Generic analysis of Borel homomorphisms for the finite Friedman-Stanley jumps

Assaf Shani

Concordia University

Research partially supported by NSF grant DMS-2246746 and NSERC grant RGPIN-2024-05827.

Borel homomorphisms and reductions

An equivalence relation E on a Polish space X is analytic (Borel) if $E \subseteq X \times X$ is analytic (Borel).

Definition

Let E and F be equivalence relations on Polish spaces X and Y respectively. $f: X \to Y$ a Borel map.

- ▶ f is a **Borel homomorphism**, $f: E \rightarrow_B F$, if $x E x' \implies f(x) F f(x')$.
- ▶ f is a **Borel reduction** of E to F if $x E x' \iff f(x) F f(x')$.
- ▶ *E* is Borel reducible to *F*, denoted $E \leq_B F$, if there is a Borel reduction of *E* to *F*.
- ▶ E, F are **Borel bireducible** $(E \sim_B F)$ if $E \leq_B F \& F \leq_B E$.

Some motivations:

- "Borel definable" cardinality for definable quotient spaces.
- Possible complete invariants for classification problems.

Friedman-Stanley jump / countable powerset operation

Definition

Let E be an equivalence relation on a Polish space X. Define E^+ on the Polish space $X^{\mathbb{N}}$ by

$$x E^+ y \iff \forall n \exists m(x(n) E y(m)) \& \forall n \exists m(y(n) E x(m)),$$

that is, $\{[x(n)]_E; n \in \mathbb{N}\} = \{[y(n)]_E; n \in \mathbb{N}\}.$

- ▶ The countable powerset operation $\mathcal{P}_{\aleph_0}(-)$, for the quotient X/E, coded on a Polish space.
- Classifiability using hereditarily countable invariants.
 - ▶ *E* is **concretely classifiable** if $E \leq_B =_{\mathbb{R}}$, equality ER on \mathbb{R} . (Numerical invariants.)
 - ▶ *E* is classifiable using countable sets of reals as invariants if $E \leq_B =_{\mathbb{R}}^+$.
 - Countable sets of countable sets of reals as invariants: $E \leq_B =_{\mathbb{D}}^{++}$.

Classification by countable structures

Definition

E is **classifiable by countable structures** if it is Borel reducible to the isomorphism relation for some class of countable objects. E.g.: countable graphs, countable groups ...

▶ Equivalently: if E is Borel reducible to an orbit equivalence relation induced by S_{∞} (or a closed subgroup of S_{∞} : non-Archimedean groups).

Fact

E a Borel equivalence relation. The following are equivalent.

- ► E is classifiable by countable structures;
- ▶ E is Borel reducible to $=_{\mathbb{R}}^{+\alpha}$ for a countable ordinal α .

Motivation

Very general goal:

Given equivalence relation E and F, is $E \leq_B F$?

Today's goal:

For $n \leq \omega$, develop methods to prove that $=_{\mathbb{R}}^{+n} \leq_B E$ for some E.

Remark:

For $=_{\mathbb{R}}^+$, the situation is well understood. Some examples:

- ▶ Foreman Louveau 1995: $=_{\mathbb{R}}^+$ is Borel bireducible with the classification problem of ergodic discrete spectrum measure preserving transformations.
- Marker 2007: Let T be a complete first order theory whose space of types is uncountable. Then $=_{\mathbb{R}}^+ \leq_B \cong_T$.

Generic dichotomy for Borel homomorphisms

Theorem (Kanovei-Sabok-Zapletal 2013)

Let E be an analytic equivalence relation. Then either

- $ightharpoonup =_{\mathbb{R}}^+$ is Borel reducible to E, or
- ▶ any Borel homomorphism from $=_{\mathbb{R}}^+$ to E maps a comeager subset of $\mathbb{R}^{\mathbb{N}}$ into a single E-class.

Theorem (Marker 2007)

T first order theory, uncountable type space. Then $=_{\mathbb{R}}^{+} \leq_{B} \cong_{T}$.

- ightharpoonup Fix a perfect set of types C, identified with \mathbb{R} .
- Naive idea: map a countable set of reals $A \subseteq C$ to a model M satisfying "precisely" A.
- ► Can be done if A is a Scott set: sufficiently closed under some countably many operations.
- ▶ Improved idea: $A \mapsto \operatorname{closure}(A) \mapsto M$.
- ► This gives a Borel homomorphism, not trivial on comeager sets. Therefore $=_{\mathbb{D}}^+ \leq_B \simeq_T$.

Some difficulties in generalizing for $n \ge 2$

Kanovei-Sabok-Zapletal 2013: E analytic ER. Then either

- $\triangleright =_{\mathbb{R}}^+$ is Borel reducible to E, or
- ▶ any $f : =_{\mathbb{R}}^+ \to_B E$ maps a comeager set into a single *E*-class.

Already for $=_{\mathbb{R}}^{++}$:

- ▶ On a comeager subset $C \subseteq (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}}$, $(=_{\mathbb{R}}^{++} \upharpoonright C) \leq_{B} =_{\mathbb{R}}^{+}$. $C = \text{all } x \in (\mathbb{R}^{\mathbb{N}})^{\mathbb{N}} \text{ s.t. } (n,m) \neq (I,k) \implies x(n,m) \neq x(I,k)$.
- There **is** an "interesting" Borel homomorphism $=_{\mathbb{R}}^{++} \to_{\mathcal{B}} =_{\mathbb{R}}^{+}$: $(x_{i,j} \mid i,j \in \mathbb{N}) \mapsto (x_{< i,j} > \mid i,j \in \mathbb{N}).$

More generally:

- ▶ For $n \ge 2$, need a different presentation / topology.
- Need to consider the homomorphisms $=_{\mathbb{R}}^{+n} \to_B =_{\mathbb{R}}^{+k}$, k < n, essentially taking a hereditarily countable set of rank n to the set of its rank k elements.

Main result

Theorem (S.)

There are equivalence relations F_n on Polish spaces X_n , s.t.

1.
$$F_n \sim_B =_{\mathbb{R}}^{+n}$$
, $n = 1, 2, 3, ..., \omega$, and

there are Borel homomorphism $u_k^n : F_n \to_B F_k$, $k < n \le \omega$, s.t.

- 2. Let *E* be classifiable by countable structures. Then either
 - \triangleright F_n is Borel reducible to E, or
 - every Borel homomorphism $f: F_n \to_B E$ factors through u_k^n on a comeager set, for k < n. (That is, there is a homomorphism $h: F_k \to_B E$ so that $(h \circ u) E f$ on a comeager set.)

To prove $=_{\mathbb{R}}^{+n} \leq_B E$, enough to find a "non-trivial" homomorphism.

$$\begin{array}{c|c}
F_n & \sim_B = \stackrel{+}{\mathbb{R}}^n \\
u_k^n & f \\
F_k & \xrightarrow{---} E
\end{array}$$

Figure:
$$(\forall f : F_n \rightarrow_B E)(\exists k < n \exists h : F_k \rightarrow_B E)$$

Definition of F_n and u_m^n

- $ightharpoonup X_n = \subseteq ((2^{\mathbb{N}})^{\mathbb{N}})^n$, for $n = 1, 2, 3, \dots, \omega$. Fix $x \in X_n$.
- $A_1^x = \{x(0)(k); k \in \mathbb{N}\} \subseteq 2^{\mathbb{N}}.$

$$a_{1}^{x,l} = \{x(0)(k); \ x(1)(l)(k) = 1\} \subseteq A_{1}^{x}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$* \qquad 1 \qquad 0 \qquad 1 \qquad \dots \qquad * \qquad - \qquad * \qquad \dots$$

$$* \qquad 1 \qquad 1 \qquad 0 \qquad \dots \qquad * \qquad - \qquad * \qquad \dots$$

$$* \qquad 0 \qquad 1 \qquad 1 \qquad \dots \qquad \mapsto \qquad * \qquad * \qquad - \qquad \dots$$

$$* \qquad 0 \qquad 1 \qquad 0 \qquad \dots \qquad - \qquad * \qquad * \qquad \dots$$

$$x(0) \qquad x(1)(0) \qquad x(1)(1) \qquad x(1)(2) \qquad \qquad - \qquad * \qquad - \qquad \dots$$

$$(2^{\mathbb{N}})^{\mathbb{N}} \qquad 2^{\mathbb{N}} \qquad 2^{\mathbb{N}} \qquad 2^{\mathbb{N}} \qquad a_{1}^{x,0} \qquad a_{1}^{x,1} \qquad a_{1}^{x,2}$$

$$x F_n y \iff A_n^x = A_n^y$$

An application to a question of Clemens

The following answers positively a question of Clemens.

Corollary (S.)

Suppose $E <_B =_{\mathbb{R}}^{+\omega}$. Then for any Borel homomorphism $f :=_{\mathbb{R}}^{+\omega} \to_B E, =_{\mathbb{R}}^{+\omega}$ retains its complexity on a fiber, that is, there is y in the domain of E so that $=_{\mathbb{R}}^{+\omega} \sim_B =_{\mathbb{R}}^{+\omega} \upharpoonright \{x; f(x) E y\}$. (That is, $=^{+\omega}$ is **regular**.)

- ► Can replace $=^{+\omega}$ with F_{ω} .
- ▶ By the main theorem, any $f: F_{\omega} \rightarrow_{B} E$ factors through u_{k}^{ω} for some k, on a comeager set.
- ▶ From the definitions, F_{ω} is equivalent to its restriction to any fiber of u_k^{ω} .
- ▶ It remains to show that F_{ω} retains its complexity on comeager sets: $F_{\omega} \leq_B F_{\omega} \upharpoonright C$ for any comeager C.

Spectrum of the meager ideal

Corollary (S.)

For any $n \le \omega$, F_n retains its complexity on comeager sets: $F_n \le_B F_n \upharpoonright C$ for any comeager set C.

In particular, $=_{\mathbb{R}}^{+n}$ is in the **spectrum of the meager ideal**. This was proved by Kanovei, Sabok, and Zapletal for n=1. For n>1, the different presentation F_n is necessary.

- Fix a comeager set C (assume it is F_n -invariant). Fix $f: F_n \to_B F_n \upharpoonright C$ which is the identity on C.
- From the definitions, u_k^n is not a reduction on any comeager set, for k < n.
- ▶ So f does not factor through u_k^n , for k < n.
- ▶ By the main theorem, $F_n \leq_B F_n \upharpoonright C$.

What else is good about F_n ? Group action

 $S_{\infty} = \operatorname{Sym}(\mathbb{N}), \ S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} \leadsto =_{\mathbb{R}}^{+}$ (on a large set). Consider the action $S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}}$.

 F_2 is induced (on a large set) by the action

$$S_{\infty} \times S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} \times (2^{\mathbb{N}})^{\mathbb{N}}$$

Similarly: F_n is induced by a natural action of $(S_\infty)^n$ on $((2^\mathbb{N})^\mathbb{N})^n$. In contrast, $=_{\mathbb{R}}^{++}$ is naturally induced by an action of

$$S_{\infty} \ltimes (S_{\infty})^{\mathbb{N}}$$
 on $(\mathbb{R}^{\mathbb{N}})^{\mathbb{N}}$

What else is good about F_n ? Borel complexity

Note: $=^+$ is Π_3^0 ; $=^{++}$ is Π_5^0 ; $=^{+++}$ is Π_7^0 .

Theorem (Hjorth-Kechris-Louveau 1998)

=⁺ⁿ is potentially Π^0_{2+n} : it is Borel reducible to a Π^0_{2+n} ER. In fact it is maximal potentially Π^0_{2+n} for S_{∞} -actions.

Note:

 F_n is Π^0_{2+n} .

e.g., F_2 is Π_4^0 . Main point: given x, y, we want

$$\forall n \exists m (\forall i, j [x(0)(i) = y(0)(j) \rightarrow x(1)(n)(i) = y(1)(m)(j)])$$

New ideas going into the proof

1. To build a reduction from F_n to some equivalence relation, need a construction which is invariant under the action

$$S_{\infty} \times S_{\infty} \curvearrowright (2^{\mathbb{N}})^{\mathbb{N}} \times (2^{\mathbb{N}})^{\mathbb{N}}$$

2. For this action, need to understand Vaught transforms:

$$\left\{x;\, \mathrm{for\ a\ comeager\ set\ of}\ g\in S_{\infty}\times S_{\infty},\ g\cdot x\in C\right\},$$

for comeager sets C.

3. Lemma: given a Borel homomorphism f from F_n to E, E classifiable by countable structures, there are:

$$F_1 \leftarrow F_2 \leftarrow F_3 \leftarrow \cdots \leftarrow F_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$E_1 \leftarrow E_2 \leftarrow E_3 \leftarrow \cdots \leftarrow E$$

which commute on comeager sets.

Some questions

- ▶ Find a model-theoretic condition on a first order theory T so that $=_{\mathbb{R}}^{+n} \leq_B \simeq_T$. (Done by Marker 2007 for $=_{\mathbb{R}}^+$.)
- **Extend to transfinite jumps**, $=_{\mathbb{R}}^{+\alpha}$ for a countable ordinal α .
- Find an equivalent jump operation which also gives a good topology.
- Prove generic dichotomies for homomorphisms for other equivalence relations.
- Prove a measure theoretic version of the dichotomy for $=_{\mathbb{R}}^{+n}$. (Done by Kanovei-Sabok-Zapletal 2013 for $=_{\mathbb{R}}^{+}$.)
- ▶ Find a set theoretic condition for $=_{\mathbb{R}}^{+n} \leq_B E$, e.g. based on properties of E in $L(\mathbb{R})$ or the Solovay model. (Done by Larson-Zapletal 2020 for $=_{\mathbb{R}}^+$.)