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Abstract. The following question was asked by Grigorieff [Gri75]. Suppose

V is a ZFC model and V [G] is a set-generic extension of V . Can there be a
ZF model N so that V ⊆ N ⊆ V [G] yet N is not equal to V (A) for any set

A ∈ V [G]? The first such model appeared in [Kar18]. This is the so-called

Bristol model, an intermediate model between L and L[c] where c is a Cohen-
generic real over L. Karagila [Kar18] further proves that the Kinna-Wager

degree is unbounded in this model.

We prove that such an intermediate extension can be found in a Cohen-
generic extension of any ground model, fully resolving Grigorieff’s question.

That is, let V be any ZF model and c a Cohen-generic real over V . We prove

that there is an intermediate ZF-model V ⊆ N ⊆ V [c] so that
• N is not equal to V (A) for any set A ∈ V [c];

• The Kinna-Wagner degree of N is unbounded;

• No set forcing in N recovers the axiom of choice.

1. Introduction

Given a model V of ZFC, and a set generic extension V [G], what are the inter-
mediate models V ⊆ M ⊆ V [G] of ZF? The more common ones are of the form
V (A), the minimal transitive extension of V which contains the set A and satisfies
ZF, where A is a set in V [G]. For example, all intermediate models of ZFC are of
this form, as well as the familiar symmetric models used for various independence
results over ZF. Grigorieff [Gri75] and Usuba [Usu21b] studied such intermediate
extensions extensively and characterized them in several ways. For example, Grig-
orieff [Gri75, Theorem B] proved that M is of the form V (A) if and only if M [G]
can be recovered as a set generic extension of M . Usuba [Usu21b] proved that
intermediate extensions of the form V (A) are exactly the symmetric extensions of
V using some forcing notion (not necessarily a projection of the one used to obtain
G).

Grigorieff asked [Gri75, p. 471] if there can be an intermediate extension not of
that form. That is, V ⊆M ⊆ V [G] yet M is not V (A) for any set A in V [G].

The first such intermediate extension was given in [Kar18], the so-called Bristol
model. Specifically, this is an intermediate model L ⊆ M ⊆ L[c] where c is a
Cohen-generic real over Gödel’s constructible universe L. The main drawback of
the Bristol model is its limitation on the ground model. The construction relies
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on the existence of certain scales, which exist in L but are incompatible with large
cardinals such as supercompact cardinals.

The following question remained open: can sufficiently large cardinals, such as
supercompact or extendible cardinals, prohibit the existence of such exotic inter-
mediate extensions? This is particularly motivated by results of Woodin [Woo10],
showing that large cardinals outright imply certain fragments of choice, and results
of Usuba [Usu21b], showing that large cardinals significantly restrict the structure of
ZFC submodels. Some recent works of Goldberg, [Gol24], show that large cardinals
that are inconsistent with the axiom of choice also impose choice-like consequences
on the universe.

The main result of this paper is to construct an exotic intermediate extension
starting with any ground model, giving a complete resolution to Grigorieff’s ques-
tion.

Theorem 1.1. Let V be any model of ZF, and c a Cohen-generic real over V .
Then there is an intermediate model V ⊆ M ⊆ V [c] such that M 6= V (A) for any
set A ∈ V [G].

1.1. Deep failure of choice. If V is a model of ZFC, and M an intermediate
ZF-extension V ⊆ M ⊆ V [G], being of the form V (A) for some A ∈ V [G] can
be seen as a weak fragment of choice. We consider a model as in Theorem 1.1 as
satisfying a “deep” failure of choice.

Another measure of how deeply choice fails in a ZF model M is the small viola-
tions of choice principle (SVC) introduced by Blass [Bla79]. In this paper, the most
relevant aspect of SVC is the equivalent assertion that the axiom of choice can be
forced over M using a set forcing (see [Bla79, Theorem 4.6]).

Yet another way of measuring how deeply choice fails is the Kinna-Wagner de-
gree.

Definition 1.2. Let M be a model of ZF. The Kinna-Wagner degree of M is the
least ordinal α such that for every X ∈ M there is an injection f ∈ M from X
to Pα(Ord) (if there is one). We say that the Kinna-Wagner degree of a model is
unbounded, or ∞, if it is not of degree α for any ordinal α ∈M .

The Kinna-Wagner principle, which states that the Kinna-Wagner degree is ≤
1, was introduced by Kinna and Wagner [KW55], where they proved that it is
equivalent to the following selection principle: suppose X is a set whose members
are sets with at least two elements, then there is a function f : X → P(X) such
that f(x) is a non-empty proper subset of x, for each x ∈ X.

Jech [Jec71] constructed a model of ZF in which the Kinna-Wagner principle fails.
Monro [Mon73] introduced the higher Kinna-Wagner principles, and constructed,
for each finite n ∈ ω, a model of ZF in which the Kinna-Wagner degree is ≥ n.
Monro’s results were extended in [Kar19] to find a model of ZF with KW degree
equal to ω.

Karagila [Kar18] proved that the Bristol model has an unbounded Kinna-Wagner
degree, and this was the first known such model. Moreover, SVC fails in the Bristol
model.

Theorem 1.3. In the exotic intermediate extension M from Theorem 1.1:

• the Kinna-Wagner degree is unbounded;
• no set forcing in M recovers the axiom of choice.
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1.2. A sketch of the construction. The first construction of models of ZF with
increasingly “deeper” failures of choice (in the sense of the Kinna-Wagner degree)
was done by Monro [Mon73]. Starting with a model V of ZFC, let V (A1) be
the “basic Cohen model” generated by an unordered set A1 of Cohen reals. Here
we consider a Cohen real as a generic subset of ω, added by finite approximations.
Monro then “repeated” this construction by adding an unordered set A2 of infinitely
many generic subsets of A1, again added by finite approximations. Continuing this
way, we generically add A3, A4, and so on.

Monro then shows that in the model V (An) generated by An over V , the Kinna-
Wagner degree is ≥ n. Furthermore, the model V (An) is not generated by any set
B if lower rank than An (see [Sha21]).

A key property of Monro’s construction is that the lower rank sets are eventually
stabilized. Specifically, for n ≤ m, V (An) and V (Am) have the same sets of rank
≤ n. This property is similarly crucial in the constructions in [Kar18, Sha21], and
will be in our construction below.

The main difficulty is marching past stage ω. A direct attempt to add a new set
of rank ω, using Monro’s trick, would be to add a generic subset to Aω =

⋃
n<ω An.

However, this would add generic subsets to each An, therefore adding lower rank
sets. A more reasonable attempt would be to add new sets of rank ω as choice
functions in

∏
nAn. However, given two such mutually generic choice functions,

the set of indices n ∈ ω on which they agree would be a new subset of ω, again
adding a new lower rank set.

This problem of passing the limit stages is indeed the main one. The first
construction of a model where the ω’th Kinna-Wagner principle fails is the Bristol
model, in which the Kinna-Wagner rank is ∞. To deal with the limit stages, the
Bristol model construction uses heavy assumptions on the ground model V , the
existence of certain scales that are inconsistent with large cardinals.

The key tool, allowing us to continue a Monro-like construction throughout all
the ordinals, is introducing a generic tree structure on the “Monro sets”. For
example, we add a generic tree structure on the sets An, n < ω, where An is level n
of the tree. Then, we add sets of rank ω simply by adding infinitely many branches
through this tree. This settles the issue mentioned above: any two distinct branches
will be eventually different, and therefore will not introduce a new subset of ω (at
least not in the trivial manner described above).

Another key aspect of our tree structure is its uniformity. At each stage we only
add “on top”, so that at limit stage θ we naturally get a tree of height θ (without
branches), satisfying the desired properties, allowing us to add generic branches
through it without disturbing lower rank sets.

At the end of this construction, we arrive at a model of ZF together with sets Aα,
of increasing rank, for all ordinals α, and a tree structure on those. Furthermore, the
members of each Aα satisfy sufficient indiscernibility over the lower rank sets (see
Definition 4.3). This implies in particular that choice cannot be regained without
collapsing all the Aα’s, which also implies the unbounded Kinna-Wagner degree of
the resulting model.

In Section 2 we make a few basic remarks on the Kinna-Wagner degree and other
notions of “deep failure of choice”.

In Section 3 we develop the basic tools that will be used for the successor step
of our construction. This involves two sub-steps: one is adding a set of higher



4 YAIR HAYUT AND ASSAF SHANI

rank, which we do as a variation of “Monro’s step”; the second is adding the tree
structure, making this newly added set the next level of the tree.

In Section 4 we present the basic construction of our model M = V (A, T ) (where
A and T are classes), as an inner model of a class generic extension of V , for any
ground model V of ZF. In Section 5 we further analyze this model.

In Section 7 we prove some technical results regarding generic permutations of
partially generic filters.

Finally, in Section 8 we show that the model M = V (A, T ) from Section 4 can
be constructed inside a single Cohen real extension of V , V [c].

2. Preliminaries

Given a model of ZF, we may measure how “far” it is from satisfying AC ac-
cording to its Kinna-Wagner degree. We can also ask whether, and what kind of,
forcing can recover AC (see [Bla79]). We make here a few remarks on these notions
and the relationship between them.

Lemma 2.1 (Folklore). Let V be a model of ZF and let P ∈ V be a well ordered
forcing notion such that 
P AC then V |= AC.

Proof. Pick x ∈ V and let τ be a P-name for a bijection between some ordinal α
and x. Let p ∈ P be a condition that forces this. Then, the partial map from P×α
to x which is defined by (p, β) 7→ y iff p 
 τ(y̌) = β̌, is a surjection from a well
ordered set onto x in V . �

Lemma 2.2 (ZF). Let κ be a limit ordinal,

Col(ω,< Vκ)× Col(ω, κ) ∼= Col(ω, Vκ).

Proof. The forcing Col(ω,< Vκ) adds a sequence of generic functions 〈gα | α < κ〉,
gα : ω → Vα, which are onto and infinite-to-one. The forcing Col(ω, κ) adds a
function f : ω → κ which is onto and infinite-to-one. Given these, define h : ω → Vκ
by sending n to gα(m) if f(n) = α and m = |{k < n | f(k) = α}|. Then h is onto
and infinite-to-one.

The above description gives a forcing isomorphism from a dense subset of Col(ω,<
Vκ)×Col(ω, κ) to Col(ω, Vκ). That is, for a dense set of conditions (p, q) ∈ Col(ω,<
Vκ) × Col(ω, κ) there is a well defined r ∈ Col(ω, Vκ), defined from p and q as h
is defined from 〈gα | α < κ〉 and f above, and the map (p, q) 7→ r is a forcing
isomorphism onto a dense subset of Col(ω, Vκ). �

Since Col(ω, κ) is always well ordered, we conclude that question about choice
principles in the extension by Col(ω, Vκ) and Col(ω,<Vκ) are typically equivalent.

Lemma 2.3. Let V be a model of ZF and P ∈ V a poset which can be embedded
in Pκ(Ord) for a limit ordinal κ. If 
P AC then the Kinna-Wagner degree of V is
≤ κ.

Proof. We may assume that P is a subset of Pκ(η), for some ordinal η. Fix a set
X. We need to find an injective map, in V , from X to Pκ(Ord). Let τ ∈ V be a
P-name for an injective map from X̌ to α, for some ordinal α. Given x ∈ X, let
γ(x) be the minimal ordinal γ < κ so that there is some p ∈ Pγ(η) which decides
the value of τ(x̌). Define

f(x) =
{

(p, ζ) : p ∈ Pγ(x)(η), p 
 τ(x̌) = ζ
}
.
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Then, in V , f is an injective map from X to Pκ(η)×α. Note that, provably in ZF,
Pκ(η)× α is embeddable into Pκ(Ord). �

We conclude that if Col(ω, Vκ) forces choice, then the Kinna-Wagner degree is
bounded by κ.

The following remark says that the statement “there is an injective map from X
to Pα(Ord)” is essentially a statement about Pα+1(Ord).

Remark 2.4. Let X be a transitive set and f : X → Pα(Ord) injective. Then
there is a well-founded relation R on a subset of Pα(Ord) which is isomorphic to
(X,∈). In this case, the Mostwoski collapse of R is X, and therefore its inverse is
an injective map from X to Pα(Ord), which is definable from R.

Using a definable bijection Ord × Ord → Ord, we have a definable bijection
Pα(Ord)×Pα(Ord)→ Pα(Ord), and so we may think of R as a subset of Pα(Ord).

2.1. Models generated by a set.

Definition 2.5. Let V be a ZF-model, V ′ an outer ZF-model with the same ordi-
nals, and A ∈ V ′. The model

V (A) =
⋃

α∈Ord

Lα(Vα ∪ trcl({A}))

is the minimal transitive model of ZF containing V ∪ {A}.

Note that V (A) does not depend on the outer model V ′. By minimality, it
follows that

V (A) = HOD
V (A)
V,trcl({A}),

the universe of sets that are hereditarily definable using parameters in V and the
transitive closure of {A}, as computed inside V (A). That is, in V (A), any set is
definable using parameters in V and the transitive closure of A:

Fact 2.6. Let X ∈ V (A). There is a formula ψ, parameter v ∈ V and parameters
ā from the transitive closure of A, so that X is the unique solution to ψ(X,A, ā, v)
in V (A). Equivalently, there is a formula φ so that X is defined in V (A) as the set
of all x so that φ(x,A, ā, v) holds.

Below we will often work with models of the form V (A) where A ∈ V [G], a
generic extension of V . Often times the model V (A) is in fact equal to

HOD
V [G]
V,trcl({A}) .

This is generally the case for the models constructed in Section 4 below (see The-
orem 6.3).

This is not always the case, and the distinction is important. A theorem of

Gregorioff [Gri75, Theorem C (ii)] states that models of the form HOD
V [G]
V,trcl({A})

are precisely the symmetric submodels of V [G]. On the other hand, a theorem of
Usuba [Usu21a, Lemma 4.8] states that V (A) is always a symmetric submodel of
some generic extension of V , possibly not with the forcing we used to add G.

In particular, in Section 8 we work in V [c], where c is a Cohen generic real over
V , and construct class-many distinct intermediate extensions of the form V (A).
Since there are only set-many symmetric submodels of any given set forcing, these

cannot all be of the form HOD
V [G]
V,trcl({A}).
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2.2. A basic permutation argument. Let V be a model of ZF, Q ∈ V a poset,
I ∈ V an infinite index set, and let P be the finite support product of I-many copies
of Q. We identify a P-generic filter G over V with the corresponding indexed family
〈G(i) : i ∈ I〉 of Q-generic filters over V . Let Ȧ be the name for the unordered set

of generics
{
Ġ(i) : i ∈ I

}
.

Remark 2.7. In the applications below, our Q-generics will be identified in a
definable way with some other objects. For example, if Q is Cohen forcing for
adding a single real, then we identify each G(i) with the corresponding Cohen real
and similarly identify A with the set of the Cohen reals.

The following lemma is at the heart of the analysis of the basic Cohen model.
See [Fel71, p. 133] or [Bla81, Proposition 1.2] in the context of the basic Cohen
model, or [Sha21, Lemma 2.4].

Lemma 2.8. Fix a P-generic G over V and let A = {G(i) : i ∈ I}. Let ā =
〈a1, . . . , an〉 be a finite sequence of distinct members of A, φ a formula and v ∈ V a
parameter. Note that ā is Qn-generic over V . Then there is a formula ψ such that

φV (A)(A, ā, v) ⇐⇒ ψV [ā](P, ā, v)

Proof. Let k1, . . . , kn ∈ I such that ai = G(ki). Let ψ(P, ā, v) be the formula: “∃p ∈
P such that p(ki) ∈ ai for i = 1, . . . , n and p 
P φ

V (Ȧ)(Ȧ, Ġ(k1), . . . , Ġ(kn), v̌)”.
The following claim implies that

φV (A)(A, ā, v) ⇐⇒ ψV [ā](P, ā, v),

concluding the proof of the lemma.

Claim 2.9. Suppose p, q ∈ P are conditions which agree on ā, that is, p(ki), q(ki)
are in ai for i = 1, . . . , n. Then p, q cannot force different truth values for the

statement φV (Ȧ)(Ȧ, Ġ(k1), . . . , Ġ(kn), v̌).

Proof. Otherwise, we may find a generic G such that

V [G] |= φV (A)(A,G(k1), . . . , G(kn), v),

and some condition q which agrees with G(k1), . . . , G(kn), such that

q 
 ¬φV (Ȧ)(Ȧ, Ġ(k1), . . . , Ġ(kn), v̌).

By applying a finite permutation of I fixing k1, . . . , kn, find a generic G̃ such that

• G̃(ki) = G(ki) = ai;

• Ȧ[G] = {G(i) : i ∈ I} =
{
G̃(i) : i ∈ I

}
= Ȧ[G̃];

• the condition q is in the generic G̃.

Working now in the extension V [G̃] (which is the same model as V [G]), we conclude
that φV (A)(A,G(k1), . . . , G(kn), v) fails, a contradiction. �

�
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3. Step up

In this section, we describe a construction to increase the Kinna-Wagner degree,
similar to, but different than, Monro’s [Mon73]. The definitions and results in
this section will be crucial to the “successor step” of our construction below. In
particular, the posets Q(W ) and T(A,W ) will be used later.

Definition 3.1. Let V be a model of ZF and W a set in V . Let Q = Q(W ) be the
poset of finite partial functions from ω×W to {0, 1}, ordered by reverse extension.

The Q-generic object is identified with a sequence 〈xn : n < ω〉 where each xn
is a subset of W , by identifying the set xn with its characteristic function.

Let [xn] = {y ⊆W : y∆xn is finite}, and define A = {[xn] : n ∈ ω}.

Lemma 3.2 (Basic step). The members of A = {[xn] : n ∈ ω} are indiscernible
over parameters in V . That is, for any formula φ and parameter v ∈ V , if ā, b̄ ⊆ A
are finite tuples from A of the same length such that ai = aj ⇐⇒ bi = bj for any
i, j < n, then

V (A) |= φ(A, ā, v) ⇐⇒ φ(A, b̄, v).

Moreover, the type of ā over V is (uniformly) definable in V . That is, for any
formula φ(A, ā, v) there is a formula ψ(W, v) such that

V |= ψ(W, v) ⇐⇒ V (A) |= φ(A, ā, v).

Proof. It suffices to prove the statement for tuples of distinct elements from A. Let
ā = 〈a0, . . . , an−1〉 be a sequence of distinct n members of A, ai = [xki ]. Fix a
formula φ and parameter v ∈ V . For any condition p ∈ Q, there is a Q-generic over
V , 〈yn : n < ω〉, such that

• yn∆xn is finite for each n < ω;
• 〈yn : n < ω〉 extends p.

By the first condition, the set A computed by 〈yn : n < ω〉 is the same set computed
by 〈xn : n < ω〉. It follows that

V (A) |= φ(A, ā) ⇐⇒ V |= Q 
 φ(A, [ẋk0 ], . . . , [ẋkn−1
], v).

Furthermore, for any Q-generic ~x = 〈xn : n < ω〉 over V there is a Q-generic ~y =
〈yn : n < ω〉 over V such that

• {[yn] : n ∈ ω} = {[xn] : n ∈ ω};
• yi = xki .

It follows that, in V ,

Q 
 φ(A, [ẋk0 ], . . . , [ẋkn−1
], v) ⇐⇒ Q 
 φ(A, [ẋ0], . . . , [ẋn−1], v).

Finally, let ψ(W, v) be the statement Q 
 φ(Ȧ, [ẋ0], . . . , [ẋn−1], v) (note that the
poset Q is definable from W ). Then for any sequence ā = a0, . . . , an−1 of distinct
members of A,

V |= ψ(W, v) ⇐⇒ V (A) |= φ(A, ā, v).

�

If V is a choiceful model and W = ω, then the model V ({xn : n ∈ ω}), generated
by the unordered set of Cohen reals, is essentially the basic Cohen model (see
[Kan08] or [Jec03]). A weaker form of indiscernibility holds in this model (see the
Continuity Lemma [Fel71, p.133]). Similar forms of indiscernibility hold in Monro’s
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models (see [Sha21, Lemma 7.2]). The move from xn to the equivalence classes an
provides full indiscernibility and simplifies our construction below.

If one repeats the previous basic step twice, to find A1, a symmetric Q(W )-
generic over V , and then to find A2, a symmetric Q(A1)-generic over V (A1), then
in the model V (A1)(A2), the members of A1 and A2 are completely indiscernible
over one another. We will want to limit the indiscernibility, in a controlled way, by
introducing a generic tree structure between the levels.

Definition 3.3. Following the notation of the previous lemma, working in V (A),
let T = T(A,W ) be the poset of all finite functions from A to W , ordered by reverse
inclusion.

The generic object is identified with a surjection π : A → W , which we identify
with a tree structure T between W and A. Specifically, for w ∈ W and a ∈ A,
w <T a if π(a) = w. Note that for each w ∈ W there are infinitely many a ∈ A
above it in the tree.

Lemma 3.4 (Basic tree step). The type of members of A over V is determined
by the tree structure. That is, for any formula φ and parameter v ∈ V , for any
ā, b̄ ⊆ A, if

• π(ai) = π(bi) for all i < n, and
• ai = aj ⇐⇒ bi = bj for any i, j < n, then

V (A, T ) |= φ(A, T, ā, v) ⇐⇒ φ(A, T, b̄, v).

Moreover, the type of ā over V is definable in V from W and the sequence w̄ =
〈wi : i < n〉 where wi = π(ai). That is, for any formula φ(A, ā, v) there is a formula
ψ(W, w̄, v) such that for any ā, if wi = π(ai) then

V |= ψ(W, w̄, v) ⇐⇒ V (A, T ) |= φ(A, T, ā, v).

Proof. Given a tuple ā = 〈a0, . . . , an−1〉 of distinct elements from A and a tuple w̄ =
〈w0, . . . , wn−1〉 from W , let t[ā, w̄] ∈ T be the condition with domain {ai : i < n}
such that t[ā, w̄](ai) = wi.

Claim 3.5. For any formula φ and parameter v ∈ V , for any tuple ā of distinct
elements in A, let wi = π(ai), then

V (A, T ) |= φ(A, T, ā, v) ⇐⇒ V (A) |= t[ā, w̄] 
 φ(A, Ṫ , ā, v).

Proof. To prove the claim, we assume there is some extension p of t[ā, w̄] which

forces φ(A, Ṫ , ā, v), and show that t[ā, w̄] already forces it.
Let ā, b̄ be an enumeration of the domain of p, where b̄ = 〈b0, . . . , bm−1〉 are

distinct members of A, not appearing in ā. Let wi = π(ai) for i < n and ui = π(bi)

for i < m. Then, in V (A), the statement p 
 φ(A, Ṫ , ā, v) can be expressed by a
formula χ(A, ā, b̄, v,W, w̄, ū).

By Lemma 3.2, for any sequence b̄′ =
〈
b′0, . . . , b

′
m−1

〉
of distinct members of

A, not appearing in ā, χ(A, ā, b̄′, v,W, w̄, ū) holds as well. This means that the

condition p[b̄′] forces φ(A, Ṫ , ā, v), where p[b̄′] is the condition defined on the domain
ā, b̄′ so that p[b̄′](ai) = wi and p[b̄′](b′i) = ui.

Finally, note that for any condition q ∈ T, if q extends t[ā, w̄] then q is compatible
with p[b̄′], for b̄′ disjoint from the domain of q. So no condition extending t[ā, w̄] can

force the negation of φ(A, Ṫ , ā, v). By the forcing theorem, t[ā, w̄] 
 φ(A, Ṫ , ā, v).
�
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Fix a formula φ and a parameter v ∈ V . Working in V (A), for a finite tuple w̄
from W , let ζ(A, ā, w̄, v) be the statement

t[ā, w̄] 
T φ(A, Ṫ , ā, v).

By the claim above, for any ā, if wi = π(ai), then φ(A, T, ā, v) holds in V (A, T )
if and only if ζ(A, ā, w̄, v) holds in V (A). Using Lemma 3.2, let ψ(W, w̄, v) be a
formula such that

V |= ψ(W, w̄, v) ⇐⇒ V (A) |= ζ(A, ā, w̄, v).

Finally, for any ā and w̄ so that wi = π(ai),

V |= ψ(W, w̄, v) ⇐⇒ V (A) |= ζ(A, ā, w̄, v) ⇐⇒ V (A, T ) |= φ(A, T, ā, v).

This implies the first conclusion of the lemma, that if b̄ is another tuple with
π(bi) = π(ai) = wi, then

V (A, T ) |= φ(A, T, ā, v) ⇐⇒ φ(A, T, b̄, v).

�

Remark 3.6. For any finite ā ⊆ A, we may replace the base model V with
V (ā). If ai = [xki ], i = 0, . . . , n − 1, then V (ā) = V [xk0 , . . . , xkn−1

] where
xk0 , . . . , xkn−1 is generic for the poset adding n many generic subsets of W . The
sequence 〈xj : j 6= ki, i < n〉 is generic over V (ā) for the poset adding a function
(ω \ {k0, . . . , kn−1}) ×W → {0, 1} (which is isomorphic to Q(W )), and V (A) =
V (ā)(B) where B = {[xj ] : j 6= ki, i < n} = A\ ā. Furthermore, T � B is identified
with a T(B,W )-generic over V (ā)(B), and V (A, T ) = V (ā)(B)(T � B).

Lemma 3.7. Forcing with T over V (A) adds no new subsets to sets of V .

Proof. Let T ⊆ T be generic over V (A) and suppose X ∈ V (A, T ) is a subset of
V . Assume first that X is definable in V (A, T ) as the set of all solutions {x ∈ V |
φ(x,A, T, v)}. By Lemma 3.4, x ∈ X if and only if T 
 φ(x̌, A, Ṫ , v), in V (A). So
X is in V (A).

For an arbitrary X ∈ V (A, T ), there is some finite ā ⊆ A and a parameter
v ∈ V (ā) so that X is defined, in V (A) = V (ā)(A \ ā), as the set of all solutions
φ(x,A, T, v) for x ∈ V . From the previous argument it follows that X ∈ V (ā)(A \
ā) = V (A). �

4. The construction

Begin with a model V of ZF, serving as the ground model for the construction.
We will be particularly interested in a model V satisfying ZFC and having many
large cardinals. We define recursively along the ordinals α sets Aα, relations Tα,
and models Mα such that

• Tα is a tree of height α whose β’th level is Aβ ;
• for α < β, Tβ extends Tα;
• Let θ be a limit ordinal. Define A<θ =

⋃
α<θ Aα, and let T<θ be the tree

on A<θ defined as the union of Tα for α < θ. Then Aθ is a set of cofinal
branches in T<θ;

• Mα = V (Aα, Tα).
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For α < β, the pair (Aα, Tα) will be definable from (Aβ , Tβ) and the ordinal α, so
Mβ is an extension of Mα. These sets will live in some generic extensions of V .

Let A =
⋃
αAα and let T be a tree on A such that Aα is the α-th level of T .

Our final model will be V (A, T ). For a ∈ A, we will denote by projβ(a) the unique
element in Aβ below a, assuming that the level of a is at least β. If the level of a
is below β, we set projβ(a) = a.

Let us now give a formal definition of an iterated forcing such that V (A, T ) is
an inner model of the generic extension.

Definition 4.1 (Definition of the construction). In the first stage, we define A1 as
follows.

• Q0 = Cohen, adding x0 : ω × ω → 2;
• x0(n) = {m : x0(n,m) = 1};
• A1(n) = [x0(n)] = {y ⊆ ω : y∆x0(n) is finite};
• A1 = {A1(n) : n ∈ ω}.

For the successor stages, suppose Aα is given, we construct Aα+1 and the tree
structure between Aα and Aα+1.

• Qα = Q(Aα) adds xα : ω ×Aα → 2 by finite conditions;
• xα(n) = {a ∈ Aα : xα(n, a) = 1};
• Aα+1(n) = [xα(n)] = {y ⊆ Aα : y∆xα(n) is finite};
• Aα+1 = {Aα+1(n) : n ∈ ω}.
• Rα = T(Aα+1, Aα) adds πα : Aα+1 → Aα by finite conditions;
• for a ∈ Aα and b ∈ Aα+1, define a <T b ⇐⇒ πα(b) = a.

Given a limit ordinal λ, given a tree
⋃
α<λ Tα on

⋃
α<λAα, we construct Aλ as a

set of branches as follows.

• Bλ is the poset of finite functions from ω to the tree, where extension is
defined by going up in the tree coordinate-wise or extending the domain.

• The generic filter of the forcing Bλ is essentially a sequence of branches
〈bn : n < ω〉;

• let Aλ = {bn : n ∈ ω}, the unordered set of branches.
• We extend the tree order to Aλ by defining a <T b for a ∈ b ∈ Aλ.

For a successor ordinal α we define Bα to be the trivial forcing.
Given Qα,Rα,Bα for α < λ as above define Pλ as the finite support iteration.

Namely, P0 is the trivial forcing, Pα+1 = Pα ∗Bα ∗Qα ∗Rα and for limit ordinal β,
Pβ is the direct limit of Pα for α < β.1

The key property of the model is that the types of members of A are determined
by the tree structure.

Definition 4.2. Given ā = a1, . . . , an in A, the tree type of ā is the structure
(n×Ord,≈, T, 〈Lα : α ∈ Ord〉) defined by

• (i, α) ≈ (j, β) ⇐⇒ projα(ai) = projβ(aj);
• (i, α) T (j, β) ⇐⇒ projα(ai) <T projβ(aj);
• (i, α) ∈ Lα ⇐⇒ projα(ai) ∈ Aα.

Let us remark that the tree type of ā is (essentially) a finite object, coding the
levels of the elements of ā, the equality relation on them, and the structure of the
finite tree <T � ā, including the level of their meets.

1For more information about iterated forcing, we refer the reader to [Kun11].



INTERMEDIATE MODELS WITH DEEP FAILURE OF CHOICE 11

Consider Mα = V (Aα, Tα). Suppose ā, b̄ are from
⋃
β>αAβ . Say that ā, b̄ have

the same tree type over Aα if ā_ū and b̄_ū have the same tree type, for any
finite ū ⊆ Aα. For example, if x, y are any two elements in the same level Aθ,
then x and y have the same tree type. They have the same tree type over Aα if
moreover, their projections to level α are the same.

More generally, if ā, b̄ are pairs of elements in
⋃
β>αAβ , then they have the same

tree type over Aα if and only if ā a ā′ and b̄ a b̄′ have the same tree type, where
ā′(k) = projα(ā(k)), b̄′(k) = projα(b̄(k)) for all k < len ā or len b̄ respectively.

Definition 4.3. The tree indiscernibility hypothesis is the following state-
ment: For any ordinal α, parameter v ∈ Mα, and formula φ, suppose that ā, b̄ are
from

⋃
β>αAβ and have the same tree type over Aα, then

φ(A, T, ā, v) ⇐⇒ φ(A, T, b̄, v).

Our goal will be to prove the tree indiscernibility hypothesis inductively along
our construction. In the process we will consider the hypothesis in models of the
form Mθ = V (Aθ, Tθ), or V (A<θ, T<θ), in which case A, T above are replaced with
Aθ, Tθ or A<θ, T<θ respectively.

For θ′ < θ, the formula φMθ′ (Aθ′ , Tθ′ , ā, v) can be expressed in the model Mθ

as ϕ(Aθ, Tθ, ā, v, θ
′) for some formula ϕ. It follows that the tree indiscernibility

hypothesis at Mθ implies the tree indiscernibility hypothesis at Mθ′ for θ′ < θ.

Lemma 4.4 (Propagation of tree indiscernibility). Using the notations Mθ =
V (Aθ, Tθ) and the notion of tree indiscernibility from above:

(1) Successor step: Assume tree indiscernibility in Mθ. Then tree indiscerni-
bility holds in Mθ+1.

(2) Limit step: Let θ be a limit ordinal. Suppose the tree indiscernibility
hypothesis holds at Mα for each α < θ. Then the tree indiscernibility
hypothesis holds in the model M<θ = V (A<θ, T<θ).

(3) Tree step: Suppose the tree indiscernibility hypothesis holds in the model
M<θ. Then it holds in Mθ.

We first focus on a step-by-step approach to the construction. We prove part
(3) in Section 4.1. This is the main point where our tree structure is being used: to
allow us to add sets of limit rank (branches through the tree) without adding sets
of lower rank, and in fact while preserving the indiscernibility. Part (1) is proved
in Section 4.2. Finally, we prove part (2) of the lemma in Section 4.

Before proving Lemma 4.4, let us collect important properties of the final model
V (A, T ) which follow from it. We will also show inductively that sets of bounded
rank are stabilized through the construction.

Proposition 4.5. For any ordinals α < β, if X ∈ Mβ and X ⊆ Mα, then X ∈
Mα+1. In particular, for α < β, Mα and Mβ agree on Pα(Ord).

This implies that the Kinna-Wagner degree is increasing. Recall that two transi-
tive models with Kinna-Wagner degree α which agree on Pα+1(Ord) are identical.
For α = 0, this is a theorem of Balcar and Vopenka: two transitive ZFC models
which agree on sets of ordinals are identical. The generalization is stated for α < ω
in [Mon73] and for all ordinals in [Kar19, Theorem 10.3].

Corollary 4.6. The Kinna-Wagner degree of the models Mα is unbounded.
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Proof. Otherwise, we could find α < β where both Mα,Mβ have Kinna-Wagner
degree γ for some γ < α. Since Mα,Mβ agree on Pγ(Ord), we conclude, by the
generalized Balcar-Vopenka theorem, that Mα = Mβ , a contradiction, as Mα+1 ⊆
Mβ , and Mα+1 contains sets which are generic over Mα. �

Corollary 4.7. The Kinna-Wagner degree of V (A, T ) is ∞.

Proof. V (A, T ) is defined as the union of Mα over all ordinals α. For any ordinal
α, we may find some α < β and a set X ∈ Mβ so that in Mβ there is no injective
map from X to Pα(Ord). We may assume that X is transitive. Since V (A, T ) and
Mβ agree on Pα+1(Ord), using Remark 2.4 we conclude that there is no injective
map from X to Pα(Ord) in V (A, T ). �

Corollary 4.8. The axiom of choice cannot be forced by a set forcing over V (A, T ).

Proof. This follows by Corollary 4.7 and Lemma 2.3. �

In Section 5 we will prove an extension of the tree indiscernibility, which will
provide more precise statements about fragments of choice. For example, we will
see that DC fails in any set-forcing extension of V (A, T ).

We proceed with the proof of Lemma 4.4. We will change the order of the proof,
and prove the different cases according to their difficulty. We start by proving part
(3), then part (1), and lastly part (2).

4.1. Tree step. Let θ be a limit ordinal. AssumeM<θ was constructed, and further
that the tree indiscernibility hypothesis holds. We now describe the construction
of Mθ, and prove part (3), the Tree step of Lemma 4.4.

Let B = Bθ be the poset of all finite partial functions p from ω to A<θ. Say that
a condition p extends q if the domain of p extends the domain of q and p(i) is above
q(i) in the tree for any i in the domain of q. Given a natural number k, let B � k be
the poset of all conditions p ∈ B whose domain is contained in k = {0, . . . , k − 1}.
Given p ∈ B � k and α < θ, let p � α be the condition p restricted to the α’th level
of the tree. That is, for i < k, (p � α)(i) is the unique element in Aα below p(i) in

the tree if p(i) is in a higher level. Let ḃi be the canonical name for the i’th generic

branch,
{
p(i) : p ∈ Ġ

}
.

Claim 4.9. Suppose v ∈Mα, ψ a formula such that

p 
B�k ψ(A<θ, T<θ, v, ḃ0, . . . , ḃk−1).

Assume further that the projections of p(0), . . . , p(k − 1) to level α of the tree are
distinct. Then

(p � α) 
B�k ψ(A<θ, T<θ, v, ḃ0, . . . , ḃk−1).

Proof. We may extend p and assume that p(0), . . . , p(k − 1) are in the same level
Aβ . We show that if q is an extension of p � α such that q(0), . . . , q(k − 1) are in

Aβ , then q 
B�k ψ(A<θ, T<θ, v, ḃ0, . . . , ḃk−1). This suffices as such conditions q are
predense in B � k below p � α.

For any such q, p and q have the same tree type over Aα. Note that the state-
ment “p 
B�k ψ(A<θ, T<θ, v, ḃ0, . . . , ḃk−1)” can be expressed, in V (A<θ, T<θ), as
φ(p,A<θ, T<θ, v) for some formula φ. By the inductive hypothesis, we conclude
that

φ(p,A<θ, T<θ, v) ⇐⇒ φ(q, A<θ, T<θ, v),
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and therefore q 
B�k ψ(A<θ, T<θ, v, ḃ0, . . . , ḃk−1). �

Proof of Lemma 4.4 part (3) [Tree step]. Let 〈bi : i < ω〉 be a B-generic such that
Aθ = {bi : i ∈ ω}. Recall that Tθ is defined by declaring, for a ∈ A<θ, a <T bi if
a ∈ bi, so that Tθ is definable from T<θ, A<θ, Aθ.

The forcing B is isomorphic to the finite support product of ω many copies of
B � 1, where B � 1 is the poset for adding a single branch through T<θ. In particular,
for any tuple b̄ = 〈bk0 , . . . , bkn−1〉 of distinct elements from Aθ, b̄ is B � k-generic
over V (A<θ, T<θ). Note that the poset B is definable from A<θ and T<θ. Applying
Lemma 2.8, for any formula φ and parameter v ∈ V (A<θ, T<θ) there is a formula
ψ(A<θ, T<θ, b̄, v) such that

V (Aθ, Tθ) |= φ(Aθ, Tθ, b̄, v) ⇐⇒ V (A<θ, T<θ)[b̄] |= ψ(A<θ, T<θ, b̄, v).

We now establish the tree indiscernibility hypothesis in V (Aθ, Tθ). Fix v ∈Mα,
α < θ, a formula φ, ā0, b̄0 from

⋃
θ>β>αAβ and ā, b̄ from Aθ such that ā0, ā and

b̄0, b̄ have the same tree type over Aα. Assume further that φ(Aθ, Tθ, ā0, ā, v) holds,
and show that φ(Aθ, Tθ, b̄0, b̄, v) holds as well.

Fix ψ(A<θ, T<θ, ā0, ā, v) as above. Fix an ordinal β < θ such that the elements
of ā0 are below level β, and such that the projections of ā to level β are all distinct.
Let p = 〈p(0), . . . , p(k − 1)〉 and q = 〈q(0), . . . , q(k − 1)〉 be the projections of ā and
b̄ to level β, respectively. Since ā0, ā and b̄0, b̄ have the same tree type, it follows
that b̄0 are below level β, that the projections of b̄ to level β, q(0), . . . , q(k− 1), are
distinct, and that ā0, p and b̄0, q have the same tree type over Aα.

By assumption, φ(Aθ, Tθ, ā0, ā, v) holds in V (Aθ, Tθ). Therefore V (A<θ, T<θ)[ā]
satisfies ψ(A<θ, T<θ, ā0, ā, v). There is some condition p̃ ∈ B � k so that p̃ 
B�k
ψ(A<θ, T<θ, ā0, ḃ0, . . . , ḃk−1, v) and p̃(i) is below ai, that is, p̃ is in the B � k-generic
corresponding to ā. We may assume that p̃(i) is above level α, for each i, and so p
is the restriction of p̃ to level α. By the claim above, we conclude in V (A<θ, T<θ)
that

p 
B�k ψ(A<θ, T<θ, ā0, ḃ0, . . . , ḃk−1, v).

This displayed statement can be written in V (A<θ, T<θ) as χ(p,A<θ, T<θ, ā0, v).
Finally, as ā0, p and b̄0, q have the same tree type over Aα, using the induc-
tive tree indiscernibility hypothesis, we conclude that χ(q, A<θ, T<θ, b̄0, v) holds

in V (A<θ, T<θ), which in turn implies that q 
B�k ψ(A<θ, T<θ, b̄0, ḃ0, . . . , ḃk−1, v).
Therefore ψ(Aθ, Tθ, b̄0, b̄, v) holds in V (A<θ, T<θ)[b̄], and so φ(Aθ, Tθ, b̄0, b̄, v) holds
in V (Aθ, Tθ), as required. �

4.2. Successor step. Assume that Mθ was constructed, and the tree indiscernibil-
ity hypothesis holds. Fix a Q(Aθ)∗T(Ȧθ+1, Aθ)-generic over Mθ, let Aθ+1 ⊆ P(Aθ)
and π : Aθ+1 → Aθ be the corresponding generic objects, and Tθ+1 defined as the
extension of Tθ using π.

Proof of Lemma 4.4 part (1) [Successor step]. Fix an ordinal α < θ + 1, v ∈ Mα,
a formula φ, tuples ā, b̄ from

⋃
θ+1≥β>αAβ which have the same tree type over

Aα, and assume that φ(Aθ+1, Tθ+1, ā, v) holds in Mθ+1. We need to show that
φ(Aθ+1, Tθ+1, b̄, v) holds as well.

Assume first that α = θ. Then ā, b̄ are sequences from Aθ+1. Since they have
the same type over Aθ, it follows that the projection of ai to level θ is equal to the
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projection of bi, for each i. By Lemma 3.4, we conclude that

φ(Aθ+1, Tθ+1, ā, v) ⇐⇒ φ(Aθ+1, Tθ+1, b̄, v).

Assume now α < θ. Let ā = ā0, ā1 and b̄ = b̄0, b̄1, where ā0, b̄0 are from
⋃
θ≥β>α.

Define w̄, ū to be the projections of ā1, b̄1, respectively, to level θ. Since ā0, ā1 and
b̄0, b̄1 have the same tree type over α, it follows that ā0, w̄ and b̄0, ū have the same
tree type over α. Furthermore, by Lemma 3.4, there is a formula ψ such that

Mθ |= ψ(Aθ, Tθ, ā0, w̄, v) ⇐⇒ Mθ+1 |= φ(Aθ+1, Tθ+1, ā0, ā1, v),

whenever w̄ are the projections of ā1 to Aθ. (The lemma is applied with W = Aθ
and Tθ, ā0, v as the parameters from the ground model Mθ.) Applying the induc-
tive tree indiscernibility hypothesis, Mθ |= ψ(Aθ, Tθ, b̄0, ū, v) as well, and therefore
Mθ+1 |= φ(Aθ+1, Tθ+1, b̄0, b̄1, v), as required. �

4.3. The limit step. In order to prove Lemma 4.4 part (2) [Limit step], we will
need to construct automorphisms for quotients of the iteration Pθ for some limit
ordinal θ. For this proof, the following setup is required.

Let P be a class iteration and P-names Ȧα, Ṫα, for all ordinals α. Given a
generic G, let Aα and Tα be the interpretations of Ȧα, Ṫα according to G, and
define Mα = V (Aα, Tα). Assume that

• for each ordinal α there is a Qα ∗ Rα-generic over Mα (in some generic
extension), as in Section 4.2, such that Mα+1 = Mα(Aα+1, Tα+1) is the
resulting symmetric model as in Section 4.2;

• for each limit ordinal θ, let A<θ =
⋃
α<θ Aα and T<θ =

⋃
α<θ Tα, then

there is a Bα-generic over V (A<θ, T<θ) (in some generic extension), as in
Section 4.1, such that Aθ is the unordered set of branches added by this
generic.

Furthermore, assume there are posets Pβα ∈ V (Aα, Tα), with names Ȧβα, Ṫ
β
α such

that

(1) There is a generic Gβα for Pβα over V (Aα, Tα) for which Ȧβα[Gβα] = Aβ ,

Ṫ βα [Gβα] = Tβ ;

(2) For any generic Gβα and any condition q ∈ Pβα there is a generic G̃βα with

• q ∈ G̃βα;

• Ȧβα[Gβα] = Ȧβα[G̃βα] and Ṫ βα [Gβα] = Ṫ βα [G̃βα].

Properties (1) and (2) above say that stage β can be forced over each Mα for
α < β, in a sufficiently homogeneous way. The definition of the iteration was given
in Definition 4.1. Properties (1) and (2) are proven below in Sections 4.3.1 and 4.3.2
respectively. First, let us see how these properties allow us to push the construction
through the limit stages.

Proof of Lemma 4.4 part (2) [Limit step]. Assume the tree indiscernibility hypoth-
esis in Mα = V (Aα, Tα) for every α < θ. Fix α < θ, v ∈ Mα, a formula φ and
tuples ā, b̄ from

⋃
θ>β>αAβ which have the same tree type over Aα. Assume that

φ(A<θ, T<θ, ā, v) holds in V (A<θ, T<θ), and show that φ(A<θ, T<θ, b̄, v) holds as
well.

Fix β < θ large enough such that ā is below level β. It follows that b̄ is also
below level β, and v ∈Mβ . By the homogeneity property (2) above,

φV (A<θ,T<θ)(A<θ, T<θ, ā, v) ⇐⇒ V (Aβ , Tβ) |= Pθβ 
 φV (Ȧ<θ,Ṫ<θ)(Ȧ<θ, Ṫ<θ, ā, v).



INTERMEDIATE MODELS WITH DEEP FAILURE OF CHOICE 15

The latter statement can be expressed in V (Aβ , Tβ) as ψ(Aβ , Tβ , ā, v) for some
formula ψ. By the inductive tree indiscernibility hypothesis, we conclude that
ψ(Aβ , Tβ , b̄, v) holds in V (Aβ , Tβ) as well, that is,

V (Aβ , Tβ) |= Pθβ 
 φV (Ȧ<θ,Ṫ<θ)(Ȧ<θ, Ṫ<θ, b̄, v),

and therefore φ(A<θ, T<θ, b̄, v) holds in V (A<θ, T<θ). �

4.3.1. Quotients. As in Definition 4.1, define Pβα as the iteration, over V (Aα, Tα),
starting with Qα and ending with Bβ . Property (1) now follows immediately.

4.3.2. Permutations. We describe below some permutations of the iteration P which
witness that P is weakly homogeneous while fixing Ȧα and Ṫα for all ordinals α.
These are used to establish clause (2) above, and will also be used later in Section
8. The permutations are defined as compositions of finitely many permutations,
each of which deals with a single coordinate in the support of the given condition.

We begin with coordinates which are successor ordinals. For any sequence t =
ā0, . . . , ām with āi a finite (possible empty) subset of Aα, define an automorphism
f t = fαt of Qα by flipping the values of p(i, a) for a ∈ āi. That is, for a ∈ āi, if
(i, a) ∈ dom p then

ft(p)(i, a) = 1− p(i, a).

Note that ft fixes Ȧα+1(n) for each n, as these are defined as the equivalence classes

of all finite changes. In particular, Ȧα+1 is fixed, as well as the tree structure
introduced by Rα.

Fix a permutation σ of ω with finite support. Define an automorphism aσ of Rα
by

aσ(p) = p ◦ σ.
Define an automorphism eσ of Q̇α by

eσ(p)(σ(m),−) = p(m,−).

Applying aσ changes the tree structure between Aα+1 and Aα, but an application

of eσ corrects that. Then applying eσ ◦aσ to Qα∗Rα fixes Ȧγ and the tree structure
for all γ. Let

gασ = eσ ◦ aσ.
Given any generic G for Qα ∗Rα and any condition q in Qα ∗Rα, there is some

t and σ as above such that fαt ◦ gασ (q) ∈ G. We first choose σ to make the Rα
coordinate of q agree with G, and then choose t to change the values of Aα+1(n)
defined by gασ (q) to agree with G. This is possible as q has finite support.

Let us deal now with the tree step. In this case, we need to construct an auto-
morphism of Bα. Let σ be a finite support permutation of ω. Define bασ by

bασ(p) = p ◦ σ
for p ∈ Bα. Given a condition q ∈ Bα, a density argument shows that there is σ
such that bασ(q) is compatible with G. Note that the set of all p ∈ Bα so that p
is compatible with bασ(q) for some σ, is dense in Bα. This is true because we can
take σ so that the domains of bασ(q) and p are disjoint, and therefore their union

is a well-defined extension of p. Note that bασ fixes Ȧα, as the elements there are
determined up to a finite modification.

When considering fαt , gασ or bασ above as permutations of the iterations Pγ or
Pβγ , for γ < α < β, they fix everything outside Qα,Rα,Bα. Property (2) above
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now follows: given a generic G for the iteration and a condition p, by applying the
above corrections, finitely many times along the support of p, we can move p into
G.

Definition 4.10. Let Gα be the group of automorphisms of Pα generated by the

automorhpisms fβt , g
β
σ , b

β
σ for β < α, t a finite sequence of finite subsets of Aβ , and

σ a finite support permutation of ω.

5. Full types and indiscernibility

The members of A =
⋃
αAα and the tree structure T were central to our work

above. An arbitrary set in our model V (A, T ) is definable using A, T , members of
Aα for some α (the vertices of our tree), but also from some sets which are members
of the elements in Aα. Recall that each element a ∈ Aα+1 is an equivalence class,
of all finite changes, of some set x ⊆ Aα. In this case, a is definable from x and Aα,
however, x itself is not definable from a and Aα. Next, we extend the indiscernibility
to also consider sequences involving such sets.

The results of this section are not strictly necessary for the proof of our main
result, Theorem 1.1. Nevertheless, these results will be useful for future applications
of our construction, so it is important to record them below. Furthermore, these
results will be used to prove more precise statements about how fragments of choice
fail in set-forcing extensions of V (A, T ), Proposition 5.9 and Corollary 5.10.

Fix some a ∈ Aα+1. We do not have indiscernibility for pairs of members of
a. Specifically, for any x, y ∈ a, the symmetric difference x∆y is a finite subset of
Aα. The formula “|x∆y| = 1” will hold for many pairs x, y ∈ a and fail for others.
Instead, we will have indiscernibility as long as our parameters include at most one
member out of each such a. In this case, other than the information in the tree type
from Definition 4.2, we need to also include the relationship x ∈ a in the types.

Say that a sequence x̄ = 〈x1, . . . , xn〉 is a sequence of representatives if there
is a sequence a1, . . . , an of distinct sets from the tree A, such that xi ∈ ai. In other
words, each xi is a member of a member of some Aα, and xi, xj are not equal mod
finite, for any i 6= j.

Observation 5.1. For any set S ∈ V (A, T ) there is a formula ϕ, a parameter
v ∈ V , a sequence ā from A and a sequence of representatives x̄ such that in
V (A, T ), S is defined as the unique solution to ϕ(S,A, T, ā, x̄, v). Equivalently,
there is a formula ψ such that in V (A, T ), s ∈ S ⇐⇒ ψ(s,A, T, ā, x̄, v).

Recall that the type of ā was determined by its tree type. For pairs ā, x̄, we
need to also consider the membership relation between the elements in x̄ and the
elements in the tree.

Definition 5.2. Given ā = a1, . . . , an and x̄ = x1, . . . , xm, the full type of ā, x̄ is
the structure ((n×Ord) t {s0, . . . , sm−1},≈, T, 〈Lα : α ∈ Ord〉 , E) defined by

• (i, α) ≈ (j, β) ⇐⇒ projα(ai) = projβ(aj);
• sj ≈ sk ⇐⇒ xj = xk
• (i, α) T (j, β) ⇐⇒ projα(ai) <T projβ(aj);
• si E (j, β) ⇐⇒ xi ∈ projβ(aj), for i < m, j < n;
• (i, α) E sj ⇐⇒ projα(ai) ∈ xj , for j < m, i < n.

For a sequence ū, containing both members of the tree and representatives, we
will talk about the type of ū in a natural way. Say that ā, x̄ and b̄, ȳ have the
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same type over ū if ā, x̄_ū and b̄, ȳ_ū have the same full type. Say that ā, x̄ and
b̄, ȳ have the same type over Aα if they have the same type over ū, for any finite
ū ⊆ Aα.

Theorem 5.3. For any ordinal α, parameter v ∈ Mα, and formula φ, suppose
that ā, x̄ and b̄, ȳ have the same type over Aα, where x̄ and ȳ are sequences of
representatives. Then

V (A, T ) |= φ(A, T, ā, x̄, v) ⇐⇒ φ(A, T, b̄, ȳ, v).

We begin by expanding the results in Section 4.2 to this context. As in the
notation of Section 4.2, let V be some model of ZF and W a set in V . The following
is a seemly stronger bus equivalent form of Lemma 3.4. In this setting, we consider
A to be the set of infinitely many equivalence classes of generic subsets of W ,
modulo finite modifications, and π is a generic for T(A,W ) - a generic surjection
from A to W .

In the notation of the lemma, suppose ā is a finite sequence from A and ȳ such
that yi ∈ ai (so ai = [yi]).

Lemma 5.4. Fix a formula φ and parameter v ∈ V . Suppose b̄, c̄ are sequences
from A of length n such that

• b̄, c̄ are disjoint from ā;
• π(ai) = π(bi) for all i < n, and
• ai = aj ⇐⇒ bi = bj for any i, j < n, then

φ(A, T, ȳ, b̄, v) ⇐⇒ φ(A, T, ȳ, c̄, v).

Moreover, for any formula φ(A, ȳ, b̄, v) there is a formula ψ(W, ȳ, w̄, v) such that for
any b̄, if wi = π(bi) then

V [ȳ] |= ψ(W, ȳ, w̄, v) ⇐⇒ V (A, T ) |= φ(A, T, ȳ, b̄, v).

The proof above can be repeated to give this stronger statement. Instead, we
deduce the lemma from the former, as follows.

Proof. Without loss of generality, assume that ȳ = x0, . . . , xm. Now 〈xi : i > m〉 is
Q(W )-generic over V [x0, . . . , xm], so the construction of V (A) above can be instead

presented with V [x0, . . . , xm] as the ground model, and V (A) = V [x0, . . . , xm](Ã),

where Ã = A \ {x0, . . . , xm}. Note that Ã and A are definable from one another
using x0, . . . , xm, which are now considered parameters in the ground model. Let
π̃ : Ã→W be the restriction of π to Ã. Then π̃ is generic for the poset T̃, defined as
T above using Ã. Again, π̃ and π are definable from one another using x0, . . . , xm.
The conclusion now follows from Lemma 3.4, as x̄ are in the ground model. �

Following the notation above, let V be a model of ZF, W ∈ V an infinite set,
and consider the model V (A, T ) constructed by the two steps above. Consider the
poset Q1 = Q1(A) ∈ V (A, T ) be the poset of all finite partial functions from A to
{0, 1}. The Q1 generic object is identified with a subset of A. The poset Q above
is isomorphic to the finite support product of ω-many copies of Q1. For a finite
ā ⊆ A and a condition p ∈ Q1, let p � ā be the restriction of p to the domain ā.

Fix a natural number d and let Qd = Qd1, adding d mutually generic subsets of
A. For p = 〈p(i) : i < d〉 and ā ⊆ A, let p � ā be the condition 〈p(i) � ā : i < d〉.
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Lemma 5.5. Let ā ⊆ A be finite, and x̄ a sequence such that xi ∈ ai. Let ψ be a
formula, v ∈ V , and p ∈ Qd such that

V (A, T ) |= p 
 ψ(A, T, x̄, v).

Then

V (A, T ) |= p � ā 
 ψ(A, T, x̄, v).

Proof. We may assume that for each i < d the domain of p(i) is of the form ā ∪ b̄
where b̄ ∩ ā = ∅. Write b̄ = 〈b1, . . . , bn〉, distinct elements. Given a sequence
c̄ = 〈c1, . . . , cn〉 ⊆ A of distinct elements, disjoint from ā, define p[c̄] to be “p with
c̄ replaced for b̄”. That is,

• the domain of each p(i) is ā ∪ c̄;
• for i < d and j = 1, . . . , n, p[c̄](i)(cj) = 1 ⇐⇒ p(i)(bj) = 1;
• p[c̄] � ā = p � ā.

Note that the statement “p[c̄] 
 ψ(A, T, x̄, v)” can be written as χ(A, T, x̄, c̄, v)
for some formula χ. Applying Lemma 5.4 we conclude that for any sequence c̄ =
〈c1, . . . , cn〉 of distinct members of A, disjoint from ā, if π(cj) = π(bj) for j =
1, . . . , n, then p[c̄] 
 ψ(A, T, x̄, v).

Note that for any condition q below p � ā, if c̄ is as above and disjoint from
the domain of q, then p[c̄] is compatible with q. The conclusion now follows as the
conditions forcing ψ(A, T, x̄, v) are pre-dense below p � ā. �

Let 〈xn : n < ω〉 be Q(A) generic over V (A). Let B = {xn : n ∈ ω}.

Lemma 5.6. Let d, n be natural numbers and r : d× n→ {0, 1} a function. Then
for any formula φ there is a formula ψ such that for any finite sequence ȳ =
〈y0, . . . , yd−1〉 of distinct elements from B, any sequence ā = 〈a0, . . . , an−1〉 of
distinct members of A and x̄ = 〈x0, . . . , xn−1〉 such that xi ∈ ai, if for all i < n and
j < d

ai ∈ yj ⇐⇒ r(i, j) = 1,

then

V (A, T )(B) |= φ(A, T,B, x̄, ȳ) ⇐⇒ V (A, T ) |= ψ(A, T, x̄)

Proof. By Lemma 2.8 there is a formula ζ such that

V (A, T )(B) |= φ(A, T,B, x̄, ȳ) ⇐⇒ V (A, T )[ȳ] |= ζ(A, T, x̄, ȳ).

Note that ȳ is Qd-generic over V (A, T ). Let p ∈ Qd be ȳ � ā. That is, the domain
of p(i) is ā for i < d, and p(i)(aj) = 1 ⇐⇒ yi(aj) = 1. By Lemma 5.5,

V (A, T )[ȳ] |= ζ(A, T, x̄, ȳ) ⇐⇒ V (A, T ) |= p 
 ζ(A, T, x̄, ˙̄y).

The lemma now follows with ψ(A, T, x̄) defined as “q 
Qd ζ(A, T, x̄, ˙̄y) for the
condition q defined as q(i)(aj) = 1 ⇐⇒ r(i, j) = 1”. (Note that aj is definable
from xj .) �

Let ân = [xn] = {y ⊆ A : y∆xn is finite}, and Â = {ân : n ∈ ω}. Â is to
V (A, T ) as A is to V , according to Lemma 3.2 above.

Corollary 5.7. The lemma above is also true if V (A, T )(B) is replaced with

V (A, T )(Â) and φ(A, T,B, x̄, ȳ) replaced with φ(A, T, Â, x̄, ȳ).
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Proof. Since Â is definable from B, a statement of the form φV (A,T )(Â)(A, T, Â, x̄, ȳ)
can be written as χV (A,T )(B)(A, T,B, x̄, ȳ) for some formula χ. By the lemma above
there is a formula ψ corresponding to χ, which is as required. �

Note that A is definable from Â as A =
⋃
Â. Working in V (A, T )(Â), let T̂ be

the poset for adding a function π̂ : Â → A by finite conditions. Fix a generic π̂
and let T̂ be the tree structure between A and Â defined from π̂. Then the model
V (A, T )(Â, T̂ ) is to V (A, T ) as V (A, T ) was to V , according to Lemma 3.4.

Lemma 5.8. Let d, n be natural numbers and r : d× n→ {0, 1} a function. Then
for any formula φ there is a formula ψ such that for any finite sequence ˆ̄a =
〈â0, . . . , âd−1〉 of distinct members of Â, for any ˆ̄y = 〈ŷ0, . . . , ŷd−1〉 with ŷi ∈ âi, any
sequences ā = 〈a0, . . . , an−1〉 and b̄ = 〈b0, . . . , bd−1〉 from A, and x̄ = 〈x0, . . . , xn−1〉
such that xi ∈ ai, if

• for all i < n and j < d, ai ∈ yj ⇐⇒ r(i, j) = 1 and
• π̂(âj) = bj for j < d, then

V (A, T )(Â, T̂ ) |= φ(A, T, Â, T̂ , x̄, ȳ) ⇐⇒ V (A, T ) |= ψ(A, T, x̄, b̄)

The proof is analogous to the proof of Lemma 3.4.

Proof of Theorem 5.3. The proof proceeds by induction on the ordinals. The limit
cases follow as in subsection 4.1 and 4.3. The successor step follows from Lemma 5.8,
as in Section 4.2. �

Proposition 5.9. Let θ be a limit ordinal, P a poset in V (A, T ), P ⊆ V (A, T )θ.
Then Aθ is Dedekind-finite in the extension V (A, T )[P].

In particular, Aθ is Dedekind-finite in any Col(ω,A<θ)-generic extension of
V (A, T ).

Proof. Let p ∈ P be a condition and τ ∈ V (A, T ) a P-name. Fix ā, x̄ such that
τ is definable from A, T, ā and a parameter in V , where ā is a finite sequence of
elements from A and x̄ is a finite sequence of representatives. Suppose b, c ∈ Aθ
have the same type over p, ā, x̄. It follows from the Indiscernibility Theorem 5.3
that for any formula φ,

p 
 φ(A, T, τ, b) ⇐⇒ p 
 φ(A, T, τ, c).

Suppose for contradiction that τ is a P-name for an ω-sequence of distinct elements
in Aθ. Then there must be some b ∈ Aθ, not in ā, and a condition p ∈ P forcing
that τ(n) = b, for some n ∈ ω. Find now c ∈ Aθ, b 6= c, such that b and c have the
same type over p, ā, x̄. This is possible since p is in V (A, T )θ. Now p 
 τ(n) = c as
well, a contradiction. �

Corollary 5.10. (1) DC[R] fails in the extension V (A, T )[Col(ω,A<θ)], for
any limit ordinal θ.

(2) DC fails in any set-forcing extension of V (A, T ).

Proof. Let θ be a limit ordinal. In the Col(ω,A<θ) extension, A<θ is countable,
and therefore Aθ can be identified as a set of reals. By Proposition 5.9, Aθ is in
fact a Dedekind-finite set of reals in the extension, so DC[R] fails.

For any poset P, it follows from Proposition 5.9 that for large enough θ, Aθ will
be Dedekind-finite in any P-generic extension (e.g. take θ such that P ⊆ V (A, T )θ).
In particular, DC fails in any such extension. �
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6. Intermediate models are symmetric extensions

By a Theorem of Usuba, [Usu21a], V (Aα, Tα) is a symmetric extension of V ,
possibly using a forcing which is not Pα. Using the permutations from Gα (see
Definition 4.10) we can present the α-th stage of the construction, V (Aα, Tα), as a
symmetric extension using the forcing Pα, by taking the filter of groups to consist
of the stabilizers of the members of the transitive closure of Aα, Fα, or a minor
variant of. We will need that for the last step of the construction in L[c], in which
it will be important that each step in the construction, even though constructed in
a way very far from being a symmetric extension, is actually a symmetric extension
using some generic filter that exists in a further extension.

Let T be the following forcing defined in V (Aα, Tα). A condition q ∈ T is a finite

subset of {((fβt )∗ẋβ,n, y) | ∃a ∈ Aβ , y ∈ a, n < ω, t ∈ [ω]<ω, β ≤ α successor} ∪
{ẋβ,n | n < ω, β ≤ α limit }2 such that

• q an injective function.

• If β is successor ordinal and fβt ẋβ,n, f
β
s ẋβ,n ∈ dom q then

– q((fβt )∗ẋβ,n)4q((fβs )∗ẋβ,n) = c is finite.
– for every m ∈ t4s, there is um such that (fβ−1

um )∗ẋβ−1,m ∈ dom q, and
{[ẋβ−1,m)] | m ∈ t4s} = c.

• If y, z ∈ range q and y4z is finite, then q−1(y) = (fβt )∗ẋβ,n and q−1(z) =
(fβs )∗ẋβ,n for some t, s ∈ [ω]<ω, n < ω and β ≤ α.

Lemma 6.1. T is weakly homogeneous.

Proof. Let q0, q1 ∈ T. Note that every automorphism π of Pα defines an automor-
phism Lπ of T by Lπ({(τ̇i, ai) | i < n}) = {π∗τ̇i, ai) | i < n}. During the proof
of this lemma, we will not distinguish between π and Lπ, but this distinction will
play a role later.

We want to extend q0 and q1 and find an automorphism moving the extensions
to compatible conditions. For every ordinal β, let q � β be the restriction of q to
names for the form (fγt )∗ẋγ,n for γ < β.

Let us assume that q0 � β is compatible with q1 � β. We will find an extension
of the condition and an automorphism sending the extensions to members of the
forcing T such that their restriction to β + 1 is compatible.

If q0 � β + 1 = q0 � β and q1 � β + 1 = q1 � β we do not modify the conditions.
Let us assume that this is not the case. There are two cases that we need to

consider.
Let us assume that either β is a limit ordinal or there is no y ∈

⋃
Aβ ∩ range q0

and z ∈ range q1 such that y4z is finite and non-empty. In this case, by applying
a permutation on the indexing of β, gσ we obtain compatibility.

Otherwise, for each such y, z let ny be the natural number such that q−1
0 (y) =

(fβt )∗ẋβ,n for some t and mz be the corresponding number for q−1
1 (z). Note that

the map sending ny to mz depends only on the equivalence class of y and z and
thus it is a well-defined injection. Let σ be a finite permutation extending ny 7→ mz

2We will use automorphisms of the form fβ
t̄

where t̄ is a sequence of n empty sets and possibles

arbitrary finite set at step n. To simplify notations, we temporarily write the value t̄n instead of

the full sequence t̄ when this automorphism is applied to ẋβ,n, as the other values do not change

the name.
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for each such pair y, z. By applying gβσ on q0, we may assume that ny = mz for
each such y, z.

Let us look at the collection of all translations t such that (fβt )∗ẋβ,n ∈ dom q0 and
similarly all translations s such that (fβs )∗ẋβ.n ∈ dom q1. Without loss of generality

(by applying an automorphism of the form fβt and extending the conditions) we

may assume that ˙̇xβ,n ∈ dom q0∩dom q1 and q0(ẋβ,n)4q1(ẋβ,n) is finite. Moreover,

we may assume that for any translation t such that (fβt )∗ẋβ,n ∈ dom q0, and k ∈ t,
also (fβ{k})∗ẋβ,n ∈ dom q0 and thus some translation of ẋβ−1,k is in dom q0, and the

same for q1. We will assume also that if some translation of ẋβ−1,k is in dom q0

then (fβ{k})∗ẋβ,n ∈ dom q0 and the same holds for q1.

By the induction hypothesis, we may assume that q0 � β is compatible with
q1 � β.

Now, let us look at c = q0(ẋβ,n)4q1(ẋβ,n). Let c0 be the subset of c consisting
of elements that are already equivalence classes of members of the range of q0 and
let c1 = c \ c0. Let t0 be the corresponding translation by indexes of elements of c0
(which are already determined) and let t1 be a translation disjoint to all previous

translations, |t1| = |c1|. Finally, apply fβt0∪t1 on q0.
Continue this way, after finitely many non-trivial steps, we obtain compatible

conditions. �

Let G be a generic filter generating Ȧα, Ṫα. Let H be a filter consisting of finite
subsets of {(ftẋβn, (ftẋβn)G) | n < ω, β ≤ α, t ∈ [ω]<ω}.

Lemma 6.2. H is V (Aα, Tα) generic for Q.

Proof. Let D ∈ V (Aα, Tα) dense open.
Let p ∈ Pα. We need to show that there is p′ ≤ p that forces H ∩D 6= ∅. Since

D ∈ V (Aα, Tα), it is definable using finitely many parameters, ā.

Fix a name for a condition r̄ ∈ Ḣ with a range covering ā and all the elements of
trcl(Aα) mentioned by p. Let r be a name for a stronger condition in D, as forced
some by p′.

Let π be an automorphism of Pα in Gα. By extending p′, if necessary, we may
assume that r = {〈τ̌i, ḃi〉 | i < n}. So, π∗(r) = {〈τ̌i, π∗ḃi〉 | i < n}, which is
different than Lπ(r). Let us denote this condition by Rπ(r). Nevertheless, the
proof of Lemma 6.1 works without significant modifications and show that the
automorphism Rπ witnesses the homogeneity of the forcing as well. Unlike Lπ, the
correspondence between π and Rπ does not exist in V (Aα, Tα).

Let r̃ be a condition in H with dom r̃ = dom r. The proof of Lemma 6.1 illus-
trates that the obtained automorphism π fixes p and ā and that when extending
the r̃ side we may keep the condition in H.3 We obtain that after the extensions
the automorphism outright sends one extension to the other.

By applying the obtained automorphism π and strengthening r̃, r we obtain we
have π(p′) forces π∗(r) = r̃ to be in D, and thus p′ 
 H ∩D 6= ∅. �

In [Gri75], Grigorieff proved that for every symmetric extension M ⊆ V [G] there
is a homogeneous forcing notion T ∈ M and an M -generic filter T ⊆ T such that
M [T ] = V [G]. It is not difficult to see that the existence of such a homogeneous

3Whenever we extend a condition during the proof of Lemma 6.1, we only require it to contain
additional elements in its domain, which can be obtained using a condition in H.
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forcing implies that M is a symmetric extension, using another theorem of Grigori-
eff.

Theorem 6.3. V (Aα, Tα) is a symmetric extension by 〈Pα, G̃α, F̃α〉, where G̃α ⊇
Gα and for every subgroup X ∈ F̃α, X ∩ G ∈ Fα.

Proof. Let us look at T and let H be a generic filter for T. As it is a weakly
homogeneous forcing notion,

V (Aα, Tα) = HOD
V (Aα,Tα)
V,trcl({Aα,Tα}) ⊇ HOD

V (Aα,Tα)[H]
V,trcl({Aα,Tα})

Let H be the generic filter derived from G. Clearly, V (Aα, Tα)[H] = V [G], so we
obtain

HOD
V (Aα,Tα)[H]
V,trcl({Aα,Tα}) = HODV [G]V,trcl({Aα,Tα})

By a theorem of Grigorieff, this last model is a symmetric extension using the
forcing notion Pα, with group of automorphism G̃ ≤ Aut(B(Pα)) and a filter of
groups stabilizing each member of the transitive closure of Aα. �

7. Shuffling

The following section is deeply related to the work of Grigorieff and Karagila on
symmetric extensions and iterations, [Gri75, Kar19]. Indeed, the relationship be-
tween symmetric systems and their corresponding extensions, symmetrically generic
filters, and how to transform them into proper generic filters is the main motivation
for the results in this section.

The following shuffling lemma will be used repeatedly in Section 8, when “suffi-
ciently generic” filters will be constructed inside a Cohen-real extension of V . The
basic idea is that, given some iteration, it will be relatively simple to construct a
filter which is generic for each bounded part of the iteration. To get a generic for the
full iteration, we will shuffle it using a generic sequence of automorphisms. Further-
more, we will restrict ourselves to a subgroup of automorphisms, those preserving
the key objects of our construction, as constructed in Section 4.3.2.

A simple example is as follows. Let C be Cohen forcing for adding a single
subset of ω, and P the finite support product of countably many copies of C.
Suppose z = 〈zn : n < ω〉 is a sequence so that for each n, 〈z0, . . . , zn−1〉 is generic
for Cn. It is not necessarily true that z is P-generic. However, by making finite
changes to each coordinate, we can get a sequence 〈z′n : n < ω〉 which is P-generic.
Specifically, force by finite approximations a sequence 〈gn : n < ω〉, where each gn
is an automorphism of C flipping finitely many coordinates, and let z′n = gn · zn.
Then 〈z′n : n < ω〉 is P-generic. Note that in this case, the sequence of mod-finite
equivalence classes is the same, 〈[zn] : n < ω〉 = 〈[z′n] : n < ω〉.

More generally, we may force a generic automorphism of a poset as follows.

Definition 7.1. Let P be a poset, S ≤ Aut(P) a subgroup of automorphisms of P,
and F a filter over S. Assume that for each p ∈ P, the stablizer of p in S is large,
Sp = {g ∈ S : g(p) = p} ∈ F .4 Define

S(P, S,F) = {(g,X) : g ∈ S, X ∈ F} .
For two pairs (h, Y ) and (g,X) in S(P, S,F), say that (h, Y ) extends (g,X) if

4In this case, the condition is tenacious. This assumption is harmless, see [Kar19, Appendix
A]
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• Y ⊆ X, and
• h = r · g for some r ∈ X.

A generic filter for S(P, S,F) naturally defines a permutation of P as follows. Sup-
pose H ⊆ S(P, S,F) is a generic filter. Define π : P→ P by

π(p) = q ⇐⇒ (∃g ∈ S) (g, Sq) ∈ H ∧ g(p) = q.

When P, S,F are clear from context, we will denote by π̇ the canonical S(P, S,F)-
name for the permutation π. When a generic filter H ⊆ S(P, S,F) is fixed we will
refer to π̇[H] as π.

Claim 7.2. Following the notation of Definition 7.1, for any generic filter H ⊆
S(P, S,F) over V , π is a well defined automorphism of P, in V [H].

For S = 〈P,G,F〉 symmetric system, so G ≤ Aut(P) and F is a subgroups filter,
we denote by S(S) the forcing S(P,G,F).

Example 7.3. Suppose P is the finite support product of Qn, n < ω, and Sn ≤
Aut(Qn) is a subgroup of automorphisms of Qn. The product group

∏
n Sn natu-

rally acts on P, coordinate-wise, so we identify it as a subgroup of Aut(P). Let S
be the subgroup of

∏
n Sn of all finite support sequences.

In this case, a natural way to add a generic automorphism is by finite approxima-
tions. Let S be the poset S, ordered by end-extensions. A generic for S is identified
with a generic sequence ~s ∈

∏
n Sn.

Let F be the filter over S generated by sets of the form

{g ∈ S : g fixes the first n coordinates} ,
for some n. Then S and S(P, S,F) are forcing equivalent. Moreover, this equivalence
identifies the generic permutation π with the generic permutation ~s.

Definition 7.4. Fix P, S,F as in Definition 7.1. Let G ⊆ P be a filter. We say
that G is symmetrically generic relative to 〈P, S,F〉 if for any dense open D ⊆ P
in V and any X ∈ F , (X ·D) ∩G 6= ∅, where X ·D = {g(d) : g ∈ X, d ∈ D}.

Lemma 7.5 (The Shuffling Lemma). Let V |= ZF. Fix P, S,F as in Definition 7.1
and let us assume that G ⊆ P is a symmetrically generic filter.

Let H ⊆ S(P, S,F) be a generic filter over V and let π be the corresponding
generic automorphism of P as in Definition 7.1. Then π−1G =

{
π−1(p) : p ∈ G

}
is

a P-generic filter over V .

Proof. Fix a dense open set D ⊆ P in V . Let (g,X) be a condition in S(P, S,F).
We need to find an extension of (g,X) forcing that π̇−1G ∩D 6= ∅. Since D ⊆ P is
open dense, and g is an automorphism of P, then g ·D = {g(d) : d ∈ D} ⊆ P is open
dense as well. By assumption, there is some r ∈ X and d′ ∈ g ·D so that r(d′) ∈ G.
Fix d ∈ D for which d′ = g(d), so r · g(d) ∈ G. Let Y = X ∩Sr·g(d). Then (r · g, Y )

is an extension of (g,X) forcing that π̇(d) ∈ G, and so that π̇−1G ∩D 6= ∅. �

The following claim is a combination of Example 7.3 with Karagila’s analysis
of iteration of automorphisms from [Kar19, Section 3]. The main obstacle that
we must overcome when moving from products to iterations is that even a two-
step iteration of weakly homogeneous forcing notions does not have to be weakly
homogeneous. The standard solution to this problem is to assume that enough
of the structure of the iteration as well as the homogeneity is preserved by the
automorphisms, [DF08].
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Unlike the Shuffling Lemma, which works in ZF, the following claim requires the
axiom of choice, which is used in the definition of the application of an automor-
phism that exists in a generic extension to a name.5

Definition 7.6. Let P = Pω be a finite support iteration of 〈Pn, Q̇n | n < ω〉.
Let Ṡn be a Pn-name, forced by the trivial condition to be a subgroup of the
automorphism group of Q̇n, witnessing its weak homogeneity, namely it is forced
by the trivial condition that for every q̇0, q̇1 ∈ Q̇n there is σ̇ ∈ Ṡn such that σ̇(q̇0)
is compatible with q̇1.

We say that P, 〈Ṡn | n < ω〉 is suitable for iteration if the following condition
holds.

Let us work, temporarily, in the generic extension by Pn. By induction on
m > n, any automorphism σ ∈ Sn induces an automorphism on the iteration
Qn ∗Qn+1 ∗ · · · ∗Qm that we will denote (temporarily) by σn,m. Indeed, σn,n = σ
and σn,m+1(〈qn, q̇n+1, . . . , qm+1〉 = σn,m(〈qn, q̇n+1, . . . , q̇m〉)a〈(σn,m)∗(q̇m+1)〉. 6

Let us assume further that for every automorphism σ in Ṡn it is forced that for
all m > n, σn,m−1(Q̇m) = Q̇m, σn,m−1(≤Q̇m) =≤Q̇m and σn,m−1(Ṡm) = Ṡm.

Claim 7.7. Work in ZFC7. Let P = Pω be a finite support iteration and let
〈Ṡn | n < ω〉 be a sequence of witnesses for the homogeneity of each step in the
iteration, which is suitable for iteration as in Definition 7.6.

Let G ⊆ P be a filter such that G � n ⊆ Pn is V -generic for all n. Then, in
a forcing extension of V [G] there is a generic automorphism π such that π(G) is
V -generic.

The automorphism π belongs to the inverse limit (in some sense) of the Sn. One
should keep in mind that the structure of the group which is composed of the Sn
is not a direct product, but rather a semi-direct one, but we will not pursue this
computation here.

Proof. For q ∈ Q, recall that supp q is the set of coordinates n such that q(n)

is not forced by 1Pn to be 1Q̇n . Let Ṗn be the Pn name for the finite support

iteration of 〈Q̇m | n ≤ m < ω〉. There is a canonical isomorphism of forcing notions

ι : P ∼= Pn ∗ Ṗn. Note that there is a dense subset of Pn ∗ Ṗn of conditions (p, q̇) for
which there is a finite set a such that p 
 supp(q̇) = ǎ.

Every automorphism in Ṡn induces an automorphism of Ṗn, by applying

σn,ω(〈q̇m | m ≥ n〉) = 〈σn,m(q̇m) | m ≥ n〉.
By a slight abuse of notation, we identify σ̇ with σn,ω. Under this identification,

every element of Ṡn is in fact a Pn-name for a support preserving automorphism of
Ṗn (namely, 
Pn supp q̇ = supp σ̇(q̇) for every σ̇ ∈ Ṡn and q̇ ∈ Ṗn).

Lemma 7.8. There is a subgroup Tn ≤ Aut(P), such that 
Pn “there is a surjective

homomorphism Tn → Ṡn”.

5While the claim in its full generality requires the axiom of choice, we will apply it to cases in
which the forcing notion, as well as the subgroup of automorphisms, are well ordered.

6Recall that given an automorhpism σ of a forcing notion R it can be extended to an operation
σ∗ on R-names, where σ∗ is defined recursively on the names by σ∗(ẋ) = {(σ(r), σ∗(ẏ)) | (r, ẏ) ∈ ẋ}
for an R-name ẋ.

7When working in ZF, we will apply Claim 7.7 by moving to a generic extension in which a

sufficiently large initial segment of the universe is well ordered. See Section 8.3



INTERMEDIATE MODELS WITH DEEP FAILURE OF CHOICE 25

Proof. We work in the dense subset of (p, q̇) ∈ Pn ∗Pn for which there is a finite set

a such that p 
 supp(q̇) = ǎ. For every name σ̇ for an element of Ṡn (considered as

an automorphism of Ṗn), we define σ̇(q̇) to be the condition forced to be the image
of σ on q̇. Let t(σ̇) = ι−1(idPn ∗ σ̇)ι and let Tn be the image of t.

Note that

Pn σ̇ = σ̇′ if and only if t(σ̇) = t(σ̇′),

so Tn is a set. Similarly, Tn is a subgroup of the automorphisms of P. Finally,
given a generic filter H ⊆ Pn, we can define a map t(σ̇) 7→ σ̇H , which is a group
homomorphism and is surjective by the definition. �

Let us remark that for the definition of t to make sense (without moving to
the Boolean completion), we must use the assumption that the automorphisms are
support-preserving. Namely, the support of the condition σ̇(q̇) equals the support
of q̇ and therefore a concrete finite set.

One can apply the lemma in the generic extension by Pn, and obtain a group

(Tm)V [Pn], for m ≥ n, which projects to Ṡ
V [Pm]
m in any further Ṗn generic extension.

Working in V [Pn], let Sn be the group generated by 〈(Tm)V [Pn] | n ≤ m < ω〉.

Lemma 7.9. Working in V [Pn], Sn witnesses the weak homogeneity of Pn, that is,
for any two conditions p, q ∈ Pn there is some s ∈ Sn such that s(p) is compatible
with q.

Proof. Let p, q be conditions in (Ṗn)V [Pn], and let supp p∪ supp q = {k0, . . . , kr−1}.
Define by induction a sequence of elements of Sn, σ0, . . . , σr such that σi◦σi−1◦· · ·◦
σ0(p � ki+1) is compatible with q � ki+1. This is done by applying the assumption

that Ṡki is forced to witness the weak homogeneity of Q̇ki .
Let p̃i = σi−1 ◦ · · · ◦ σ0(p). Then, 
 ∃σ ∈ Ṡki , σ(p̃i(ki)) ‖ q(ki). By the mixing

lemma8, there is an element σi ∈ Tki such that σi(p̃i) � ki = p̃ � ki and σi(p̃i)(ki) is
forced to be compatible with q(ki). Since this automorphism preserves the supports,
there are no new coordinates in p̃i+1 below ki+1, and the same for q and therefore
both restrictions are compatible. �

Let us remark that the assumption that each automorphism in Sn preserves the
names of Sm for all m ≥ n entails that g−1Tmg = Tm for all g ∈ Tn, and in
particular every element in Sn can be represented as the one which is constructed
above.

Let Tn be the group generated by 〈Tm | m ≥ n〉. By the previous claim, T 0

witnesses the homogeneity of P.
Let F be the filter generated by {Tn | n < ω}, and note that Tn ⊇ Tn+1 for all

n.
By Definition 7.1 and Lemma 7.5 (the shuffling lemma), the generic object for

S(P, T 0,F) will produce the desired generic automorphism.
This concludes the proof of Claim 7.7. �

7.1. Two step iterations. Here we collect some useful information about the two-
step iteration of symmetric extension. See [Kar19, Section 3.1] for more details.
As usual, all our symmetric systems are tenacious, which means that for every
condition p, the set of automorphisms that fix p is in the filter.

8The mixing lemma states that ifR is a forcing notion, p ∈ R and p 
R ∃xϕ(x, ẏ) for some ẏ
and some formula ϕ then there is an R-name τ̇ such that p 
R ϕ(τ̇ , ẏ).
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Definition 7.10. Let S0 = 〈P,F ,G〉 be a symmetric system and let Ṡ1 be a
symmetric name for a symmetric system, S1 = 〈Q,K,H〉 in the symmetric extension
by S0, denoted by V S0 .

Let G ∗ H be the generic semi-direct product of G ∗ H. Namely, the elements of
G ∗ H are names of the form 〈π, σ̇〉, where π ∈ G and 
 σ̇ ∈ H,9 and the group
operation is defined by

〈π0, σ̇0〉 ∗ 〈π1, σ̇1〉 = 〈π0π1, σ̇0 · (π0)∗(σ̇1)〉.

Let F ∗ K be the filter of subgroups generated by the groups of the form

AF,K̇ = {〈π, σ̇〉 ∈ G ∗ H | π ∈ F,
 σ̇ ∈ K̇},

For F ∈ F and 
 K̇ ∈ K such that sym(K̇) ⊇ F .
We denote by S0 ∗ S1 the symmetric system 〈P ∗Q,G ∗ H,F ∗ K〉.

Lemma 7.11. Let S0,S1 be as in Definition 7.10. Let H be a generic filter for P.
Then E ∈ V S0 is a K-symmetric dense open subset of Q if and only if there is a
F ∗ K-symmetric open set D ⊆ P ∗Q such that

E = {q̇H | 〈p, q̇〉 ∈ D, p ∈ H}.

Proof. Let E be a dense open set in the symmetric extension. By the definition, it
means that there is an S0-symmetric name τ̇ , sym τ̇ = F ∈ F , such that τ̇H = E
where E is forced to be a symmetric dense open subset of Q, with respect to the
group H. To avoid confusion, when we describe the stabilizer of an element, we
will use symG or symH stressing the acting group.

Let us assume also that p0 
P symHE = K̇ for some K̇ ∈ K̇ and let us assume

that symG K̇ = F as well, by shrinking F and replacing K̇ with an equivalent
symmetric name, if necessary. By modifying τ to a name τ ′, if necessary, we may
assume that every condition p′ which is incompatible with p0 forces E = Q and in
particular, 
P symH τ̇

′ ⊇ K̇. We assume also that all members of F fix p0, and
thus symG τ̇

′ ⊇ F . Without loss of generality, τ̇ = τ̇ ′.
Let us define:

D = {〈p, q̇〉 | p ≤ p0 ∨ p ⊥ p0, p 
P q̇ ∈ τ̇}

Following the definition, one can verify that every automorphism of the form 〈π, σ̇〉
such that π ∈ F and 
P σ̇ ∈ K̇ stabilizes D and D is dense open.

The other direction is similar. �

Corollary 7.12. Let S0,S1 be as above. Let G be a symmetrically generic filter
for S0, and let H be a symmetrically generic filter for S1 as in definition 7.4. Then,
there is an automorphism of P ∗ Q in a generic extension, that moves G ∗H to a
generic filter over V for the iteration P ∗Q.

Moreover, for any generic filter G′ ⊆ P which is obtained by an application
of a generic automorphism on G, there is an automorphism in a further generic
extension σ on Q such that for the obtained filter, H ′, G′ ∗H ′ is generic.

Proof. First, by Lemma 7.11, G ∗H satisfies the requirements of Lemma 7.5, and
thus there is a generic automorphism of the two-step iteration sending it to a generic
filter for the two-step iteration.

9We identify two elements in H if they are forced by the trivial condition to be the same.



INTERMEDIATE MODELS WITH DEEP FAILURE OF CHOICE 27

In order to show the moreover part, it suffices to show that there is a projection
from S(S0 ∗ S1) to S(S0) ∗ S(SG1 ) as forcing notions. Note that S(SG1 ) is defined in
with no reference to the generic of S(S0) and thus S(S0) ∗ S(SG1 ) ∼= S(S0)× S(SG1 ).
10

Let us define a projection ρ from S(S0 ∗ S1) to S(S0) × S(SG1 ) as follows. The

domain of ρ is the dense set of elements of the form 〈(π, σ̇), F ∗ K̇〉 such that

sym π̇∗σ, sym K̇ ⊆ F .
Let

ρ(〈(π, σ̇), F ∗ K̇〉) = 〈(π, F ), ((π−1
∗ σ)G, (π−1

∗ (K̇))G)〉.
Let us show that ρ is order-preserving. Let (π′, σ′) ∈ F∗K̇ and let F ′∗K̇ ′ ⊆ F∗K̇.

Let

(π̃, σ̃) = (π′, σ′) · (π, σ) = (π′π, σ′ · π∗(σ))

So

ρ(〈(π̃, σ̃), (F ′ ∗ K̇ ′)〉) = 〈(π′π, F ′), (((π′π)−1
∗ (σ′ · π∗(σ)))G, ((π′π)−1

∗ (K̇ ′))G)〉

Let us compute

(((π′π)−1
∗ (σ̇′ · π∗(σ̇))) = (π′π)−1

∗ (σ̇′) · π−1
∗ (π′)−1

∗ π∗(σ̇)
= (π′π)−1

∗ (σ̇′) · σ̇

The last equation is true since (π′, σ′) ∈ F ∗ K̇, and thus π′ ∈ F ⊆ sym π̇∗σ.
Similarly, 
 σ̇′ ∈ K and thus


 (π′π)−1
∗ (σ̇′) ∈ (π′π)−1

∗ (K̇) = π−1
∗ (π′)−1

∗ (K̇) = π−1
∗ (K̇),

so we conclude that ρ is order preserving. Clearly, for every condition s, {ρ(t) | t ≤
s} is dense below ρ(s).

�

Lemma 7.13. Let P be a weakly homogeneous forcing notion, as witnessed by
G. Let us assume that for every condition p inP, the subgroup stab(p) = {σ ∈
G | σ(p) = p} witnesses the homogeneity of the cone {q ∈ P | q ≤ p}. Let F be a
normal filter of subgroups such that {stab(p) | p ∈ P} ⊆ F densely. Moreover, let us
assume that if F ∈ F and F ⊆ stab(p) then there is p′ ≤ p such that stab(p′) ⊆ F .

Let G ⊆ P be V -generic and let πG be a generic autormorphism generated by
S(P, 〈G,F〉). Then π−1

G (G) and G are mutually generic.

Proof. Let D ⊆ P× P be dense open, and let (p, (π, F )) ∈ P× S(P,G,F). Without
loss of generality, stab(π(p)) = F . Let (p′, q′) ≤ (p, π(p)) in D. So, π(p′) ≤ π(p)
and thus there is σ ∈ F such that σ(π(p′)) is compatible with q′. Let p′′ ≤ p′ be a
condition such that σ(π(p′′)) ≤ q′.

So (p′′, σπ(p′′)) ∈ D. In particular, (p′′, (σπ, stab(σπ(p′′)) ∩ F )) forces that
G× πG(G) will meet D. �

Corollary 7.14. Let P be a weakly homogeneous forcing as witnessed by G and
let F be a normal filter of subgroups of G. Let G be a symmetric filter. Then, for
every generic filter H (possibly in an outer model), there is a generic extension in
which there is an automorphism σH such that σH(G) = H.

10We will still denote the automorphisms of Q by σ̇G and similarly for large subgroups of
automorphisms, but the dot represents that it is a name with respect to P and not S(S0).
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Proof. Otherwise, there is a condition h ∈ H forcing that there is no further generic
extension introducing an automorphism σH such that σH(G). By the weak homo-
geneity of the forcing P,11 the set D of all conditions r ∈ P such that there is p′ ≤ h
and an automorphism π in G such that π(p′) ≥ r is dense open and symmetric (any
automorphism that fixes h preserves this set).

Take r ∈ G ∩ D, h′ ≤ h and π ∈ G such that π(h′) ≥ r (and in particular,
in G). Force an S(P,G,F)-generic filter below the condition (π, Fh′), where Fh′ is
a subgroup in F of automorphisms that fix h′. Let πG be the generic filter. So,
π−1
G (G) is a P-generic filter containing h, contradicting the assumption that h forces

that there is no such generic automorphism. �

8. Construction in V [c] (proof of Theorem 1.1)

In [Kar18], Karagila constructed an inner model of L[c], where c is a Cohen
real, satisfying the failure of the principle KWα for all α. The construction of this
so-called Bristol model depends on the structure of L, in a way that restricts the
amount of large cardinals that can exist in the ground model which is suitable for
this construction. In this section, we show how to obtain a model with similar
properties, as an inner model of V [c], where V is an arbitrary model of ZF and c is
a Cohen-generic real over V .

In Section 8.1 we construct a sequence of sets Aα, Tα in V [c] so that the models
Mα = V (Aα, Tα) and M∞ = V (A, T ) have the same properties as before. In
particular, by corollaries 4.8 and 4.7, no set forcing over M∞ can recover the axiom
of choice, and the Kinna-Wagner degree of M∞ is ∞. This will complete the proof
of Theorem 1.1.

The set A1 will be constructed directly from the Cohen real. For the rest of the
construction, we show that for α ≥ 1, the poset which we used to construct the
next stage does not have many dense open subsets inside Mα. (This poset is either

Q(Aα) ∗ T(Ȧα+1, Aα), or B(T<θ) for some limit θ.)
In particular, working in V [c], which is a model of choice extending Mα, we will

find filters that are sufficiently generic over Mα. We then use these generics to
continue along the construction.

We also need to verify that the construction survives through limit stages, as
we did in Section 4, even though the generics do not come directly from the class
iteration P described before. Instead, we will show that by “generically permuting”
the filters, as done in Section 7, we do end up with true generics for the iterations
described in Section 4, which yields the same models Mα, without changing Aα
and Tα.

The following simple observation will be used repeatedly to confirm that our
models satisfy the properties we want, as the models in Section 4. Let N be some
ZF extension of V , and let Aα, Tα be sets in N . We do not assume that there is any
generic G in N so that Aα = Ȧα0 [G] and Tα = Ṫα0 [G], yet we still want to conclude
that the model V (Aα, Tα) satisfies the properties as in Section 4. It suffices to find
some filter G, in some other extension of V , so that G is generic over V for Pα0 and

the interpretations of Ȧα0 and Ṫα0 according to G are precisely the sets Aα, Tα. In
this case, the model V (Aα, Tα) as constructed in N is the same as constructed in

11Recall that in our context, a forcing notion P is weakly homogeneous if for every pair of
condition p, q ∈ P there are p′ ≤ p, q′ ≤ q and an automorphism of forcing sending p′ to q′.
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V [G]. To conclude Theorem 1.1 we need to prove that such generics G exist, which
is done in Section 8.2.

8.1. Construction of Aα, Tα. In this subsection, we will describe the construction
of the sets Aα, Tα in the model V [c], without proving their properties. Later,
in Subsection 8.2, we will verify that the models V (Aα, Tα) satisfy the desired
properties.

In order to motivate our indexing scheme, we make the following observation:

Observation 8.1. Let us assume that V (A, T ) is contained in a model of AC, W .
Then in W :

(1) If δ is a limit step, then |Aδ| ≥ δ.
(2) If α ≤ β then |Aα| ≤ |Aβ |.
(3) If a ∈ Aα and 〈xi | i ∈ Aα+2〉 is a sequence of representatives for the

equivalence classes of Aα+2 (namely, [xi] = i), then the sets {y ∈ xi | a ≤ y}
are all distinct and, in fact, independent.

We define an index set I(δ) for Aδ, from the perspective of V [c].

Definition 8.2. We define I(δ) recursively on the ordinals.

• I(0) = {〈〉}.
• I(δ + 1) = I(δ)× (ω + δ).
• For limit ordinal ε,

I(ε) =
⋃
δ<ε

I(δ)× {〈0 | i ∈ ε− δ〉}

Clearly, L can compute the sequence I(δ). Note that |I(δ)| = |δ|+ ℵ0 in L and
any extension of it.

For every successor ordinal δ, fix a set Fδ = 〈Xi | i ∈ I(δ + 1)〉 ∈ L such that:

• For every η ∈ I(δ + 1), Xη ⊆ ω + δ − 1.
• For every η0, . . . , ηk−1, η

′
0, . . . , η

′
`−1 ∈ I(δ + 1) all distinct⋂

j<k

Xηj \
⋃
j<`

Xη′j

is infinite co-infinite.

For example, F1 is a countable family of subsets of ω so that any finite boolean
combination of sets in F1 is infinite. At stage δ, we want such a family of size
|I(δ+ 1)| = |δ|, so the members of Fδ need to be subsets of a set of size at least |δ|.
For this reason, we take the members of Fδ to be subsets of ω + δ. The ω is only
there to take care of the cases where δ is finite.

We would like the construction of Aα, Tα from c to be as absolute as possible.
That is, it will depend only on c and the ordinals and not on the particular universe
in which the construction is carried (for example, L[c], V [c], or a generic extension
of V [c]). For this reason, we picked all the above elements in L.

We will construct recuresivelt sets xαi for i ∈ I(α) such that for α successor
Aα = {[xαi ] | i ∈ I(α)} and for α limit Aα = {xαi | i ∈ I(α)}.

First, we define A1. We may write c as 〈cn : n < ω〉 ∈ (2ω)ω, a Q(ω)-generic
over M0 = V . Define x1

〈n〉 = cn, A1(n) = [cn] = {y ⊆ ω : cn∆y is finite}, and

A1 = {A1(n) : n ∈ ω}.
Next, assume the inductive hypothesis at β and prove it for α = β + 1.
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If β is a successor ordinal, for η ∈ I(β + 1) define

xαη = {[xβ
η′a〈γ〉] | γ ∈ Xη, η

′ ∈ I(β − 1)}

If β is a limit ordinal, for η ∈ I(β + 1), write η = η̄ a 〈ρ〉 where η̄ ∈ I(β) and
ρ < ω + β. Define

xαη = {xβ
η′a〈γ〉a〈0〉β−δ | δ < β successor, γ ∈ Xη̄�δa〈ρ〉 \ {0}, ρ < ω + δ, η′ ∈ I(δ)}

Finally, for η ∈ I(β + 1), η = η̄ a 〈ρ〉 where η̄ ∈ I(β), define

πβ([xαη ]) = [xβη̄ ].

That is, we put each [xβη̄a〈ρ〉] above [xβη̄ ] in the tree.

Next consider a limit stage α, assuming that we have constructed all the above
objects at all levels below α. For each η ∈ I(α), define

xαη = {[xη�γ ] | γ < α successor} ∪ {xη�γ | γ < α limit},

a branch in the tree T<α. The tree structure is determined: each branch extends
all of its members.

Lemma 8.3. For every β, {xβ+1
η | η ∈ I(β + 1)} is an independent family. More-

over, for every b ∈ A<β , {xβ+1
η ∩{y ∈ Aβ | b ≤ y} | η ∈ I(β+ 1)} is an independent

family.

Proof. For β successor, it is clear from the construction.

For limit ordinal β, let η0, . . . , η`−1 ∈ I(β + 1). Each ηi is of the form η̄ai 〈ρi〉.
Taking a sufficiently large δ < β such that ρi < ω+ δ for all i and if ηi � β 6= ηj � β,
then this inequality already occurs below δ. So, xβ+1

ηi contains the set

Ei := Ei(η
′, δ) = {xβ

η′a〈γ〉a〈0〉β−δ | γ ∈ Xηi�δa〈ρi〉 \ {0}}

for any fixed η′ ∈ I(δ). The collection {Ei | i < `} is an independent family.
Moreover, xβ+1

ηi ∩ (
⋃
j<`Ej) = Ei. One can verify that by noticing that an element

of the form x := xβζ ∈ xβ+1
ηi must satisfy that the last ordinal δ′ for which ζ(δ′) 6= 0

is the unique ordinal such that x ∈ Ei(ζ � δ′, δ′). �

Lemma 8.4. For every t ∈ A<α there is a branch in Aα containing it.

Proof. Let t = [xη] for η ∈ I(γ), γ < α. By the definition of I(α), η = η′
a〈0〉α−γ ∈

I(α), and thus xη ∈ Aα is a branch containing t. �

8.2. Genericity. In this subsection we will prove that for every α there is a generic
filter G ⊆ Pα, external to V [c], such that the sets Aα, Tα which we defined in the

previous subsection are Ȧα[G], Ṫα[G].
During our induction, we will always assume that α is countable. This does

not restrict the construction, as there is a forcing extension of V [c] in which α is
countable and thus we may, without loss of generality, work in this extension. We
will implicitly re-enumerate the members of Aα in a sequence of order-type ω using
the countablility hypothesis, and write {xαm | m < ω} instead of {xαη | η ∈ I(α)} in
order to define a filter for Pα.

We prove by induction on θ the following slightly stronger statement.
There is a collection T of V -generic filters such that
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(1) Every G ∈ T is a generic filter for Pα for some α < θ. Moreover, Aα =

Ȧα[G] and Ṫα = Ṫα[G].
(2) {1P0

} ∈ T , i.e. the root of the tree is the generic for the trivial forcing P0.
(3) If G ∈ G is generic for Pα and β < α, then G � β ∈ T .
(4) For every G ∈ T which is generic for Pα and for every α < β < θ there is

a generic filter for Pβ , H ∈ T such that H � α = G.

(5) T is closed under automorphisms of Pα from V that fix Ȧα, Ṫα for all α.

Equivalently, we are going to construct a normal tree of generic filters for the
iterations. Using the normality of the tree, we will be able to find at limit steps of
countable cofinality always a filter which is suitable for Claim 7.7.

At successor steps of the construction, we will only add elements to the top level
of the tree, without modifying the previous level. This is done by analyzing the
filter G which we use in order to construct Aα+1 and Tα+1. G can be viewed as a
filter for Pα+1, which we decompose as a two-step iteration Pα ∗Wα (where Wα is
either Qα ∗ Rα, if α is a successor ordinal or Bα if α is limit).

We look at Mα: this model is obtained using G � α. By the inductive hypothesis,
there is a generic automorphism that does not move the interpretation of Aα and
Tα but moves G to a generic filter over V . So, Mα satisfies indiscernibility, as
proved in Section 4. We will analyze the dense open sets from Mα and show
that the conditions for Lemma 7.11 hold and thus we may find another generic
automorphism π such that π−1(G) is a Pα+1-generic for V . By the ”moreover”
part of Lemma 7.11, we may assume that the restriction π−1(G) � α is the original
generic that we started from, and that it is already in the tree T .

At successor steps, we are going to find generic filters for Mα and then apply
Corollary 7.12 to get to the next step in the tree.

In order to apply Lemma 7.5, we must specify a filter of subgroups of Gα. Let
Fα be the filter generated by

{sym ẋ | ẋ is the canonical name for an element in trclAα}

8.2.1. Adding Aα+1. Let Qn(W ) be the restriction of Q(W ) to conditions whose
domain is a subset of n × W . Recall that ẋn is the Q(W )-name for the set{
w ∈W : Ġ(n,w) = 1

}
. Below we identify ẋn with a Qk(W )-name as well, for

k > n, in the natural way.
Suppose we proved the inductive hypothesis for all ordinals below α, and let us

assume that α is a successor ordinal. In order to prove the claim for α we show first
that the filter defined by 〈xαn | n < ω〉 meets every dense open set in Mα. As any
such set is definable using finitely many elements in trcl(Aα), any automorphism of
Qα ∗Rα from Gα that fixes those elements will fix D. We conclude that D = X ·D
for some X ∈ Fα+1.

Then, we will use Lemma 7.5 in order to get for every Gα ⊆ Pα generic that
induces A<α, T<α a V [Gα]-generic G = Gα inducing Aα, Tα.

Lemma 8.5. Suppose G ⊆ Q(Aα) satisfies that for each n < ω, G ∩ Qn(Aα)
is generic over V (Aα, Tα). Then there is a filter G′ ⊆ Q(Aα), in some generic
extension, which is generic over Mα and such that the symmetric difference of
ẋn[G′] and ẋn[G ∩Qn(Aα)] is finite.

Proof. Let us view Q(Aα) as the finite support product of ω many copies of Q1(Aα).
Force, by finite conditions, a generic sequence of finite support permutations of Aα,
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~s = 〈sn : n < ω〉, and define G′(n, a) = 1 ⇐⇒ G(n, sn(a)) = 1. By Lemma 7.5,
G′ is generic over V (Aα, Tα). �

Remark 8.6. If N = V [c] and α is a countable ordinal, then the forcing to add
~s is isomorphic to adding a single Cohen real, and we can find such generic Cohen
reals over V (Aα, Tα) in V [c]. It follows that G′ can be found in V [c], since in our
definition of the derivation of Aβ , Tβ there is always some Cohen real in V [c] which
is generic with respect to the whole construction.

Lemma 8.7. Let α > 1 and let n < ω. Let Gn be the filter generated by {xαm |
m < n}. Then G is Mα-generic for Qn(Aα).

Proof. In order to prove this statement, let us analyze the dense open subsets of
the forcing Qn(Aα) in V (Aα, Tα).

Claim 8.8. The filter of dense open subsets of Qn(Aα) is generated in V (Aα, Tα)
by:

• For m < n, a ∈ Aα, D0
m,a = {p | (m, a) ∈ dom p}.

• For t ∈ A<α, b : n→ 2, k < ω, let D1
t,b,k be the set of all p such that there

are a0, . . . , ak−1 ∈ Aα, distinct and above t, and ∀m < n, p(m, ai) = b(m).

Proof. Let D ∈ V (Aα, Tα) be dense open in Qn(Aα). By Lemma 5.3, there is a
finite set of parameters that define D, p̄ ∈ trcl(Aα). Let ϕ be a formula such that:

V (A, T ) |= D = {x | ϕ(x, p̄, Aα, Tα, v)},
where v ∈ V . Without loss of generality, ϕ determines the full type of p̄. Let us
show that we can assume that p̄ is of the form āat̄ where ā ∈ A<ωα and t̄ ∈ A<ω<α.
Indeed, if p̄ = p̄′au where u ∈ d ∈ Aβ , β ≤ α, then let us define

D′ = {q ∈ Qn(Aα) | ∃u′ ∈ d, ϕ(q, p̄′au′, Aα, Tα, v)}.
Clearly, D′ is definable using p̄′ad so it is enough to show that D′ = D. Once we
show that, then by repeating this process finitely many times we can replace all
such parameters from p̄ with their equivalence class (which is in

⋃
β<αAβ).

Note that D ⊆ D′. Let q ∈ D′ and let u′ witness that. The condition q is defin-
able (explicitly) using finitely many parameters from Aα, āq. By indiscernibility,
the membership of q to D depends only on the type of āq ∪ p̄. Since changing u to
u′ does not change this type, using our assumption on ϕ, and since āq ⊆ Aα this
truth value remains the same.

As before, we can modify t̄ so it is nonempty and all its elements have the same
height.

Our strategy to prove the claim is to fix a set of parameters ā, t̄ defining D as
above, and for each possible p : n × ā → 2, we find a dense open set which is an
intersection of length `p of sets of the form D1

tpi ,b
p
i ,k

p
i

such that if q ∈
⋂
i<`p D

1
tpi ,b

p
i ,k

p
i

and q ≤ p then q ∈ D. Then,

D ⊇
⋂

k<n,a∈ā

D0
k,a ∩

⋂
p : n×ā→2

⋂
i<`p

D1
tpi ,b

p
i ,k

p
i

Fix p to be a condition with domain n× ā and let q ∈ D, q ≤ p. We may assume
that dom q = n × āq. Let t̄′ be an extension of t̄ such that for every a such that
(m, a) ∈ dom q for some m < n, there is some r ∈ t̄′, r ≤T a, and the level of r
is the same as the level of the elements of t̄. Let āq ∈ A<ω be an enumeration of
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{b | ∃m < n(m, b) ∈ dom q} and let ψ be a formula that defines q from āq in a
natural way and also describes the full type of āq ∪ t̄′ ∪ ā. One can verify that the
type of āq over āat̄ can be computed from the number of elements in āq \ ā in each
cone. Thus, there is a sequence {〈ti, bi, ki〉 | i < `p} such that q ∈

⋂
D1
ti,bi,ki

and

for every other condition q′ ∈
⋂
D1
ti,bi,ki

such that q′ ≤ p, and q′ is stronger than a

condition q′′ such that ψ(q′′, āq′′) holds and the type of āq′′ over ā ∪ t̄′ is the same
as the type of āq. By indiscernibility, q′′ ∈ D, and so q′ ∈ D, as wanted.

�

Thus, we conclude that a collection of n subsets of Aα is V (Aα, Tα)-generic
for Qn(Aα) if and only if their intersection with each cone above t ∈ A<α is n
independent subsets.

Since this happens at 〈xαm | m < n〉 by construction, we conclude that Gn is
Mα-generic.

�

8.2.2. Adding Tα+1. As a corollary of the indiscernibility result, it is quite easy to
find T(Aα+1, Aα)-generics over V (Aα+1, Tα):

Lemma 8.9. Let f : Aα+1 → Aα be onto and with every fiber infinite. Define
F = {p ∈ T(Aα+1, Aα) | p ⊆ f}. Then F is T(Aα+1, Aα)-generic over V (Aα+1, Tα).

Proof. Let D be a dense open set in V (Aα+1, Tα). As in the proof of Claim 8.8,
using the indiscernibility we may assume that D is definable using a formula ϕ
and only parameters ā, b̄, x̄, where ā ∈ A<ω≤α, b̄ ∈ A<ωα+1, and x̄ ⊆ trclAα+1, and a

parameter from V . We may also assume that [xi] appears in b̄ for every xi ∈ x̄.
Pick p ∈ F such that dom p ⊇ b̄ and range p ⊇ ā. Let q ≤ p be a condition in D

and let b̄′ ⊇ b̄ be the domain of q and ā′ ⊇ ā be the range of q. Let us look at the
type of b̄′ ∪ ā′ over ā, b̄, x̄.

For each a ∈ ā′, let na be the number of elements b ∈ b̄′ \ b̄ such that q(b) = a.

Claim 8.10. Let q′ ≤ p be a condition such that range q′ = ā′ and for every a ∈ ā′,
|{b ∈ dom q′ \ b̄ | q′(b) = a}| = na. Then q′ ∈ D.

Proof. The condition q is definable using an explicit formula ψ and the parameters
b̄′, ā′, where the formula ψ simply states which element is being sent to which
element. By our assumption on q′, there is an enumeration of b̄′′ = dom q′ such
that q′ is definable using the same ψ and parameters b̄′′ and ā′. Since the type
of b̄′ ∪ ā′ over ā, b̄, x̄. is the same as the type of b̄′′ ∪ ā′ over ā, b̄, x̄., we apply
indiscernibility and conclude that q′ ∈ D. �

Finally, since f is surjective with infinite fibers, there is q′ ≤ p as in the claim in
F . �

By construction, πα is a surjective function from Aα+1 to Aα, with the property
that every fiber is infinite, so the filter F = {p ∈ T(Aα+1, Aα) | p ⊆ πα} is generic
over V (Aα+1, Tα).

Assume now that G ⊆ Pα ∗Q(Ȧα) is generic over V which computes the correct
Aα, Tα and Aα+1. We want to find a filter G′ ∗ F ′ which is generic over V for

Pα ∗Q(Ȧα) ∗ T(Ȧα+1, Ȧα).
This is obtained by Corollary 7.12. Indeed, we may assume (by genericity) that

G was obtained by applying a generic permutation on the symmetrically generic
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filter for Pα ∗Q(Ȧα) and thus we can force with the quotient forcing for adding the

generic permutation for T( ˙Aα+1, Ȧα) and obtain a generic iteration of the two-step
iteration that moves the symmetrically generic filter to an actual V -generic filter.

8.3. Limit step.

Lemma 8.11. Let θ be a countable ordinal and let us assume that the inductive
hypothesis holds below θ. Assume further that in V [c] there is a well-ordering of
a large enough initial segment, to apply Claim 7.7. Then the inductive hypothesis
holds for θ.

Proof. By assumption θ is countable. Let 〈αn | n < ω〉 be an increasing cofinal
sequence at θ. We may think of the poset Pα0 as an ω-length finite support iteration,
with the n-th step being Pαn+1

αn . Recall from Section 4.3.2 that for each Pαn+1
αn there

is a subgroup Sn of automorphisms of the poset such that

• for any p, q there is s ∈ Sn sending p to be compatible with q;
• any s ∈ Sn fixes Ȧα, Ṫα for all α.

These properties verify the hypothesis of Claim 7.7. We conclude from the claim
that there is a “shuffled” filter G̃ (in some further generic extension) so Aα = Ȧα0 [G̃]

and Tα = Ṫα0 [G̃] for any α < θ. �

Lemma 8.12. Let θ be arbitrary. If the inductive hypothesis holds below θ then
it holds at θ.

Proof. Forcing with a large enough collapse G over V [c] so that in V [c][G], θ is
countable and we have enough choice to apply Claim 7.7. Note that the definition
of Aα, Tα is the same in V [G] and V [G][c], since the recipe for constructing them
is absolute. Now we can apply the previous lemma. �

8.4. Tree step. Let θ be a limit ordinal. Suppose M<θ = V (A<θ, T<θ) has been
constructed. Recall the definitions of B from Section 4.1, adding by finite approxi-
mations ω many branches through T<θ.

To find a generic for B over M<θ, we will instead use the following slightly
different B̃, which produces the same symmetric extensions as B.

Definition 8.13. Let B̃ be the poset whose conditions are partial finite functions
from θ to A<θ, ordered by the reverse ordering of the tree T<θ on each coordinate.
Given a generic G̃ ⊆ B̃, which we identify with a θ-sequence of generic branches,

let AG̃θ be the unordered set of these branches.

Lemma 8.14. Let G̃ ⊆ B̃ be V (A<θ, T<θ)-generic. There is, in a further generic

extension, a V (A<θ, T<θ)-generic filter G ⊆ B so that AGθ = AG̃θ .

Proof. Simply note that after collapsing θ to be countable B and B̃ are forcing
isomorphic. �

First we note that in M<θ there are very few symmetric dense open subsets of B̃

Lemma 8.15. Let S = 〈B̃,G,F〉, where G is the group generated by bσ and F is
the filter of subgroups generated by 〈{bσ | σ � a = ida} | a ⊆ ω, finite〉.

A filter G̃ is symmetrically generic for S in M<θ if and only if

(1) Every branch defined by G̃ is cofinal, namely for every ζ, ζ ′ < θ, there is

an element in the ζ-th coordinate of G̃ of level ζ ′ in the tree.
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(2) Every pair of branches is different.

(3) For every t ∈ A<θ there is a branch in G̃ that contains t.

Proof. Let D ⊆ B be a symmetrically dense open set in V (A<θ, T<θ) (with respect

to the group of finite permutations of coordinates). Let G̃ be a filter that meets
the dense open sets as in the statement of the lemma. Fix a0, . . . , am−1 ∈ A<α be
such that D is definable from a0, . . . , am−1, A<α, T<α and a parameter in V .

Let p ∈ G̃ be a condition such that dom p is the range of q and that all its
elements are in a level higher than all the ai’s. Let p′ ≤ p be in D. Let t0, . . . , tn−1

be the elements of p′. Assume without loss of generality that the level of each tk is
greater than the level of each ai.

By the tree indescirnibility, the truth value of p′ ∈ D is a function of the type of
t0, . . . , tn−1 over a0, . . . , am−1. Since the levels of ti are (without loss of generality)
much higher than the parameters in ~a and all are different and in the same level,
the diagram is determined by the level and the values of aj ≤T ti for all i, j. In
particular, p′ ∈ D if and only if p ∪ r ∈ D where r = p′ � (dom p′ \ dom p). By

the assumptions of the lemma, there are branches in G̃ which contain the elements
of r. Let p′′ ≤ p′ be a condition in G̃ that contains those elements (note that we
may move the domain, as D is invariant under a large group of permutations of the
domain), then p′′ meets D. �

Let G̃ ⊆ B̃ be the filter generated by the set of branches Aθ, enumerated by θ,
constructed in Section 8.1. Note that G̃ ⊆ B̃ satisfies conditions (1),(2),(3) above.

Finally, given a generic G<θ for the iteration P<θ, we conclude from Corollary
7.12 that after applying a generic automorphism of Pθ = P<θ ∗ B̃ to G<θ ∗ G̃, we
get a generic filter over V . This concludes the proof that the inductive hypothesis
can be extended.
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