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correlation between continuous

variables
(a close concept to regression)




The correlation coefficient measures the strength and direction of
the association between two continuous variables (often referred as
to co-variables):

Does brain mass depend on body mass or vice-versa?
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The Pearson’s correlation coefficient measures the strength and
direction of the association between two continuous variables - it
measures the tendency of two variables to co-vary.

Unlike linear regression — 1) correlation fits no line to the data; and 2)
there are no expectation in terms of which variable is the response and

which variable is the predictor.
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The numerator is called sum of
products, and it measures how
the deviations in X and Y (from
their means) vary together.

The denominator assures that r

always varies between -1 and 1.

The formula for the (Pearson’s)
correlation coefficient (r) has three
parts, two of which should look
familiar, and one should be new
(to you).
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The numerator is
called sum of
products, and it
measures how the
deviations in X and Y
(from their means)
vary together.

Dotted lines
represent means of X
and Y.

The large majority of
sum of products are
positive, soris
positive!
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vary together.

The large majority of
sum of products are
negative, soris
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Dotted lines
represent means of X
and Y.



A few different patterns of X,Y associations
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Number of pups

r =-0.608
®
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Parents of the litter are
unrelated

Inbreeding Coefficient
4

Parents were brother/sister
whose own parents are
unrelated

Associations between
Inbreeding and litter size.

Does number of
pups depend on
inbreeding or
inbreeding depend
on number of pups?




Testing the null hypothesis of zero correlation

H,: There is no relationship between the inbreeding coefficient and the
number of pups in the population (p = 0).

H,: Inbreeding coefficient and the number of pups in the population are
correlated (p # 0).
To test this hypothesis, we use the t-test as

o - . follows:
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Decision based on alpha = Pr(t <-3.60] + Pr[t > 3.60] =

0.05: reject H, 2 Pr[t > abs(3.60)] = 0.002



Assumptions:

Pearson correlation r

- The relationship between X and Y is lineatr.

- The distribution of X and Y (separately) are normal.




Let’s take a break — 1 minute




Parametric tests and their assumptions — one sample &
two sample t-tests, ANOVA, regression and correlation

General Assumptions of parametric tests (the way the
assumption is tested may change between approaches):

1) Observations are random.
2) Data are homoscedastic ()

3) Samples are normally distributed



Assessing the normality assumption — some traditional tests

Advantages Disadvantages

Chi-Square test ¢ appropriate for any level of e grouping of observations required
measurment (frequencies per group must be > 5)
¢ ties may be problematic ¢ unsuitable for small samples

o statistic based on squares

Kolmogorov- ¢ suitable for small samples e no categorial data
Smirnov test ¢ ties are no problem ¢ low power if prerequisites are not met
e omnibus test

Lilliefors test ¢ higher power than KS test ¢ no categorial data
Anderson-Darling ¢ high power when testing for normal ¢ no categorial data
test distribution o statistic based on squares

e more precise than KS test (especially
in the outer parts of the distribution)

Shapiro-Wilk test ¢ highest power among all tests for o test for normality only
normality e computer required due to
complicated procedure
Cramér-von-Mises ¢ higher power than KS test o statistic based on squares
test e no categorial data

Source: http://www.statistics4u.info/fundstat_eng/cc_normality_test.html



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)




Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

The Q-Q plot is a graphical technique for determining if multiple samples come
from populations with a common distribution (here, if they all come from
normally distributed populations).

It plots the quantiles (also known as percentiles) of the data against the
quantiles of a normally distributed population.

Percentiles are values in the data below which a certain proportion of your data
fall. The median is the 50% quantile (or percentile) because 50% of the data
follows below that value and 50% above that value.

Go back to our lecture on interquartile range: instead of thinking in terms of
25%, 50% and 75% quartiles (which divide the data into quarters), think of
much smaller quantiles that divide the data into 20 pieces (every 5%) or even
100 pieces (every 1%).



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s consider 100 values from a uniform distribution
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Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s divide the data into every 5 percentile points: note how these points are
more or less equidistant as one would expect from a uniform distribution.




Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s consider 100 values from a normal distribution

Frequency
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sample.normal



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

Let’s divide the data into every 5 percentile points: note how the difference in
the middle points (40%, 45%, 50%) are more similar than points in the tails
(5°/o & 10%:; 90% & 950/0).




Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

If the two series (observed and expected under normality) of quantiles (hence
Q-Q) fall into a straight line, it means that the observed data was likely
sampled from normally distributed statistical populations.

The uniformly distributed data doesn’t
fall into a straight line against the
normally distributed data.

quant.data.normal
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quant.data.uniform



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

If the two series (observed and expected under normality) of quantiles (hence
Q-Q) fall into a straight line, it means that the observed data was likely
sampled from normally distributed statistical populations.
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Two sample t-test (quick overview) to put Q-Q normal
plots in perspective

Do spikes help protect horned lizards from
predation (being eaten)?

C,Eary .I\J"eﬁi's?f

Horned lizard Loggerhead shrike



Two sample t-test (quick overview) to put Q-Q normal

plots in perspective

Lizard group  Sample mean Sample standard Sample
(mm) deviation (mm) size n
Living 24.28 2.63 154
Killed 21.99 2.71 30
living killed
50 — 10
S 40 g 8
g 30 g 6
S 20 - g 4
10 - L 2 -
0 - | | | | 0~ | | ! !
15 20 25 30 15 20 25 30

Horn length (mm) Horn length (mm)



Assessing the normality assumption in linear models (one sample and two-sample t
tests, ANOVA, regression and correlation):
The Quantile-Quantile normal (Q-Q normal plot)

In two sample t-tests and ANOVAs, it is not the response
(dependent) variable (e.g., horn length) as a whole that needs to
be “normal”, but rather the response within groups.
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)

Group 1 Group 2 Normal Q-Q Plot
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)

Normal Q-Q Plot
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)

Normal Q-Q Plot
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal plot of residuals
(Q-Q normal residual plot)

t-tests and ANOVAs can be applied as a linear model where the
response variable is continuous, and predictors are categorical.

Y = Factor(G1,G2) + residuals

So, instead of plotting all groups, we plot the residuals across all groups!
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Let’s take a power break — 1 minute




Relaxing the normality assumption:
non-parametric hypotheses tests



Parametric versus non-parametric
hypotheses tests

A parametric statistical test is one that makes
assumptions about the parameters (defining
properties) of the population distribution(s) from
which one's data are drawn, while a non-
parametric test is one that makes “no such
assumptions”.

Source - http://vassarstats.net/textbook/parametric.html

Tests we covered so far assumed normality and
equality of variance (means and regression).


http://vassarstats.net/textbook/parametric.html

1200

0 200 400 600 800

Frequency

|

500 1000 1500 2000 2500

0

Dealing with non-normality in statistical
statistical hypothesis testing

il

|

[ I
0.2 0.4

0.6

0.8

1.0

Frequency

Frequency

600 1000

0 200

1000 1500

500

0.0

0.2

0.4

0.6

0.8

1.0



Dealing with non-normality in statistical
statistical hypothesis testing
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Non-normality has many shapes and would be very difficult to
develop sampling distributions for these different shapes (though
it can be done as part of more advanced and complex statistical
analyses, particularly using computational statistics).



Parametric tests assuming normality (e.g., t-test & ANOVA) are affected by
non-normality; depending on the type of non-normality (shape), parametric
tests can have either inflated type | errors (i.e., type | error rates greater than
alpha) or lower power (i.e., increased type Il errors).

Br J Math Stat Psychol. 2013 May;66(2):224-44. doi: 10.1111/].2044-8317.2012.02047.x. Epub 2012 May 24.

The impact of sample non-normality on ANOVA and alternative methods.
Lantz B'.

4 Author information

Abstract

In this journal, Zimmerman (2004, 2011) has discussed preliminary tests that researchers often use to choose an appropriate method for
comparing locations when the assumption of normality is doubtful. The conceptual problem with this approach is that such a two-stage
process makes both the power and the significance of the entire procedure uncertain, as type | and type Il errors are possible at both stages.
A type | error at the first stage, for example, will obviously increase the probability of a type Il error at the second stage. Based on the idea of )
Schmider et al. (2010), which proposes that simulated sets of sample data be ranked with respect to their degree of normality, this paper
investigates the relationship between population non-normality and sample non-normality with respect to the performance of the ANOVA,
Brown-Forsythe test, Welch test, and Kruskal-Wallis test when used with different distributions, sample sizes, and effect sizes. The overall
conclusion is that the Kruskal-Wallis test is considerably less sensitive to the degree of sample normality when populations are distinctly
non-normal and should therefore be the primary tool used to compare locations when it is known that populations are not at least
approximately normal.




Non-parametric tests are those that can handle non-normal data
(but the assumption of homoscedasticity is also important though
not usually verified)

These are the main non-parametric tests used in Biology for comparing
samples:

1) For comparing two samples (analogue of the parametric two sample t-test) —
The Mann—-Whitney U-test (also known as the Mann—-Whitney—Wilcoxon test,
the Wilcoxon rank-sum test, or the Wilcoxon two-sample test).

2) For comparing multiple samples (analogue of the parametric ANOVA) — The
Kruskal-Wallis test.

The P-value for the The Mann-Whitney U-test and the The Kruskal-Wallis test
is mathematically the same and we will cover only the latter.

Note: we covered t-tests separate from ANOVA for three reasons: one sample t-
tests, understand the nature of post-hoc testing (e.g., pairwise comparison of
means after ANOVA) and because there is a t-test dealing with samples having
different variances (though there is a very complex ANOVA version as well).



Non-parametric tests (including the Kruskal-Wallis test)

gene class Fgr
CVJ5 DNA -0.006
CVB1 DNA -0.005
6Pgd  protein -0.005
Pgi protein -0.002
CVL3 DNA  0.003
Est-3  protein 0.004
Lap-2  protein 0.006
Pgm-1 protein 0.015
Aat-2  protein 0.016
Adk-1 protein 0.016
Sdh protein  0.024
Acp-3 protein 0.041
Pgm-2 protein 0.044
Lap-1  protein 0.049
CVL1 DNA  0.053
Mpi-2  protein 0.058
Ap-1  protein 0.066
CVJ6 DNA  0.095
CVB2m DNA  0.116
Est-1  protein 0.163

are based on rank transformations

Example: Fqr is a measure of the amount of
geographic variation in a genetic polymorphism.
Here, McDonald et al. (1996) compared two
populations of the American oyster regarding the Fgy
based on six anonymous DNA polymorphisms
(variation in random bits of DNA of no known
function) and compared the Fg; values of the six DNA
polymorphisms to Fgr values on 13 proteins.

Question: Do protein differ in Fgr values in contrast
to anonymous DNA polymorphisms?

Zero Fs; = no genetic variation (panmictic)

negative Fs; = more genetic variation within
populations than between the two populations being
compared.

positive Fs; = more variation between populations than
within the two populations being compared.

Data from McDonald et al. (1996)



Non-parametric tests are based on rank transformations

gene class Fgr Rank Rank
CV]J5 DNA -0.006 1

CVBl DNA -0.005 |25

6Pgd  protein -0.005 2.5
Pgi protein -0.002 4
CVL3 DNA  0.003 5

Est-3  protein 0.004 6
Lap-2  protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2  protein 0.016 9.5
Adk-1 protein 0.016 9.5
Sdh protein 0.024 11
Acp-3 protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1 protein 0.049 14
CVL1 DNA  0.053 15

Mpi-2  protein 0.058 16
Ap-1  protein 0.066 17
CVJe DNA  0.095 18

CVB2m DNA  0.116 19

Est-1  protein 0.163 20

http://www.biostathandbook.com/kruskalwallis.html

(2+3)/2=2.5

(9+10)/2=9.5

Data from McDonald et al. (1996)



We want to know whether samples come from statistical populations
that vary in their ranks

What is the probability that a randomly sampled observation from population
P is greater (or smaller) in rank than a randomly sampled observation from Q?
If the probability is small, then the samples come from different populations!

300 - P 228 : Q Varga and Delanay (1998)
250
200 - 200 -
150 - 150 - Original values for each
100 - 100 - population
50 50 -
0 - —— 0 -




We want to know whether samples come from statistical populations
that vary in their ranks — example from two large samples

What is the probability that a randomly sampled observation from population
P is greater (or smaller) in rank than a randomly sampled observation from Q?
If the probability is small, then the samples come from different populations!

300 - P 300 - Q Varga and Delanay (1998)
250 - 250 7
200 - 200 -
150 150 - Original values for each
100 - 100 - population
50 ] 50 _
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Two distributions of ranks combined
(always uniform)

Let’s see that “manually”
using R code

Histogram of x
Histogram of x2
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Kruskal-Wallis test

What is the probability that a randomly sampled
observation from population P is greater (or smaller)
in rank than a randomly sampled observation from Q?
If the probability is small, then the samples come from
different populations; in other words, a sample
dominates another sample.

Hy: no sample dominates another sample.

H,: at least one sample dominates one other sample.

Varga and Delanay (1998)



Kruskal-Wallis test — statistic H

B Number of groups n, i
(samples) ( r \2 Sum of ranks in
12 iif > group i
=1
3(N+1)
NIN+D T @)
_ | _
v Number of observations in
Total number of group (samples) i

observations



Kruskal-Wallis test — statistic H

12

gene class Fgt Rank Rank
CV]5 DNA -0.006 1

CVvBl1 DNA -0.005 25

6Pgd  protein -0.005 2.5
Pgi protein -0.002 4
CVL3 DNA  0.003 5

Est-3  protein 0.004 6
Lap-2  protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2  protein 0.016 9.5
Adk-1 protein 0.016 9.5
Sdh protein  0.024 11
Acp-3  protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1 protein 0.049 14
CVL1 DNA  0.053 15

Mpi-2  protein 0.058 16
Ap-1 protein  0.066 17
CVjJ6  DNA  0.095 18

CVB2m DNA  0.116 19

Est-1  protein 0.163 20

.[Sum 60.5 149.5]_

20(20+1)
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Kruskal-Wallis test — statistic H

gene class Fgt Rank Rank
CV]5 DNA -0.006 1

CVvBl1 DNA -0.005 25

6Pgd  protein -0.005 2.5
Pgi protein -0.002 4
CVL3 DNA  0.003 5

Est-3  protein 0.004 6
Lap-2  protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2  protein 0.016 9.5
Adk-1 protein 0.016 9.5
Sdh protein  0.024 11
Acp-3  protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1 protein 0.049 14
CVL1 DNA  0.053 15
Mpi-2  protein 0.058 16
Ap-1 protein  0.066 17
CVjJ6  DNA  0.095 18
CVB2m DNA  0.116 19

Est-1  protein 0.163

Sum 60.5 149.5
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14
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=[0.029%(610.04+1596.45) |- 63 =

H =0.0425



Kruskal-Wallis test — statistic H (correction for tied ranks)

gene class Fgt Rank Rank
CV]5 DNA -0.006 1

CVvBl1 DNA -0.00§ 25

6Pgd  protein -0.005 2.5
Pgi protein -0.00: 4
CVL3 DNA  0.003 5

Est-3  protein 0.004 6
Lap-2  protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2  protein 0.016 9.5
Adk-1 protein 0.016 9.5
Sdh protein  0.024 11
Acp-3  protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1 protein 0.049 14
CVL1 DNA  0.053 15

Mpi-2  protein 0.058 16
Ap-1 protein  0.066 17
CVjJ6  DNA  0.095 18

CVB2m DNA  0.116 19

Est-1  protein 0.163 20

=[0.029%(610.04+1596.45) |- 63 =
H =0.0425

Correction for ties

—> Number of ties

T3

Number of
CH N . N values from
a set of ties

Z<T3

(2°+2)+(2°+2)
CH = :1_ 3
20 —20 20°—-20

=0.998

um 605 1495 H —H/C, =0.0425/0.998 = 0.04258517
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Kruskal-Wallis test — statistic H

H =H/C, =0.0425/0.998=0.04258517

| df=n° groups-1

df=1

\ 0.04258517

I
20

I
25

probability of finding by chance
an H_equal or greater than the
observed

2 Pr[Hc > 0.0425] = 0.8365

Decision based on alpha =
0.05: do not reject H,



Kruskal-Wallis test — statistic H

Assumptions:

- Independent samples

- Homoscedasticity of ranks (not commonly tested and the
Levene’s test can be used to test for this assumption) —
test the distribution of ranks instead of original values.



