Lecture 11 - Estimation is more complex than it seems: the
challenges and solutions from 100 years ago have become

integral to mainstream statistics!

Building long-term statistical intuition & knowledge

The statistical road: embrace
uncertainty while estimating with
confidence

AVOID BIAS
NEXT EXIT N




For statistics to be reliable, we must trust our sample estimators,

meaning they need to be unbiased.

We know that under random
sampling, the sample mean is an
unbiased estimator of the
population mean .

This is because the mean of all
possible sample means equals the
population mean.

In other words, across many
repeated samples, the sample
mean accurately reflects the true
population mean on average,

without systematic error.

The bullseye is the population
mean u and
each dot is a sample mean X.



The shape of the population's frequency distribution does not necessarily resemble the frequency
distribution of sample estimates (such as the distribution of sample means).
Regardless of the population's distribution shape (e.g., even if it's uniform), the sample mean
remains an unbiased estimator of the population mean when sampling is random.
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The shape of the population's frequency distribution does not necessarily resemble the frequency
distribution of sample estimates (such as the distribution of sample means).
Regardless of the population's distribution shape (e.g., even if it's uniform), the sample mean
remains an unbiased estimator of the population mean when sampling is random.
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Sampling distribution of the means for a normally distributed
population follows a t-distribution (we say “is t-distributed”)
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By now, you should suspect that one of the “inconveniences” is that the exact
value needed to be multiplied by SE to create 95% confidence intervals changes
as a function of sample size.

The sampling distribution of means that varies as a function of the sample size (here v =
degrees of freedom; v =n - 1) is called t when based on the sample standard error (i.e.,
estimate of the true standard error of the sampling distribution).
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0.25 of sample standard errors away from
X0.20 the mean (now always 0 after the

standardization) necessary to produce
a confidence interval of the desired
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Even though the distribution of the population is asymmetric, the sampling
distribution of means tend to me symmetric. This is an important property
because it allows us to generalize sampling distributions based on standard
distributions such as the t-distribution (not always but often).
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We must rely on our sample estimators for statistical methods to be valid,

meaning they need to be unbiased.

Accurate

Precise

Imprecise

Inaccurate

u

Low sampling variation
(sampling error) & low bias

Low sampling variation
(sampling error) & high bias

u

High sampling variation
(sampling error) & low bias

The sample mean
is an unbiased
estimator under
random sampling
because the
average of all
sample means
equals the
population mean.

High sampling variation
(sampling error) & high bias




Frequency

The variation within a sample (standard deviation) can be used to estimate

how far the sample means might be from the true population mean, giving us
an idea of the potential error in our estimate.
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Estimating variation within a sample to assess variation
among samples (standard error, i.e., uncertainty around
sample means) is fundamental to statistics, not just to
constructing confidence intervals.



The ability to estimate variation within a sample to assess variation among samples
(standard error) is crucial to statistics, not just for confidence intervals

Sampling error is the difference between

a sample mean and the population The standard deviation of the

mean. The estimate of this error is the sampling distribution of the mean oy
standard deviation of the sampling is called standard error and is
distribution, representing the average exactly the standard deviation of the
difference between all sample means population o divided by v/n :

and the true population mean.
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The number of samples is so large that Since we almost never know the

can be considered infinite (o) population standard deviation, we
estimate it using the sample standard
deviation:

But can we trust the sample S

standard deviation s? Is it an SEY —_

unbiased estimator of o ? \/n




As we will see, the mean and standard deviation are fundamental
sample statistics used in nearly all standard statistical analyses, not just

for confidence intervals.

Margin of error
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But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

Today, we will explore the sample standard deviation as an estimator
of the true population standard deviation.

Our goals are threefold:
Build a deeper understanding and intuition about statistical concepts.
Learn how statisticians develop reliable statistical measures.

Gain insight into how the other statistical methods we will learn in
BIOL322 were created.

Note: While we won't revisit every sample estimator, the process used
for standard deviation can be generalized to most sample statistics.




But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

1) The significance of applying corrections to create unbiased
sample estimators for any statistic of interest [the case of degrees
of freedom].

2) The role of population distribution in creating unbiased sample
estimators for any statistic of interest [the case of assumptions].

3) The importance of [data transformation] in converting biased
sample estimators into unbiased ones.




1) The significance of applying corrections to create unbiased
sample estimators for any statistic of interest [the case of

degrees of freedom].

Why is the sample standard deviation calculated by dividing
the sum of squared deviations from the mean b n— 1 and not

n?

n—1

é But why?

S =

N

n

7



Let’s switch to variance s? (hang in there with me); after all s = Vs2.

If we knew (but we don’t really) the true population mean u, the best
sample-based estimator for the population variance using a single

sample would be:

52 _ ?=1(Yi o ll)z
n

Since we almost never know the population mean , let's see what
happens when we use the sample mean value Yas an estimate of u:

SZ

n



Let's use a computational approach to evaluate the accuracy of

these two sample-based estimators.:

‘norm(n ,mean

(x,mu) {sum((x-mu)

((X-mean(x))

Ly (X=samples,MARGIN
5, MARGI

JARGIN

) Ly ( X=5s amp les

0°=100; ¢=10
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The mean of s? for the estimator
based on the population mean u
divided by n was unbiased (i.e., it
closely matched the population
o2; it would have exactly equalled
o2 =100 based on infinite
sampling). However, the estimator
based on the sample mean Y
divided by nis biased.
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Note the asymmetry in the
sampling distribution of
variances, i.e., the median
doesn’t equal the mean. The
variance is unbiased when
based on u but biased when
based on Y. Remember:
unbiased expectations are
based on means and not
medians.



In most cases, the parameter value u (the true population
mean) is unknown.

2 1(Y — W)? é .
o - oy = ‘




There is a correction factor for the sample bias in
s called Bessel’s correction (although it appears
that Gauss first introduced it in 1823).

§% =
7i1=1(Yi _ll)z ~ 7ilzl(yi — Y)Z é
n o n—1
Y —Y)?

s% =
n

https://mathworld.wolfram.com/BesselsCor
rection.html



Let's use a computational approach to evaluate the accuracy of
these two sample-based estimators.:

o=10 -~ 04=100

samples ~eplicate( . rnorm(n ,mean

var.based.popMean (X,mu) 1sum((x-mu)

var.based.n (x)1sum((x-mean(x))

g2 — ?zl(yi _”)2 §2 — ?zl(yi —Y)Z §2 — ?zl(yi _V)Z
n n—1 n
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Note though that:
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is slightly more
precise then:
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Let’s take a small break — 1 minute




BUT WHY does this bias occur???

But why is the variance (or standard deviation) biased when
divided by n instead of n-1?

i-1(Y; — 17)23 e (Y; —Y)?

\ n—1 \ n

é But why? %



Obviously, you don’t need to know the math, but it's reassuring to

know that someone worked it out for us!

Proof of Bessel's Correction

Bessel's correction is the division of the sample variance by N — 1 rather than N. | walk
the reader through a quick proof that this correction results in an unbiased estimator of
the population variance.
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Consider N i.i.d. random variables, x1,x;, ..., X, and a sample mean X. When computing the
sample variance sz, students are told to divide by N — 1 rather than N:

1<
2 _ =2
§° = N1 z:()c,l xX)°.

n=1
When first learning about this fact, | was shown computer simulations but no mathematical proof of
why this must hold. The goal of this post is to provide a quick proof of why this correction makes
sense.
The proof outline is straightforward: we need to show that the estimator in Equation 1 below is
biased, and that we can correct this bias by dividing by N — 1 rather than N. For an estimator to be
unbiased, the expectation of that estimator must equal the population parameter. In our case, if the
sample variance is 5% and the population variance is 62, we want

5

E[s*] = o

Let's begin.

Proof
Let’s prove that the following estimator for the population variance is biased:

N
&= % Zlm -0 o

n=

First, let's take the expectation of this estimator and manipulate it:

N N
1 _ 1 -
[E[ﬁ Z(x,, - 1)2] = E[}V Z(x,’; = 2x,X + x‘)]
n=1 n=1
X X IR
= - 2zl 1 )
_[E[N;X” 2XN”§X”+N; l

N

E[% ng} - E[22] + E[#]

n=1

= E[%ﬁ:xﬂ -E[?]

n=1

1%

t =
= E[x%] - [E[xz].
Note that step % holds because
N
Zx,, = NX.
n=1
while step T holds because the data are i.i.d., i.e.

I & B eb] - el

Now note that since x,, is an i.i.d. random variable, any of the x, € {x;,x2,... x5} has the same
variance. Furthermore, recall that for any random variable Y,

Var(Y) = E[Y?] - E[Y]? =  E[Y?]= Var(Y) + E[Y]%.
So we can write
E[x3] = Var(x,) + Elx,]?
- 0_2 +”2

E[#] = Var(®) + ELZ]

2
o 2
N TR

1%

Step x holds because

N

Var(x) = Var(% Z x,,)

n=1

N
iid 1
= — Var(x,)
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N 1

n=
N
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Finally, let's put everything together:
2 2 2 o? 2
E[s*] =06 +pu —(Fﬁ-ﬂ )
1
-(1- )

What we have shown is that our estimator is off by a constant, (1 — Ni) = (N771) . If we want an

unbiased estimator, we should multiply both sides of Equation 3 by the inverse of the constant:
N
N 1
IE[—sz]:[E[— X, —iz]:o‘z.
(N -1 ) N-1 HZI( " )

And this new estimator is exactly what we wanted to prove. Bessel’s correction results in an

unbiased estimator for the population variance.

Source: http://gregorygundersen.com/blog/2019/01/11/bessel/



No Math then! Let’s try a more accessible way to understand the need for

a correction [“

]

To understand why we use n-1 instead of n, we need first to
understand that values in a sample are free to vary around
the population mean u but values in a sample are not free to
vary around the sample mean Y.

n—1

Free to vary

S =

\

n

Not free to vary



To understand why we use n-1 instead of n, we first need to
recognize that values in a sample are free to vary around

the population mean u, but they are not entirely free to vary
around the sample meanY.

Let’'s say we have a set of 6 numbers, but one number is
hidden. If we know the sample mean Y, we can use it to

find the missing number: 1, 5,7, ???,9,12 Y =7

1+5+7+7?2??7+9+12— 13
=7 &34 +?22?2=6X7

6 — 1

6 X7

.

So, there is always one number that is not free
???=42-34=8 to vary around the sample mean Y



Let’s assume we know the population mean u = 6 (though, in
reality, this is usually unknown - this is to illustrate the point).

Based on the sample mean Y:
A =7+G-D*HT =7*+B=7)*+(9 = 7)* +(12 = 7)?

SZ

n
70
— ? — 117
Based on the population mean u

2 (1—-6)>4+(5—6)*+(7 — 6)*+(8 —6)* +(9 — 6)? +(12 — 6)*
n

= 76 = 12.7

=—=12

Note that the sample-based values were smaller than the population-based values.
This occurs because the sample mean tends to underestimate variability compared to the
true population mean. This is why corrections, like dividing by n-1, are necessary to provide
an unbiased estimate of the population parameters.



sum left=-7.5 Sum right=7.5

1 1
| | L 1

-35 -25 -15 0.5 2.5 4.5

— ——=A —— —— ——

1-45 245 3-4.5 5-4.5 7-4.5 9-4.5

/ | ‘/ | ‘/ | ‘ | | | | | I

1 2 3 45 6 7 8 9

B : S Sum_left + sum_right=-7.5+7.5=0

0

\\ _ ///\
Remember that the sample values will always be centered around
the sample mean, but this is not true for the population mean, which
can vary freely within the range of the sample values.



The sample sum of squares is typically smaller, on average, than the population sum of
squares because the sample mean (Y) lies within the range of the sample values,
whereas the population mean (u) can be located anywhere, either within or outside
the sample range.

1,5,7,8,9,12 yv-=7

The sample mean (7 in this case) always falls within the range of the
sample values, but the population mean is free to vary—it can lie within the
sample values or be smaller or larger than any of them (i.e., outside the
range of the sample values).

If we use the population mean (u) instead of the sample mean (Y) to calculate the sum of
squares, the result will almost always be larger than if we had used the sample mean.
This is because the sample mean minimizes the sum of squared deviations within the
sample. Therefore, the sum of squares based on the sample mean will always be smaller

than that based on the population mean, unless the two means happen to be equal (which
is unlikely).

n n
D=7?=70 o N -6)2=76
li=1 ] li=1

! Y

Based on the original sample mean Based on the population mean

J




From our lecture on variance and standard deviation

Observations (Y;) Deviations (Y; — Y) Squared deviations (Y; — Y)?

0.9 -0.475 0.225625
1.2 -0.175 0.030625
1.2 -0.175 0.030625
1.3 -0.075 0.005625
1.4 0.025 0.000625
1.4 0.025 0.000625
1.6 0.225 0.050625
2.0 0.625 0.390625
Sum 0.000 0.735

L (Y, —V)?  0.735
_ 2l Z V)7 = 0.11 Hz?

2
> n—1 g1




From our lecture on variance and standard deviation

Observations (Y;) Deviations (Y; — Y) Squared deviations (Y; — Y)?

0.9 -0.475 0.225625
1.2 -0.175 0.030625
1.2 -0.175 0.030625
1.3 -0.075 0.005625
1.4 0.025 Because sum of 0.000625
1.4 0.025 deviationsis zero, 0.000625
1.6 0.225 thisimpactsthe ¢ 50625
2.0 D@ U CY SeEE 0.390625
Sum 0.000 » 0.735

O Y) = 0 (this sum is always zero when using the sample
mean. However, when the population mean is used instead, the
sum can be either greater or smaller than zero. Consequently, the
squared deviations from the sample will be always smaller than
those from the population mean).
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Bessel demonstrated that
by using n-1 in the
denominator, the sample
standard deviation based
on n observations is
corrected. This adjustment
accounts for the fact that
the sample loses 1 degree
of freedom when estimating

the population standard
deviation.

_ ?:1(Yi T 7)2
n




The average of all possible sample standard deviations
calculated with n-1 in the denominator provides an
unbiased estimator, as the mean of all sample standard
deviation values equals the population standard
deviation (o).

SZ _ ?zl(yi T Y)Z
n—1
SZ _ ?zl(yi T Y)Z

n



Why is the sample standard deviation calculated by dividing
the sum of the squared deviations from the mean divided by n
— 1 and not n? NOW YOU KNOW!

2 (Y —Y)°

SZ

n—1

How did Bessel find that n — 1 would be the value that would
work and not n — 2 or n — 3, for example? This requires some
mathematical work, and it's often the role of statisticians to
determine whether estimates of statistics are biased and how
to adjust them to make them unbiased.



The Statistical Road!!

/
AVOID BIAS |
NEXT EXIT N




Sample variance is not biased.
How about the sample standard deviation?

\J n—1

rnorm(n , Mean

(=samples,MARGIN=2,FUN=sd)

Population
standard deviation

/“
=10




sample standard deviations

Sample variance is not biased.
How about the sample standard deviation? IT IS A BIT BIASED!

|
| Population
_ : standard deviation
|
|

/
.......................... o=10

~NOoOO OO -~DMNW
I




The sample standard deviation IS A BIT BIASED!

© This bias arises from the
~ square root transformation
N of the variance.

n; - Y)2 e It's challenging to establish

S = n—1 o a general unbiased
procedure for the standard

@ deviation, as it varies with
~ sample size, but there are

l l l I l ' correction methods
60 80 100 120 140 160 available.

Only 100 samples are _
(Y, —Y)?
plotted; 1000000 would g2 — 2i=1li

have been too many! n—1




The sample standard deviation IS A BIT BIASED!

Although corrections for this bias exist for normally distributed populations,
the bias itself 'has little relevance to applications of statistics,’ as it is
generally avoided through standard procedures. For instance, the t-distribution,
which is used to calculate confidence intervals and perform many other important
statistical analyses (to be covered in the next lecture), effectively addresses this
issue.

0.40
0.35
0.30
0.25

X0.20
0.15
0.10
0.05
0.00

X—pu

t =
SEx

Jz 1(Y —Y)Z

n—l

Since the t-distribution is based on the sample standard deviation, it inherently accounts
for this bias in its distribution, ensuring that it does not pose any issues for statistical
analyses that rely on the sample standard deviation.



But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

2) The role of population distribution in creating unbiased sample
estimators for any statistic of interest [the case of assumptions].




Can we rely on the sample estimator for variance when the population
is non-normal? Up until now, we've been assuming normality!
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Can we trust the sample estimator for variance when the population is
non-normal? IN MANY CASES WE CAN'T!
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But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

3) The importance of [data transformation] in converting biased
sample estimators into unbiased ones.




Log transformation helps to reduce skewness, making asymmetric

distributions more symmetric.
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Log transformation helps to reduce skewness, making asymmetric
distributions more symmetric.

o060

humanGenelLengths as.matrix(read.csv(
geneSamplel0®0 replicate( , sample(humanGenelLengths, size
gene.sample.sd apply(log(geneSamplel®0),MARGIN=2,FUN=sd)

boxplot(gene.sample.sd, outlipe rcoll ,cex.axis

las=1, ylab )

Samples were log-
transformed here



Can we trust the sample estimator for variance when the population is
non-normal? In many cases, we can trust them when the sample data
have been transformed!
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Develop stronger knowledge and intuition about statistics

1) The significance of applying corrections to create unbiased
sample estimators for any statistic of interest [the case of degrees
of freedom].

2) The role of population distribution in creating unbiased sample
estimators for any statistic of interest [the case of assumptions].
We often assume normality because we know whether estimators
are biased or not (i.e., and how to remove their biases using
corrections, often called degrees of freedom).

3) The importance of [data transformation] in converting biased
sample estimators into unbiased ones.



Key goals today

Develop a stronger understanding and intuition about statistics.

By exploring the case of the standard deviation, gain insight into
the work statisticians do, allowing you to trust the 'standard
statistics' (i.e., the most commonly used methods) that you will
apply in your future professional careers.

Acquire deeper knowledge about how the other statistical

frameworks we will cover in BIOL322 were developed. While we
won't revisit every sample estimator, the principles applied to the
standard deviation can be generalized to most sample statistics.



Now we can trust our estimates, let’s calculate confidence intervals in practice

Let’s consider a biological example: The stalk-eyed fly — the span in
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 95% confidence interval for the population
mean

Y =8.778 mm s= 0.398 mm
0.398 “symmetric” :
— T = (we can “trust” ¢
SEy Voo 0.133 mm estimates)

to.05(2),8 = 2.306

Y —2306x%x0.133< u<Y +2.306x0.133
8.47 mm < u < 9.08 mm




Now we can trust our estimates, let’s calculate confidence intervals in practice

Y =8.778 s=0.398

SEc —— =0.133 Y —2306%x0.133< u<Y +2.306 x 0.133
8.47 mm < u < 9.08 mm

38.47 mm 9.08 mm
e

X =8.878 mm

to.05(2),8 = 2.306

I

Degrees of
freedom
(v, df)

50% | 60%  70% | 80% @ 90% | 95% @ 98% | 99% | 99.5% | 99.8% | 99.9%
1.376 | 1.963 | 3.078 | 6.314 12.71 | 31.82  63.66 | 127.3 | 318.3 | 636.6

2 0.816 N\ 1.386 | 1.886  2.920 4.303 | 6.965 9.925 | 14.09 | 22.33 | 31.60
3 0.765 1.250 | 1.638  2.353  3.182 | 4.541 5.841 | 7.453 |10.21 | 12.92
4 0.741 | 0.941 1.533  2.132  2.776 | 3.747 4.604 | 5.598 |7.173 |8.610
5 0.727 | 0.920 | 1.156 2.015  2.571 | 3.365  4.032 | 4.773 | 5.893 | 6.869
6 0.718 | 0.906 | 1.134 1.943 | 2.447 | 3.143 | 3.707 1 4.317 |5.208 | 5.959
7 0.711 | 0.896 | 1.119 | 1.415 2.365 | 2.998 | 3.499 | 4.029 |4.785 |5.408
8 0.706 | 0.889 | 1.108 | 1.397  1.860  2.306 | 2.896 3.355 |3.833 |4.501 | 5.041
9 0.703 0.883  1.100 | 1.383 | 1.833 | 2.262 2.821 3.250 |3.690 |4.297 | 4.781
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1.782 | 2.179 | 2.681 | 3.055 1 3.428 |3.930 4.318



In practice (today) we use software (e.g., R).

Y =8.778 s=0.398

SEy %‘;8 = 0.133

to.05(2),8 = 2.306
Y —2306%x0.133 < u<Y +2.31x%x0.133

8.47 mm < u < 9.08 mm




Let’s consider a biological example: The stalk-eyed fly — the span in
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 99% confidence interval for the population
mean

Y =8.778 s=0.398

SEy %28 = 0.133

to.05(2),8 = 3.355

Y —3.355%0.133 < u<Y +3.355x0.133
8.33mm < u < 9.22 mm




Y =8.778 s=0.398

SE; &\/28 = 0.133

to.05(2),8 = 3.355

Y —3355%x0.133 < u<Y +3.355 % 0.133
8.33 mm < u < 9.22 mm




In most cases, however, we report the 95% confidence

interval.

95% confidence interval:

8.47 mm < u < 9.08 mm

99% confidence interval:

8.33mm < u < 9.22 mm

Frequency

[ T T 1
8.0 8.5 9.0 9.5

Eye span (mm)




