
The statistical road: embrace 
uncertainty while estimating with 
confidence

Lecture 11 - Estimation is more complex than it seems: the 
challenges and solutions from 100 years ago have become 

integral to mainstream statistics!

Building long-term statistical intuition & knowledge 



For statistics to be reliable, we must trust our sample estimators, 
meaning they need to be unbiased.

We know that under random 
sampling, the sample mean is an 
unbiased estimator of the 
population mean μ.

This is because the mean of all 
possible sample means equals the 
population mean. 

In other words, across many 
repeated samples, the sample 
mean accurately reflects the true 
population mean on average, 
without systematic error.

The bullseye is the population 
mean 𝜇 and

each dot is a sample mean "𝑋. 



The shape of the population's frequency distribution does not necessarily resemble the frequency 
distribution of sample estimates (such as the distribution of sample means). 

Regardless of the population's distribution shape (e.g., even if it's uniform), the sample mean 
remains an unbiased estimator of the population mean when sampling is random.

n = 2 
Population

population: 1,2,3,4,5; 
𝜇 = 3.0

n = 4 
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Frequency distribution of 
the gene Population

Sampling distributions for the sample
means of the gene population!

The shape of the population's frequency distribution does not necessarily resemble the frequency 
distribution of sample estimates (such as the distribution of sample means). 

Regardless of the population's distribution shape (e.g., even if it's uniform), the sample mean 
remains an unbiased estimator of the population mean when sampling is random.



𝜇 ± 1.984×𝑠 !"
𝑛 = 100

𝑛 = 10
𝜇 ± 2.262×𝑠 !"

/X# ± t ×SE$%!t =
/X# − µ 
SE$%!

Sampling distribution of the means for a normally distributed 
population follows a t-distribution (we say “is t-distributed”)

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚
 

Confidence intervals based on sample 
standard deviation (i.e., unknow 
population standard deviation). 



By now, you should suspect that one of the “inconveniences” is that the exact 
value needed to be multiplied by SE to create 95% confidence intervals changes 
as a function of sample size.

The sampling distribution of means that varies as a function of the sample size (here v = 
degrees of freedom; v = n - 1) is called t when based on the sample standard error (i.e., 
estimate of the true standard error of the sampling distribution).

This t distribution (standardized) is a 
sampling distribution of the the number 
of sample standard errors away from 
the mean (now always 0 after the 
standardization) necessary to produce 
a confidence interval of the desired 
coverage (e.g., 95%).

/X# ± t ×SE$%!

t

t =
/X# − µ 
SE$%!



Even though the distribution of the population is asymmetric, the sampling 
distribution of means tend to me symmetric. This is an important property 
because it allows us to generalize sampling distributions based on standard 
distributions such as the t-distribution (not always but often). 
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We must rely on our sample estimators for statistical methods to be valid, 
meaning they need to be unbiased.

Imprecise

Inaccurate

Accurate

Precise

Low sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & high bias

Low sampling variation 
(sampling error) & high bias

The sample mean 
is an unbiased 
estimator under 
random sampling 
because the 
average of all 
sample means 
equals the 
population mean.

𝜇 𝜇



sampling

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚 !𝐗 = 𝟑𝟓𝟐. 𝟑 𝒄𝒎; 𝒔 = 𝟗𝟒. 𝟎 𝒄𝒎

The variation within a sample (standard deviation) can be used to estimate 
how far the sample means might be from the true population mean, giving us 

an idea of the potential error in our estimate.

Variation within samples 

Variation among samples 

Variation within samples (among 
observations) can be used to 
estimate the uncertainty in the 
sample means.

Estimating variation within a sample to assess variation 
among samples (standard error, i.e., uncertainty around 
sample means) is fundamental to statistics, not just to 
constructing confidence intervals.



Sampling error is the difference between 
a sample mean and the population 
mean. The estimate of this error is the 
standard deviation of the sampling 
distribution, representing the average 
difference between all sample means 
and the true population mean.

The number of samples is so large that
can be considered infinite (∞)

The standard deviation of the 
sampling distribution of the mean σ !" 
is called standard error and is 
exactly the standard deviation of the 
population 𝜎 divided by 𝑛 :

𝜎 !" =
𝜎
𝑛σ !- = #

./.

0 $𝑌. − 𝜇 1

∞ =

SE !" =
𝑠
𝑛

Since we almost never know the 
population standard deviation, we 
estimate it using the sample standard 
deviation:

But can we trust the sample 
standard deviation 𝑠? Is it an 
unbiased estimator of 𝜎 ?

The ability to estimate variation within a sample to assess variation among samples 
(standard error) is crucial to statistics, not just for confidence intervals 



As we will see, the mean and standard deviation are fundamental 
sample statistics used in nearly all standard statistical analyses, not just 

for confidence intervals.

!Y ± t! ×SE "# ∴ SE2- =
𝑠
𝑛

!𝐗 = 𝟑𝟓𝟏. 𝟓 𝒄𝒎; 𝒔 = 𝟏𝟏𝟒. 𝟐 𝒄𝒎 351.5𝑐 ± t3×
114.2
100

328.66 cm               374.34 cm

Margin of error

'𝐗 = 𝟑𝟓𝟏. 𝟓 𝒄𝒎



But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?

Today, we will explore the sample standard deviation as an estimator 
of the true population standard deviation.

Our goals are threefold:

Build a deeper understanding and intuition about statistical concepts.

Learn how statisticians develop reliable statistical measures.

Gain insight into how the other statistical methods we will learn in 
BIOL322 were created.

Note: While we won't revisit every sample estimator, the process used 
for standard deviation can be generalized to most sample statistics.



1) The significance of applying corrections to create unbiased 
sample estimators for any statistic of interest [the case of degrees 
of freedom].

2) The role of population distribution in creating unbiased sample 
estimators for any statistic of interest [the case of assumptions].

3) The importance of [data transformation] in converting biased 
sample estimators into unbiased ones.

But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?



Why is the sample standard deviation calculated by dividing 
the sum of squared deviations from the mean b n – 1 and not 
n?

𝑠 =
∑./43 𝑌. − $𝑌 1

𝒏 − 𝟏 𝑠 =
∑./43 𝑌. − $𝑌 1

𝒏

1) The significance of applying corrections to create unbiased 
sample estimators for any statistic of interest [the case of 
degrees of freedom].

But why?



Let’s switch to variance 𝑠! (hang in there with me); after all 𝑠 = 𝑠!.
If we knew (but we don’t really) the true population mean 𝜇, the best 
sample-based estimator for the population variance using a single 
sample would be:

𝑠1 =
∑./43 𝑌. − 𝛍 1

𝑛
Since we almost never know the population mean 𝜇, let’s see what 
happens when we use the sample mean value 3𝑌as an estimate of 𝜇:

𝑠1 =
∑./43 𝑌. − =𝐘 1

𝑛



Let's use a computational approach to evaluate the accuracy of 
these two sample-based estimators.: 

𝑠1 =
∑./43 𝑌. − 𝜇 1

𝑛
𝑠1 =

∑./43 𝑌. − $𝑌 1

𝑛

𝜎"=100; 𝜎=10



𝑠! =
∑"#$
% 𝑌" − 𝝁 !

𝑛
𝑠! =

∑"#$% 𝑌" − 2𝒀 !

𝑛

The mean of 𝑠# for the estimator 
based on the population mean 𝜇 
divided by n was unbiased (i.e., it 
closely matched the population 
𝜎#; it would have exactly equalled 
𝜎# =100 based on infinite 
sampling). However, the estimator 
based on the sample mean "𝑌 
divided by n is biased.



𝑠! =
∑"#$% 𝑌" − 𝝁 !

𝑛

𝑠! =
∑"#$% 𝑌" − 2𝒀 !

𝑛

sample variances sample variances

Note the asymmetry in the 
sampling distribution of 
variances, i.e., the median 
doesn’t equal the mean. The 
variance is unbiased when 
based on 𝝁 but biased when 
based on '𝒀. Remember: 
unbiased expectations are 
based on means and not 
medians. 



𝑠! =
∑"#$% Y& − 𝛍 !

𝑛

𝑠! =
∑"#$
% 𝑌" − )𝐘 !

𝑛

𝜎1

𝜎1

In most cases, the parameter value μ (the true population 
mean) is unknown.



There is a correction factor for the sample bias in 
𝑠" called Bessel’s correction (although it appears 
that Gauss first introduced it in 1823).

∑()*+ 𝑌( − %𝑌 ,

𝒏 − 𝟏

𝑠, =
∑()*+ 𝑌( − %𝑌 ,

𝒏

𝑠! =
∑!"#
$ #% $𝛍 &

&
≅ 

https://mathworld.wolfram.com/BesselsCor
rection.html 



𝑠$ =
∑%&'
( 𝑌% − 𝝁 $

𝒏
𝑠$ =

∑%&'
( 𝑌% − *𝐘 $

𝒏

𝜎=10 ∴ 𝜎"=100

𝑠$ =
∑%&'
( 𝑌% − *𝐘 $

𝒏 − 𝟏

Let's use a computational approach to evaluate the accuracy of 
these two sample-based estimators.: 



𝑠! =
∑"#$
% 𝑌" − 𝝁 !

𝒏

𝑠! =
∑"#$
% 𝑌" − 2𝒀 !

𝒏

The sample based on 
the sample mean
divided by n-1 is
unbiased!

𝑠$ =
∑%&'
( 𝑌% − *𝐘 $

𝒏 − 𝟏



𝑠! =
∑"#$
% 𝑌" − 𝝁 !

𝒏

Note though that:

𝑠$ =
∑%&'
( 𝑌% − *𝐘 $

𝒏 − 𝟏

𝑠! =
∑"#$
% 𝑌" − 𝝁 !

𝒏
is slightly more 
precise then:

𝑠$ =
∑%&'
( 𝑌% − *𝐘 $

𝒏 − 𝟏



wake up

@cjlortie

Let’s take a small break – 1 minute



But why is the variance (or standard deviation) biased when 
divided by n instead of n-1?

BUT WHY does this bias occur???

But why?

𝑠 =
∑()*+ 𝑌( − %𝑌 ,

𝒏 − 𝟏
𝑠 =

∑()*+ 𝑌( − %𝑌 ,

𝒏



Source: http://gregorygundersen.com/blog/2019/01/11/bessel/

Obviously, you don’t need to know the math, but it's reassuring to 
know that someone worked it out for us!



To understand why we use n-1 instead of n, we need first to 
understand that values in a sample are free to vary around 
the population mean 𝝁 but values in a sample are not free to 
vary around the sample mean !𝑌.

No Math then! Let’s try a more accessible way to understand the need for 
a correction [“a gentle introduction to degrees of freedom’]

Free to vary Not free to vary

𝑠 =
∑()*+ 𝑌( − %𝑌 ,

𝒏 − 𝟏
𝑠 =

∑()*
+ 𝑌( − %𝑌 ,

𝒏



1 + 5 + 7 + ??? + 9 + 12 
6

= 7 ∴ 34 + ??? = 6 × 7

??? = 42 - 34 = 8

Let’s say we have a set of 6 numbers, but one number is 
hidden. If we know the sample mean !𝑌, we can use it to 
find the missing number:  1, 5, 7, ???, 9, 12 #𝑌 = 7

To understand why we use n-1 instead of n, we first need to 
recognize that values in a sample are free to vary around 
the population mean 𝝁, but they are not entirely free to vary 
around the sample mean 2Y.

So, there is always one number that is not free 
to vary around the sample mean "𝑌

6 × 7



Let’s assume we know the population mean 𝝁 = 6 (though, in 
reality, this is usually unknown - this is to illustrate the point). 

𝑠$ =
(1 − 7)$+(5 − 7)$+(7 − 7)$+(8 − 7)$ +(9 − 7)$ +(12 − 7)$

𝑛
=
70
6
= 11.7

Based on the sample mean 2𝐘:

Based on the population mean 𝝁

𝑠$ =
(1 − 6)$+(5 − 6)$+(7 − 6)$+(8 − 6)$ +(9 − 6)$ +(12 − 6)$

𝑛
=
76
6
= 12.7

Note that the sample-based values were smaller than the population-based values. 
This occurs because the sample mean tends to underestimate variability compared to the 
true population mean. This is why corrections, like dividing by n-1, are necessary to provide
an unbiased estimate of the population parameters.



Remember that the sample values will always be centered around
the sample mean, but this is not true for the population mean, which

can vary freely within the range of the sample values.

𝝁



The sample sum of squares is typically smaller, on average, than the population sum of 
squares because the sample mean ("𝑌) lies within the range of the sample values, 
whereas the population mean (𝜇) can be located anywhere, either within or outside 
the sample range.

1, 5, 7, 8, 9, 12 #𝑌 = 7
The sample mean (7 in this case) always falls within the range of the 
sample values, but the population mean is free to vary—it can lie within the 
sample values or be smaller or larger than any of them (i.e., outside the 
range of the sample values).
If we use the population mean (𝜇) instead of the sample mean (𝑌̅) to calculate the sum of 
squares, the result will almost always be larger than if we had used the sample mean. 
This is because the sample mean minimizes the sum of squared deviations within the 
sample. Therefore, the sum of squares based on the sample mean will always be smaller 
than that based on the population mean, unless the two means happen to be equal (which 
is unlikely).

:
%&'

(

(𝑌% − 6)$= 76

Based on the original sample mean

:
%&'

(

(𝑌% − 7)$= 70

Based on the population mean

<



68 Chapter 3  Describing data

Based on the histogram in Figure 3.1-1, we see that the value of the sample mean is 
close to the middle of the distribution. Note that the sample mean has the same units 
as the observations used to calculate it. In Section 3.6, we review how the sample 
mean is affected when the units of the observations are changed, such as by adding a 
constant or multiplying by a constant.

The sample mean is the sum of all the observations in a sample divided by n, 
the number of observations.

Variance and standard deviation

The standard deviation is a commonly used measure of the spread of a distribu-
tion. It measures how far from the mean the observations typically are. The standard 
deviation is large if most observations are far from the mean, and it is small if most 
measurements lie close to the mean.

The standard deviation is calculated from the variance, another measure of 
spread. The standard deviation is simply the square root of the variance. The standard 
deviation is a more intuitive measure of the spread of a distribution (in part because it 
has the same units as the variable itself ), but the variance has mathematical properties 
that make it useful sometimes as well. The standard deviation from a sample is usu-
ally represented by the symbol s, and the sample variance is written as s2.

To calculate the variance from a sample of data, we must fi rst compute the devi-
ations. A deviation from the mean is the difference between a measurement and the 
mean (Yi - Y ).  Deviations for the measurements of snake undulation rate are listed in 
Table 3.1-1.

The best measure of the spread of this distribution isn’t just the average of the 
deviations (Yi - Y ),  because this average is always zero (the negative deviations 

Table 3.1-1  Quantities needed to calculate the standard deviation and variance of snake 
undulation rate (Y51.375 Hz).

Observations (Yi) Deviations (Yi - Y ) Squared deviations (Yi - Y )2

 0.9 –0.475  0.225625
 1.2 –0.175 0.030625
 1.2 –0.175 0.030625
 1.3 –0.075 0.005625
 1.4 0.025 0.000625
 1.4 0.025 0.000625
 1.6 0.225 0.050625
 2.0 0.625 0.390625

 Sum 0.000 0.735

© Roberts and Company Publishers, ISBN: 9781936221486, due June 16, 2014, For examination purposes only
FINALPAGES

From our lecture on variance and standard deviation

𝑠1 =
∑./43 𝑌. − &𝑌 1

𝑛 − 1
=
0.735
8 − 1

= 0.11 Hz1
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∑%&'
( 𝑌% − ;𝑌 = 0 (this sum is always zero when using the sample 

mean. However, when the popula8on mean is used instead, the 
sum can be either greater or smaller than zero. Consequently, the 
squared devia8ons from the sample will be always smaller than 
those from the popula8on mean).

Because sum of
deviations is zero, 
this impacts the 
sum of square

From our lecture on variance and standard deviation



𝑠! =
∑"#$
% 𝑌" − 𝝁 !

𝒏

𝑠! =
∑"#$
% 𝑌" − 2𝒀 !

𝒏

Bessel demonstrated that
by using n-1 in the 
denominator, the sample
standard deviation based
on n observations is
corrected. This adjustment
accounts for the fact that
the sample loses 1 degree
of freedom when estimating
the population standard 
deviation.

𝑠$ =
∑%&'
( 𝑌% − *𝐘 $

𝒏 − 𝟏

∑$%&' 𝑌$ − '𝒀 #<= ∑$%&' 𝑌$ − 𝝁 #



The average of all possible sample standard deviations 
calculated with n-1 in the denominator provides an 
unbiased estimator, as the mean of all sample standard 
deviation values equals the population standard 
deviation (𝜎).

𝑠, =
∑()*+ 𝑌( − %𝑌 ,

𝑛 − 1

𝑠, =
∑()*+ 𝑌( − %𝑌 ,

𝑛



Why is the sample standard deviation calculated by dividing 
the sum of the squared deviations from the mean divided by n 
– 1 and not n? NOW YOU KNOW!

How did Bessel find that n – 1 would be the value that would 
work and not n – 2 or n – 3, for example? This requires some 
mathematical work, and it's often the role of statisticians to 
determine whether estimates of statistics are biased and how 
to adjust them to make them unbiased.

𝑠! =
∑'()& 𝑌' − '𝑌 !

𝑛 − 1



The Statistical Road!!

wake up

@cjlortie



𝑠 =
∑<=>? 𝑌< − #𝑌 "

𝑛 − 1

Sample variance is not biased.  
How about the sample standard deviation? 

𝜎 = 10

Population 
standard deviation



𝑠 =
∑<=>? 𝑌< − #𝑌 "

𝑛 − 1

Sample variance is not biased.  
How about the sample standard deviation? IT IS A BIT BIASED! 

𝜎 = 10

Population 
standard deviation



The sample standard deviation IS A BIT BIASED! 

𝑠# =
∑$%&' 𝑌$ − "𝑌 #

𝑛 − 1

𝑠 =
∑$%&' 𝑌$ − "𝑌 #

𝑛 − 1

This bias arises from the 
square root transformation 
of the variance. 

It's challenging to establish 
a general unbiased 
procedure for the standard 
deviation, as it varies with 
sample size, but there are 
correction methods 
available.

Only 100 samples are 
plotted; 1000000 would 
have been too many!



The sample standard deviation IS A BIT BIASED! 

Although corrections for this bias exist for normally distributed populations, 
the bias itself 'has little relevance to applications of statistics,' as it is 
generally avoided through standard procedures. For instance, the t-distribution, 
which is used to calculate confidence intervals and perform many other important 
statistical analyses (to be covered in the next lecture), effectively addresses this 
issue.

𝑡 =
6𝑋 − 𝜇 
𝑆𝐸 !&

𝑡 =
;𝑋 − 𝜇

∑%&'
( 𝑌% − ;𝑌 $

𝑛 − 1
𝑛

Since the t-distribuRon is based on the sample standard deviaRon, it inherently accounts 
for this bias in its distribuRon, ensuring that it does not pose any issues for staRsRcal 
analyses that rely on the sample standard deviaRon.



1) The significance of applying corrections to create unbiased 
sample estimators for any statistic of interest [the case of degrees 
of freedom].

2) The role of population distribution in creating unbiased sample 
estimators for any statistic of interest [the case of assumptions].

3) The importance of [data transformation] in converting biased 
sample estimators into unbiased ones.

But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?



Can we rely on the sample estimator for variance when the population 
is non-normal? Up until now, we've been assuming normality!

v

𝑠# =
∑$%&' 𝑌$ − "𝑌 #

𝑛 − 1
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Can we trust the sample estimator for variance when the population is
non-normal? IN MANY CASES WE CAN’T!

𝜎
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1) The significance of applying corrections to create unbiased 
sample estimators for any statistic of interest [the case of degrees 
of freedom].

2) The role of population distribution in creating unbiased sample 
estimators for any statistic of interest [the case of assumptions].

3) The importance of [data transformation] in converting biased 
sample estimators into unbiased ones.

But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?
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Log transformation helps to reduce skewness, making asymmetric 
distributions more symmetric.



Samples were log-
transformed here

Log transformation helps to reduce skewness, making asymmetric 
distributions more symmetric.



Can we trust the sample estimator for variance when the population is
non-normal? In many cases, we can trust them when the sample data 
have been transformed!

log(𝜎)

sa
m

pl
e 

st
an

da
rd

 d
ev

ia
tio

ns



Develop stronger knowledge and intuition about statistics

1) The significance of applying corrections to create unbiased 
sample estimators for any statistic of interest [the case of degrees 
of freedom].

2) The role of population distribution in creating unbiased sample 
estimators for any statistic of interest [the case of assumptions]. 
We often assume normality because we know whether estimators 
are biased or not (i.e., and how to remove their biases using 
corrections, often called degrees of freedom).

3) The importance of [data transformation] in converting biased 
sample estimators into unbiased ones.



- Develop a stronger understanding and intuition about statistics.

- By exploring the case of the standard deviation, gain insight into 
the work statisticians do, allowing you to trust the 'standard 
statistics' (i.e., the most commonly used methods) that you will 
apply in your future professional careers.

- Acquire deeper knowledge about how the other statistical 
frameworks we will cover in BIOL322 were developed. While we 
won't revisit every sample estimator, the principles applied to the 
standard deviation can be generalized to most sample statistics.

Key goals today



Let’s consider a biological example: The stalk-eyed fly – the span in 
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 95% confidence interval for the population 
mean

$𝑌 = 8.778 mm s	=	0.398	mm

SE #$
%.'()
(

 = 0.133 mm

2Y − 2.306 × 0.133 < 𝜇 < 2Y + 2.306 × 0.133

𝑡!.!# $ ,8 = 2.306

8.47 mm < 𝜇 < 9.08 mm

Now we can trust our estimates, let’s calculate confidence intervals in practice

“symmetric” 
(we can “trust” 

estimates)



$𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

 = 0.133 'Y − 2.306 × 0.133 < 𝜇 < 'Y + 2.306 × 0.133

𝑡!.!# $ ,8 = 2.306
8.47 mm < 𝜇 < 9.08 mm

Now we can trust our estimates, let’s calculate confidence intervals in practice

8.47 mm 9.08 mm

'𝐗 = 𝟖. 𝟖𝟕𝟖 𝒎𝒎Degrees of 
freedom
(v, df)



In practice (today) we use software (e.g., R).

$𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

 = 0.133

2Y − 2.306 × 0.133 < 𝜇 < 2Y + 2.31 × 0.133

𝑡!.!# $ ,8 = 2.306

8.47 mm < 𝜇 < 9.08 mm



$𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

 = 0.133

2Y − 3.355 × 0.133 < 𝜇 < 2Y + 3.355 × 0.133

𝑡!.!# $ ,8 = 3.355

8.33 mm < 𝜇 < 9.22 mm

Let’s consider a biological example: The stalk-eyed fly – the span in 
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 99% confidence interval for the population 
mean



$𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

 = 0.133

2Y − 3.355 × 0.133 < 𝜇 < 2Y + 3.355 × 0.133

𝑡!.!# $ ,8 = 3.355

8.33 mm < 𝜇 < 9.22 mm



In most cases, however, we report the 95% confidence 
interval.

95% confidence interval:

8.47 mm < 𝜇 < 9.08 mm

99% confidence interval:

8.33 mm < 𝜇 < 9.22 mm


