
THE ANALYSIS OF VARIANCE (ANOVA) 
for comparing multiple sample means (groups or treatments)

H0: The samples come from statistical populations with the 
same mean, i.e., μcontrol = μknee = μeyes.

HA: At least two samples come from different statistical 
populations with different means.

P-value (ANOVA) = 0.00447

Research conclusion: Light 
treatment influences shifts in 
circadian rhythm.



ANOVA

How does light treatment 
influence shifts in circadian 
rhythm?

How do we know which 
group means differ from 
one another?

Research conclusion: Light treatment influences 
shifts in circadian rhythm.

Why not simply not contrast 
all pairs of means using a 
two-sample mean t-test?

“The knees who say night”
Control vs. knee; control vs. 
eyes; knee vs. eyes?



After ANOVA: 

- Multiple testing and post hoc 
(“occurring or done after the event”; 
hoc = “not planned before it happens”) 
tests.

- The concept of family wise type I 
error and why we conduct ANOVAs 
first instead of two-sample t-tests!



Classroom survey:
Would you expect odd- and even 

day born individuals 
to differ in their preferences? 



Birthday and 
preferences

One should not have any theoretical basis for preferences to vary among 
groups other than by chance alone!



Contrast between odd and even-day born individuals - probability of 
rejection based on a two-sample t test (odd versus even)
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Contrast between odd and even-day born individuals - probability of 
rejection based on a two-sample t test (odd versus even)
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Birthday and Preferences:
 We were even able to observe an association between 

liking tea and liking eating vegetables (in a plausible 
direction) simply by separating individuals according to 

their birthdays.  

How can that be?



Another example of significance when there should be none

A simulated randomized clinical trial in coronary artery disease was conducted to 
illustrate the need for clinical judgment and modern statistical methods in assessing 
therapeutic claims in studies of complex diseases. 

In this example, 1073 consecutive, medically treated coronary artery disease patients 
from the Duke University data bank were randomized into two groups. The groups 
were reasonably comparable and, as expected, there was no overall difference in 
survival between the two groups. 

Lee, K.L. et al. (1980) Clinical judgment and statistics. Lessons from a simulated randomized trial in 
coronary artery disease. Circulation, 61: 508-515. DOI: 10.1161/01.cir.61.3.508

https://doi.org/10.1161/01.cir.61.3.508


Another example of significance when there should be none

1073 heart disease patients were RANDOMLY placed into two groups; no 
statistical difference was found in survival (not surprising given that they 
were randomly placed into groups as an exercise to demonstrate the 
issues with multiple testing) between the two groups. 

536
patients

537
patients

1073
patients

Statistical test contrasting the two 
groups in terms of their survival 

was non-significant.



Another example of significance when there should be none
Lee, K.L. et al. (1980) Clinical judgment and statistics. Lessons from a simulated randomized trial in 
coronary artery disease. Circulation, 61: 508-515. DOI: 10.1161/01.cir.61.3.508

A simulated randomized clinical trial in coronary artery disease was conducted to 
illustrate the need for clinical judgment and modern statistical methods in assessing 
therapeutic claims in studies of complex diseases. 

In this example, 1073 consecutive, medically treated coronary artery disease patients 
from the Duke University data bank were randomized into two groups. The groups were 
reasonably comparable and, as expected, there was no overall difference in survival 
between the two groups. 

But when patients were further subdivided into 18 prognostic categories, in a subgroup 
of 397 patients characterized by three-vessel disease and an abnormal left ventricular 
contraction, however, survival of group 1 patients was significantly different from that of 
group 2 patients. 

https://doi.org/10.1161/01.cir.61.3.508


Another example of significance when there should be none
The analysis of individuals divided into 18 prognostic categories based on heart 
morphology revealed a difference in survival between two groups in one of the 
categories. However, because the division of individuals into these categories was 
random, any observed difference in survival should be attributed to chance alone rather 
than an underlying causal factor.

1073
patients

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Group 1

Group 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Statistical tests across 18 prognostic categories



Another example of significance when there should be none

A simulated randomized clinical trial in coronary artery disease was conducted to 
illustrate the need for clinical judgment and modern statistical methods in assessing 
therapeutic claims in studies of complex diseases. 

In this example, 1073 consecutive, medically treated coronary artery disease patients 
from the Duke University data bank were randomized into two groups. The groups 
were reasonably comparable and, as expected, there was no overall difference in 
survival between the two groups. 

But when patients were further subdivided into 18 prognostic categories, in a 
subgroup of 397 patients characterized by three-vessel disease and an abnormal left 
ventricular contraction, however, survival of group 1 patients was significantly 
different from that of group 2 patients. 

Multitest adjustment procedures indicated that the observed difference was likely the 
result of small imbalances in the distribution of several prognostic factors combined. 
This highlights the importance of clinicians exercising caution when interpreting such 
results. The differences could be attributable to chance or insufficient baseline 
comparability between groups, rather than a true effect of the therapy being 
evaluated.

Lee, K.L. et al. (1980) Clinical judgment and statistics. Lessons from a simulated randomized trial in 
coronary artery disease. Circulation, 61: 508-515. DOI: 10.1161/01.cir.61.3.508

https://doi.org/10.1161/01.cir.61.3.508


- Patients grouped according as “three-vessel disease and an abnormal 
left ventricular contraction” were found to have differences between in 
survival between the two groups. 

- However, patients were randomly assigned to each of the two groups in 
the beginning (i.e., survival versus non-survival).  

- How did that happen?

Another example of significance when there should be none



- 1073 heart disease patients were randomly placed into two groups; no difference was found 
in survival (not surprising) between the two groups. 

     [akin to BIOL322 students divided according to their “birthdays”]

- Individuals within each group were then contrasted according to 18 prognostic categories 
(heart morphology used to predict the likely outcome of a heart condition). [prognostics 
are akin to our 24 questions]

- Individuals between the two groups were then contrasted for their differences in survival 
(any difference in survival should be due to chance alone as individuals were randomly 
divided into these categories). [p-values for a test comparing the two groups]

- Patients grouped according as “three-vessel disease and an abnormal left ventricular 
contraction” were found to have differences between in survival between the two groups. 
[students differ in their preferences for drinking tea and eating vegetables]

- However, patients were randomly assigned to each of the two groups in the beginning (i.e., 
survival versus non-survival).  [one should not expect differences related to odd/even 
birthdays]

- How did that happen?

Another example of significance when there should be none
Lee, K.L. et al. (1980) Clinical judgment and statistics. Lessons from a simulated randomized trial in 
coronary artery disease. Circulation, 61: 508-515. DOI: 10.1161/01.cir.61.3.508

https://doi.org/10.1161/01.cir.61.3.508


wake up

@cjlortie

Let’s take a break – 1 minute



Remembering how the sampling distribution under the 
null hypothesis is built (conceptually)

∞−∞



Why when comparing multiple means, one should start with an ANOVA and not by 
two-sample t-tests?

Non-rejection 
region
(95%)

rejection 
region
(2.5%)

rejection 
region
(2.5%)

If you conduct one test, the probability of committing a Type I error is equal to the chosen 
alpha level, such as 0.05. However, if you conduct multiple tests, the probability of 
committing at least one Type I error increases

Under the null hypothesis (H₀), all possible t-values, including those in the rejection 
region, can occur. However, the probability of sampling a t-value that falls within the 
rejection region is equal to the chosen alpha level (e.g., 0.05). This reflects the likelihood 
of committing a Type I error when the null hypothesis is true.

∞−∞



From tutorial 9: When making inferences from samples, we face 
a trade-off: to control the risk of making one type of error (Type I 
or false positives), we must accept a manageable risk of making 
another (Type II or false negatives).



For each test conducted, the probability of committing a Type I error, which is rejecting 
the null hypothesis when it is actually true, is equal to the chosen alpha level (e.g., 0.05 
or 5%). This remains true for individual tests, but when multiple tests are conducted, the 
cumulative probability of committing at least one Type I error increases unless 
appropriate adjustments are made.

Let’s assume that the null 
hypothesis is indeed true 
(like in our student survey 
and the heart study).There is a high likelihood (95% chance) that the test will 

not yield a significant result (i.e., p-value ≥ 0.05) purely by 
chance. This scenario can be compared to throwing a dart 
without aiming at the target distribution, where most 
outcomes do not land in the rejection region.



All the infinite t values are possible 
under H0, even the ones in the rejection 

region (they have a probability of 
alpha=0.05 to be sampled)

If multiple darts are thrown without 
aiming at the distribution, there is still a 
5% chance of landing in the rejection 
region (i.e., obtaining a p-value < alpha) 
by pure chance. This reflects the 
probability of a Type I error for each 
individual test.

∞−∞

For each test conducted, the probability of committing a Type I error, which is rejecting 
the null hypothesis when it is actually true, is equal to the chosen alpha level (e.g., 0.05 
or 5%). This remains true for individual tests, but when multiple tests are conducted, the 
cumulative probability of committing at least one Type I error increases unless 
appropriate adjustments are made.



Why when comparing multiple means one should start with an ANOVA and not 
multiple t-test – because they inflate the number of false positive tests

If you conduct too many tests, you will eventually, by chance alone, obtain a t-value that falls 
in the rejection region. Remember that the sampling distribution includes all possible values 
for the t-statistic measuring the difference between two sample means, assuming that the 
null hypothesis (H₀) is true.

Because we eliminate implausible (low-probability) values in the sampling distribution under 
the assumption that the null hypothesis is true, and use an alpha value to define the 
rejection area, it is clear that conducting too many tests will eventually lead to Type I errors 
for a given alpha. In other words, the more tests you conduct, the higher the likelihood of 
false positives (rejecting the null hypothesis when it should not be rejected).



If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), 
then the chance of finding at least one significant test when you 
should not (i.e., false positive) out of 24 tests (groups) is:

1-0.9524 = 0.708 
71% chance of finding at least 1 significant difference between odd 
and even born individuals in their preferences when H0 is true!

Would you expect odd- and even 
day born individuals to differ in 

their preferences? 



1-0.9524=0.708
70.1% chance of finding at 
least 1 significant test 
when all H0 are true!

2 tests were in fact
significant. 

Would you expect odd- and even 
day born individuals to differ in 

their preferences? 



Let’s assume that 100 tests were conducted:

If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), 
then the chance of finding at least one significant test when you 
should not (i.e., false positive) out of 100 tests (groups) is:

1-0.95100 = 0.994 
99.4% chance of finding at least 1 significant difference between 
group 1 and group 2 when H0 is true!

SO, 100% chance if you conduct 100 tests on samples that are 
expected to vary just due to chance alone (i.e., for which the null 
hypothesis H0 is true).



If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), then the chance of 
finding at least one significant test when you should not (i.e., false positive) out of 
1 test is obviously the original alpha:

1-0.951 = 0.05

5% chance of finding at least 1 significant test when H0 is true!
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1-(0.95)1 = 0.0500 



If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), then the chance of 
finding at least one significant test when you should not (i.e., false positive) out of 
24 tests is:

1-0.9524=0.708

70.1% chance of finding at least 1 significant test when H0 is true!
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Number of statistical tests

1-(0.95)1=0.0500 

1-(0.95)100 = 0.9941 

1-(0.95)24 = 0.708



wake up

@cjlortie

Let’s take a break – 1 minute



The purpose of performing an ANOVA beforehand is 
to protect against inflated Type I errors that can arise 
from conducting multiple pairwise comparisons.

When ANOVA yields a significant result, the next step 
is to determine which pairs of means can be 
considered genuinely significant.

To address this, we need a method to control for the 
increased likelihood of Type I errors due to multiple 
testing.

The Tukey's honest test.



H0: The samples come from statistical populations with the same 
mean, i.e., μcontrol = μknee = μeyes.

HA: At least two samples come from different statistical 
populations with different means.

THE ANALYSIS OF VARIANCE (ANOVA) for comparing 
multiple sample means (groups)

When ANOVA is significant, 
which pairs of means can be 
“honestly” considered 
significant?
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How many pairs of means are possible to be contrasted
(i.e., differences between means)? 
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 = 3

Control – Knee
Control – Eyes
Knee - Eyes

3 mean pairs 
(contrasts)



The post-hoc (after ANOVA) - Tukey's honest test
There is a pair of hypotheses for each pair of means as 
follows:

H0: µi = µj for each pair  i ¹ j

HA: µi ¹ µj for each pair

i and j stand for the subscripts of the groups 
(treatments) being compared.

Control – Knee
Control – Eyes
Knee - Eyes

3 mean pairs 
(contrasts)



Tukey's honest test in R



Tukey's honest test in R: we often use letters (a, b, c., etc) to 
show on graphs the means that are different and similar. 

a a

b



The test statistic for  the Tukey Test is calculated as:

Q =
#𝑋# − #𝑋$
𝑆𝐸

𝑆𝐸#%$ =
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'

'
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))

)

𝑠!(#,%)' =
𝑑𝑓#𝑠#' + 𝑑𝑓%𝑠%'

𝑑𝑓# + 𝑑𝑓%
The quantity 𝑠!" is called the pooled 
sample variance and is the average 
of the sample variances weighted by 
their degrees of freedom. 



Q is then contrasted against a distribution built from the largest possible 
difference between the two-sample means given the number of two-
sample tests and assuming H0 as true. 

*𝑌!"

3 mean pairs 
(contrasts)

Control – Knee
Control – Eyes
Knee - Eyes

By picking the single largest difference 
(i.e., most significant) to build the Q 
distribution, we then assure that only 1 
test will be significant when H0 is true, 
thus controlling for inflated Type I errors 
due to multiple testing.

Sleep/circadian studies
(3 tests in total)



Q is then contrasted against a distribution built from the largest possible 
difference between the two-sample means given the number of two-
sample tests and assuming H0 as true. 

*𝑌!"

24 mean pairs 
(contrasts)Student survey study

(24 tests in total)



No difference from the survey detected as significant after the Tukey test

p-value
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ANOVA & the Tukey-test: 

Assumptions:

- Each of the samples (observations within groups) is a 
random sample from its population.

- The variable (shift in circadian rhythm) is normally 
distributed in each (treatment) population.

- The variances are equal among all statistical populations 
from which the treatments were sampled.  



Testing for differences in variances among populations can 
be done using Levene’s test. While its calculation may be 
too complex for the BIOL322 level, it is important to 
understand its existence, its utility, and how to apply it in R.

H0: 

HA: At least one population variance (𝜎! ) is different from 
another population variance or other population variances.  

𝜎"#$%&#'! = 𝜎($))! = 𝜎)*)!

We need to generate evidence towards H0 to apply an 
ANOVA to the data at hands. 



Testing differences in variances among populations - The 
Levene’s test

H0: 

HA: At least one population 
variance (𝜎! ) is different from 
another population variance 
or other population variances.  

𝜎"#$%&#'! = 𝜎($))! = 𝜎)*)!



Levene’s test: 

Assumptions:

- Each of the samples (observations within groups) is a 
random sample from its population.

- The variable (shift in circadian rhythm) is normally 
distributed in each (treatment) population.



P = 0.8545.  Based on an alpha = 0.05, we should not reject 
the null hypothesis that: 

Therefore, we should feel confident to conduct a standard 
ANOVA to the data (there is a Welch-like ANOVA).

𝜎"#$%&#'! = 𝜎($))! = 𝜎)*)!

Testing for differences in variances among populations can 
be done using Levene’s test. While its calculation may be 
too complex for the BIOL322 level, it is important to 
understand its existence, its utility, and how to apply it in R.


