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Dependent Variable Independent Variable

Continuous Categorical

correlation between continuous 
variables 

(a close concept to regression)
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The correlation coefficient measures the strength and direction of 
the association between two continuous variables (often referred as 
to co-variables):

      Does brain mass depend on body mass or vice-versa?



X = log (body mass)

Y = log (brain mass)

The Pearson’s correlation coefficient measures the strength and 
direction of the association between two continuous variables - it 
measures the tendency of two variables to co-vary.

Unlike linear regression – 1) correlation fits no line to the data; and 2) 
there are no expectation in terms of which variable is the response and 
which variable is the predictor.

The formula for the (Pearson’s) 
correlation coefficient (r) has three 
parts, two of which should look 
familiar, and one should be new 
(to you).

𝑟 =
∑!"#$ (𝑋! − '𝑋)(𝑌! − '𝑌)

∑!"#$ (𝑋! − '𝑋)% ∑!"#$ (𝑌! − '𝑌)%

The numerator is called sum of 
products, and it measures how 
the deviations in X and Y (from 
their means) vary together.

The denominator assures that r 
always varies between -1 and 1.
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The numerator is 
called sum of 
products, and it 
measures how the 
deviations in X and Y 
(from their means) 
vary together.

The large majority of 
sum of products are 
positive, so r is 
positive!

X

Y

Dotted lines 
represent means of X 
and Y.
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The numerator is 
called sum of 
products, and it 
measures how the 
deviations in X and Y 
(from their means) 
vary together.

The large majority of 
sum of products are 
negative, so r is 
negative!

Dotted lines 
represent means of X 
and Y.
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r = -0.021 r = 0.492

X

Y

r = -0.698 r = 0.873

X

Y
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A few different patterns of X,Y associations
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Parents of the litter are 
unrelated

Inbreeding Coefficient

Parents were brother/sister 
whose own parents are 
unrelated

Associations between 
inbreeding and litter size.

r = -0.608

Does number of 
pups depend on 
inbreeding or 
inbreeding depend 
on number of pups?



Testing the null hypothesis of zero correlation

r = -0.608

H0: There is no relationship between the inbreeding coefficient and the 
number of pups in the population (𝜌 = 0).

HA: Inbreeding coefficient and the number of pups in the population are 
correlated (𝜌 ≠ 0).

To test this hypothesis, we use the t-test as 
follows: 

𝑡 =
𝑟
𝑆𝐸! 𝑆𝐸! =

1 − 𝑟"

𝑛 − 2

𝑆𝐸! =
1 − (−0.608)

24 − 2
= 0.169

𝑡 =
−0.608
0.169

= −3.60

Pr[t < -3.60] + Pr[t > 3.60] = 
2 Pr[t > abs(3.60)] = 0.002

Decision based on alpha = 
0.05: reject H0



Assumptions:

- The relationship between X and Y is linear.

- The distribution of X and Y (separately) are normal.

Pearson correlation r



wake up

@cjlortie

Let’s take a break – 1 minute



General Assumptions of parametric tests (the way the 
assumption is tested may change between approaches):

1) Observations are random.

2) Data are homoscedastic

3) Samples are normally distributed

Parametric tests and their assumptions – one sample & 
two sample t-tests, ANOVA, regression and correlation



Assessing the normality assumption – some traditional tests

Source: http://www.statistics4u.info/fundstat_eng/cc_normality_test.html



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

The Q-Q plot is a graphical technique for determining if multiple samples come 
from populations with a common distribution (here, if they all come from 
normally distributed populations).

It plots the quantiles (also known as percentiles) of the data against the 
quantiles of a normally distributed population.  

Percentiles are values in the data below which a certain proportion of your data 
fall. The median is the 50% quantile (or percentile) because 50% of the data 
follows below that value and 50% above that value.  

Go back to our lecture on interquartile range: instead of thinking in terms of 
25%, 50% and 75% quartiles (which divide the data into quarters), think of 
much smaller quantiles that divide the data into 20 pieces (every 5%) or even 
100 pieces (every 1%).  



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s consider 100 values from a uniform distribution



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s divide the data into every 5 percentile points: note how these points are 
more or less equidistant as one would expect from a uniform distribution.



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s consider 100 values from a normal distribution



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s divide the data into every 5 percentile points: note how the difference in 
the middle points (40%, 45%, 50%) are more similar than points in the tails 
(5% & 10%; 90% & 95%).



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

If the two series (observed and expected under normality) of quantiles (hence 
Q-Q) fall into a straight line, it means that the observed data was likely 
sampled from normally distributed statistical populations. 

The uniformly distributed data doesn’t
fall into a straight line against the
normally distributed data.



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

If the two series (observed and expected under normality) of quantiles (hence 
Q-Q) fall into a straight line, it means that the observed data was likely 
sampled from normally distributed statistical populations. 



Two sample t-test (quick overview) to put Q-Q normal 
plots in perspective

Do spikes help protect horned lizards from 
predation (being eaten)?

Loggerhead shrikeHorned lizard



Lizard group Sample mean 
(mm)

Sample standard 
deviation (mm)

Sample 
size n

Living 24.28 2.63 154
Killed 21.99 2.71 30

Horn length (mm) Horn length (mm)

Two sample t-test (quick overview) to put Q-Q normal 
plots in perspective



Assessing the normality assumption in linear models (one sample and two-sample t 
tests, ANOVA, regression and correlation):

The Quantile-Quantile normal (Q-Q normal plot)

In two sample t-tests and ANOVAs, it is not the response 
(dependent) variable (e.g., horn length) as a whole that needs to 
be “normal”, but rather the response within groups.

Response variable

Group 1 Group 2
Response variable not normal 
across groups, but normal 
within groups

Myth - “Data have to be 
normal”



Response variable

Group 1 Group 2

Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)



Response variable

Group 1 Group 2

Group 2

Group 1

Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)



Group 2

Group 1

If there are too many groups 
(e.g., ANOVA), it becomes 
difficult to analyze all Q-Q 
plots.

Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)



t-tests and ANOVAs can be applied as a linear model where the 
response variable is continuous, and predictors are categorical.

Assessing the normality assumption in linear models:
The Quantile-Quantile normal plot of residuals

(Q-Q normal residual plot)

𝑌 = 𝐹𝑎𝑐𝑡𝑜𝑟(𝐺1, 𝐺2) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

So, instead of plotting all groups, we plot the residuals across all groups!

Response variable

G1 G2



wake up

@cjlortie

Let’s take a power break – 1 minute



Relaxing the normality assumption: 
non-parametric hypotheses tests



A parametric statistical test is one that makes 
assumptions about the parameters (defining 
properties) of the population distribution(s) from 
which one's data are drawn, while a non-
parametric test is one that makes “no such 
assumptions”.
Source - http://vassarstats.net/textbook/parametric.html

Tests we covered so far assumed normality and 
equality of variance (means and regression).

Parametric versus non-parametric 
hypotheses tests

http://vassarstats.net/textbook/parametric.html


Dealing with non-normality in statistical 
statistical hypothesis testing



Non-normality has many shapes and would be very difficult to 
develop sampling distributions for these different shapes (though 
it can be done as part of more advanced and complex statistical 
analyses, particularly using computational statistics).

Dealing with non-normality in statistical 
statistical hypothesis testing



Parametric tests assuming normality (e.g., t-test & ANOVA) are affected by 
non-normality; depending on the type of non-normality (shape), parametric 
tests can have either inflated type I errors (i.e., type I error rates greater than 
alpha) or lower power (i.e., increased type II errors).  



Non-parametric tests are those that can handle non-normal data 
(but the assumption of homoscedasticity is also important though 
not usually verified)

These are the main non-parametric tests used in Biology for comparing 
samples:

1) For comparing two samples (analogue of the parametric two sample t-test) – 
The Mann–Whitney U-test (also known as the Mann–Whitney–Wilcoxon test, 
the Wilcoxon rank-sum test, or the Wilcoxon two-sample test).

2) For comparing multiple samples (analogue of the parametric ANOVA) – The 
Kruskal-Wallis test. 

The P-value for the The Mann–Whitney U-test and the The Kruskal-Wallis test 
is mathematically the same and we will cover only the latter.  

Note: we covered t-tests separate from ANOVA for three reasons: one sample t-
tests, understand the nature of post-hoc testing (e.g., pairwise comparison of 
means after ANOVA) and because there is a t-test dealing with samples having 
different variances (though there is a very complex ANOVA version as well).  



Non-parametric tests (including the Kruskal-Wallis test) 
are based on rank transformations

genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html
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Example: FST is a measure of the amount of 
geographic variation in a genetic polymorphism. 
Here, McDonald et al. (1996) compared two 
populations of the American oyster regarding the FST 
based on six anonymous DNA polymorphisms 
(variation in random bits of DNA of no known 
function) and compared the FST values of the six DNA 
polymorphisms to FST values on 13 proteins. 

Question: Do protein differ in FST values in contrast 
to anonymous DNA polymorphisms?

Data from McDonald et al. (1996)

Zero FST = no genetic variation (panmictic) 
negative FST = more genetic variation within   
populations than between the two populations being 
compared.
positive FST = more variation between populations than 
within the two populations being compared.



Non-parametric tests are based on rank transformations

genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html
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http://www.biostathandbook.com/kruskalwallis.html Data from McDonald et al. (1996)

(2+3)/2=2.5

(9+10)/2=9.5



We want to know whether samples come from statistical populations 
that vary in their ranks

What is the probability that a randomly sampled observation from population 
P is greater (or smaller) in rank than a randomly sampled observation from Q? 
If the probability is small, then the samples come from different populations!

P
Original values for each 
population

Varga and Delanay (1998)

Q



We want to know whether samples come from statistical populations 
that vary in their ranks – example from two large samples

What is the probability that a randomly sampled observation from population 
P is greater (or smaller) in rank than a randomly sampled observation from Q? 
If the probability is small, then the samples come from different populations!

P
Original values for each 
population

Varga and Delanay (1998)

Q

Two distributions 
of ranks combined
(always uniform)rank-transformation



Let’s see that “manually” 
using R code

Two distributions of ranks combined
(always uniform)



Kruskal-Wallis test

H0: no sample dominates another sample.

HA: at least one sample dominates one other sample.

Varga and Delanay (1998)

What is the probability that a randomly sampled 
observation from population P is greater (or smaller) 
in rank than a randomly sampled observation from Q? 
If the probability is small, then the samples come from 
different populations; in other words, a sample 
dominates another sample.
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Kruskal-Wallis test – statistic H
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genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html
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Sum   60.5    149.5

Kruskal-Wallis test – statistic H
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Kruskal-Wallis test – statistic H

genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html

3 of 8 2017-02-15 11:48 AM

Sum   60.5    149.5
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H = 0.029∗(610.04+1596.45)⎡⎣ ⎤⎦ − 63=

H = 0.0425



Kruskal-Wallis test – statistic H (correction for tied ranks)

genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.
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Sum   60.5    149.5

Correction for ties

 
CH = 1−

(Ti
3 − Ti )

i=1

nT
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N3 − N

Number of 
values from 
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Number of ties

 
CH = 1−

(Ti
3 − Ti )

i=1

2

∑
203 − 20

= 1− (23 + 2)+ (23 + 2)
203 − 20

= 0.998

 Hc = H / CH = 0.0425 / 0.998 = 0.04258517

 

H = 0.029∗(610.04+1596.45)⎡⎣ ⎤⎦ − 63=

H = 0.0425
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Kruskal-Wallis test – statistic H

 Hc = H / CH = 0.0425 / 0.998 = 0.04258517

df=1

0.04258517

probability of finding by chance
an Hc equal or greater than the
observed

 χ2

2 Pr[Hc > 0.0425] = 0.8365

Decision based on alpha = 
0.05: do not reject H0

df=no groups-1



Assumptions:

- Independent samples

- Homoscedasticity of ranks (not commonly tested and the 
Levene’s test can be used to test for this assumption) – 
test the distribution of ranks instead of original values.

Kruskal-Wallis test – statistic H


