Lecture 11 - Estimation is more complex than it seems: the

challenges and solutions from 100 years ago have become
integral to mainstream statistics!

Building long-term statistical intuition & knowledge
The statistical road: embrace
uncertainty while estimating with
confidence

AVOID BIAS
NEXT EXIT A
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We know that under random
sampling, the sample mean is an
unbiased estimator of the
population mean p.

This is because the mean of all
possible sample means equals the
population mean.

In other words, across many
repeated samples, the sample
mean accurately reflects the true
population mean on average,
without systematic error.

The bullseye is the population
mean u and

each dot is a sample mean X.
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The shape of the population's frequency distribution does not necessarily resemble the frequency
distribution of sample estimates (such as the distribution of sample means).
Regardless of the population's distribution shape (e.g., even if it's uniform), the sample mean
remains an unbiased estimator of the population mean when sampling is random.
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The shape of the population's frequency distribution does not necessarily resemble the frequency
distribution of sample estimates (such as the distribution of sample means).
Regardless of the population's distribution shape (e.g., even if it's uniform), the sample mean
remains an unbiased estimator of the population mean when sampling is random.
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Sampling distribution of the means for a normally distributed
population follows a t-distribution (we say “is t-distributed”)

u=350cm; ¢ =100cm

n =100
p+ 1.984xsy

Z o
8 ° |
3
- n=10
N Lt 2.262xsy
T T T T
320 340 360 380 Confidence intervals based on sample
sample mean standard deviation (i.e., unknow
s population standard deviation).
Xi—u v
t= —_— Xi i t XSEXi

SEy,

By now, you should suspect that one of the “inconveniences” is that the exact
value needed to be multiplied by SE to create 95% confidence intervals changes
as a function of sample size.

The sampling distribution of means that varies as a function of the sample size (here v =
degrees of freedom; v = n - 1) is called t when based on the sample standard error (i.e.,
estimate of the true standard error of the sampling distribution).

0.
0.35 v=1 This tdistribution (standardized) is a
0.30 —v=2 sampling distribution of the the number
0.25 —v=h of sample standard errors away from
Zo.20 “¥Y=%% | the mean (now always 0 after the
0.15 standardization) necessary to produce
0.10 a confidence interval of the desired
0.05 coverage (e.g., 95%).
o -4 -2 [ 2 4
t
Xi—u <
t= — X+ txSEy,
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Even though the distribution of the population is asymmetric, the sampling
distribution of means tend to me symmetric. This is an important property
because it allows us to generalize sampling distributions based on standard
distributions such as the t-distribution (not always but often).
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We must rely on our sample estimators for statistical methods to be valid,

meaning they need to be unbiased.

Precise Imprecise

The sample mean

I,l % u is an unbiased

estimator under
random sampling

Acourate because the
average of all
sample means

Low sampling variation High sampling variation equals the
(sampling error) & low bias | (sampling error) & low bias | PoPulation mean.
Inaccurate

Low sampling variation

High sampling variation

(sampling error) & high bias (sampling error) & high bias

The variation within a sample (standard deviation) can be used to estimate
how far the sample means might be from the true population mean, giving us

an idea of the potential error in our estimate.

=350cm; 0 =100 cm X =352.3cm;s = 94.0 cm

=5 -1, ol i .
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Variation within samples (among
tree height (e observations) can be used to
| w=soam estimate the uncertainty in the
Variation among samples sample means.

Estimating variation within a sample to assess variation
among samples (standard error, i.e., uncertainty around
sample means) is fundamental to statistics, not just to
constructing confidence intervals.




Sampling error is the difference between
a sample mean and the population
mean. The estimate of this error is the

standard deviation of the sampling
distribution, representing the average
difference between all sample means
and the true population mean.

The number of samples is so large that
can be considered infinite (o)

But can we trust the sample
standard deviation s? Is it an
unbiased estimator of o ?

The ability to estimate variation within a sample to assess variation among samples
(standard error) is crucial to statistics, not just for confidence intervals

The standard deviation of the
sampling distribution of the mean o
is called standard error and is
exactly the standard deviation of the
population ¢ divided by v :

g
Oy = —F—=

Vn

Since we almost never know the
population standard deviation, we
estimate it using the sample standard
deviation:

S
SEy:_

Jn
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X=351.5cm;s =114.2 cm

Y + t, xSEy -~ SE, =

As we will see, the mean and standard deviation are fundamental

sample statistics used in nearly all standard statistical analyses, not just
for confidence intervals.

Margin of error

N
351.5¢ +

328.66 cm 374.34cm
——e—

X=351.5cm
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Is it an unbiased estimator of o ?

But can we trust the sample standard deviation s?

Our goals are threefold:

BIOL322 were created.

Today, we will explore the sample standard deviation as an estimator
of the true population standard deviation.

Build a deeper understanding and intuition about statistical concepts.
Learn how statisticians develop reliable statistical measures.
Gain insight into how the other statistical methods we will learn in

Note: While we won't revisit every sample estimator, the process used
for standard deviation can be generalized to most sample statistics.
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But can we trust the sample standard deviation s?
Is it an unbiased estimator of o ?

1) The significance of applying corrections to create unbiased
sample estimators for any statistic of interest [the case of degrees
of freedom].

2) The role of population distribution in creating unbiased sample
estimators for any statistic of interest [the case of assumptions].

3) The importance of [data transformation] in converting biased
sample estimators into unbiased ones.
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1) The significance of applying corrections to create unbiased
sample estimators for any statistic of interest [the case of
degrees of freedom].
Why is the sample standard deviation calculated by dividing
the sum of squared deviations from the mean b n— 1 and not
n?
n — V)2
S O
n—-1
But why? ?
14

Let’s switch to variance s? (hang in there with me); after all s = sz,

If we knew (but we don’t really) the true population mean y, the best
sample-based estimator for the population variance using a single
sample would be:

2 _ ?=1(Y;: - I"l)z
g =
n

Since we almost never know the population mean y, let’s see what
happens when we use the sample mean value Yas an estimate of u:

52 _ ?:1(Yi _V)Z
n
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Let's use a computational approach to evaluate the accuracy of
these two sample-based estimators.:

%=100; 6=10
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JE—
160 i |
i |
140 | !
I |
0 1 |
120 | ;
f=
8
€100 The mean of s? for the estimator
(0] .
& based on the population mean u
£ 80 ! divided by nwas unbiased (i.e., it
» | closely matched the population
60 - i a2; it would have exactly equalled
! a2 =100 based on infinite
40 4 ! sampling). However, the estimator
R based on the sample mean Y/
T T divided by nis biased.
n 2
s Thah -w? o L - V)
ST n
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SZ - Z?:l(yl B M)Z
n

\ 2 ?: 1 (Yl - y) 2
| g2===1t -
n 2 n
2 _ 2[: 1(YL - ﬂ) Note the asymmetry in the
st = K sampling distribution of
variances, i.e., the median

doesn’t equal the mean. The
variance is unbiased when
based on u but biased when
based on Y. Remember:
unbiased expectations are

— | .. based on means and not
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In most cases, the parameter value p (the true population
mean) is unknown.

0-2

2 (Y — w)? é ‘
5= n

0.2

s2 = ?:1(Yi _?)2 ? ‘
n
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There is a correction factor for the sample bias in
s called Bessel’s correction (although it appears
that Gauss first introduced it in 1823).

2 —

S =
SL-w? S - /B
n N n—1
B -

52 =
n

https://mathworld.wolfram.com/BesselsCor
rection.html
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Let's use a computational approach to evaluate the accuracy of
these two sample-based estimators.:

0=10 ~ ¢2=100

D /T DLy S A 0% 2 o T V)
n n—1 n

21



10/8/24

w{ T T T
wl
g120{ :
A
g 80 | | ! !
S 3 The sample based on
44 1 | the sample mean
\ \ : divided by n-1 is
l unbiased!
, i —p)?
S = —
n
52 = 2{”:1(}/{ - y)Z
Sz _ ZL":I(YI - Y)Z - n
- n—-1
22
160
140
£120
5100 -
é 80 1 Note though that:
60 - N )
2 _ Yie Yy — )
40 1 S
is slightly more
precise then:
Y (Y —Y)?
n A 2 2 _ &l
s2 = Xia (Vi — ) é StE———
n
2= i (Y, —Y)? é
n—-1
23
Let’s take a small break — 1 minute
24



BUT WHY does this bias occur???

But why is the variance (or standard deviation) biased when
divided by n instead of n-1?

Tt O R I b 0

n—1 n

é But why? %i\
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Obviously, you don’t need to know the math, but it's reassuring to
know that someone worked it out for us!

Proof of Bessel's Correction

40 10
5
¥

) Source: http://gregorygundersen.com/blog/2019/01/11/bessel/
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No Math then! Let’s try a more accessible way to understand the need for
a correction [* "

To understand why we use n-1 instead of n, we need first to
understand that values in a sample are free to vary around
the population mean p but values in a sample are not free to
vary around the sample mean Y.

(Y, —Y)2
n-—1

Free to vary Not free to vary

27



1+5+7+4+7???2+9+12

To understand why we use n-1 instead of n, we first need to
recognize that values in a sample are free to vary around
the population mean p, but they are not entirely free to vary
around the sample mean Y.

Let’s say we have a set of 6 numbers, but one number is
hidden. If we know the sample mean Y, we can use it to

find the missing number: 1,5,7,???,9,12 y =7

- 3
=7 ~34 +???=6X7

6

6x7

* So, there is always one number that is not free
?2?2=42-34=8

to vary around the sample mean Y
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Let’s assume we know the population mean u = 6 (though, in
reality, this is usually unknown - this is to illustrate the point).

Based on the sample mean Y:

5 (L=7)2H(5 = 7)2+(7 = )2+(8 = 7)2 +(9 — 7)2 +(12 — 7)?
n

Based on the population mean u

5 (1= 6)%+(5 — 6)2+(7 — 6)2+(8 — 6)2 +(9 — 6) +(12 — 6)?

n

Note that the sample-based values were smaller than the population-based values.
This occurs because the sample mean tends to underestimate variability compared to the
true population mean. This is why corrections, like dividing by n-1, are necessary to provide
an unbiased estimate of the population parameters.

29
sum_left=-7.5 Sum_right=7.5
r A 1 T L 1
35 -25 -15 0.5 25 4.5
— = — —— —
1-45 2-45 3-45 5-4.5 7-4.5 9-4.5
T T T T I I T T T
’ 1 2 3 1 . 5 6 7 8 9 U
_ ASum left + sum_right =-7.5+7.5=0
4
X=4.5
Remember that the sample values will always be centered around
the sample mean, but this is not true for the population mean, which
can vary freely within the range of the sample values.
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The sample sum of squares is typically smaller, on average, than the population sum of
squares because the sample mean (Y) lies within the range of the sample values,
whereas the population mean (1) can be located anywhere, either within or outside
the sample range.

1,5,7,8,9,12 y.7

T
The sample mean (7 in this case) always falls within the range of the
sample values, but the population mean is free to vary—it can lie within the
sample values or be smaller or larger than any of them (i.e., outside the
range of the sample values).

If we use the population mean (u) instead of the sample mean (¥) to calculate the sum of
squares, the result will almost always be larger than if we had used the sample mean.
This is because the sample mean minimizes the sum of squared deviations within the
sample. Therefore, the sum of squares based on the sample mean will always be smaller
than that based on the population mean, unless the two means happen to be equal (which

is unlikely).
n n
2_
Q== o N w-6=76
=1 i=1
Based on the original sample mean Based on the population mean

10/8/24

31

From our lecture on variance and standard deviation

Observations (Y;) Deviations (¥, — V) Squared deviations (¥, — Y)

0.9 —-0.475 0.225625
1.2 -0.175 0.030625
1.2 -0.175 0.030625
1.3 -0.075 0.005625
1.4 0.025 0.000625
1.4 0.025 0.000625
1.6 0.225 0.050625
2.0 0.625 0.390625
Sum 0.000 0.735

n V)2
. S —7)? 0735 ,
_ - —011H
s n—1 81 z
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From our lecture on variance and standard deviation

Observations (Y;) Deviations (¥; — V) Squared deviations (¥; — Y)?

0.9 —-0.475 0.225625
1.2 -0.175 0.030625
1.2 -0.175 0.030625
1.3 -0.075 0.005625
1.4 0.025  Because sum of 0.000625
1.4 0.025 deviationsis zero,  0.000625
1.6 0.225 thisimpactsthe 550675
2.0 0.625 sumof square 0.390625
Sum 0.000 0.735

Y (Y; —Y) = 0 (this sum is always zero when using the sample
mean. However, when the population mean is used instead, the
sum can be either greater or smaller than zero. Consequently, the
squared deviations from the sample will be always smaller than
those from the population mean).

33
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160 T V)<= 3L, (% -p?
140 -
Bessel demonstrated that
£120 1 by using n-1 in the
'§100 i denominator, the sample
2 standard deviation based
5 80 : ; on n observations is
60 - ; corrected. This adjustment
! 3 | accounts for the fact that
40 + ) ! i the sample loses 1 degree
- - - of freedom when estimating

l the population standard
deviation.
$2 = Yis (Y — w)?

n
Sz _ 2{”:1(Yi - y)Z
PO (e O
n-1
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The average of all possible sample standard deviations
calculated with n-1 in the denominator provides an
unbiased estimator, as the mean of all sample standard
deviation values equals the population standard
deviation (o).

Sz _ ?:1(Yi - )7)2
n—1
_ ?ZI(YI: - )7)2
n

SZ

35

Why is the sample standard deviation calculated by dividing
the sum of the squared deviations from the mean divided by n
— 1 and not n? NOW YOU KNOW!

_ ?:1(Yl' - Y)Z
n—1

52

How did Bessel find that n — 1 would be the value that would
work and not n — 2 or n — 3, for example? This requires some
mathematical work, and it's often the role of statisticians to
determine whether estimates of statistics are biased and how
to adjust them to make them unbiased.

36
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The Statistical Road!!

37

Sample variance is not biased.
How about the sample standard deviation?

Population
Z?_ 1(Yi — Y)Z standard deviation
s = ——————————
n—1 4
oc=10
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Sample variance is not biased.
How about the sample standard deviation? IT IS A BIT BIASED!

p—

13 X Population

1 2 - i standard deviation
| /“

o0 =10

sample standard deviations

?:1(Yi - Y)Z
n—1

39
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The sample standard deviation IS A BIT BIASED!

This bias arises from the

square root transformation
of the variance.

1 12 13

10

It's challenging to establish
a general unbiased
procedure for the standard
deviation, as it varies with
sample size, but there are
correction methods

60 80 100 120 140 160 available.

9

8

Only 100 samples are

plotted; 1000000 would 2 o Zim =12
have been too many! n—1
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The sample standard deviation IS A BIT BIASED!

Although corrections for this bias exist for normally distributed populations,
the bias itself 'has little relevance to applications of statistics,' as it is
generally avoided through standard procedures. For instance, the t-distribution,
which is used to calculate confidence intervals and perform many other important
statistical analyses (to be covered in the next lecture), effectively addresses this
issue.

0.40 T T T

0.35 v=1
—v=2

0.30
0.25
Zo0.20
0.15
0.10
0.05
0.00

—v=5

—v=+

—4 2 0 2 4
X

Since the t-distribution is based on the sample standard deviation, it inherently accounts
for this bias in its distribution, ensuring that it does not pose any issues for statistical
analyses that rely on the sample standard deviation.
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But can we trust the sample standard deviation s?
Is it an unbiased estimator of o ?

2) The role of population distribution in creating unbiased sample
estimators for any statistic of interest [the case of assumptions].

42
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Can we rely on the sample estimator for variance when the population
is non-normal? Up until now, we've been assuming normality!

150000

Frequency
100000

50000
sample standard deviations
-
o
o
|

0

st =

2. —v)?
n—1
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non-normal? IN MANY CASES WE CAN'T!

2500

1500

sample standard deviations

h 7‘__—-——."" o-

Can we trust the sample estimator for variance when the population is

Population
standard deviation

45
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But can we trust the sample standard deviation s?
Is it an unbiased estimator of o ?

3) The importance of [data transformation] in converting biased
sample estimators into unbiased ones.

10/8/24
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Log transformation helps to reduce skewness, making asymmetric
distributions more symmetric.
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(number of nucleotides) log(gene length)

(number of nucleotides)
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Samples were log-
transformed here

48

16



Can we trust the sample estimator for variance when the population is
non-normal? In many cases, we can trust them when the sample data
have been transformed!

“log(o)

sample standard deviations
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Develop stronger knowledge and intuition about statistics

1) The significance of applying corrections to create unbiased
sample estimators for any statistic of interest [the case of degrees
of freedom].

2) The role of population distribution in creating unbiased sample
estimators for any statistic of interest [the case of assumptions].
We often assume normality because we know whether estimators
are biased or not (i.e., and how to remove their biases using
corrections, often called degrees of freedom).

3) The importance of [data transformation] in converting biased
sample estimators into unbiased ones.

50

Key goals today

- Develop a stronger understanding and intuition about statistics.

- By exploring the case of the standard deviation, gain insight into
the work statisticians do, allowing you to trust the 'standard
statistics' (i.e., the most commonly used methods) that you will
apply in your future professional careers.

- Acquire deeper knowledge about how the other statistical
frameworks we will cover in BIOL322 were developed. While we
won't revisit every sample estimator, the principles applied to the
standard deviation can be generalized to most sample statistics.

51
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Now we can trust our estimates, let’s calculate confidence intervals in practice

Let’s consider a biological example: The stalk-eyed fly — the span in
millimeters of nine male individuals are as follows:

8.69 8.159.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 95% confidence interval for the population
mean

Y =8.778 mm 5= 0.398 mm Y

0.398 “symmetric”  § |
: - (we can “trust”
SEy o 0.133 mm estimates) .
t0.0S(Z),B = 2306 s0 85 90 95

Eye span (mm)

Y —2306x0.133 < u<Y +2.306 % 0.133
847 mm < u<9.08 mm

10/8/24
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Now we can trust our estimates, let’s calculate confidence intervals in practice

Y =8.778 s=0.398

0.398
SEYT =0.133 Y —2306x0.133 < u<Y +2.306x0.133

847 mm < p <9.08 mm
8.47 mm 9.08 mm
e

X=8.878mm

t0.05(2),8 = 2.306

Degrees of
freedom
(v, df)

0% 6% | 70% 0% | 90% 5%  oB% | 99% | 995% 998% 99.9%
1 e 1376 1963 3078 6314 1271 3182 6366 1273 3183 6366
2 0B1ONE0 1386 1886 2920 4303 6965 9925 | 1409 2233 31.60
3 0765 09M1250 1638 2353 3162 4541 5841 7453 1021 1262
4 o7t osar 15% 2132|2776 3747 4604 5598 7.473 8610
5 0727 0s20 476 2015 2571 3365 4032 4773 5893 6869
6 o718 000 1900 2447 3143 3707 4317 5208 5950
7 o711 os6 2365 299 3439 4020 4785 5408
8 0706 0889 1108 1307 18602306 2696 3355 3833 4501 5041
9 0703 0863 1100 1383 1833 2262 2621 3250 3690 4207 4781
10 0700 0870 1003 1372|1812 2226 2764 3169 3561 4144 4587
11 0697 0876 1088 1363 1796 2201 2718 3106 3497 4025 4437
120695 0873 10831356 1782 2170 2681|3085 3428 3930 4318

53

Y

tO.OS(Z),B = 2306

847 mm < u <9.08 mm

In practice (today) we use software (e.g., R).

Y =8.778 s=0.398

0.398

SEy—==0.133

N3

—2306x0.133 < u<Y +2.31x0.133
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Let’s consider a biological example: The stalk-eyed fly — the span in
millimeters of nine male individuals are as follows:

8.69 8.159.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 99% confidence interval for the population
mean

Y =8.778 s=0.398

SEY% =0.133

to.05(2),8 = 3-355

Froquency

Y —3.355%x0.133 < u<Y +3.355x%x0.133
8.33 mm < u<9.22 mm

55

Y =8.778 s=0.398

SEY&\;S =0.133

t0.05(2),8 = 3.355

Y —3.355%0.133 < u<Y + 3.355 % 0.133
8.33mm < u<9.22 mm

In most cases, however, we report the 95% confidence
interval.

95% confidence interval:

847 mm < u <9.08 mm N

Freauen

99% confidence interval:

8.33mm < u<9.22 mm

57

10/8/24

19



