CHAPTER 4

The Frobenius—Perron Operator

The hero of this book is the Frobenius—Perron operator. With this pow-
erful tool we shall study absolutely continuous invariant measures, their
existence and properties. This operator was first introduced by [Kuzmin,
1928ab] and describes the effect of the transformation 7 on a probability
density function.

4.1 Motivation

Let X be a random variable on the space I = [a, b] having the probability
density function f. Then, for any measurable set A C I,

Prob{X ¢ A} — / fd,
A

where A is the normalized Lebesgue measure on I. Let 7: I — I be a
transformation. Then 7(X) is also a random variable and it is reasonable
to ask: What is the probability density function of T(X)? We write

Prob{7(X) € A} = Prob{X € 7 1(A)}

= /TlAfdA.

To obtain a probability density function for 7(X), we have to write this

last integral as
/ odA,
A

for some function ¢. Obviously, if such a ¢ exists, it will depend both
on f and on the transformation 7.
Let us assume that 7 is non-singular and define

where f € £! and A is an arbitrary measurable set. Since T is nonsingu-
lar, A(A) = 0 implies A\(771A) = 0, which in turn implies that u(A) = 0.

(p. 75)
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Hence ¢ << A. Then, by the Radon-Nikodym Theorem, there exists a
¢ € £! such that for all measurable sets A,

H(A) = /A Y

¢ is unique a.e., and depends on 7 and f. Set P.f = ¢. Thus, the
probability density function f has been transformed to a new probabil-
ity density function P.f. P, obviously depends on the transformation
7 (hence the subscript) and is an operator from the space of probability
density functions on I into itself. P; is referred to as the Frobenius—
Perron operator associated with 7. It is the major tool used in this book
and will make it possible to prove the existence of absolutely continu-
ous invariant measures and to establish many useful properties of these
measures and their densities.

Since f € £, P f € £'. Hence P, : £' — £! is a well-defined
operator. If we let A = [a,z] C I, we have

/ P, fd) = / Fdx.
a 7 1[a,z]

On differentiating both sides with respect to x, we obtain

Pt =7 | L

T dx
Example 4.1.1. Let I =[0,1] and let 7: I — I be defined by
7(x) = sin(mx), 0<z<l1.

It is easy to see that
1 1
7 1[0,2]) = [0,= sin ' 2]U[l — = sin" ' 2, 1], 0<ax<l1.
T T
Hence, for any f € £!,

Lsin™! 2 1
/ fd)\:/ fd>\+/ fd\, 0<az<l.
7-10,2] 0 1-2 sin~' z

Using Leibniz’s rule, we obtain

P,f = di / FdA
Xz 7-1[0,z]

1 1 . 1 .
:Wl—\/——:ﬁ[f(; sin 1:£)+f(17; sin™! x)].



4.1 Motivation 77

Example 4.1.2. Let I =[0,1] and let 7: I — I be defined by

(@) { 2, 0<z<4,
T(x) =
—%x + g, % <z <1,
as shown in Figure 4.1.1.
1
T, T
1/3
0 1/2 1

FiGURE 4.1.1

It is easy to see that

T 1([Oax]):[0,—$], 1fx<%

and
1 B 5 3 1
T ([O,JJD —[0, —JI]U[Zle‘,l], if xr > §

Thus, we have
1 1 5 3
T ([O,l‘]):[0,§$]U{[Z*11},1]HB}, nggla

where B = [1,1]. Hence, for any f € £,

% 1
/ fd = / Fdx +/ fypdh,  0<z<l.
7-1[0,z] 0 é—%m

4
Using Leibniz’s rule, we obtain

Pof(@) = 5 (5) + 2 £(3 = Sa)xa(e), (111)
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where J = 7(B) = [$,1]. In Section 4.3, we shall derive a formula for
P, f which generalizes (4.1.1).

In Chapter 5 we shall use the Frobenius—Perron operator to establish
the existence of absolutely continuous invariant measures for a large and
important class of transformations. Now we present some properties of
the operator.

4.2 Properties of the Frobenius—Perron Operator

In this section we define and present the basic properties of the Frobe-
nius—Perron operator. We do it formally on an interval I = [a,b], but
all the ensuing results can be easily extended to a general measure space
case.

Definition 4.2.1. Let I = [a, b], B be the Borel o-algebra of subsets
of I and let A\ denote the normalized Lebesgue measure on I. Let 7 :
I — I be a nonsingular transformation. We define the Frobenius—Perron
operator P, : £ — £! as follows: For any f € £!, P, f is the unique (up
to a.e. equivalence) function in £! such that

/ P, fd\ = / FdA
A T=1(A)

The validity of this definition, i.e., the existence and the uniqueness
of P, f, follows by the Radon—Nikodym Theorem.

for any A € 8.

Proposition 4.2.1. (Linearity) P, : £' — £! is a linear opera-
tor.

Proof. Let A C I be measurable and let «, 8 be constants. Then, if
fge gt

[ Prtas+sgar= [ (af+agar=a [

-1

Afd)x+ﬂ/TlAgd)\
:oz/APdeAJrﬂ/APng)\
_ /A (P, f + BP,g)dX



4.2 Properties of the Frobenius—Perron Operator 79

Since this is true for any measurable set A,
PT(af+/Bg) :aPTf+/BPTg a.e.
O

Proposition 4.2.2. (Positivity) Let f € £' and assume f > 0.
Then P, f > 0.

Proof. For A €8,

/Pde)\:/ fdx > 0.
A T-1A
Since A € B is arbitrary, P, f > 0. O

Proposition 4.2.3. (Preservation of Integrals)

/IPde)\:/IfdA.
/IPdeA:/Tl(I) fdA:/IfdA,

the result follows. O

Proof. Since

Proposition 4.2.4. (Contraction Property)
P, : &' — ¢1 is a contraction, i.e., |P-f|l1 < ||f|1 for any f € £%.
Proof. Let f € £, Let fT = max(f,0) and f~ = —min(0, f). Then
frf-ett f=f"—f"and|f| = f" + f~. By the linearity of P, f,
we have
P'rf:P'r(f—i_*f_) :P'rf—i_*P'rf_-

Hence,
|P‘rf| < |PTf+|+|PTf_| :PTf++PTf_ :P'r|f|a
and
1Pofls = [ 1Parax < [ Poifia = [ 151a3= £,
where we have used Proposition 4.2.3. O

It follows from this result that P, : £' — £! is continuous with
respect to the norm topology since

[1Prf = Prglly < |[f — gl
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Proposition 4.2.5. (Composition Property) Let 7 : I — I and
o : I — I be nonsingular. Then P;,,f = P; o P,f. In particular,
Pinf=PIf.

Proof. Since 7 and ¢ are nonsingular their composition 7 o ¢ is also
nonsingular. Let f € £! and A € B:

/ Prow fd\ = / fd) = / FdA
A (too)—1A o~ (r—1A)

and

/APT(PUf)d)\:/T1APde>\:/Ul(TlA) fd.

Hence Pr.rf = P;P,f a.e. By induction, it follows that P.»f = P f
a.e. O

Recall that the Koopman operator U, : £ — £ is defined by
U;g = gor and that for f € £, g € £, we denote [, fgdX by (f, g).

Proposition 4.2.6. (Adjoint Property)
If f € &' and g € £, then (P, f,g) = (f,U,g), ie.,

/(PTf) -gd\ = /f -UrgdA. (4.2.1)
I I

Proof. Let A be a measurable subset of I and let g = x4. Then the
left hand side of (4.2.1) is

/APde)\:/TlAfdA

and the right hand side is

/If'(XAOT)d)\: /If-leAdA: /TlAfdA.

Hence (4.2.1) is verified for characteristic functions. Since the linear
combinations of characteristic functions are dense in £, (4.2.1) holds
for all f € £ O

The following proposition says that a density f* is a fixed point of
P, if and only if it is the density of a 7-invariant measure p, absolutely
continuous with respect to a measure \.
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Proposition 4.2.7. Let 7 :1 — I be nonsingular. Then P, f* = f*
a.e., if and only if the measure 1 = f* - A, defined by u(A) = [, f*dA,

is T-invariant, i.e., if and only if u(t7=1A) = p(A) for all measurable sets
A, where f* >0, f* € £ and |f*|, = 1.

Proof. Assume pu(r71A) = pu(A) for any measurable set A. Then

/TlAf*d)\:/Af*d)\
/APTf*dA:/Af*dA.

Since A € B is arbitrary, P, f* = f* a.e.
Assume P, f* = f* a.e. Then

/A Pfrd = /A frdx = p(A)

and therefore

By definition,

/ P, f*d\ = / frd\ = p(r1A)
A T—1A
and so pu(771A) = p(A). O

Let © (X, B, pt) denote the probability density functions on the mea-
sure space (X,%, ). When we wish to emphasize the underlying mea-
sure in the Frobenius—Perron operator, we shall write P, ,. P, acts on
D(X,B, 1), while P;,, acts on D(X,B,v).

Suppose p << v and v << u, i.e., pu is equivalent to v. Then

Tl << Ty <<V << W
The following result presents a relation between Py, and P; .

Proposition 4.2.8. Let i be equivalent to v. Then = fv, where
feD(X,B,v), and for any g € L1(X,B, p),

Prog— w. (4.2.2)

Proof. For any A € B,

/ (Prug)dp = / gdp,
A 7—1A
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and

/APT%Ug)d“:/APw(fg)dV:/T1Afng=/TlAgdu.

Since A € B is arbitrary, the result is proved. O

Now we will prove some properties of P. = P, ,, where i is a 7-
invariant measure.

Proposition 4.2.9. Let 7: I — I and let i be a T-invariant mea-
sure. Then

(P f)or=E(flT(®B)) a.e.

Proof. Since (P, f) o 7 is obviously 7~ !%B-measurable, it is enough
to prove that (P.f) o 7 satisfies the condition of Theorem 2.4.1. Let
A=7"YB),B €B. Then

[ nordu= [ ppyordn

7-1B

z/BPdeuz/Tleduz/Afdu-

O

Corollary 4.2.1. If 7: 1 — I and p is a T-invariant measure, then
P, is a contraction on any space £P, 1 < p < +00.

Proof. Let 1 < p < +00. Then
(P, = [ AP spdn= [ (o)
= [ 1B B
< [ BQsrietmydn= [ 1apdu= 111,y

and || Prf|l, < ||fllp- Let p = +oc. Then

| Pr flloo = ess sup [P f| = ess sup |(Prf) o 7|
= ess sup | E(f|771(B))| < ess sup|f|.
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Proposition 4.2.10. Let 7: I — I and pu be T-invariant measure.
Let 1 denote the constant function equal to 1 everywhere. Then,
(a) T is ergodic <= for any f € D(X,B, u)

n—1
1 k
~Y PR,
k=0
weakly in £! as n — +o0.
(b) T is weakly mixing <= for any f € D(X,B, u)
1 n—1
" =0
weakly in £! as n — +o0.
(c) 7 is mixing <= for any f € ©(X,B, u)
Pif =1,
weakly in £ as n — +oo.

Proof. All statements are direct consequences of properties (a), (b),
and (c) of Theorem 3.4.2 and the Adjoint Property (Proposition 4.2.6).
O

Proposition 4.2.11. Let T :I — I and p be a T-invariant measure.
Then T is exact <= for any f € D(X,B, u),

n
PT,,uf - ]-a
asn — oo in the £'-norm.

Proof. Assume 7 is exact. The o-algebras 77"(28) form a de-
creasing sequence of o-algebras. Since 7 is exact, the o-algebra B7 =
N,,>1 7 "(B) consists of sets of measure 0 or 1. By Proposition 4.2.5
and Proposition 4.2.9,

(Prfor™)=(Pmf)or" = B(flr™"(%B)) — E(f|B")

in £1(X,B, ) as n — oo. Since BT consists of sets of p-measure 0 or
1, E(f|B") = [y fdu=1. Thus, we have

/|(PT”f)o7-”1|duH0 as n — +00.
b'e
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But
Jaerner —tiau= [ 1Py o —1om
X X
= [ P27 = 1ldp.
X

Thus P*f — 1in £' as n — occ.
Now let P"f — 1asn — ooin £!. Let A € B and assume u(A) > 0.
We will show that as n — oo

u(t"A) — 1.

Let fa = mXA. Then [y fadp =1 and

v = |Pfa—1|1 —0

as n — o0o. We have

p(r ) = [ 1

T (A)
— [ Padu= [ (Prfa- D
T (A) T (A)
> / Pl fadp — v, = / fadp — vy,
T (A) T—n(tnA)
>1—v,.
Since v,, — 0 as n — 0o, we have the result. O

Recall that the transformation 7, : 9MM(I) — M(I) is defined by
T.v(A) =v(r77tA). Let v = f - p. Then

o) = o) = [ fdu= [ Posy
— [(Pentixadn = [ pratrian (1.23)
I I

Let 9%, (1) € M(I) denote the space of probability measures.

Proposition 4.2.12. Let 7 : I — I be strongly mixing on the nor-
malized measure space (1,8, ). Let v € 9 (1) be absolutely continuous
with respect to . Then on any set A € B, 7'v — 1t as n — +00.

Proof. Since v << p, there exists f € ©(u) such that

v(A) = /1 fdu.
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Then by (4.2.3),
o) = [ £l

Since 7 is strongly mixing, we have

/If-XA(T”)aluH /Ifd#/IXAd#:#(A)
as n — oo. O

We already know that P, is continuous with respect to the norm
topology on £1(I,B,)\). The final property of P, establishes the fact
that P, is also continuous in the weak topology of £1(I,B,\).

Proposition 4.2.13. Let (1,8, u) be a normalized measure space
and let 7 : I — I be nonsingular. Then P, : £' — £! is continuous in
the weak topology on £

Proof. Let f, — f weakly in £! as n — co. We want to prove that
P.f, — P, f weakly in £! as n — oo, i.e., for all g € £,

[ Pefodi— [ (g

Now, by Proposition 4.2.6,

/I(Pffn)gdu = /Ifn(g o 7)dp.

Since go T € £ and f, — f weakly, we have

[ ttgonian— [ fgoridu= [ (Ppgdn.
Thus,
/I(Pffn)gdu — /I(Pff)gdu

as n — oo, i.e., P.f, — P, f weakly in £%. O

4.3 Representation of the Frobenius—Perron Operator

In this section we derive an extremely useful representation for the
Frobenius—Perron operator for a large class of one-dimensional transfor-
mations. These transformations, which are piecewise monotonic func-
tions on an interval into itself, contain many of the transformations of
interest in one-dimensional dynamical modeling and analysis.
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Definition 4.3.1. Let I = [a,b]. The transformation 7 : I — I is
called piecewise monotonic if there exists a partition of I, a = ag < a1 <
... < aq = b, and a number r > 1 such that
(1) 7T|(ai_1,a;) is @ C" function, i = 1,...,q which can be extended to a

C" function on [a;—1,4a;], i =1, ...,q, and
(2) |7'(z)| >0 on (aj—1,a;),i=1,...,q.

If, in addition to (2), |7'(x)] > « > 1 wherever the derivative ex-
ists, then 7 is called piecewise monotonic and expanding. Note that (2)
implies that 7 is monotonic on each (a;_1,a;). An example of such a
transformation is shown in Figure 4.3.1.

oI
AN TN

T

0=a, a, a, a; l=a4
FIGURE 4.3.1

We now proceed to find P, for 7 piecewise monotonic. By the defi-
nition of P,, we have

/APde)\:/TlAfd)\, (4.3.1)

for any Borel set A in 1.
Since 7 is monotonic on each (a;_1,a;),i = 1, ..., q, we can define an
inverse function for each 7/(q, , q,)- Let

¢i=71"
where B; = 7([a;—1,a;]). Then ¢; : B; — [a;—1,a;] and

7 1(A) = UL, ¢:(B; N A), (4.3.2)

B>
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where the sets {¢;(B;[)A)}{_, are mutually disjoint. See Figure 4.3.1.
Note also that, depending on A, ¢;(B;[)A) may be empty. On substi-
tuting (4.3.2) into (4.3.1), we obtain

/A P, fdX = Zl / . fdA
D R CIITICIES

where we have used the change of variable formula for each i. Now
q
[ Ppar=3" [ s(oi@)ior @) (@)ax
A —Ja
q 1
flr ()
— s V7 dM.
e ena)@

Since A is arbitrary,

4q -1
P, f(x) = Zl %XT((M—L ai)(:v) (4.3.3)
for any f € £!. There is a more compact way of writing (4.3.3):
f(z)
Pflz)= > ~ (4.3.4)
ze{r—1(x)} |T (Z)|

For any x, the set {r~!(z)} consists of at most ¢ points; if 2 is one
of these points, i.e., z € (a;_1,a;) for some i, the corresponding term

% will appear on the right hand side of (4.3.4).
T'(2

Remark 4.5.1. The operator P, is not 1-to-1. To see this, let us
consider 7, the symmetric triangle transformation on [0,1]. Let f =1
on [0,3) and —1 on [3,1]. Then, P.f =0 a.e. Thus P; is not a 1-to-1
operator.

Example 4.3.1. Let 7:[0,1] — [0,1] be defined by 7(x) = rxe %,
where r and b are such that 7 is well-defined (i.e., b > 1 and r < be).

The graph of such a 7 is shown in Figure 4.3.2. Then,
P f(x) = fr (@) n f(ry (@)

TR @) (s )| e ]

where 71 and 7 are the two monotonic components of 7.

(@),



88 4 The Frobenius—Perron Operator

1
T 1)
re ™
0 1/ 1
b=5,r=>5e
FIGURE 4.3.2

Problems for Chapter 4

Problem 4.2.1. Let 7: [0,1] — [0, 1] be defined by 7(x) = rz(1 —
x), where 0 < r < 4. Find P, f.

Problem 4.2.2. Let I = [0,1], B = Borel o-algebra on I and let A
be Lebesgue measure on I. Let 7: I — I be defined by 7(z) = pr mod
1, where p is a positive integer greater than or equal to 2. Find P, f.
Then, prove that 7 is exact.

Problem 4.2.3. For 7 and f as in Figures 4.4.1 and 4.4.2 respec-
tively, find P f.

Problem 4.2.4. For
2z, 0<x< %,
T(x) = { 5 X
—r+3, s;<zr<1
find P,. Let
0, 0<z<i
flz) = X
g(l‘)a 3 <z <1,

where g is symmetric with respect to the line # = 2. Show that P, f = f.

Problem 4.2.5. Let I be an interval of the real line. Let 7 and

To be measurable, nonsingular transformations from I — I. Show that
PT10T2 - PT1 OPTQ'
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I L
I I
0 172 1
} -1
0 172 1
FIGURE 4.4.1 FIGURE 4.4.2

Problem 4.2.6. Let I be an interval of the real line and 7: I — I
be a measurable and nonsingular transformation. Show that
PTn == P;l,

where 7" =707TO0...T.

Problem 4.2.7. Let 7, — 7 uniformly and let f,, be the invariant

density associated with 7,,, i.e., Pr fn = fn. If f — f weakly in £!,
show that P, f = f.

Problem 4.2.8. Let f € £, g € £ or the other way around.
Prove that

P((for)-g) = f - Pr(g).ac.

Problem 4.3.1. Let 7(x) = 42(1 — ) on [0, 1]. Show that f(z) =
1

m is a fixed point of PTf

Problem 4.3.2. Let

Find Vi P, f, where
(a) f(z) =2
(b) f(x) = sinz.
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Problem 4.3.3. Let
2x, 0<zx
1
2

(o= 21— ),

Let S consist of all functions f of the form f = ax(o 1) + Bx (1,1 where
a, B € [0,1]. Let f = (f1, f2) where f; = axpo,1] and fo = Bx(1 yj- Show

"

that Prf = (f1, f2) <E
Problem 4.3.4. Let 7:[0,1] — [0, 1] be defined by

N [—= o=

2

T(x) = 71(®)X[0,2) (@) + T2(@) X2, 1) (x) + T3(2) X1 1y (2),
where 71 (z) = 4z, o(x) = 3 — 2z, 73(x) = 22 —1. Let S denote the class
of all functions f : [0,1] — [0, 1], where f = a1Xo,1)+a2x(2 1)+ asxL 1
and aq, 2,03 € [Oa 1] For any f : [Oa 1] - [Oa 1]a let f = (flanaffi)
where fi = fXqo1), fo = fX;11), and fs = fxq1 . Show that for
fes,

PTf: (flanaffi)

V= O =
= O =
N[ i~

Find a fixed point of P;.
Problem 4.3.5. Let 7:[0,1] — [0, 1] be defined by

1
—2r+1, x €0, 5],
r(a) = 1
20—1, ze (51

Find P;.
Problem 4.3.6. 73 : [0, 1] — [0,1] be defined by 73 = 75 o 71, where

(x)=re(l—2z), 0<r<4

and .
—2r+1, z€l0, 5],
7—2(1") = 1
2z — 1 € (=,1].
Find P.s.

Problem 4.3.7. Let 7:[0,1] — [0, 1] be defined by 7(z) = rze= %,
where r >0, b> 0. Find P;,.
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Problem 4.3.8. Show that
(a) f(z) =1 is an invariant density for

2, 0<zr<a
T@)=91_%
, a<x<l1;
11—«
(b)
0, 0<z< 1
’ - 4
1 1
f(z) 3 =7 < 5
3 1 <zx<l1
2 27>
is an invariant density for
1
2¢, 0<z< <
T(z) = 2
1+3(1— ) L <
2\ ") g =t=l
(c) f(x) =2 ﬁ is an invariant density for
2
= 0<z<v2-1
1— 22
(@) = 1— 22
2z
(d) f(z) = 12(z — 1)? is an invariant density for 7 : [0,1] — [0, 1] given
by
1 14512 1
= (29— = 3\3 .
(e) f(x) = UJQF—“;)Q is an invariant density for
2 , 0<x< :
-z 1 <u
9r © 3 -"=T
(f) f(x) = prP~! is an invariant density for
1
DRk
@ =9 j,)l )
1'1:; ) (5)% <z < 17
(3)7
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(g) f(z) = —1L g invariant under

l—cosx

1
T(x) = 2arctan(§ tanzx) , —m <z <.

Problem 4.3.9. (Difficult) Let 7 : [0,1] — [0, 1] be given by

T
T(x)_{ aptla—p)z’ 0<z< o
qg(1—a)—q(l—a)z
g—qa—a+(1—qg+ga)z’ a<z<l,

where 0 < p <1 and ¢ > 0 are real numbers. Let

—p+
Sl(x):%pom
and

qg—qa—a+q(l—a)z

Let 3, 7, 6 be defined by the equations S1(6) = 6, Sa(y) = 6, S1(8) =,
respectively. Then verify that an invariant density of 7 is given as follows:

Case (a): v #9.

1 1
R Pttt
Case (b): B=v=6#0.
1
f(l‘)_ ($+%)27
Case (¢): p[B=v=6=0.
flz)=1

Problem 4.3.10. Consider a family of transformations

7—(1-): %, fOI‘ OSJJS%,
¢ 2 — 2z, for%<:£§1,

a > 1. Show that the 7,’s satisfy the assumptions of Problem 4.3.9
(a = %, p = %, q = 2). Find P, -invariant functions f, for a > 1 and
show that f; =lim, ,+ f, (pointwise) is a P, -invariant nonintegrable

function.
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Problem 4.3.11. Let 7 : [0,1] — [0,1] be nonsingular and let A :
[0,1] — [0, 1] be a diffeomorphism. Prove
(a) P, f = f implies P,g = g, where 0 = ho7oh™! and

g=(for™h)-|(h71);
(b) if f is a T-invariant density, then g is a o-invariant density.

Problem 4.3.12. Let o : [0,1] — [0, 1] be defined by o = hoToh ™!,
where h(x) = /z and 7 is as in Problem 4.3.4. Find the o-invariant
density g.

Problem 4.3.13. Let 7 : [0,1] — [0, 1] be piecewise monotonic with
respect to the partition P(7) = {[0, ], [4,1]}, where 7(z) = sin7z. Find
the partition P(73) with respect to which 73 is piecewise monotonic.

Problem 4.3.14. Let 7 : [0,1] — [0, 1] be defined by
T(z) = 4z(1 — x).
Suppose 4 is a Borel measure on [0, 1] defined by du = 2\/%, where
A is Lebesgue measure on [0,1]. Find P-,.

Problem 4.3.15. Let 7 be the tent transformation (defined in Prob-
lem 4.3.3 and shown in Figure 4.4.1). Let o(y) =4-y-(1—y), y €[0,1].

Use the diffeomorphism A (z) = sin*(% - z) and Problem 4.3.11 to show

that the density g(y) = ——=—— is o-invariant.
m/y(1-y)

Problem 4.3.16. Prove that linear homeomorphism h(z) = a-x+b
conjugates 7(x) = ax? + Bz + v to o(x) = 2% + ¢, h(7) = o(h), if
g g g

In particular, 7(x) = 4z(1 — ) on [0,1] is conjugated to o(z) = 2? — 2
on [—2,2]. Find the density of the o-invariant absolutely continuous
invariant measure.

a=a, b=

Problem 4.3.17. a) The transformation 7 : R — R, given by
7(z) =  — 1, is called Boole’s transformation. Show that 7 preserves
Lebesgue measure.

b) A generalized Boole transformation 7:R — R is given by

bi

r — a;

T(:E):i(:erangZ ),



94 4 The Frobenius—Perron Operator

where n € NU{0}, a; € R, for ¢ = 0,1,...,n and b; < 0, for
i=1,...,n. Show that 7 preserves Lebesgue measure.

Problem 4.3.18. a) Let 7: R — R be given by
7(r) = atan(x), x# kg,

where k = £1,43, ... and a > 1. Show that the density function f(x) =
pﬁ’ J/:;Q is T-invariant for p > 0 satisfying equation a - tanh(p) = p.

b) More generally, let

7(x) = a(tan(bx) +¢), = # % . g,

k= 41,43,.... Find the ranges of a, b, ¢ for which we can find p,q € R
such that the density f(x) = Z,Qf(/+q)2 is T-invariant.
c) Let
T(z) =tanx, x # kg, k=+1,43,....

Show that the density f(z) = Z5 is 7-invariant. Note that tan(0) = 0
and tan’(0) = 1. Thus, 0 is a fixed point of 7 at which the slope of 7 is
equal to 1. Such a fixed point is called indifferent.

T is an example of a transformation with an indifferent fixed point.
Such transformations have infinite o-finite invariant measures ([Thaler,
1980]). The transformation of case ¢) has o-finite absolutely continuous

invariant measure p = — A.
T
Hint: Use the formula

t+km)?  s(tan2(t) + tanh?(s))’

+Z°° 1 tanh(s)(1 + tan?(t))

L= s2 4+ (

s,t € R, or its special form (s = 0)
=3 1 1

B 1+ tan®(t)
2 (t+km)2  sin?(t)  tan?(t)

k=—o00

Problem 4.3.19. Let
P 0<w <)
7(x) = L
5 <1.

Show that f(z) = < is a fixed point of P;.
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Problem 4.3.20. Let 7 be the Gauss transformation defined in
Problem 3.1.7.

a) Show that f(z)= T is a fixed point of P;.
b) Let n > 2 and define
n-x, for 0<z<4i
7(n) (x) = { "
r(x), for 1 <1.

<z
Show that 7(") preserves the same density f.

Problem 4.3.21. Show that the transformation 7 with countably
many branches, defined by 7(r) = {1%=}, where {t} denotes the frac-
tional part of ¢, preserves the den81ty flx) = % The transformation 7
is called the “backward continued fraction transformation” and has in-
teresting connections with geodesic flow on hyperbolic plane (see [Adler
and Flatto, 1984]).

Problem 4.3.22. Let d > 2 be an integer or +oo and let f :
[0,d) — [0,1) be an increasing function with lim,_.4 f(z) = 1. We define
7(x) = f~Yx) (mod 1). T is a piecewise monotonic transformation with
d branches.

a) Show that the equation for the 7-invariant density h is given by

Zh fx+E)f (z+k). (1)

Show that the 7o-invariant density is hq = .

Problem 4.3.23. (See [Lasota and Yorke, 1982].) Let 7 be a pu-
nonsingular transformation and let P, be the Frobenius—Perron oper-
ator induced by 7. A function h € £1(X,B, u) is called a lower function
for P, if h > 0, fX hdp > 0, and

tim (= P2 =0
for all f € D(X,B, 1).
a) Prove that if h is a lower function, then P;h is also a lower function.
b) Prove that if hq, he are lower functions, then max(hq,hs) is also a
lower function.
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c¢) Prove that if h,, n =1,2,... are lower functions and
hy — h, in £1(X,B, 1)

as — +00, then A is also a lower function.

d) Prove that if P, has a lower function, then P, has a lower function
h satistying P h = h.

e) Prove that if i is a lower function and P;h = h, then hy = (2—||h||1)h
is also a lower function.

f) Prove that if P, has a lower function, then 7 has an invariant
density g such that

1
PrfSy,

for any f € ©(X,B, ), i.e., the dynamical system (X,B,7,¢g- ) is
exact.



