = 1) and
1 (77 (A1) = 1 (Ar). Thus,

(A \ 71 (A1) = pa(Ar) 4+ (771 (A1) \ Ar) — pa (771 (A1) = 0.

Hence, p1(A1A77 (A1) = 0 and there exists a 7-invariant set A; such
that 1 (A1 AA;) = 0. Similarly, there exists a 7-invariant set As such
that /.LQ(AQAAQ) = 0. Then, the set A = A; N A, is also 7-invariant.
Since py is ergodic, py(A) equals either 1 or 0. Similarly, us(A) equals
either 1 or 0. Let us consider all four possible pairs of values pu(A),
t2(A). In three of the possible cases, 0 and 0, 0 and 1, 1 and 0, the
measures (i1, o are mutually singular. In the fourth case, p;(A4) =
t2(A) =1 and we have

pa = [ pa,
where f = % a.e. 2. Using Lemma 3.2.5 we obtain 1 = pe, which
contradicts the assumption pq # po. O

Lemma 3.2.5. Ifp is a normalized T-ergodic measure and j; << {
is a normalized T-invariant measure, then u, = p.

Proof. Since p1 << u, there exists an integrable function f > 0,
such that gy = f - p. Since both p; and p are 7-invariant, for any
measurable set B, we have

/deuzm(B)zul(T‘l(B)):/T1(B)fdu:/3fwdu.

Hence, f = f o7 p-a.e. Since p is ergodic, f is constant a.e. Since both
measures are normalized, f =1, a.e., and p; = p. (]

Let us consider the set 991 of normalized T-invariant measures. It is
easy to show that 91, is convex. We will prove that the extremal points
of 91, are precisely the T-ergodic measures.
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Theorem 3.2.6. The extremal points of 9, are ergodic measures.

Proof. Let u € My be a T-ergodic measure. Let us assume that
W = apy + PBug, where puy,pus € My, a,f > 0, and o + F = 1. Then
w1 << p and ps << p and by Lemma 3.2.5 we have p; = p, pe = p.
Thus, any ergodic measure is an extremal point of ;.

Now, let us assume that g is an extremal point of M. We will
show that p is ergodic. If p is not ergodic, then there exists an invariant
set A with 0 < p(A) < 1. Its complement A€ is also invariant and
0 < u(A°) < 1. Let us define :ﬁ'XA'MandM:ﬁ'XAC'#-
Both pu1, po € 9% and we have

= p(A) - p1 + p(A°) - pa,

which contradicts the assumption that p is an extremal point of 91;.
O

If X is a compact metric space, then 9, is compact in the weak
topology. Let us denote by Ex(91;) the set of extremal points of My, i.e.,
the set of ergodic measures. By the Krein-Milman Theorem [Dunford
and Schwartz, 1964], there exists a measure M on Ex(91;) such that for
any p € My, there exists a function f, on Fx(9M;) such that

p= / FudM. (3.2.4)
Ex(M1)

The representation (3.2.4) is called the ergodic decomposition of p. In a
simpler case, where Ex(91;) is countable, we have for any pu € 9y,

H = ZO@M,
i=1
where Ex(Iy) = {p;}2, and o; € R, i =1,2,....

Example 3.2.3. Let I = [0,1] and 7(z) = = be the identity on I.
Any measure p is 7-invariant. The only ergodic measures are the Dirac
measures 0, € I. Thus, any measure can be represented as an integral
over Dirac’s measures. This example shows that ergodic measures in the
ergodic decomposition of © may have properties completely different from
those of p itself. For example, when we write an ergodic decomposition of
an invariant measure absolutely continuous with respect to A we cannot
be sure that the components are also absolutely continuous with respect
to A.
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Let X be a compact metric space and let 7 : X — X be measurable.
For any x € X, we denote by w(x) a set of accumulation points of the
orbit of z : {77 (x)}5%,.

Definition 3.2.3. A point x € X is called 7-recurrent if and only
if z € w(x), i.e., there exists a strictly increasing sequence of positive
integers {n;}2,, such that

= 1l i ().
P= e

We denote by R, the set of all T-recurrent points.

For example: every fixed or periodic point is recurrent and for an
irrational rotation of the circle every point is recurrent.

The following theorem is a topological counterpart of the Poincaré
Recurrence Theorem.

Theorem 3.2.7. For any T-invariant finite measure u, u(X \ R;) =
0, i.e., any T-invariant measure is supported on the set of T-recurrent
points.

Proof. Let {B;,}n,>0 be a basis of open balls covering X with diam-
eters tending to 0 as n — +oo0 and such that (J,. v B, = X, for any
N > 0. Let p be a T-invariant measure. By the Poincaré Recurrence
Theorem, we can find sets B,, C B,, of points returning infinitely many
times to B, with u(B, \ B,) =0, n =1,2,.... If u(B,) = 0, then we

define B,, = ). Let
‘- Us
N>0n>N
Then we have

pENX) =p(U U B\ [ U B

N>0n>N N>0n>N

(U U BanU N &\ B
n>0n>N N>0n>N

w(lJ U Bu\Bn)=0.

N>0n>N

Let z € X. Then for any € > 0 we can find a ball B, With radius smaller
than 5 such that « € B,,, and therefore some image 7% (z) € B,, and
p(x, %) < 2¢, where p is the metric on X. Since € > 0 was arbitrary
and kg can be chosen arbitrarily large, x € R,. Thus, we have X CR,
and pu(X \ R,) =0. O
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Another important set of points is the set of nonwandering points
Q.

Definition 3.2.4. A point x € X is called nonwandering if and
only if, for any neighborhood U of z, there exists an n > 1 such that
UN7t=™(U) # 0. The set of all nonwandering points is denoted by €.

Theorem 3.2.8. For a measurable transformation 7 : X — X,
R, C Q. Thus, for any finite T-invariant measure ,

WX\ Q) =0. (3.2.5)

Proof. Let x € R,. Then there exists a sequence of positive integers
n; — +oo such that p(x,7"(x)) — 0, as i — +oo. For any neighbor-
hood U of x, we can find n; such that 7"z € U. Thus, 7" (U)NU # 0.
This proves that R, C ;. (3.2.5) follows by Theorem 3.2.7. [

3.3 The Birkhoff Ergodic Theorem

Let 7: (X,9B,u) — (X,B,u) be measure preserving and E € B. For
x € X, a question of physical interest is: With what frequency do the
points of the orbit {z,7(x),72(x),...} occur in the set E?

Clearly, 7(z) € E if and only if xg(7(x)) = 1. Thus, the number
of points of {z,7(x),...,7""}(x)} in E is equal to Zz;é xe(tF(x)), and
the relative frequency of elements of {x,7(z),...,7" ()} in E equals
LS d (e (@),

The first major result in ergodic theory was proved in 1931 by G.D.
Birkhoff [Birkhoff, 1931].

Theorem 3.3.1. Suppose 7 : (X,B,u) — (X,B,u) is measure
preserving, where (X, B, i) is o-finite, and f € £'(u). Then there exists
a function f* € £'(u) such that

LS i @) - £ - ae.
0

n

Furthermore, f* o1 = f* u — a.e. and if u(X) < oo, then [, f*du =
Jx fp.

There are different proofs of the Birkhoff Ergodic Theorem, (see [Hal-
mos, 1956], [Cornfeld, Fomin and Sinai 1982], [Rudolph, 1990], [Krengel,



3.3 The Birkhoff Ergodic Theorem 41

1985]). Our presentation is based on [Randolph, 1968], which is closer to
Birkhoft’s original proof. It is our belief that this proof is more intuitive
and can be easily grasped by novices in ergodic theory.

We present some lemmas first.

Definition 3.3.1. Given a real sequence xg,21,...,T,_1 of fixed
length n, a term z; is called a vit (very important term) if at least one
of the sums

Lj

Tj+ Tjt1

Tj+Tjp1+ -+ Tpo
is positive (i.e., strictly greater than 0).

Example 3.3.1. Let n =5 and let the sequence be: —1,1, —%,
—2, 1. The vits are: —1,1,—%,1. x5 = —3 is not a vit since —3 <

’ 2 2
0,—1+4+(-2)<0and -1+ (-2)+1<0.

Lemma 3.3.1. In any finite sequence the sum of vits is greater than
or equal to 0. (If there are no vits we assume that their sum is 0).

Proof. We will use induction on the lengths of sequences. Let v
denote the sum of vits. For any sequence of length 1, the lemma holds
since either xg > 0 and v = g > 0 or g < 0 in which case there are no
vits and v = 0. Let n > 2 and let us assume that the lemma holds for
any sequence of length < n — 1. Take any sequence of length n,

L0y L1y L2y e ey Loy (3.3.1)
Form the sums

S0 = Xo

81 =xg+ 1

Sp—1=To+T1+ -+ Tp_1.

We consider three cases:
Case 1: All s < 0. Then z¢ is not a vit of the sequence xg,z1, o, .. ..
Hence all vits of (3.3.1), if there are any, are vits of the (n — 1)-length
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sequence ri,Ts,...,Ty_1. Lhen v > 0 by the inductive assumption.
Case 2: sp > 0. Then xy > 0,0 is a vit of (3.3.1), and any other vit of
(3.3.1) is also a vit of x1,x2,...,2n—1. Hence v > x9 > 0.

Case 3: 59 <0, 81 <0,...,8,_1 <0but s, >0withl <k<n-—1.
Then,

0 < s =8p_1+ Tk

0<sp=58p-2+ (T +Tp—1)

0<sp=s0+ (v +xp—1+ -+ 1)

Hence, z1+2zo+-- -4+ 21+ 2k, T2ot+23+ -+ 2k,...,Tp_1+ T are all
positive and 1, za, ..., x_1 are all vits of (3.3.1). Also, xg is a vit since
0<sp=uz0+ (v +xp_1+ -+ x1). The vits xg, x1,x2,...,T,_1 have
s > 0 as their sum. If there are any vits of (3.3.1) other than these, then
the others are also vits of the shorter sequence zj1, ..., z,_1, whose sum
is greater than or equal to 0 by the inductive hypothesis. Hence, v > 0.

O
For a function f € £}(X,B,u) and a p-preserving transformation
7, we define the ergodic averages

n=12....

Lemma 3.3.2. (Maximal Ergodic Theorem) Let T be a transfor-
mation preserving the measure y, and f € £(X,B, u). The set

M=A{z: sg;l)An(f)(:E) > 0}

is measurable and

/ fdp > 0.
M
More generally, for any o € R and M* = {z : sup,,», A, (f)(x) > a},

we have
fdp > ap(M*®).
Mcy
Proof. For k=1,2,..., let M}, be defined by

My, ={z: 1iugkAn(f)(:£) > 0}.
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Obviously,

n

My ={z: sup if(TZ(l‘)) > 0}.
0

1<n<k

Thus, x € My, if and only if at least one of

f(z)
f(@) + f(r(2))
f@)+ f(r(@)) + -+ (@) (3.3.2)
is positive, i.e., if and only if f(z) is a vit of the sequence f(z), f(7(x)),
.oy f(7*"Y(x)). Since all f, for,..., fo7* ! are measurable, M}, is a

measurable set. Moreover,
M1CM2CM3C"'CMkCMk+1C...

and M = |J,—; M so M is also a measurable set and

dy = lim d
/Mfu m Mkfu

by the Monotone Convergence Theorem applied to positive and negative
parts of f, fT and f~. The convergence of this sequence implies the
convergence of its arithmetic means

1 n
lim — / d, :/ dpu.
”**O"”kzl = Fd

Therefore the first part of the lemma will be proved upon showing that

> y fdp>0,n=1,2,3,.... (3.3.3)
k=1 k

The sum in (3.3.3) is equal to

/Mn f(z)dp + /Mn1 fl@)dp+ -+ /M1 f(z)dp = /TI(MH) f(r(z))dp
" /Tl(Mnl) Flr@))dp -+ /F<"1)(M1) F(r" 7 (2))dp.
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By setting N; = 779(M,_;), j=0,1,...,n — 1, we can write

Z S@)dn = Z/ffj i = Z/fTJ I, (@)
-/ S F( ) (e (3.3.4)
X 50

We will establish (3.3.3) by showing that the integrand in (3.3.4) is
nonnegative for all x € X. The point x € M if and only if at least one
of the sums in (3.3.2) is positive and x € M,,—;, j=1,...,(n—1) if and
only if at least one of

F@)+ f(r(@) +- -+ f(r" (@)

is positive. Since N;j = 779(M,,_;), © € N; if and only if 77 (x) € M,,_;
and hence if and only if at least one of

f(r (x)
F@ (@) + f(r7 (@)

F@ (@) + fr T @) + -+ f(T T (@)

is positive. Stated in terms of vits: x € N;, j =0,1,...,n — 1, if and
only if f(77(z)) is a vit of the sequence
f@), f(r(@)), f(72 (@), ..., (7" (@) (3.3.5)

Consider any € X and any j among 0, 1,2,...,n—1. Either x ¢ N
which case xn, () = 0, or else € N; in which case f(/(z))xn,(z)
f(77(x)) is a vit of (3.3.5). Hence, for any = € X, the sequence (3.3.5)
has its sum of vits v(x) given by

n—1

v(z) =) f(r (@)xn, (2),

7=0
which is nonnegative by virtue of Lemma 3.3.1. Since this sum is the
integrand in (3.3.4), we have established (3.3.3) and proved the first part
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of the lemma. The second part of the lemma follows upon replacing f
in the first part by f — a. O

Lemma 3.3.3. Let 7 be a transformation preserving the measure
wand let f € £4(X,B, ). Let a € R. If A is a measurable invariant set
such that for each x € A,

(a) sup An(f)(x) > o, then /AfdMZOZM(A);

n>1

(b) inf A, (f)(z) <a, then /A Fdu < ap(A).

n>1
Proof. First consider the special case « = 0. Let g = f - x4 and
1 n—1
M ={z:sup— ZQ(TZ(JJ)) > 0}.
nz1 155
By Lemma 3.3.2, [ 2 9dpe > 0. The characteristic function x4 is invari-

ant, i.e., Ya = xa o 7. Thus, g(7%) = f(7%)xa so

i [ fr'(z)), ae in A
o) = { 0, ae. in X\A.

Hence,

1S [ A()@), ae in A
n ;Q(T (@) = { 0, ae. in X\A.

Therefore, M C A differs from A by a set of measure zero and

OS/ gduz/gduz/fdu,
M A A

which proves (a) under the special case @« = 0. In case « is not zero,
then under the hypothesis in (a),

and

0< /A (f(z) - a)dpu = /A fdpi— ap(4)

by the above special case, with f replaced by f — «. Hence (a) holds.
Now apply (a) with f replaced by —f and obtain (b). O
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Proof of Theorem 8.3.1. First we prove that the limit

(@)= lim A, (f)(z)

n——+oo

exists p-a.e. Let
A™ (x) = liminf A, (f)(zx)

n— -4o00
and
AT (x) = limsupA, (f)(z).

n—-—+oo

Both A~ and AT are measurable functions. Also,

A7 (1(z)) = liminfA, (f)(7(z))

n—-—+oo

R (L) B RS N
= it (- () g L)

= limnf Ay (f)(2) = A7 ()

Thus, A~ is 7-invariant and in the same way A" is 7-invariant. For any
constants a < b, the set

Agp={r: A () <a<b< AT(z)}
is a measurable set. Also,
T HAw) = {z:7(x) € A}
={r: A (7(2)) <a<b< AT (7(2))} = Aw
since A=, A" are T-invariant. Moreover,

Agp CHz: éréfl An(f)(x) <a<b<supA,(f)(z)}.

n>1

Hence, by Lemma 3.3.3,

[ < antau) < butaa) < [ fag
Aab Aab
Consequently, u(Aqp) =0, for all a < b. Thus, pu(A) = 0, where

A={z:A () <AT@)} = |J {z:4 (@) <a<b<AT(2)}.

a,b<Q

Thus, A= (z) = AT (x) pra.e. and f*(z) = lim, 400 An(f)(z) exist
p-a.e. and is T-invariant.
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Now, we prove that f* € £Y(X,B,u). We have |A,(|f])]1 =
I/, f€£4(X,B,u) and by Fatou’s Lemma,

[ m Auidn < im [ Auside= [ 1fidn
x n—too n—+oo Jy X
Since |A,(f)| < An(lf]), n=1,2,..., we have

/le*lduﬁ/xlfldu,

which proves that f* € £(X,%,u). Furthermore, it proves that the
operator f — f* is a contraction on £1(X, B, u).

The last fact we have to prove is that [, f*du = [, fdu, assuming
1 is a finite measure. We have

/X A (f)d = /X fdu, (3.3.6)

for n = 1,2,.... Since f* = lim,, 400 An(f) p-a.e., for any bounded
function f, Lebesgue Dominated Convergence Theorem and (3.3.6) im-

ply
/Xf*duz/fdu,

for any bounded function. Let f € £!(X,, u) be arbitrary. For any
e > 0, we can find a bounded function fg such that ||f — fg|j1 <e. Then
I(f — fB)*|l1 < € and we have,

[ s [ saul=| [ g (6= o) du= [ fo (7= fo)d

< I/Xffédu/Xdequl(ffB)*||1+||(ffB)||1
<0+ 2e.

Since € > 0 is arbitrary,
/ frdp = / fdp.
b's b's

Corollary 3.3.1. If 7 is ergodic, then f* is constant y — a.e. and if

w(X) < oo, then
.1
= w(X) /)(de e

O
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Thus, if u(X) =1 and 7 is ergodic, we have

LY @) u(B), pac
1=0

and thus the orbit of almost every point of X occurs in the set E with
asymptotic relative frequency p(FE).

We define the time average of f € £'(u) to be

n—1
1
lim —
Ji 2 S

and the space average of f to be

1
m /X f(z)dp.

If 7 is ergodic, Corollary 3.3.1 states that these averages are equal. The
converse is also true, i.e., if the time average equals the space average,
then 7 is ergodic.

Example 3.3.2. Let 7(z) =102 (mod 1), x € |0, ] T preserves
Lebesgue measure A and (7, ) is ergodic. Let ¢ =0,1,...,9 and A; =
(4, 45L). By the Birkhoff Ergodic Theorem,

10 10
n—1
1 1
E ZX%h(Tkl‘} - 10’
k=0

for almost every x € [0, 1]. This proves the following famous result:

Theorem 3.3.2. (Borel Normal Number Theorem) For almost ev-
ery x € [0,1] (with respect to Lebesgue measure), the frequency of any
digit in the decimal expansion of x is 75, i.e., almost every z € [0,1] is a
normal number.

Since for any real number x > 0 we can find an n > 1 such that
x-107" € [0, 1], the Borel Normal Number Theorem holds for almost all
real numbers. It remains an open question as to whether 7 is a normal
number.

Corollary 3.3.2. Let (X,B, 1) be a normalized measure space and
let 7 : X — X be measure preserving. Then 7 is ergodic if and only if
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for all A, B € %8,
n—1

=" (AN B) — u(A)u(B).

n
1=0

Corollary 3.3.3. £P-Ergodic Theorem (J. von Neumann).

Let 1 < p < oo and let T be measure preserving on the normalized
measure space (X,B, p). If f € £P(u), then there exists f* € £P(u) such
that f*or1 = f*u-a.e. and |2 S0 f(riz) — f*(2)], — 0 as n — 0.

Proof. Let us fix 1 < p < +o0 and f € £P(X,®B,u). Since
| An(f)llp < ||fllp, we have by Fatou’s Lemma,

[ Arpdn < timint [ (A, (pdu < [ 1P
X n—-—+oo X X

Hence, the operator L : £°P — Sp deﬁned by L(f) = f * is a contraction
on (X, B, ). Since |~ Au(f)5 = [y |F* — Au(PPdye and by
the Birkhoff Ergodic Theorem A (f) — f* pae., [ f* = A, — 0,
as n — 4oo for any bounded function f € SP(X,SB,;L). Let f €
L£P(X,B, 1) be a function, not necessarily bounded. For any e > 0 we
can find a bounded function fp € £P(X, B, 1) such that ||f — fgl, <€
Then, since L is a contraction on £°(X, B, 1), we have

17 = An ()l
= ||f]§+(fff3)* = An(fB) = (An(f) = An(fB))ll»
< |1/ = An(FB)llp + 1An(f) = An(FB)llp + I(f = )" Ilp
< l/5 = An(fB)ll» + 2,

which can be made arbitrarily small. O

3.4 Mixing and Exactness

Recall that 7 is ergodic if and only if for all A, B € B,

LS AN B) — p(A)(B) 8 m > +ov.

Definition 3.4.1. We say 7: (X, B, u) — (X,B, 1) is weakly miz-
ing if for all A, B € 9B,

—Zm TANB) — w(A)u(B)] -0 asn — +oo.
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T is strongly mizing if for all A, B € B,
wtT"ANB) — u(A)u(B) as n — +oo.
7 is mixing of multiplicity r > 1, if for any B, A1, As, ..., A, € B:
wrMA T NT AN NT AN B) — u(A)p(As)..u(A) (B)
as n1,Ng, ...,y — 400 and |n; —n;|— > o0, 1 # j.

Obviously 7 mixing of multiplicity » = 7 strongly mixing = 7
weakly mixing = 7 ergodic. Examples of 7 ergodic but not weakly
mixing and 7 weakly but not strongly mixing are known. There are
no known examples of 7 strongly mixing but not mixing of multiplicity
r> 1.

The following result shows it is sufficient to check the convergence
properties on an algebra generating B.

Theorem 3.4.1. If 7 : X — X is measure preserving and P is a
w-system generating B, then
(i) 7 is ergodic if and only if for all A,B € P,

n—1

1 —i
=" wlr AN B) — u(A)u(B)
i=0
as n — +00.
(ii)) 7 is weakly mixing if and only if for all A, B € P,

n—1

1 ,

-~ g lu(t" AN B) — u(A)u(B)| — 0 as n — +oc.
i=0

(iii) 7 is strongly mixing if and only for all A, B € P,

w(t "ANB) — u(A)u(B) as n — +oo.

Remark 8.4.1. The strong mixing of 7 means that any set B € B
under the action of 7, becomes asymptotically independent of a fixed set
A € %B. The weak mixing of 7 means that B becomes independent of
A if we neglect a finite number of initial iterations. The ergodicity of 7
means B becomes independent of A on the average.

We will now express the foregoing concepts in functional form. For
that purpose, it is convenient to use the Koopman operator.
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Definition 3.4.2. Let 7 : (X, B,u) — (X, B,u) be a measurable
transformation. The operator U, : £*° — £°° defined by

Urf=for

is called the Koopman operator. It is easy to see that U, is well defined
and that [|U; fllec < ||f]leo for any f € £°°. Usually the Koopman
operator is defined as an operator on £2, but for our purposes it is more
convenient to define it on £>.

Theorem 3.4.2. Let (X,B, 1) be a normalized measure space and
let 7: X — X be measure preserving. Then
(a) T is ergodic if and only if for all f € £, g € £

%;:/Xf(Ufg)duﬂ/deﬂ/ng“

as n — +00.
(b) 7 is weakly mixing if and only if for all f € £}, g € £,

1n—1 i
E;‘/Xf(UTg)d“/deﬂ/ngﬂ|—>0 as n — +oo.

(c) T is strongly mixing if and only if for all f € £',g € £,

/Xf(Ufg)duH/deu/ngu

as n — +oo.

There is a notion in ergodic theory that is even stronger than mixing.
This is the property of exactness, which was introduced in [Rochlin,
1964].

Definition 3.4.3. Let (X, B, i) be a normalized measure space and
let 7 : X — X be measure preserving such that 7(A) € B for each A € B.
If

lim p(r"A) =1

n—oo

for every A € B, u(A) > 0, then 7 is ezxact.

It can be proved that exactness of 7 implies that 7 is strongly mixing.
The converse is not true in general. Note that if 7 is invertible, it cannot
be exact, since

u(tA) = p(r=1rA) = p(A), 0 < u(A) <1,
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and by induction p(7"A) = p(A) for all n.

Theorem 3.4.3. Let (X,*B, 1) be a normalized measure space and
let 7 : (X,B, 1) — (X,B, 1u) be measure preserving. Then T is exact if
and only if

B =) 7"(B)
n=0
consists of the sets of y-measure 0 or 1.

Proof. Let us assume that A € BT, 0 < u(A) < 1 and let B,, € B
be such that A = 77" B,,, n = 1,2,.... Since T preserves j, we have
w(By) = w(A),n =1,2,.... We also have 7"(A) = 7"(77"B,) C B,.
Hence, u(t™(A4)) < p(A) < 1 for n = 1,2,..., which contradicts the
exactness of 7. Let A € B and pu(A) > 0. If limyq00 pu(7"A4) < 1,
we may assume that for some a < 1, pu(7"(4)) < a < 1l,n =1,2,...
For any n > 0 we have 7~ (1) (77+14) 5 777(77A). Thus, the set
B =J2,7 "(m"A) belongs to B”. Since B D A and pu(B) > pu(4) >
0, #(B) = 1. On the other hand,

uB)= lim pu(r—"(r"4)) = lim u(r"(4)) <a<1.
O

3.5 The Spectrum of the Koopman Operator and the
Ergodic Properties of 7

Let (X, B, 7, 1) be a dynamical system with a finite measure p. We recall
that the Koopman operator U, = U : £°(X,B, u) — £°(X,B, ) is
defined by

Uf=for.

It is easy to see that ||Uf|lcoc < ||flloo. Since constant functions are
U-invariant, |U]lx = 1 and 1 is always an eigenvalue of U. Since U
preserves integrals, all eigenvalues of U have modulus 1. We will study

the relation between the spectrum of U and the ergodic properties of 7.

Lemma 3.5.1. Let (7, 1) be ergodic. A number n such that n* =1
is an eigenvalue of U if and only if there exist mutually disjoint sets
Ci,...,Cr € B of positive p-measure such that 771(C;) = Cip1, i =
1,...,k—1,and 77YC}) = C}.
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Proof. = Let f be an eigenfunction of U corresponding to 7. Then

U(f¥)=ffor=(for)f =UN* =n*f*=f*

and f* is 7-invariant function. Since 7 is ergodic, f* is constant, which
means that f attains at most k different values. We can find a complex
number ag € C such that C,, = {z : f(z) = ag} is of positive pu-
measure. Let C1 = Cy,, and Ciy1 =774(Ch), i =1,...,k—1. We have
7Y C) ={x: f(x) = 0= ap} = Ch.

< Let f = Zle n*~ixc,. Then U f = Zf;l nk_chHl +xc, =nf.

O
Theorem 3.5.1. (7, ) is ergodic < 1 is a simple eigenvalue of U.

Proof. We have proved that 7 is ergodic < any measurable T-inva-
riant function is constant. O

Theorem 3.5.2. The following conditions are equivalent:
(i) (7, p) is weakly mixing;
(ii) (7, p) is ergodic and 1 is the only eigenvalue of U;
(iii) every eigenfunction of U is constant.

Proof. (1)=(ii) Let n # 1, |n| = 1, be an eigenvalue of U, and let f
be an eigenfunction corresponding to 1. Let g = f. We have

ngrfw%:ij /XfOT’“fdu/deu/deu'

n—1
1
li _ k 2 . 2
Jim =Sl [ AP [ sl
1n—1
2dp- lim = k_al#£0,
J e s S St #

k=1

where a = | [ fdu?/ [ |fI?du < 1 (see Problem 3.5.1). This contra-
dicts (i).

(ii)=-(iii) The only eigenvalue of U is 1, so any eigenfunction of U is
T-invariant and hence constant.

(iii)=(ii) This part requires a deeper proof that uses the general
spectral theorem [Dunford and Schwartz, 1964].

Both implications (i)=-(ii) and (ii)=-(iii) can be repeated for U ex-
tended to £2(X,, ). Thus, we know that all eigenfunctions of U on
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£? are constant. Let f € £ be a nonconstant function with [ fdu = 0.
Let g € £2. We will show that

2

1 n—1
1i — =0.
Jim — Z

JER

Let v be a measure on the spectrum o (U) defined by

for all Borel subsets A C o(U), where E(-) is the spectral measure cor-
responding to the operator U. For any complex number n € C with
In| = 1, we have

UEn)S) = / 4, B

= 77/ X dE(2)f =nE({n})f.
o(U)

Thus, E({n})f is an eigenfunction of U and is constant. We have

0= /X E((n})f - Fdu = /X E({(n})*f - Fdp
/ E((n}) FEC) Fd.
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so E({n})f =0, for any |n| = 1. We have

2
n—1
1

i = — Zk z
-y RO

k=0

1 n—1
= — Z / 2Fdv(2)
" )

== Z </(U) 2Fdu( )) </U(U) wkdu(w)>
_1 Z / / e Pk du(z)di(w)

1 7k: _
= — E w”dy(z)dv(w)
//U(U)XU(U) s

= // lﬂdy(z)dﬂ(w).
sU)xo@) N 1 —zw

The last equality holds because 1 — zw = 0 only for z = w and the
diagonal A = {(zw) € o(U) x o(U) : z = w} is of (v x v)-measure 0,
since the measure v vanishes on points. Since - ﬂ — 0, (vxv)-a.e.,

the Bounded Convergence Theorem yields

" gdp

2

2
=0.

n—1

. 1
2

="
=0

This implies (see Problem 3.5.2) that

1 n—1

lim — Z
n—-+oo N,

k=0

In general, we replace f by f — [y fdp and obtain

/fOT gdp — /fdu/ gdu'—o

which proves that 7 is Weakly mixing.

Definition 3.5.1. Let J C NU{0}. We define the density of J as

/XfoTk-gdu':O.

lim —
n——4oo n

lim sup — # (Jn{0,1,...,n—1}).

n—>+oo
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Theorem 3.5.3. Let (X,B, 7, 1) be a dynamical system. The fol-
lowing conditions are equivalent:
(i) 7 is weakly mixing;
(ii) for any A, B € B, there exists a subset J C NU{0} of density 0 such
that
lim p(r7"(A) N B) = p(A)p(B);

n——+oo

neN\J
(iii) T x 7 is weakly mixing;
(iv) T x T is ergodic, for any ergodic system (Y, 2, T,v);
(v) T x T is ergodic.

Proof. (i) < (ii) follows from the definition of weak mixing and
the Koopman-von Neumann Lemma (Problem 3.5.3).
(ii)=-(iii) It is enough to show that for any A, B, C, D € ‘B,

. 1
lim —
n—-+oo n

S u(r*(A) N B) - u(rH(C) N D)
k=0
— p(A)p(B)u(C)u(D)| = 0. (3.5.1)

By (ii), there exist sets of density 0, J; and Js, such that

Jm fp(r(A4) 0 B) = p(A)u(B)| =0

neN\Jy

and
lim |pu(r™"(C) N B) — p(C)u(D)| = 0.

n——4oo

ne€N\Js
The set J = J; U J5 is of density 0 and

lim |u(r"(4) N B)u(r~"(C) N (D) — u(A)u(B)u(C)u(D)|

n——+oo

neN\J
< lim |u(r7"(A) N B) = w(A)u(B)] - (7" (C) N (D)

T n—+4oo

neN\J1
+ lim p(AY(B) (™ (C) 1 (D) — w(C)u(D)| = 0.

n——+oo
n€eN\J2
Now (3.5.1) follows by the Koopman—von Neumann Lemma.
(iii)=-(iv) If 7 x 7 is weakly mixing, then so is 7 itself. Let (Y, 2, T, v)
be ergodic. To prove that 7 x T is ergodic on X X Y, it is enough to
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show that, for any A, B € % and any C, D € 2,

lim Z“ (A NB)(T~*(C)N D) = u(A)u(B)v(C)v(D).

n——+oo N,

We have

lim —Zu (AN B)v(T7*(C)n D)

n—-—+ocon

1n1

= lim =3 (u(AuBWITHC) N D)
k=0

+ (u(rH(A) (1 B) — (A B)w(T(C) (D))
— u(A)p(Bw(C)u(D) +0,

since by ergodicity of T, L S0 y(T~*(C) N (D) — v(C)v(D), and by
weak mixing of 7, < Z;é l(77*(A) N B) — u(A)u(B)| — 0.
(iv)=(v) 7 is ergodic since 7 x Id is ergodic, where Id is the identity

on the space consisting of a single point. Thus, 7 X 7 is ergodic.
(v)=(i) For any A, B € B, we have

LN (e (4) 1 B) - (A B))?

k=0

= L3 ur B A) 1 BY - 20(A(B)E 3w R (4) n B)
k=0 k=0

F (A (B)?

= 23 wx w)((r x 1) KA X )N (B x B))
k=0

(A u(B)- T (1 ) (7 x ) H(A X X)) (B x X))

k=0

+ ((A)u(B))*.

Since 7 X 7 is ergodic, this converges to

(1 x p)(A x A)(u x p)(B x B)
— 2u(A)u(B) (1 x ) (A x X)(p x p)(B x X) + (u(A)u(B))* = 0,

as n — +o00. By Problem 3.5.2, 7 is weakly mixing. U
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3.6 Basic Constructions of Ergodic Theory

Definition 3.6.1. Induced Transformations
Let 7 : X — X be a measurable transformation preserving a normal-
ized measure p. Let A € 9B and pu(A) > 0. According to Kac’s Lemma,
the first return—time function n = n4 is integrable and we can define a
transformation
Ta(z) =" (), ze€ A

The transformation 74 : A — A is called an induced transformation or
the first return transformation.

1 1/2

2= T\

FIGURE 3.6.1 FIGURE 3.6.2

Example 3.6.1. Let 7 be a tent transformation:

2x , for z €0, 4];
T(z) = )
2—2¢ , forxe(z,1];
and let A = [0,2]. We will construct the first return transformation

)
Ta. We use Figure 3.6.1 for the construction of 74 while 74 is shown in

Figure 3.6.2. We have n = 1 on [¥, 1], i.e., all points in [0, 1

, 4] return to

A in one iteration of 7; n = 2 on [%, %] (7-2(%) = 0), i.e., points in [%’ %]
return to A in two iterations of 7; n = 3 on |15, | and 73(s%) = 0;
n=4on [é—;, %—g] and 74(%) = 0. In general, if n = k on [55%, %‘%] and

k is odd, then n = k + 2 on [2&H) AT g pht2(AED) — o, 1f
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_ 1 - _ 4s—1  _4
n =k on 5%, 547+ ] and k is even, then n = k42 on |15, 73] and
7_](:—1—2( 4s

1or7r) = 0. This allows us to construct the consecutive branches
of 74 inductively.

Definition 3.6.2. Integral Transformations
Let 7 : X — X be a measurable transformation preserving the
measure u, and let f: X — N be an integrable function. Let us define

X ={(z,i): v X, 1<i< f(x)}
Then, we define an integral transformation 77 : X/ — X/ as follows:
: (,i4+1), if i+1< f(x),
™ (x,i) = s
(7(x),1), if i +1> f(x).
Example 3.6.2. Let 7(x) be the tent transformation on X = [0, 1]

and let f(z) =2 xp,1) + 3 x[4,1)- The integral transformation 7 is
shown in Figure 3.6.3. We use the notation z,, = (7/)"(z), n=1,2,....
The invariant measures for a transformation 7 and the induced trans-

formation 74 are closely related. We describe this relationship in the
following two propositions.

X X % g
X ¥ 3 X 5 X 8
X
x w X a2 X 4 £ 3
O 1
FIGURE 3.6.3

Proposition 3.6.1. Let 7 be a transformation preserving a nor-
malized measure p and let ji(A) > 0. Then p, is invariant under the
induced transformation 4.

Proof. Let B C A. For the measure u, we have
p(B) = p(r7'B) = p(r7 BN A) + u(r7 B\ A)
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— u(F BN A) + p(r 2B\ 771 A)
= (T 1BﬂA) w((r _QB\T_lA) NA) +u(7'_2B\(AU7-_1A))

- i SBA\UZ T RA) N A+ lim (B (Ui A)),
=1
We will show that
Jim p(r B (U (4)) =0, (3.6.1)

Let A = U;"OT—’C(A). We have N(A) = iy oo (Uk L7 k(A)).
Since T ZB\Uk 0T F(A4) C A\U ~k(A), (3.6.1) follows. Thus, we
have

- iu((f‘ZB \ Uiz (4)) 1 4)

=1

=3 H B0 A) = B)

where A; = {z € A : n(z) =i}. O

Proposition 3.6.2. Let 7: X — X be a measurable transforma-
tion and let A C X. Let the induced transformation 74 : A — A preserve
the measure j14. Then T preserves the measure p, where

k=1
B e ®B and Ay, = {x € A:n(x) = k}. In particular,
= k- pa(Ag).
k=1

Proof. Let B € B. We have

k—1
pa(T )N Ayg),
0

1=

u((B) ZuA )0 40— S ia(B O Ay)

a7 B)) — paB) .
O

The idea for the definitions of measures 4 in terms of y and
in terms of p4 comes from the fact that constructions of induced and
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integral transformations are inverses of each other when 7 is a 1-to-
1 transformation. Unfortunately, this is not the case in general. The
formula given in Proposition 3.6.2 is frequently used to construct an
invariant measure for transformations we cannot deal with directly. For
example, for transformations on an interval, that have critical points
(i.e., points where 7/(xg) = 0), it can be used to prove the existence
of an invariant measure that is absolutely continuous with respect to
Lebesgue measure (acim). It turns out that if xy is a critical point of
7, then it is often possible to find a neighborhood U of xy such that
the induced transformation 7y is piecewise expanding (although with a
countable number of branches). Then, we can prove the existence of an
acim for 7y and, by using Proposition 3.6.2, for 7 itself. More details on
this method can be found in [de Melo and van Strien, 1993].

Example 3.6.3. Let 7(z) =4-z-(1 —x), « € [0,1]. In Figures
3.6.4 and 3.6.5 we show 77, and 7y,, where Uy = [0, 3] and Us = [4, 3].
Ty, is not piecewise expanding, and it can be seen in the picture that 7,
is piecewise expanding. This can be proved rigorously. Both 77, and 7,
have countably many branches, but we can show only a finite number of

them. What is left out are almost vertical lines accumulating densely.

12 12 |]

] 1/2 1/4 112

FIGURE 3.6.4 FIGURE 3.6.5

Proposition 3.6.3. Let the transformation T preserve measure i,
and let T4 be an induced transformation on A C X, pu(A) > 0. We
assume that (X \U,—, 77 "(A)) = 0. Then (7, 1) is ergodic if and only
if (T4, pa) is ergodic.
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Proof. First, let us assume that (7, ) is ergodic. Let B C A be a
Ta-invariant set with pa(B) = p(B) > 0. Then B = |J,_ 7, (B) =
(Uno7 ™B) N A. Since 7 is ergodic, |J,— 7 "B is a set of full p-
measure in X. Thus, B is a set of full us-measure in A, which proves
the ergodicity of 74.

Let (74, pa) be ergodic. Let B C X be a 7-invariant set with u(B) >
0. Let B = J,2,7"(B). Then 77"(B) C B, for n = 1,2,.... If
uw(BNA) =0, then for n = 1,2,..., u(B N7 "(A)) = 0, which is
impossible since (X \J;~, 77 "(4)) = 0. Thus, C = BNA is of positive
measure. Since (74, p4) is ergodic, we have A = J;—, 7,"(C) C B and
hence (X \ B) = 0. Thus, (7, i) is ergodic. O

Remark 3.6.1. Assume 7 preserves an ergodic measure p, p(A) > 0,
and that 74 preserves the measure p4 = p4. Then the construction of
Proposition 3.6.2 applied to @4 gives back the measure p.

Proof. Let v be the measure obtained from 4 via the construction
of Proposition 3.6.2. Then v is 7-invariant and v = p on A. By the
T-invariance of v and p, v = p on |J)_,7 ™A, which is a set of full
measure. (]

Definition 3.6.3. Natural Extension of a Transformation
Let 7: X — X be a measurable transformation. We define a natural
extension T, of 7 as follows: Let

X, ={(xo,z1,22,...) i 2y =T(Tpy1), Tn € X, n=0,1,2,... },

and let T : X, — X, be defined by
T ((zo,z1,...)) = (1(x0), o, T1, ... ).

T, is 1-to-1 on X,.. If 7 preserves a measure u, then we can define a

measure 7 on X, by defining 77 on the cylinder sets
C(Ao, A1, ...  Ar) = {(zo,21,...) 120 € Ao, 1 € Ay,... x5 € A}
as follows:
T(C(Ag, Ay, ..., Ap) = p(r R (Ag) N7 "1 (A) NN Ay).

Proposition 3.6.4. If T preserves the measure p, then T; preserves
the measure 1. (7, p) is ergodic if and only if (T, Tt) is ergodic. (T, p) is
weakly mixing if and only if (T, i) is weakly mixing.
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Proof. 1t is enough to check that T, preserves fi on cylinder sets.
We have

C(A()a Ala ceey Ak:) = C(A()a T_l(AU) N Ala 7—_2("40) N A2a )
TR A)) N A, TP Ag) N H(AR)).

Therefore,
TT_l(C(AU,Al, ceey Ak;)) = C(T_l(Ag) N Al, ’7'_2(140) N AQ, ceey
TR Ag) N A, 71 (Ap) N (AR)).
Since

/,L(T_k(Ag) N T_k"'l(Al) Nn---NA;) =
/,L(T_k(T_l(Ag) NA)N kAL (’7'_2(140) NAs),...,
TR (A) M AR N TR (Ag) N T—1(AR)),

we have
A(C(Ao, Ar, ..., Av)) = BT N(C(Ao, A, .., Ar)),

for any cylinder set.

Ergodicity If C is a 7-invariant subset of X, then A = {(z¢,z1,...):
x; € C, 1 =0,1,...} is a Tr-invariant subset of X, and u(C) = a(A).
Thus, if 7 is not ergodic, then T is also not ergodic. This proves that
the ergodicity of T’ implies the ergodicity of .

Now, let us assume that (7, p) is ergodic. We will use von Neumann'’s
Ergodic Theorem. For any f € £Y(X, i), we have

1 s ol
— f(r* @) = [ fdp. (3.6.2)
P> s

Let F € £Y(X,, i) be of the form F(Z) = f(x;,), where T = (x¢, 71, ... )
€ X; and z;, € X, ip > 0. By (3.6.2), we have

LS REE@) = 2 e S [ F@dn 663)
" =0 " =0 Xr

For any = = (zo,21,...) € X;, we have z; = 7907 %(x;,), 1 =0,1,... 0.
For any integrable function G(Z) on X, depending on a finite num-
ber of coordinates, G(Z) = G(zo,1,...,%;,), we can write G(Z) =
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G(T(z4), 70 Hw4y), - - .y T4y ). Thus, (3.6.3) holds for G. Since func-
tions G of this form are dense in £'(X,, i), (3.6.3) holds for any F €
£Y(X,, ii) and therefore (T, ji) is ergodic.

Weak mixing Again, we will use the close relationship between
LP(X, ) and £P(X,., ), p = 1,00. If (T, 1) is weakly mixing, then for
any F € £4(X,,71) and any G € £>°(X,,Ti), we have

1 n—1
—Y |F(@)-G(TF=7)) — | Fda- | Gda| — 0
- kzo / i / i

as n — +o0. In particular, it is true for F(T) = f(z¢) and G(ZT) = g(xo).
Thus, (7, 1) is weakly mixing. If (7, 1) is weakly mixing, we prove the
weak mixing of (75,7) in the same way we proved its ergodicity above.

O

Example 3.6.4. Let S be a compact metric space with measure v
on a Borel o-algebra of subsets of S. Let X =[], S with the product
o-algebra and the product measure p = [[,—,v. Let 7: X — X be the
left shift on X i.e.,

T((x0, 21, 22,...)) = (z1,22,...).

Then 7 is noninvertible (in general). We will construct a natural exten-
sion of 7. By Definition 3.6.3, we define
XT = {T = (yﬂayla . ) TS (x[()Z)ang)a o ')a
T(yi-i-l) =Y, Yi € X’ 1= Oala"' }
By virtue of the condition 7(y;41) = v;, ¢ = 0,1,..., the sequences y;
are of the form

Yo = (550,551---),

Yy = (1‘_1,1‘0,1}1,...),
Y2 = (T_2,7_1,%0,21,...),
Yn = (l'_n,l'_n+1,...,1,‘_1,,1,‘0,1,‘1,...).

It is natural then to write the double sequence Z = (yo,¥y1,...) as one
two-sided sequence:

_ !
T = (‘"ax—nax—n-i-la"'ax—laxﬁaxla"')‘
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We interpret the transformation T, defined by T-((yo,y1,%2,...)) =
(7(Y0), Y0, Y1, - - - ), as the left shift on the space of two-sided sequences.

Definition 3.6.4. Skew Product
Let (2,2, 0,v) be a dynamical system and let (.S,B, 7, iw)weq be
a family of dynamical systems such that the function 7,(z) is 2 x B

measurable. A skew product of o and {7, },cq is a transformation 7" :
Q x X — Q x X defined by

T(w,z) = (0(w), 7w(x)),
we relX.

Proposition 3.6.5. If v is o-invariant and p,, iS T7,-invariant for
w € §, then the measure on A X B

(A x B) = /A 1o (B)dv(w) (3.6.4)

is T-invariant. If p is a T-invariant measure and B is countably gen-
erated, then there exists a o-invariant measure v on A and a family of

measures { i, }weq on B such that u,, is T,-invariant, and the represen-
tation (3.6.4) holds.

Proof. We have T (w,z) = {(¢7}(w), 7, ()} and

’ Tw

P m) = [ (B

- / o) (B)dv(w)
o1(A)

= /ANW(B)dV(W) = u(A x B).

If 11 is T-invariant, then we define v(A) = p(Ax X) for A € 2. Obviously
v is o-invariant. For almost every w € €, there exists a measure p,, such
that (E.1) holds. For any measurable A € 2, we have

/ o (751 (B))d(w) = / 1o (B) ().
A A

Thus, i, (7;1(B)) = pw(B), v-a.e., for any B € B. If B is countably
generated, then we can find a set A; € A, v(A;) = 1 such that pu, is
To-Invariant for w € A;. O

An important application of a skew product construction is the so—
called random transformation. Let @ = ¥t = YN0} where YV is a
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compact space with Borel probability measure 7. Let v = niNJ(0)} be
the product measure and o : @ — € be the shift to the left. Let {X, B, A}
be a measure space and {7, }ycy a family of transformations 7, : X — X,
such that 7,(x) is a measurable function. A skew product 1" of o and
{7y }yey can be interpreted as a “random transformation” {r,,n}, where
the transformation 7, is chosen according to the probability n. If Y is
a finite space this model is especially simple: We have a finite number
of transformations {7;}*_, that act with probabilities {n;}¥_,. If all the
7; are nonsingular transformations (with respect to A), we can write the
Frobenius—Perron operator (see Chapter 4) of T,, = {7;, n; }*_,. It is easy
to check that

k
Pr, = 1P,
i=1

If the transformations 7; € 7 (1), a theory analogous to that of Lasota—
Yorke (see Chapter 5 of this text) can be developed. See [Pelikan, 1984].
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Isomorphism of dynamical systems.

It often happens that two dynamical systems that appear to be com-
pletely different behave essentially the same way. To formalize the no-
tion of “essentially the same”, we introduce the notion of isomorphism
or conjugacy of dynamical systems. In this book we will use two notions
of isomorphism.

Definition 3.6.5. Measure Theoretic Isomorphism

Let (X,Bx,u,7) and (Y,By,v,T) be dynamical systems. We say
that they are measure theoretically isomorphic (or conjugated) if there
exist X € X, w(X\X) =0,Y CVY,»(Y\Y) =0 and a l-to-1
measurable transformation k : X — Y such that on X

r=h'oToh,
and p = hyv.

Definition 3.6.6. Topological Conjugation
Let (X,Bx, u,7) and (Y, By, v, T) be continuous dynamical systems
on compact metric spaces X and Y, respectively. We say that they are
topologically conjugated if there exists a homeomorphism h : X — Y
such that
r=htoToh,

and p = hyv.

A measure theoretic isomorphism preserves measure theoretic prop-
erties of 7, while topological conjugation preserves both measure theo-
retic and topological properties of 7 (e.g., periodic points).

Example 3.6.6. Let 7:[0,1] — [0,1] be defined by 7(z) =2z
(mod 1) and let T': ¥y — X be the left shift on the space of {0,1}-
sequences. T preserves Lebesgue measure A\, while T' preserves the prod-
uct measure p = v where v(0) = v(1) = 4. For any = € [0,1],
we define h(r) = (eo,e1,€2,...), where x = L + 5 + -+ + 587 +
.... To guarantee uniqueness in the definition of h(x), we assume that
the expansion never ends with an infinite sequence of 1’s. The im-
age h([0,1]) = Y ¢ ¥4 and u(Y) = 1. For any z € [0,1], we have
T o h(z) = (e1,62,€3,...), h"loToh(zx) =S+ F +--+5+...,
which is obviously equal to 7(x) = 2z (mod 1). Thus, 7 and T are mea-
sure theoretic isomorphic. 7 and 7' cannot be topologically conjugate to
each other because of the different topological dimensions of [0, 1] and
S,
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3.7 Infinite and Finite Invariant Measures

Theorem 3.7.1. (Kakutani-Hajian [Hajian and Kakutani, 1964])
Let v be an infinite ergodic T-invariant measure. Then any set of finite
positive v-measure contains a weakly wandering set of positive measure.
(Weak wandering <= in the sequence {T~*A}3° , there are infinitely
many disjoint sets.)

Proof. Take E with 0 < v(F) < +00. Then f = ypg is integrable.
The limit

1 n—1
lim —>" for"
n—-+oo N,
k=0

exists in £! (von Neumann’s Ergodic Theorem) and is T-invariant. By
ergodicity it must be a constant and since v(z) = +o0, it is equal to 0.
Thus, for any F' € B, v(F) < +oo,

n—1

1
lim = “*EYNF)=0.
nHHJIrloonk:UV(T (E)NF)=0

By the Koopman—von Neumann Lemma (Problem 3.5.3), there exists a
subset Ny C N of density 0 such that

klim v(rM(E)NnF) =0.

S
Let {ax}32, be a strictly positive sequence with Y 7 ar < v(F). We
can find integers ny : 0 < ny < nog,... such that
> v(r T (E)NE) =) u(r ™ (E)NTT(E)) <ak, k=1,2,....
j<k j<k
(F=71""(FE) to obtain ny). Let

Ey=E\{JUJr (B,
k j<k
By the choice of {ax}{>3, v(Eo) > 0. If j < k we have
Ey C E\ r(mmi)(E)
and
T M(Ey) CT M(E)\ T "™(E) ST (E)\ 7™ (Ey).
Hence 77" (Ey) N 7" (Ey) = () and Ey is weakly wandering.
O
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Corollary 3.7.1. Let 7 and v be as in Theorem 3.7.1. An ergodic
infinite measure v admits no equivalent finite invariant measure since
weak wandering implies no finite invariant measure can exist.

Problems for Chapter 3

Problem 3.1.1. Prove that

(i) 7'Ant'B=7r"1(ANDB),
(i) 7tAur'B=7"1(AUB).

~—

Problem 3.1.2. Prove
T(r7'(4)) C A (1)
and
7~ Hr(A)) D A. (2)
Show examples with strict inclusions. Prove if 7 is injective, then there
is equality in (2). If 7 is surjective, then there is equality in (1).

Problem 3.1.3. Give an example of a measurable transformation
7 such that 7717 # 79 = 1d.

Problem 3.1.4. Let 7 be a measure preserving transformation on
(X,9B, ). Let A € B. Prove that u(A\ 771A) = u(v71A4\ A).

Problem 3.1.5. Let (X,B, 1) be a measure space. Let 7: X — X

be a measurable transformation and A € 8. Prove

(a) if either of the sets A\ 771(A) or 771(A) \ A has y-measure 0, then
A is almost T-invariant, i.e., u(AAT71(A)) = 0;

(b) A is an almost T-invariant set if and only if x4 = x;-1(4) a.e., ie,
XA is an almost 7-invariant function;

(c) if 7 is nonsingular and if either p(A) = 0 or u(A°) = 0, then A is
almost 7-invariant.

Problem 3.1.6. Let 7 : R — R be defined by 7(x) = 2z. Show
that 7 is not measure preserving with respect to Lebesgue measure.

Problem 3.1.7. Let X = [0,1) and let us define the Gauss trans-

formation
(z) = { 0, ifz=0,
TT A, itz £0,
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where {y} denotes the fractional part of y. Let a measure p be defined

by
1 1

A= —
A =15 [ 152
Prove that 7 is measure preserving with respect to p.

dx.

Problem 3.1.8. Let 7 : R? — R? be defined by 7(z,y) = (2z, %y)
Prove that 7 is measure preserving with respect to the Lebesgue measure
on R2.

Problem 3.1.9. Let (X,, \) be a probability space, where X =
[0,1]?> C R?, B is the Borel o-algebra, and \ is Lebesgue measure on X.
Let 7 : X — X be the baker transformation defined by

(2z, %y), T e [0,%), y € [0, 1],
(inla%y‘k%)a 136[%,1], yE[O,l]

Show that T preserves .

r(z,y) = {

Problem 3.1.10. Let (X, B, ) be a measure space and let 7 : X —
X be a measurable transformation. Show that the set function 7 defined
by n(A) = u(r71(A)) defines a measure.

Problem 3.1.11. Let (X, B, ) be a measure space and let 7 : X —
X be a measurable transformation. Let A C X be a subset of X. Define
B =lim, oo 7 "A=N32 (U 77 ™A). Prove that
(a) B={x € X |z € 77" A for infinitely many n};
(b) B is T-invariant;
(c) if 7 is measure preserving and A is measurable and invariant, then
u(A) = u(B).

Problem 3.1.12. Let (X, B, ) be a measure space and let 7 : X —
X be a measurable transformation. Prove that if p is 7"-invariant, then
the measure 7 defined by n(A) = 1 22:01 u(r7*A) is T-invariant.

n

Problem 3.1.13. (Two-sided (po, . - . , px—1)-shift or Bernoulli sche-
me.) Let Y = {0,...,k — 1} and p be a measure on Y such that
p({i}) = pi,i = 0,..;k — 1 and Y° " p; = 1. Consider X = 1>V
with the product measure p. Define 7: X — X by

T({z:}) = {yi},

where y; = ;+1. Show that p is 7-invariant.
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Problem 3.1.14. (One-sided (po, ..., pr—1)-shift.) Let Y be as in
3.1.13, X = II§°Y with the product measure p. Let 7 : X — X be
defined by (zo,z1,....) — (21,22, ....). Show that p is T-invariant.

Problem 3.1.15. Let X = {1 :n =1,2,...} U0 and let 7(+) =
5 forn = 1,2,... and 7(0) = 1. Prove that 7 does not preserve
any finite measure, i.e., that Theorem (3.1.3) does not hold without
continuity of 7.

Problem 3.2.1. Let X = [0,1]. Let B be the Borel o-algebra on
[0,1] and let A be Lebesgue measure on [0, 1]. Define 7, : X — X by
Ta(x) =+ a (mod 1), where o > 0. Prove that 7 is ergodic if and only
if av is irrational.

Problem 3.2.2. Let (Y, u,7) be the Bernoulli scheme of Problem
3.1.13. Prove that 7 is ergodic.

Problem 3.2.3. Let (X,%,7, 1) be a measure preserving dynam-
ical system. Let By € B and define B, = 7 *By, k = 1,2,.... Let
Bk = X\Bk Prove that

A =2, By,
is an invariant set.

Problem 3.2.4. Let 7 : X — X be a measure preserving trans-
formation. Suppose each 7 almost invariant set has measure 0 or u(X).
Show that 7 is ergodic with respect to u.

Problem 3.2.5. Let 7:[0,1] x [0,1] — [0,1] x [0,1] be defined by
m(z,y) = (f(2), f(y)), where

2t, if0<t<i,
ft) = 1
22, ifd<t<l

Show that 7 is ergodic.

Problem 3.2.6. Let (X,%,u,7) be a dynamical system. Assume
w is the unique 7-invariant measure. Prove that 7 is ergodic.

Problem 3.2.7. Let 7(x) = (x — 1)?, x € [0,1]. Does 7 have a
continuous invariant measure, i.e., one for which every point has measure
0?

Problem 3.2.8. Prove Kac’s Lemma using Birkhoff’s Ergodic The-
orem.
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Problem 3.2.9. Is it possible to have R, # 2,7

Problem 3.2.10. In the proof of Theorem 3.2.4 we claimed that
77 YCy) = By1, for k > 1. Prove it.

Problem 3.3.1. Let X C R™ be an open set, A(X) < oco. Let
7 : X — X be an ergodic transformation. Show that for almost every
x € X the set {Tk(:v)}zozl is dense in X.

Problem 3.3.2. Let (X,B, 7, 1) and (X, B, 7, uo) with pg # po be
two dynamical systems such that uq(X) = u2(X) = 1, where 7 is ergodic

with respect to both p1 and po. Prove that there exist sets A1, Ay € B
such that A1 N A2 = @ and /.Ll(Al) = /.LQ(AQ) =1.

Problem 3.3.3. Discuss the Birkhoff Ergodic Theorem as it per-
tains to a finite space X = {a1,as,- - -, a,, } with counting measure p.

Problem 3.3.4. Let 7 be a measure preserving transformation on
(X,SB,;L), where pu(X) =1. Given F € % and = € X, define

1 n—1

> xe(r(2).

Xp(z) = lim — >

Prove that 7 is ergodic if and only if x}(z) = wu(E) for almost every
z e X.

Problem 3.3.5. Suppose 7: (X,B, u) — (X, B, 1) be an invertible
(i.e., both 7 and 77! are measurable) and measure preserving transfor-
mation. Prove that 7 is ergodic if and only if for each A, B € B,

n—1

Jim =37t A0 B) = u(A)u(B) (1)
k=0

Problem 3.3.6. Suppose 7 : (X,B,u) — (X,B,u) is measure
preserving. Then prove that 7 is ergodic if and only if for all f,g €
(X, B, ),

n—1
Tm £ S (U g) = (4,1 (9.1) 1)
k=0
where U f = f o7k,



Problems for Chapter 3 73

Problem 3.3.7. Suppose X = {a,b,c,d,e}, B is the set of all
subsets of X, p(a) = u(b) = p(c) =1, wp(d) = u(e) = 2 and 7 is the
permutation which takes a to b, b to ¢, ¢ to d, d to e and e to d. Show
that 7 is measure preserving but not ergodic. Let f(z) = xa,p,e(2). Find
the f* in the Birkhoff Ergodic Theorem.

Problem 3.3.8. Assume that p is a normalized 7-invariant mea-
sure. Let 2 C B be a oc-algebra of 7-invariant (u-a.e.) subsets of
X. Prove that the operator L : £1(X,B,u) — £1(X,B,u) defined
by L(f) = f* is actually an operator of conditional expectation:

L(f) = E(f120).
Problem 3.3.9. Let 7(z) = r -2 (mod) 1, z € [0, 1], where r > 2
is a positive integer. Generalize Example 3.3.2 for this transformation.

Problem 3.4.1. Prove that every Bernoulli scheme is strongly mix-
ing.

Problem 3.4.2. If the system (X, B, T, u) is weakly mixing, prove
that it is ergodic.

Problem 3.4.3. Let 7 be a measure preserving transformation on
(X,B, 1) where u(X) = 1. Show that 7 is weakly mixing if and only if
for every f,g € £2(X,B, ),

lim _§(<ka,g> ~{L.9){g.1)| = 0. (1)

Problem 3.4.4. Let (X,®B,u,7) be a dynamical system. Let 9B
be an algebra which generates B. If lim,, .o (77 "ANB) = u(A)u(B),
for all A, B € 9B, prove that the same is true for all A, B € 8.

Problem 3.4.5. Show that the dynamical system (X,B,pu,7),
where X = [0,1] and 7(z) = 2z (mod 1) is strongly mixing.

Problem 3.5.1. Let n # 1, |n| = 1. Prove that

n—-+oo N,

n—1
1
lim =3l —al £0,
k=0

for any 0 < a < 1.
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Problem 3.5.2. Let {a,}72, be a bounded sequence of positive
numbers. Prove that

n n

-1 —1
1 1
lim — ar=0 < lim — a? =0.

Problem 3.5.3. Let {a,}32, be a bounded sequence of positive
numbers. Show that lim,, . < ZZ;& ap — 0 if and only if there exists

a subset Ng C N of density 0 such that lim,— 400 a, = 0.
nEN\NO

Problem 3.6.1. Let 7 : X — X preserve the measure u. Let f
be an integrable function on X. Show that integral transformation 7/
preserves the measure uf defined as follows:

/Lf(Aa i) =

where A € B, i < f.

Problem 3.6.2. Under the assumptions of Problem 3.6.1, show
that (7, pu) is ergodic if and only if (7/, uf) is ergodic.



