Generic analysis of Borel homomorphisms for the finite Friedman-Stanley jumps

Assaf Shani

Concordia University

Research partially supported by
NSF grant DMS-2246746 and NSERC grant RGPIN-2024-05827.

Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is analytic (Borel) if $E \subseteq X \times X$ is analytic (Borel).

Definition

Let E and F be equivalence relations on Polish spaces X and Y respectively. $f: X \rightarrow Y$ a Borel map.

- f is a Borel homomorphism, $f: E \rightarrow_{B} F$, if $x E x^{\prime} \Longrightarrow f(x) F f\left(x^{\prime}\right)$.
- f is a Borel reduction of E to F if $x E x^{\prime} \Longleftrightarrow f(x) F f\left(x^{\prime}\right)$.
- E is Borel reducible to F, denoted $E \leq_{B} F$, if there is a Borel reduction of E to F.

- E, F are Borel bireducible $\left(E \sim_{B} F\right)$ if $E \leq_{B} F \& F \leq_{B} E$.

Some motivations:

- "Borel definable" cardinality for definable quotient spaces.
- Possible complete invariants for classification problems.

Friedman-Stanley jump / countable powerset operation

Definition

Let E be an equivalence relation on a Polish space X.
Define E^{+}on the Polish space $X^{\mathbb{N}}$ by

$$
x E^{+} y \Longleftrightarrow \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m))
$$

that is, $\left\{[x(n)]_{E} ; n \in \mathbb{N}\right\}=\left\{[y(n)]_{E} ; n \in \mathbb{N}\right\}$.

- The countable powerset operation $\mathcal{P}_{\aleph_{0}}(-)$, for the quotient X / E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
- E is concretely classifiable if $E \leq_{B}=_{\mathbb{R}}$, equality $E R$ on \mathbb{R}. (Numerical invariants.)
- E is classifiable using countable sets of reals as invariants if $E \leq_{B}=+$
- Countable sets of countable sets of reals as invariants:

$$
E \leq_{B}=_{\mathbb{R}}^{++} .
$$

Classification by countable structures

Definition

E is classifiable by countable structures if it is Borel reducible to the isomorphism relation for some class of countable objects.
E.g.: countable graphs, countable groups ...

- Equivalently: if E is Borel reducible to an orbit equivalence relation induced by S_{∞} (or a closed subgroup of S_{∞} : non-Archimedean groups).

Fact
E a Borel equivalence relation. The following are equivalent.

- E is classifiable by countable structures;
- E is Borel reducible to $=_{\mathbb{R}}^{+\alpha}$ for a countable ordinal α.

Motivation

Very general goal:
Given equivalence relation E and F, is $E \leq_{B} F$?
Today's goal:
For $n \leq \omega$, develop methods to prove that $=_{\mathbb{R}}^{+n} \leq_{B} E$ for some E.

Remark:

For $={ }_{\mathbb{R}}^{+}$, the situation is well understood. Some examples:

- Foreman - Louveau 1995: $=_{\mathbb{R}}^{+}$is Borel bireducible with the classification problem of ergodic discrete spectrum measure preserving transformations.
- Marker 2007: Let T be a complete first order theory whose space of types is uncountable. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $=\mathbb{R}^{+}$is Borel reducible to E, or
- any Borel homomorphism from $=_{\mathbb{R}}^{+}$to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Theorem (Marker 2007)

T first order theory, uncountable type space. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

- Fix a perfect set of types C, identified with \mathbb{R}.
- Naive idea: map a countable set of reals $A \subseteq C$ to a model M satisfying "precisely" A.
- Can be done if A is a Scott set: sufficiently closed under some countably many operations.
- Improved idea: $A \mapsto \operatorname{closure}(A) \mapsto M$.
- This gives a Borel homomorphism, not trivial on comeager sets. Therefore $=_{\mathbb{R}}^{+} \leq_{B} \simeq_{T}$.

Some difficulties in generalizing for $n \geq 2$

Kanovei-Sabok-Zapletal 2013: E analytic ER. Then either

- $={ }_{\mathbb{R}}^{+}$is Borel reducible to E, or
- any $f:=_{\mathbb{R}}^{+} \rightarrow_{B} E$ maps a comeager set into a single E-class.

Already for $=_{\mathbb{R}}^{++}$:

- On a comeager subset $C \subseteq\left(\mathbb{R}^{\mathbb{N}}\right)^{\mathbb{N}},\left(=_{\mathbb{R}}^{++} \upharpoonright C\right) \leq_{B}=_{\mathbb{R}}^{+}$. $C=$ all $x \in\left(\mathbb{R}^{\mathbb{N}}\right)^{\mathbb{N}}$ s.t. $(n, m) \neq(l, k) \Longrightarrow x(n, m) \neq x(l, k)$.
- There is an "interesting" Borel homomorphism $=_{\mathbb{R}}^{++} \rightarrow_{B}={ }_{\mathbb{R}}^{+}$:

$$
\left(x_{i, j} \mid i, j \in \mathbb{N}\right) \mapsto\left(x_{<i, j>} \mid i, j \in \mathbb{N}\right) .
$$

More generally:

- For $n \geq 2$, need a different presentation / topology.
- Need to consider the homomorphisms $=_{\mathbb{R}}^{+n} \rightarrow_{B}={ }_{\mathbb{R}}^{+k}, k<n$, essentially taking a hereditarily countable set of rank n to the set of its rank k elements.

Main result

Theorem (S.)

There are equivalence relations F_{n} on Polish spaces X_{n}, s.t.

1. $F_{n} \sim_{B}={ }_{\mathbb{R}}^{+n}, n=1,2,3, \ldots, \omega$, and
there are Borel homomorphism $u_{k}^{n}: F_{n} \rightarrow_{B} F_{k}, k<n \leq \omega$, s.t.
2. Let E be classifiable by countable structures. Then either

- F_{n} is Borel reducible to E, or
- every Borel homomorphism $f: F_{n} \rightarrow_{B} E$ factors through u_{k}^{n} on a comeager set, for $k<n$. (That is, there is a homomorphism $h: F_{k} \rightarrow_{B} E$ so that $(h \circ u) E f$ on a comeager set.)

> To prove $=_{\mathbb{R}}^{+n} \leq_{B} E$, enough to find a "non-trivial" homomorphism.

Figure: $\left(\forall f: F_{n} \rightarrow_{B} E\right)\left(\exists k<n \exists h: F_{k} \rightarrow_{B} E\right)$

Definition of F_{n} and u_{m}^{n}

- $X_{n}=\subseteq\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$, for $n=1,2,3, \ldots, \omega$. Fix $x \in X_{n}$.
- $A_{1}^{x}=\{x(0)(k) ; k \in \mathbb{N}\} \subseteq 2^{\mathbb{N}}$.

$$
\begin{aligned}
& a_{1}^{x, I}=\{x(0)(k) ; x(1)(I)(k)=1\} \subseteq A_{1}^{x} \\
& \begin{array}{ccccccccc}
\vdots & \vdots & \vdots & \vdots & & & \vdots & \vdots & \vdots \\
\\
* & 1 & 0 & 1 & \ldots & & - & * & \cdots \\
* & 1 & 1 & 0 & \cdots & & * & * & - \\
* & 0 & 1 & 1 & \cdots & \cdots & - & * & * \\
* & 0 & 1 & 0 & \cdots & - & * & - & \cdots \\
x(0) & x(1)(0) & x(1)(1) & x(1)(2) & & a_{1}^{x, 0} & a_{1}^{x, 1} & a_{1}^{x, 2} & \\
\left(2^{\mathbb{N}}\right)^{\mathbb{N}} & 2^{\mathbb{N}} & 2^{\mathbb{N}} & 2^{\mathbb{N}} & & & & &
\end{array} \\
& \text { - } A_{2}^{x}=\left\{a_{1}^{x, l} ; I \in \mathbb{N}\right\} ; a_{2}^{x, I}=\left\{a_{1}^{x, k} ; x(2)(I)(k)=1\right\} \subseteq A_{2}^{x} \ldots \\
& \mathbf{x} \mathbf{F}_{\mathrm{n}} \mathbf{y} \Longleftrightarrow \mathbf{A}_{\mathbf{n}}^{\mathrm{x}}=\mathbf{A}_{\mathbf{n}}^{\mathbf{y}}
\end{aligned}
$$

$-u_{m}^{n}: X_{n} \rightarrow X_{m}$, for $m<n$, projection.

An application to a question of Clemens

The following answers positively a question of Clemens.

Corollary (S.)

Suppose $E<_{B}==_{\mathbb{R}}^{+\omega}$. Then for any Borel homomorphism
$f:=_{\mathbb{R}}^{+\omega} \rightarrow_{B} E,=_{\mathbb{R}}^{+\omega}$ retains its complexity on a fiber, that is, there is y in the domain of E so that $=_{\mathbb{R}}^{+\omega} \sim_{B}={ }_{\mathbb{R}}^{+\omega} \upharpoonright\{x ; f(x) E y\}$.
(That is, $=^{+\omega}$ is regular.)

- Can replace $=^{+\omega}$ with F_{ω}.
- By the main theorem, any $f: F_{\omega} \rightarrow_{B} E$ factors through u_{k}^{ω} for some k, on a comeager set.
- From the definitions, F_{ω} is equivalent to its restriction to any fiber of u_{k}^{ω}.
- It remains to show that F_{ω} retains its complexity on comeager sets: $F_{\omega} \leq_{B} F_{\omega} \upharpoonright C$ for any comeager C.

Spectrum of the meager ideal

Corollary (S.)

For any $n \leq \omega, F_{n}$ retains its complexity on comeager sets:
$F_{n} \leq_{B} F_{n} \upharpoonright C$ for any comeager set C.
In particular, $=_{\mathbb{R}}^{+n}$ is in the spectrum of the meager ideal.
This was proved by Kanovei, Sabok, and Zapletal for $n=1$.
For $n>1$, the different presentation F_{n} is necessary.

- Fix a comeager set C (assume it is F_{n}-invariant). Fix $f: F_{n} \rightarrow_{B} F_{n} \upharpoonright C$ which is the identity on C.
- From the definitions, u_{k}^{n} is not a reduction on any comeager set, for $k<n$.
- So f does not factor through u_{k}^{n}, for $k<n$.
- By the main theorem, $F_{n} \leq_{B} F_{n} \upharpoonright C$.

What else is good about F_{n} ? Group action

$S_{\infty}=\operatorname{Sym}(\mathbb{N}), S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightsquigarrow=_{\mathbb{R}}^{+}$(on a large set).
Consider the action $S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$.

F_{2} is induced (on a large set) by the action

$$
S_{\infty} \times S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

Similarly: F_{n} is induced by a natural action of $\left(S_{\infty}\right)^{n}$ on $\left(\left(2^{\mathbb{N}}\right)^{\mathbb{N}}\right)^{n}$. In contrast, $=\mathbb{R}^{++}$is naturally induced by an action of

$$
S_{\infty} \ltimes\left(S_{\infty}\right)^{\mathbb{N}} \text { on }\left(\mathbb{R}^{\mathbb{N}}\right)^{\mathbb{N}}
$$

What else is good about F_{n} ? Borel complexity

Note: $={ }^{+}$is $\Pi_{3}^{0} ;=^{++}$is $\Pi_{5}^{0} ;=^{+++}$is Π_{7}^{0}.
Theorem (Hjorth-Kechris-Louveau 1998)
$={ }^{+n}$ is potentially $\boldsymbol{\Pi}_{2+n}^{0}$: it is Borel reducible to a Π_{2+n}^{0} ER. In fact it is maximal potentially Π_{2+n}^{0} for S_{∞}-actions.

Note:
F_{n} is Π_{2+n}^{0}.
e.g., F_{2} is Π_{4}^{0}. Main point: given x, y, we want

$$
\forall n \exists m(\forall i, j[x(0)(i)=y(0)(j) \rightarrow x(1)(n)(i)=y(1)(m)(j)])
$$

$*$	1	1	0	$*$	0	1	1
$*$	0	1	1	$*$	0	0	0
$*$	0	1	0	$*$	1	1	0
$x(0)$	$x(1)(0)$	$x(1)(1)$	$x(1)(2)$	$y(0)$	$y(1)(0)$	$y(1)(1)$	$y(1)(2)$

New ideas going into the proof

1. To build a reduction from F_{n} to some equivalence relation, need a construction which is invariant under the action

$$
S_{\infty} \times S_{\infty} \curvearrowright\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \times\left(2^{\mathbb{N}}\right)^{\mathbb{N}}
$$

2. For this action, need to understand Vaught transforms:

$$
\left\{x ; \text { for a comeager set of } g \in S_{\infty} \times S_{\infty}, g \cdot x \in C\right\}
$$ for comeager sets C.

3. Lemma: given a Borel homomorphism f from F_{n} to E, E classifiable by countable structures, there are:

$$
\begin{array}{ccccc}
F_{1} \leftarrow F_{2} \leftarrow F_{3} \leftarrow \ldots & \leftarrow F_{n} \\
\downarrow & \downarrow & \downarrow & & \downarrow \\
E_{1} \leftarrow E_{2} \leftarrow E_{3} \leftarrow \ldots & \leftarrow E
\end{array}
$$

which commute on comeager sets.

Some questions

- Find a model-theoretic condition on a first order theory T so that $=_{\mathbb{R}}^{+n} \leq_{B} \simeq_{T}$. (Done by Marker 2007 for $=_{\mathbb{R}}^{+}$.)
- Extend to transfinite jumps, $=_{\mathbb{R}}^{+\alpha}$ for a countable ordinal α.
- Find an equivalent jump operation which also gives a good topology.
- Prove generic dichotomies for homomorphisms for other equivalence relations.
- Prove a measure theoretic version of the dichotomy for $={ }_{\mathbb{R}}^{+n}$. (Done by Kanovei-Sabok-Zapletal 2013 for $={ }_{\mathbb{R}}^{+}$.)
- Find a set theoretic condition for $=_{\mathbb{R}}^{+n} \leq_{B} E$, e.g. based on properties of E in $L(\mathbb{R})$ or the Solovay model. (Done by Larson-Zapletal 2020 for $={ }_{\mathbb{R}}^{+}$.)

